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ABSTRACT

We consider quantum spin systems where each site supports a re-
presentation U of a semisimple Lie algebra, g. By combining Lieb’s
method (for the case g = s0(3)) and Weyl’s weight theory, we identify
the proper classical phase space, I' (§ 2 in Lieb’s case), for a classical
limit as /- . T' turns out to be a coadjoint orbit; for example, if L th
is the degree ! spinor representation of o (2n), then T' is the manifold
of nX n orthogonal and antisymmetric matrices, The possible relevance
to a proof of the Lee — Yang theorem for the S§" model is discussed.

1. INTRODUCTION

In this note, we want to describe some of the results in a fuller paper
to be published elsewhere [11]. The starting point of our analysis is a
beautiful paper of Lieb [8]. Consider a finite array {a},_, of sites
and for each & consider an independent set of spin [ quantum (so (3})
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spins, L’.“‘Z (independent means we operate on  ® C¥*!) and
N aEc A

let H(x,) be a multiaffine function on | Al|-three vectors x =
= (xl,n,xzva,x_,w) i.e. a sum of monomials r:J«:‘,.l'ml co X ey Since,
spins at different sites commute, one can give an unambiguous meaning
to the operator H(L{"). Define

zL () = 21+ 1)7'M Tr (exp (- HOY L),

Let T denote the two sphere, § 2 , and let

Z o =@m M [ exp (- How ) ITdsux,)
rial o
where df¥(x,) is the usual (unnormalized) measure on I'. Then Lieb
proves that for all /1, 7.

Theorem ([8]).
(L) ZM<ZEmM<ZM1+17 D).

The point of this result is that the estimates are good enough to prove
convergence of the spin ! pressure to the classical pressure as - . We
are mainly interested in the consequence:

(12 lim zL(n=Z,m.
1+ =

Our goal here is to examine what happens when so (3) is replaced
by a more general Lic algebra. Since we want groups with lots of finite
dimensional representations and since Abelian pieces are “uninteresting”,
we may as well consider semisimple Lie algebra in compact form i.e.
so (n), su (n), usp (1), the five exceptional algebras and direct sums of
such. In fact, in this note, we will restrict ourselves to so (). We note
that one other case was worked out by Fuller and Lenard [3], name-
ly the spherical harmonic representations of so (n). They found that r
is a Grassman manifold of oriented two planes in n space, but the exact
choice of I' was found by adhoc means. Qur goal here is to illustrate
what T is in general. In Section 4, we recover the Fuller — Lenard result.

The problem we consider is of some purely mathematical interest but
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our interest is motivated in part by an idea of Dunlop and Newman
[21. These authors prove a Lee — Yang theorem for 8% classical spins by
using the limit result (1.2) and the known result for quantum spins. As
Newman has emphasized [9] this is a rather indirect way of obtaining
information on classical spins but it is the only proof we know for the § 1
classical Lee — Yang theorem! We regard the extension of Lieb’s result as
a possible first step in extending the Dunlop - Newman proof to S*spins.
One’s first hope that S* will arise asa T for so(n+ 1) is a false one
— T' always supports an invariant symplectic form (not an unreasonable
feature of a classical mechanical system!) and only S? nas such a form.
However, as we explain Section 5, it is still possible to reduce the Lee —
Yang theorem for S™ to an quantum Lee — Yang theorem which at the
present moment remains unproved.

It is a pleasure to thank B. Kostant, A. Lenard and 8. Levin
for valuable discussions.

2. FUNDAMENTAL WEIGHTS: THE MAIN THEOREM

In describing the results, we will suppose that the reader has some
previous exposure to the Weyl theory of representations of the compact
Lie groups. For readable accounts see Samelson [10], which emphasizes
the algebraic aspects or Adams [1], which emphasizes the geometric
content; there is also a brief description in [11].

The Lie algebra, g, supports a natural action of its Lie group G; ie.
for any x € G, there is a linear map A(x) on g, for example if g=
= so (n), if L € g generates rotations about an axis e, then A(x)L gen-
erates rotations about xe, the image of e under the rotation x. 4 is
called the adjoint action and by duality it induces a natural action 4* on
g* the dual of g, ie. A*(x)=[A{x~ 1)]“. A* is called the coadjoint
action and special attention should be paid to the orbits in g* under the
action, ie. {A*(x)I{x€ G; I fixed}. These coadjoint orbits play a role
in the Kostant — Souriau [5], [12] method of geometric quantiza-
tion and from their point of view our result that they are the classical limit
manifolds is most natural. Given a coadjoint orbit, T, and [, €T, one
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defines a bilinear functional w,o on the cotangent space T,‘[‘)(!") as
follows: elements of T,;(l") are naturally thought of as elements of
T,‘.‘) (")} =g, ie. as elements of the Lie algebra. Given L Meg, wede-
fine wIO(L,M) = 1,([L,M]) where [-,-] is Lie bracket. w Iis easily
sent to be non-degenerate and continuous in ’0 making ' into a sym-

plectic manifold, proving, by the way that dim I' iseven.

The semi-simple compact Lie algebras support a natural positive de-
finite inner product (negative of the Killing form), e.g. for so(n}, (L, M) =
= Tr (L*M). Thus the adjoint action is naturally equivalent to the co-
adjoint action but it is wortwhile distinguishing them for clarity.

In g, one chooses a maximal Abelian subalgebrz k. For example
in so(2n) or so(2n+ 1), one conventionally chooses le,L“, Cas
N S where L'.j generates rotations in the # plane; ie. if g
is viewed as real antisymmetric matrices, then Lr‘f has 1 in the i posi
tion, — 1 in the ji position and O elsewhere. Given a representation
U/ of g, bne simulianeously diagonalizes the L € h. The common eigen-
values define linear functionals X on h called weights. We will extend X
wa A onall of g by setting it equal to zero on k!, the orthogonal
complement of # in the natural inner product. With this definition, if

@2.n Ulyw=MLw (Leh)
then
22y (W ULw =ML al Leg
The familiar integrality conditions in so(3), (i.e.that L, haseigen-

values in [O, + %, +1,.. .)) have an analog in a general algebra. The

weights A must lie in a discrete lattice, W, of dimension r= dim (k)
{=n for so(2n) or so(2n+ 1)). For example in so {m), the condi-

L 1 .
tion is )\(L2fw 1,2:') € 5 Z; MLy L2~ sz_ 1‘21) € Z; Z = integers.

A choice leads to a natural basis A,, ... ,7\,, for W called the funda-
mental weights. For example, in the case of so (2n) or so 2+ 1)
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7\1=wi,?tz=w1+w2,...,)\ a=Wyt bW,

1
Rr——z(wlﬁ--. +w,  +tw)
and for so (2n+ 1)
1
MN_g=wp b dw A= (w +. +w,)

where w; is the linear functional with
willy 3,2 = By

Moreover, a special role is played by the weight

(23)  S=At...tA.

Any weight A€ W can be uniquely written A=n A + ...+ nA

with n,€ Z. We order W by Znn# Zm if and only if n,2m,.
Given any irreducible representation, U, of g, there is among its weights
a unique one maximal in this order. This weight lies in

Wt ={ZnNIn>0}

Moreover, two irreducible representations are equivalent if and only if
their maximal weights agree and any A€ W* is the maximal weight
of an itreducible representation; that is there is a one-one corre-
spondence between irreducible representations, UM, of g and
weights A€ W,

For example, if g=so(2n), Uu‘), .. .,Un"z) are the rank

1,2,...,r—2 totally antisymmetric tensors; UU’* " and Un’) are
the spinor representations of which we will have more to say in Section 4.
For j<r—2 and l€Z, U

tableaux, ie. the I fold symmetric tensor product of U () with various

are the representations with j X { Young
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[ .
partial traces set to zero. In particular, U( Vs just the degree [ speri-
cal harmonics.

We can now state our main theorem.

Theorem. Let g be a compact semi-simple Lie algebra of dimension
g and let r=dim{h). Fix one of the fundamental weights X, ..., A
(call it N and fix a Hamiltonian H depending in a multiaffine way on
|A| g-vectors, x,. Let Lf) denote independent copies of the generators
of g in the representations UY™) and let

zL vy = (d)~ "\ Tr (exp (— Hyt L))

where d,= dim (UUNY. Let ' be the coadjoint orbit containing N and
let dp be the natural invariant normalized measure on T. Define

Z, (v = .{\ exp (~ HOrx,) I dutx,).
r o

Then
Q4  ZM<ZLM<Z 0+ 1oy

where

gm 2 M8
WY

with & the weight (2.3)and (-,-) the natural inner product on g*.

Remark 1. This theorem is probably true for any A€ W*, not just

A=, ?‘z feees ]\r but at this point, in one annoying technical place (see .

Section 3), the restriction to the fundamental weights enters in the upper
bound (the lower bound is always true).

Remask 2. The weight & enters magically (it often does!) through

the fact that the Casimir operator (2 ,Lzz!._l 2 for so (m)) has eigenvalue
(A, A0+ 2(X, 8) in the representation [/,
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3. LIER’S METHOD AND COHERENT VECTORS

Lieb’s method [8] depends on three basic ideas:

(1) Use coherent vectors;

(2) Get lower bounds by using Jensen's inequality;

(3) Get upper bounds by using a2 Golden — Thompson inequality.

The usefulness of these ideas is illustrated by noting that they provide
a rather quick proof of the classical limit of the partition function also in
non-relativistic systems with a finite number of degrees of freedom [13],
[11] and also control on the classical limit of the pressure in realistic
models [11].

Steps (2) and (3) are summarized in the following result:

Theorem. Let (X,du) be a probability measure space. Let ¥ bea
Hilbert space of dimension d<e_ Let x\— P(x) be a measurable map
of X into the one dimensional projections and suppose that

3. SPx)ydux)=d 1.

Then for any self-adjoint A:

(3.2) 5 Tr(e-4)> [ du(x) exp (— Tt (AP(x)).
Mareover, if

(33)  A=d [ fx)Px) dplx)

forsome fEL™, then

B4 ETre )< S dute) exp (- f).

For a proof, see [ 11]. (3.2) is a simple application of Jensen’s inequali-
ty. (3.4) is more subtle; in [11] it is proven using the Golden — Thompson
type inequality Tr((CIN™)< Tr(C"D"). Berezin [15] also found
these estimates at the same time as [8].
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To apply this result to get the main theorem of Section 2, we take
X=T'A" and P(x) a projection onto a coherent vector. Let us describe
what happens at a single site, ie. JAj= 1.

Let Y be the irreducible representation associated to the maximal
weight, f. Let P(f) be the projection onto the eigenspace

{w| UMNLYw = filyw].

By general principles, P(}') isrank 1 and w is the unique vector {up to
phase) with

(3.5) (w, UNLIw) = fiL).

? the extension of f to g described in Section 2. Let T be the coadjoint
orbit with }"E I Given x €T, pick y € ¢ with A*(»)f=x and define

P(xy= UNOHPHUN G L.

Then the fact that (3.5) determines w uniquely implies that P(x) is inde-
pendent of which » is choosen with A*(3)f= x. Moreover

(3.6) Tr (POYUX(LY) = x(L).

The irreducibility of U implies that

(3.7 JPx) dptx) = dim (U 11,
(3.2), (3.6) and (3.7) lead to the lower bound Z,,(v) < Z}, (7).

To get the upper bound we need the formula

38) UL = ¢ [ x(L)P(x) du(x)

for a constant ¢. It is not hard to see that both sides of (3.8) are functions
F(L) with

UPFLYUD) - = FlAdO)L)

for all L€g, y€G. Thus (3.8) holds automatically if e O cop-
tains the adjoint representation only once (by the Wigner — Eckart theo-
rem). This is true if and only if f is a multiple of a fundamental weight [6].
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We conjecture (3.8) is generally true. A general proof of (3.8) would pro-
vide 2 general proof of the theorem of Section 2 without the restriction
to fundamental wrights. The evaluation of the constant in (3.8} is now
fairly easy [8], [3],[11]1 (4 = dim (FUM):

(3.9) c=di{f, NI+ 24580
(3.4),(3.7), (3.8) and (3.9) lead to the upper bound in (2.4).

4. TWO EXAMPLES

Spherical harmonies. We want to recover the result of Fuller and
Lenard [3]. UW s the natural representation of so (n) on the poly-
nomials in n variables which are harmonic and homogeneous of degree 1.
This representation is irreducible [14] and it is easy to see that in terms
of the basis of weights described in Section 2, a maximal weight is \,
with weight vector (x, + ixz)’. The Lie algebra so (n) is antisymmetric
real matrices and the inner product (L, M) = Tr(L*M) associates so (n)*
and so (n). In this realization, A, corresponds to the matrix m, with

1 i=1,j=2
(ml)i.jm -1 j=1,i=12
0 otherwise.

m, isarank 2 matrix with Tr (m{m )= 2 and it is easy to see that the
image of m, under SO (n) is precisely all such matrices (except for
n =2 which we ignore as Abetian). Thus, '={m &€ so(n)|rankm = 2;
Tt (m*m) = 2} which is naturally isomorphic to the set of normalized de-
composable two forms i.e. the Grassman manifold of oriented two planes
in O(n). This yields the result of Fuller — Lenard once one notes that

(wl,ﬁ) 1
w3 = (5 = —2).

(This is either a direct calculation using the exact form of § or else it fol-
lows from the formula, i/ + (n — 2)), for the value of the Casimir oper-

. IrY
atorin U ‘)).
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Spinors. We consider so (2n). The Clifford algebra is the irreducible
realization of the relations among 2n matrices, 0,,...,0,,, {a,, oa} =
= 26“ on C™ with m= 2" (ie. familiar as Pauli matrics for n=1,
Dirac matrices for n = 2 and CAR for general n). The realization

ULy = 5 0,0,

yields a representation of so (2n) which is not irreducible but rather
Uy =UB e UAn- D with A,,A, ; the weightsgiven in Section 2. (To
see this note that the 2" vectors with U (L,,_, ;) =12 1 (n choices)

form a basis for €™ and read off the weights). The “spin Ji ! spinors’

are just
U= v e gtPn-).

(To have a group representation we need to use Spin (2n), the double
covering of SO (2n) and to get irreducibility we take pin (2n), the double
covering of O (2n). U, is an irreducible representation of pin (2m), i.e. to
accomodate parity we need both A, and X _,. Without parity, we have
non-irreducibility since o,,., =0, ...0,, ~commutes with each 0,0,
So long as we use pin (2n), the general theory applies). Under the natural
association of so (2m)* and so(2m), A, corresponds to a matrix m, .

T i=2k—1,j=2
(m)y=1—% =2k j=2k-1
0 otherwise.

Notice that 2m, is unitary and antisymmetric and any such matrix is of
the form 234:m"x*l for x€ O (n), ie.

I= {% Ul Ue U@n) n so (2n),
i.e. unitary and antisymmetric}.
Since S=(n—Dw, +...+w, _, and A, =-%(wl +...+w,) wesee
that
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(8,7, %[(n—l)+(n—2)+...+ 0]
A0

i =(n-1).
ZII
It is convenient to set
~ 1
F={viyUer}

and define Z, in terms of T If, we do that and define ZQI for the
(]
spin %I spinors normalized by U—I@:
1 -
Zy(3) < Zym < Zy (7 y11 + 20 - DI7Y).

5. TOWARDS A LEE — YANG THEOREM FOR §¢

In this section, we want to reduce the proof of a Lee — Yang theorem
for 89, d=2n—2 to a conjecture about spinors. As noted in the intro-
duction, for d# 2, §¢ is not the classical limit T for any sequence of
representations of so (d + 1). However:

Theorem. Fix m=2n. Let T' be the classical limit space for the
spinor representations. Map T' to R™ ' by '

W) =(U,,, U, ..., U,)
Then rant is S™~1, the sphere in R™~1 and the measure v on
gm-2 defined by v(A)= pu{r~ l[A]), . the natural measure on F‘, is
Just the usual measure on §™ ~ 1,

Proof. Clearly, +(ID€8™ % since U is unitary. If x € SO (2n)
leaves (1,0,...,0) fixed, then 7(xf/x~1) is the natural rotation on
7({/). Thus, Ranr is rotation invariant and » is rotation invariant.fl

As a result, if for each site «€ A, we have a copy "l:"a of T and
the Hamiltonian is independent of {U‘,.‘,:")}'f> 2.k»2.0cn¢ DY integrating
out” these variables we get an 5§ ~ 2 classical model. Thus,

Theorem. Let #= @ X, each # =C*, k=2" Let L}

aEA @ ? i
be basic spinor actionson X and let
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5.1y -H= Z[J 2L"L5+K Z‘L”L”] + 2, L3

[/ ]

Suppose that for all J&ﬂ,Kq‘ﬂ} 0, h, complex with Reh >0, we
have that Tr(e~#)= 0. Then,

(5.2) f Zdﬂ(sﬂ)exp [Z’K‘mﬂsmsIE + 2hs, ]#0
&

for K _=0, ha complex with Reh, >0 and - §¢ the measure on
§2%-1 'If Tr{e ¥)+ 0 when an additional term

n-1
8
D%‘Mw ,:Z; LeLf,
is added to H(M,, > 0, then (5.2) hoMsfor £ the measure on §2"~3.

Proof. Given Tr (e~ H) for basic spinors, we can use the Griffiths
trick [4] and couple ! basic spinors together with infinitely strong coupling
and get Tr (e ¥y+ 0 for spin % ! spinors. This yields a Lec — Yang the-
orem for classical spins by our limit theorem in Sections 2-4. If we special-
ize to J=0 in this classical result (J# 0 is needed to get the classicat
result from basic spinors) and integrate out the uncoupled components
we get the desired result. If we have an M term and add

Tu(Z @)

in the classical limit and take M —~ =, we get the §27~3 result.B

Various tests of the conjecture that Tr e H1£0 on a small
number of sites are positive [7], so we expect that the conjecture is true.
However, Asano contraction methods appear not to work [7], so a new
understanding of the Lee — Yang theorem for the quantum Heisenberg
model, preferably on a more group theoretic level, appears necessary to
prove that Tr (e~ #)+ 0 under the situation needed above.
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