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The characteristic function ¢ of a lattice
distribution has the property that there exists
a ty# 0 such that |¢(#)| = 1.

The most common lattice distributions are
on the nonnegative unit lattice 0,1,2, .. . .

{CHARACTERISTIC FUNCTIONS)

LATTICE SYSTEMS

Lattice systems are a class of random pro-
cesses indexed by discrete subgroups of R’,
such as Z” (the lattice of »-tuples of inte-
gers). They have their origin in statistical
mechanics* and are of special interest as
models of critical phenomena*. They are
also of some significance as discrete approxi-
mations to Buclidean quantum field theo-
ries, (see QUANTUM PHYSICS AND FUNCTION
INTEGRATION) and also in probability theo-
ry: the most elementary multitime Markov
chains* are included among the lattice gases.

The simplest and most famous of the lat-
tice systems is the nearest-neighbor Ising
model. Let v be an integer and Z* the lattice
of »-tuples of integers. Foreacha € Z%, 5, is
a random variable taking the values = 1. To
describe the joint probability distributions,
we need some auxiliary functions. Given a
finite subset A of Z*, the symbol

{av);a,YEA

denotes the sum over all those pairs in A
with |a — y| =1 (Euclidean distance). The
finite volume Hamiltonian is the function on
(-1, 1)

H,(s)=-J X

{ay)ia,yEA

5,85, =h D 8,

aEA

where J and h are parameters. The finite
volume Gibbs measure is the measure, du,,
on { —1,1}* giving weight

e BHND [Z = w

to the point {s,}. Here Z, is a normalization
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factor called the partition function and is
given by

Zy= 2

s,mxliac A

e‘ﬂ”n(fq).

B is another parameter (which is redundant
since it can be absorbed into J and h). (See
GIBBS DISTRIBUTION.)

One useful way of thinking of this setup is
as the model of magnet: each s, is viewed as
a “spin” pointing up (+1) or down (—1). I
J >0, the first term in H, describes a ten-
dency (lower energy and correspondingly
higher weight in du,) for neighboring spins
to align parallel and the model is that of a
ferromagnet. The second term in H, can be
viewed as the interaction with an externally
applied magnetic field: A is then the product
of the magnitude of this field and the mag-
netic moment. If 8=1/kT with k Boltz-
mann’s constant and 7T the temperature,
then du, is the measure associated to the
canonical ensemble according to the rules of
statistical mechanics.

Another interpretation is as a “lattice
gas.” We change variables to p, = 3(1 + 5,)
and interpret p, =1 (s, = 1} as “occupied”
and p, =0 (s, = —1) as “unoccupied.” If
z = exp(—4wJB + hB), then

w= f[lexp(—4ﬁ.l >

{ay);a,YEA

pup,) II 2%

aEA

where Z ;! is a normalization factor. [This is
not quite .true; [],c,z™ should really be
[1.caz™ with z, = exp(—2n,JB + hB) and
n, the number of neighbors of a lying in A.
Thus z, = z except for boundary a’s; the
role of such boundary terms is described
below.] In this view, dp, is a weight asso-
ciated to a grand canonical ensemble and z is
a fugacity. J >0 now corresponds to an
attraction between particles in the gas.

Still a third interpretation of the model is
as that of an alloy with one of two allowed
species at each site.

Given a configuration = {{,},¢4 €
{—1,1}%"4, we define the Hamiltonian,
partition function, and Gibbs measure with
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boundary condition t, as

Hy(s|t)y=Hy(s)—J > Saly
(ay)iaEAYEA

ZA(t) = E e—ﬁH.\(H!)

=xlia€A

[1@densin =207 _ 2

s,=tlia€hA
xf(s)e—ﬁﬂl\(s“)_

Note that all those objects depend only on
those ¢, with dist(a, A)=1. The o are often
called the boundary of A and denoted dA.
Most of the interesting and subtle phe-
nomena in the model are associated with the
passage to an infinite volume limit, say by
taking A through the sequence of hyper-
cubes [— n,n". This limit is usually called
the thermodynamic limit. One important
quantity is lim|A|_m|A|“1n Z,(1) (with [A]
the number of points in A), which is known
to be independent of the boundary condi-
tion, t. We will denote this quantity by p( 8,
h), where we imagine fixing J = 1 and make
explicit the dependence on B and h. In mag-
netic language, p is a free energy (per unit
volume) and in the lattice gas language it is
a pressure. p is jointly convex in B and Bh
and so jointly continuous. Even though Z,
is manifestly analytic in 8 and A for each
finite A, p may not be smooth. For example,
when v =2, p(B,h=0) is explicitly known
(the celebrated Onsager solution). There 1s a
critical value, 8., of B so that p 18 real
analytic in 8 away 8., but 3% /3p* diverges
logarithmically at .; this is called a second-
order phase transition in B. As h is varied, an
even more interesting situation results; while
an explicit formula is not known, the follow-
ing can be proven: p is jointly real analytic
in the region k=0, 8 >0, and C™ in the
region B < B.. For 8 > B, p is not C!and
lim,, dp/0h = —limy,dp/3h # 0 [the first
equality comes from p(B, —h)y=p( B, h),
which follows from s, = — s, symmetryl. A
discontinuous first derivative is called a first-
order phase transition and is discussed fur-
ther below. Since 9p/dh is a magnetization
(per unit volume) in the magnetic phase, the
discontinuity above is the spontaneous mag-

netization so typical of ferromagnets. In lat-
tice gas language dp/dh is a density and the
discontinuity is that typical of the change of
density in passing from a liquid phase to a
gaseous phase.

Of special interest is the behavior of p
and its derivatives near .. A NONrigorous
but extremely stimulating and significant
method for studying this behavior in arbi-
trary dimension » (and other models) is the
renormalization group method.

Further insight is obtained by the study of
the limits of the Gibbs measures dp,. An
equilibrium state (for fixed B, j,h) is a mea-
sure on 2 = {—1,1}% obtained by taking
arbitrary weak limits of dp,(-11) and then
taking arbitrary weak limits of convex com-
binations of such limits as the 's are varied
but p, J, and & held fixed. This procedure
yields exactly the measures that obey the
so-called DLR (for Dobrushin, Lanford, and
Ruelle) equations: for each finite A, the con-
ditional expectations for functions f of the
{5,}aca conditioned on the configuration
{t,} e Outside A is given by

E(fl0)= [ f(s)dua(s] )

with dp,(-|#) as given before.

For the nearest-neighbor models we have
been discussing, the DLR equations say that
the conditional expectation of the interior,
E(f} 1, conditioned on the exterior {#), de-
pends only on the boundary (.e., {f,} with
a € 3A), so their states describe certain mul-
tidimensional Markov processes.

The group of translations of Z” acts in a
natural way on Z; of particular interest are
those equilibrivm states which are transla-
tion invariant. Extreme points of the (weakly
closed, convex) set of translation-invariant
equilibrium states are often called pure
phases.

For the two-dimensional model discussed
above, the structure of equilibrium states is
well understood. Forh #0or 8 < B, h=0,
there is exactly one equilibrium state but for
B > B., h =0, there is a one-parameter fam-
ily with two pure phases. All these states are
translation invariant. The structure need not
be so simple: in three or more dimensions it



is known that there are nontranslation-
invariant equilibrium states for A =0 and
B sufficiently large. And for the three-
dimensional model with A =0 and ¥, 5,5,
replaced by 3, 51,5555 over all sets of
four sites forming a planar square, it is
known that there are an uncountable infinity
of pure phases when 8 is large!

There is a close connection between multi-
ple phases and first-order phase transitions:
indeed, one can construct certain Banach
spaces of interactions and for an interaction,
®, a pressure p(®), convex in ¥, and a
notion of equilibrium state for & so that
there is a unique equilibrium state for @, if
and only if p is (Gateaux) differentiable at
®,. (See STATISTICAL FUNCTIONALS.) In this
theory [1, 2}, a major role is played by
entropy* and the Gibbs variational principle.

The distinct phases that occur in the two-
dimensional model are easy to describe. Let
dp,, . be the finite volume state with all ¢,
a & A, equal to +1. Then one can show
that the di, ., have weak limits du, . If
h=0and 8 > 8., du, # du_ and these are
the two pure phases. Indeed, [s,du, =
lim, odp/dh + 0. Thus even though there
are only short-range interactions, the setting
of all boundary spins has an effect even in
the infinite volume limit: this is called long-
range order; it is a cooperative phenomenon.
Notice that even though the basic Hamilto-
nian with # = 0 has the symmetry 5, > —s,
(all a), the states du, do not have this
symmetry (rather this transformation inter-
changes dp, and du_). This is called the
phenomenon of spontaneously broken symme-
try. These notions, more properly the notion
of spontaneous broken continuous symme-
tries, play 4 major role in modern theories of
elementary particles.

Having described the nearest-neighbor
Ising model, let us briefly describe the form
of some of the other popular models.

GENERAL ISING MODELS. Let J(A4) be a
translation-invariant function on the finite
subsets of Z*, let

o'=]] s,

acA
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and take

ACA

Usually, one requires that
> M /l4]< o
0EA

to get sensible infinite volume limits, al-
though this condition eliminates the impor-
tant Coulomb lattice gases where cancella-
tions account for a reasonable thermody-
namic limit. :

ONE-COMPONENT MODELS. If one relaxes the
condition that S, take the values *1 and
allow it to be real-valued, one has a larger
class of models. To define the model, one
needs not only a Hamiltonian, # Al8), but
also a measure dy on R, called the a priori
measure, to form the Gibbs state

Z7 lo = BHA(5) H d'Y(Sﬂ)-
ac A

Technically, the theory is very close in spirit
to the ordinary Ising model if dy has com-
pact support; otherwise, one deals with un-
bounded spins and there are many technical
problems; for example, there can be “spuri-
ous” solutions of the DLR equation which
are very singular at spatial infinity. Popu-
lar choices include the spin S Ising mod-
el, where s, takes values —28, —25 + 2,
-+.,28 2,28, and the lattice @* theory,
where dy(x) = exp(— ax* - bx?) dx. The lat-
ter is connected with discrete approxima-
tions of quantum field theories.

N-VECTOR MODELS. 5, is now a vector-
valued random variable, say with values in
R". Particularly interesting is the case where
the a priori measure is the isotropic one on
the unit sphere S¥~', often called the N-
vector model. The case N = 3 with Hamilto-
nian Hy = -3 §-5 is called the classical
Heisenberg model. In many ways it is a bet-
ter model of a magnet than the Ising model.
The N-vector models with N > 2 and suit-
able Hamiltonian have the continuous sym-
metry group, SO(N), of simultaneous rota-
tions of all spins. One interesting aspect of
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the theory is that while the discrete 5, > — s,
symmetry of the Ising model is broken in
v » 2 dimensions, the continuous symmetry
of nearest-neighbor N-vector models is bro-
ken only in ¢ > 3 dimensions.

SPIN GLASSES. These are a class of Ising
models with Hamiltonian —3J,_,4,s,, but
now the J's are also random variables.

SIX- AND EIGHT-VERTEX MODELS. The ran-
dom variables are now indexed by bonds in
the lattice rather than sites; a bond is a
nearest-neighbor pair. The variable takes
two values which inform one in which direc-
tion to place an arrow on the bond. These
are two-dimensional models. In the six-
vertex model, only configurations are al-
lowed with exactly two arrows in and two
arrows out at each vertex. In the eight-vertex
model, one also allows at each vertex the
possibility of all arrows in or all arrows out.
With various statistical weightings for given
vertices these are models of ferroelectrics.
One interest of these models is that the pres-
sures have been exactly calculated—first by
Lieb for six-vertex models and then by
Baxter for eight-vertex models.

LATTICE GAUGE MODELS. These are of ex-
treme interest as discrete versions of the
(Euclidean region) non-Abelian gauge theo-
ries believed to be fundamental to an under-
standing of elementary particle interactions.
Variables are now indexed by directed bonds
in Z* and take values in some Lie group, G.
There is the restriction that if @ and — a are
the same bond with oppostie directions, then
5_, =35, . Each planar square of bonds is
called a plaquette, P, and one defines s¥
= 5,585,55» where a, 8,v,8 is an ordering of
successive sides of P directed so that &
comes out of the site where A comes in. If ¢
is a real character of G, then @(s°) is inde-
pendent of which bond among a, ,v,8 is
put first. The Hamiltonian is

Hy=cDe(H
P

the sum being over all plaquettes in A. No-

tice that if one assigns a group element A; to
each site in the lattice and if we map s, to
h,.smhj'1 when a runs from site i to site j,
then H is left invariant. This is the group of
gauge transformations of the model.

QUANTUM MoDELS. There is a large class of
noncommutative models, where the basic
variables s, are operators in some C*-
algebra rather than functions.
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