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The anharmonic oscillator: 
a singular perturbation theory* 

BARRY SIMON 

Joseph Henry Laboratories and Fine Hall 
Princeton University 
Princeton, New Jersey 

I ntrod uction 

In these lectures, we will discuss the energy levels of the Hamiltonian 
p2 + x2 + {3x4 and its variants. This is the simplest example of an 
operator for which the perturbation series does not converge no matter 
how small {3 is. It allows us to ask the questions: 

(1) Why doesn't perturbation theory converge? That is, if the energy 
levels aren't analytic at {3 = 0, what is the nature of the singularity? 

(2) If the series doen't converge, what does it mean? 
(3) Can the levels be recovered from the perturbation series by some 

method more devious than straightforward summing? 
Since the Feynman series of field theory are known to be divergent 

in some cases (Ref. B), the answers to these questions are of obvious 
interest, especially since our model is formally very similar to field 
theories with Lagrangians !E = fJl'¢ 0/l¢ - m2¢2 - (3¢4. 

The material in the last sections of these notes describes work begun 
at the summer school and continued at Les Houches. I have included it, 
despite the fact that it wasn't covered in my lectures because it is such 
a natural continuation of the material covered. 

It is a great pleasure to thank Andre Voros for his excellent set of 
notes of my lectures which formed the core of this discussion. 

* This research partially sponsored by the Air Force Office of Scientific Research 
under Contract AF 49(638) 1545. 
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384 CARGESE LECTURES IN PHYSICS 

I Regular vs. Singular perturbation theory 

For comparison purposes, let us first review the analytic theory of 
perturbations which are not singular. We consider Hamiltonians acting 
on wave functions "P that are square integrable on an n-dimensional 
coordinate space: "P E L 2(Rn). The domain, D(H), of such an operator 
H, is a technical object! which one should think of as those vector~ 
"P E veRn) for which H"P is also in L2, i.e. 

J I(H"P) (x)1 2 dx < 00. 

R" 

The pertrubed Hamiltonian is allowed to depend on a coupling constant 
fJ· Typically H(fJ) = Ho + fJV. 

The basic theorem of regular perturbation theory is2 : 

Theorem (Kato, Rellich) If H(fJ) is a family of operator functions of 
fJ, fJ belonging to some complex domain, 0, such that 

(1) D(H(fJ)) is independent of fJ3. 
(2) For all "P E D(H(fJ)), <"P, H(fJ) "P) is an analytic function of fJ in 0, 

Then: for any fJo E ° and for any isolated, non-degenerate eigenvalue 
E(fJo) of H(fJo), there is a neighborhood, V, of fJo, V c 0, such that 
H(fJ) has only one eigenvalue, E(fJ), near E(fJo) for fJ E V. E(fJ) is analytic 
in V and there is an analytic vector valued function, "P(fJ), on V such 
that H(fJ) "P(fJ) = E(fJ) "P(fJ)· 

-if H = Ho + fJV, the Taylor series of E(fJ) around fJo is given by 
the Rayleigh-Schrodinger (R-S) perturbation series. 

-if E(fJo) has finite multiplicity k, the perturbation splits the level 
into at most k pieces E1(fJ), ... , Em(fJ) (m < k), which are the values 
of one or more multivalued analytic functions near fJo with algebraic 
singularities, at worst at fJ = fJo. 

-if E(fJo) has finite multiplicity and H(fJ) is self-adjoint when 
Re (fJ - fJo) = 0, then the possible algebraic singularities at fJ = fJo do 
not occur. 

Of course, condition (1) is not very direct or transparent but one has: 

Kato's criterion If a > 0, b > 0 so that for all "P E D(Ho), "P E D(V) 
and 

II V"PII ::; a IIHo"Pll + b II"PII, 
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then (1) and (2) of the Kato-Rellich theorem hold for fJ sufficiently 
small, with H(fJ) = Ho + fJV. 

Thus, if the perturbation is small in a very simple sense, one has 
convergence of the Rayleigh-Schrodinger series for IfJl small. In fact 
there exist explicit lower bounds to the radius of convergence in terms 
of the numbers a, b above, the distance of E(fJo) to the nearest eigenvalue 
distinct from it4. 

The anharmonic oscillator is the Hamiltonian 

(fJ > 0). 

There are various ways of seeing this is not a regular perturbation 
about fJ = 0: 

(1) As soon as the perturbation is turned on, the domain changes: 
D(H(O)) = D(p2) n D(X2) while D(H(fJ)) = D(p2) n D(x4

). 

(2) One can prove rigorous bounds on the coefficients of the perturba­
tion series which prove that the series diverges for all fJ (see below). 

(3) There is a non-rigorous but convincing arguments: Power series 
converge in whole circles but for fJ negative the potential goes to - 00 

at x = 00 and so the character of the bound states changes completely. 

The Bender-Wu approximation 

In a rigorous study of the analytic structure of the levels of the oscil­
lator (which by Kato's criterion are analytic in a neighborhood of the 
real axis), one has been guided by some approximate calculations of 
Bender and Wu. By pasting together approximations in different regions, 
these authors obtain an approximate wave function which can be used 
to examine singularities of the levels. Despite the fact that this approxima­
tion does not appear to be rigorously justifiable and the fact that" nearby 
functions" may not have similar singularities 6 , many of the gross 
features of the structure of the Bender-Wu approximate energy have 
been proven to occur in the actual energy levels. The major properties 
of this approximate level are (see Figure 1). 
-there is a "global" three-sheeted structure around fJ = O. We speak 
of a "global" branch point because fJ = 0 is not an isolated singularity 
25 Bessis (1518) 
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and intend the term to mean that a path going three times around 
fJ = 0 circling conjugate singularities in conjugate ways returns one 
to the original level. 
-fJ = 0 is a limit point of square root branch points with asymptotic 
phase ± 311:/2 (which are on the second and third sheet if we cut along 
the negative axis). 
- no singularities OCCur on the first she~t, larg fJl < 11:. 
-a detailed level structure is presented'. 

IARGI3I:::'Jf 

SQUARE ROOT 
/ BRANCH POINTS 

-x---">C1x x 
xxx XX I xxx XX 

I ARG 13=~ 
2 

:rr<ARG 13<3:rr 

3'Jf<ARG I3<SJt 

FIGUREl 

In addition, Bender and Wu present two other morsels: 
- Rigorous bounds are proven on the coefficients, an, of the ground 
state energy level: 

Ac"n,,/2 < (-1)"+1 a" < B d"n S,,/2 (n> 0) 

for some A, B, c, d. In particular, perturbation theory diverges. 
-The first 75 an are computed to 12 places and one numerical "finds" 
the asymptotic behavior 

as n -+ 00. 8 

(
3 )"+1/211: -3/2 ( 1) 

a" '" (_1)"+1"2 4" r n +"2 
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III The Symanzik scaling 

Symanzik remarked that an elementary covariance of the Hamiltonian 
R({J), has deep consequences. Consider the unitary operator (A real, >0). 

(U(A)'lJI)(X) = A+ 1/2'lJ1(A+ IX) 

so 
U(A) XU(A)-1 = AX; U(A)pU(A)-1 = A-1p. 

Introduce the general Hamiltonian (IX real, (J > 0): 

H(IX, (J) = p2 + IXX2 + (JX4. 
Then 

since unitarily equivalent operators have identical eigenvalues: 

l!n(IX,{J) = A-21!n(aA+4, (JA+ 6 ) 

so, in particular, A = fJ- 1
/
6

, IX = 1: 

l!n(1, (J) = (J1/31!n({J-2/3, 1). 

We are thus able to shift the coupling constant from the X4 to the X2 
term (in Wightman's terminology, to the subdominant coupling). This 
may not seem like a special accomplishment but it is one nonetheless. 
For p2 + IXX2 + X4 is a "nice" operator for any complex IX (essentially 
by Kato's criterion), while p2 + X2 + {JX4 is misbehaved if larg (JI = 11:. 
This is reflected in the fact: Any continuation of l!n(IX, 1) is an eigenvalue 
of p2 + IXX2 + x\ but a continuation of l!n(I, (J) accross the negative 
axis is not in general, an eigenvalue of p2 + X2 + fJx4• (For a proof, 
see II.3 of my Ann. Phys. article.) 

The scaling law has several important consequences: 
(1) The cube root singularity Suppose we can continue9 l!n(IX, 1) 

along a curve winding once around IX = 00, which is symmetric about 
the real axis, i.e. a curve 1': [0,1] -+ C with 1'(0) = 1'(1) and 

1'(1 - t) = yet). l!n(IX, 1) is real everywhere along the real axis (si?ce 
it is an eigenvalue of p2 + IXX2 + X4 I), so the Schwartz reflectlOn 

principle implies l!n(y(t), 1) = l!n(y(1 - t), 1). But then l!n(y{l),I) 
25* 
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= En(y(O), 1) = EnCy(O), 1) since yeO) is real. Thus continuation of 
En(lX, 1), once around takes us back to the initial level. By scaling, 
En(1, fJ) has a "global" cube root singularity at fJ = ° and obeys the 
symmetry ED(l, fJ e31ti ) = - En(l, fJ). This symmetry also follows by 
noting En(l, fJ) is real for arg fJ = ° and pure imaginary for 
arg fJ = ± 3n/2 so the singularity structure in ° < fJ < 3nl2 is repeated, 
four fold in the regions 3n/2 < arg fJ < 3n, etc. 

(2) The divergence of perturbation theory We can also use scaling 
to prove En(l, fJ) cannot be analytic about fJ = 0; put differently, we 
can establish that going once about fJ = ° cannot return us to the 
original function, thus establishing that the cube root singularity is 
actually present. For suppose EnCl, fJ) is analytic near fJ = 0. Then the 
function f(A) = A2En(A2, 1) = A3En(l,A- 3) is analytic near A = 00, with 
the symmetry f(A e21ti/3) = f(A). Consider continuing f along the contour 
in Figure 2, defining f on C3 by preserving this last symmetry. (The 
analyticity off near the real axis follows from Kato's criterion.) Then, 
when we return to A = 0, we must have f(A) = A2 Em(A2, 1) (m may not 
be n). Thus, the symmetry implies (looking at the lowest terms in the 
Taylor series) Em(O, 1) = e41ti /3 En(O, 1). Since Em(O, 1) =l= ° =l= EnCO, 1), 
we have a contradiction which verifies that the function EnCl, f3) cannot 
be analytic at fJ = 0. 

FIGURE 2 

(3) Strong coupling expansion Since En(lX, 1) is analytic about IX = 0, 
00 

our scaling tells us En(l, fJ) has an expansion L amfJ1-2m/3 convergent 
m=O 

for IfJllarge. In particular Em(l, fJ)lfJ 1/3 --+ Em(O, 1) as IfJl -+ 00. 
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IV Asymptotic perturbation theory 

We have seen that because of the cube root singularity at fJ = 0, 
perturbation theory for the X4 oscillator does not converge. We are 
thus immediately faced with the question: what do the series (which 
are finite term by term) mean? The natural first answer is that the series 
is asymptotic. We recall the definition: 

Definition Letf(z) be a function regular in a region10 

D = {zlargzl < 6;0 < Izl < B}. 

We say L aDzn is asymptotic (uniformly in the sector) to f if for each N, 

jJ(Z) - n~o anzn II ZN --+ ° as Izl --+ 0, larg zl < 6. 

We note first that if f'" L aDzn and f'" L bnzn, then an = bn all n. 
However, it may happen thatf '" L anzn and g '" L anzn without having 
f = g. For example, if 6 < n12, andf - g = M exp (_Z-1) for any M, 
then f and g have identical asymptotic series iff has one. N 

Typically, if f '" L anzn and if z is smalP\ the partial sums L anzn 
n=O 

will be a fair approximation for small N and then it will become very 
bad; see, for example, table I which lists the Taylor approximates for 
the ground state energy of p2 + x2 + .2X4. 

The earliest results on asymptotic perturbation series are due to 
Kato and there is a discussion in his bookl2 • The first fact one must 
establish to prove asymptotic series is a result on the norm convergence 
of resolvants 13: 

Theorem Let fJ > 0. Then for any A, not an eigenvalue of p2 + X2, 
one has . 

lI(p2 + x 2 + fJx4 _ A)-1 _ (P2 + x2 _ A)-111--+ 0. 

Proof Using (A - p)-1 = (A - A)-1 [1 + (A - p) (A - A)-1]-1 it is 
enough to prove this result for one A. Now (p2 + x 2 + fJx4 - A)-1 
_ (p2 + x 2 _ A)-1 = fJ[(P2 + x2 _ A)-1 X2] [X2(p2 + x 2 + fJx4 _A)-I]. 
Because of the IJx2 in (p2 + x 2 - A)-1, each factor in [ ] is bounded 
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as 13 ~ 0, so the difference converges to zero because of the factor f3 in 
front. 

Remark The condition 13 > ° does not appear to have been used and 
indeed the proof can be made as long as larg f31 < {j with (j < n. The 
proof that X2(p2 + x 2 + f3x4 - ,1)-1 is bounded breaks down as arg f3 
approaches n. 

The basic asymptotic series result is: 

Theorem For any n, the Rayleigh-Schrodinger series is asymptotic to 
En{1, (3) as 13 t ° with arg 13 = 0. (13 > 0). 

Sketch Let 

Pn(f3) = -(2ni)-1 f dZ[p2 + x 2 + f3x4 - Z]-l. 
Iz-(2n+1)1<1 

Then the Cauchy integral theorem implies PnC(3) is a projection (!) 
(think of diagonalizing p2 + x 2 + f3x4) and it is in fact the projection 
onto all eigenvalues with IE - (2n + 1)1 < 1. For 13 small then Pn(f3) 
is the projection onto the eigenvector with eigenvalue En(l,f3). Thus, 
if "Pn is the unperturbed eigenvector: En{1, 13) = (H(P) "Pn, Pn(f3) "Pn>/ 
("Pn, Pn(f3) "Pn>. It is thus enough to establish an asymptotic series for 
Pn(f3) "Pn with remainders bounded in norm. By the formula for Pn(f3), 
we only need an asymptotic series for (P2 + x 2 + f3x4 - Z)-1 "Pn. But 
one has the geometric series with remainder: 

N 

(p2 + x 2 + f3x4 - Z)-I = L (-f3)" (p2 + x2 - Z)-I 
,,=0 

X [X4(p2 + x2 _ Z)-1]" + (_f3)N+I 

X (P2 + x 2 + f3x4 _ Z)-I 

X [X4(p2 + x 2 _ Z)-I ]N+I. 
~ 

Since the resolvants converge in norm, the last term is bounded when 
applied to "Pn. 

Remark We have sloughed over the proof of stability of E,,(I, (3), i.e. 
the fact that H(f3) has one and only one eigenvalue near En(l, 0). This 
follows from norm convergence of resolvents. 
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We have thus far considered only the limit f3 > ° but our proof 
extends to larg 131 < {j < n. Actually, one can do considerably better. 
We shall only describe the intuitive idea. Consider p2 + yx2 with 
11'1 = 1, I' =1= -1. This is a "nice" operator as can be intuitively seen 
by noting it has eigenvalues (2n + 1) yI /2 [with eigenfunctions propor­
tional to Hn(y1 /4x) which falls off as exp ( _ y I/2 X2) xn as x ~ 00 and so 
is square integrable]. Not surprisingly then as 1f31 ! 0, p2 + yx2 + 1131 X4 
approaches p2 + yx2; in fact one can prove: 

Theorem Let nand 1j < n be given. Then there is a B so that p2 + yx2 

+ 1f31 X4 has only one eigenvalue near (2n + l) y 1 /2 if largyl < 1j; 

1131 < B. 
By scaling y into the X4 term, one finds: 

Theorem Let nand (j < 3n/2 be given. Then there is a B so that E,,(I, 13) 
is analytic in {p 11131 < B, larg 131 < {j}. The Rayleigh-Schrodinger 
series for En(l, 13) is asymptotic uniformly in the sector. 

Remarks 1. We thus have some analyticity information on the second 
sheet. 

2. Due to the symmetry properties about arg f3 = 0, ± 3n/2 if f3 = ° 
is a limit of singularities, we see their asymptotic phase must be ± 3n12. 

3. For x2m oscillators, one proves there is an (m + I)-sheeted surface 
and an analog of the above theorem with {j = (m + 1) n12. 

V Herglotz functions and singularities of E(f3) 

We have seen that the perturbation series is non-convergent because 
of the cube root singularity at f3 = 0, but we do not know yet that the 
strong coupling expansion is inapplicable to all f3 =!= 0, i.e. that E,.(ex., 1) 
is not entire. The Bender-Wu singularities, if they can be proven to 
occur are precisely able to prevent the convergence of the strong coupling 
expansion for some f3 =!= 0. 

We present an argument due to Andre Martin that E,,(ex., 1) is not 
entire and by shaking it we will be able to prove En(ex., 1) has an infinity 
of singularities. This argument of Martin has two absolutely charac­
teristic features: First, it is very clever and very simple; secondly, it 
makes crucial use of the positivity of something. 
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Definition A function f is called Herglotz in a domain !!fi of the complex 
plane if and only if Imf and 1m z have the same sign 14 in all of !!fi. 

Lemma An entire Herglotz function is linear. 
00 

Proof If fez) = I anzn, then 1m f(re IB
) = I anrn (sin nO). Imf(reW

) has 
o 

the sign of sin 0 by assumption, which is also the sign of m sin 0 ± sin mO 

(since Isin mO/sin 01 ~ m), so we must have: 

" 

-" 
If am =1= 0, we can choose ± and r so this is violated. Thus 

am = 0, m> 1; i.e. fez) = ao + a1z. 

Lemma (Martin) En(lX, 1) is a Herglotz function on its domain of 
analyticity. 

Proof EilX, 1) is always an eigenvalue15
, so EilX, 1) = <"Pn, (P2 + IXX2 

+ x4
) "Pn>. Thus 1m En(lX, 1) = ("Pn, x2"Pn> (1m IX). Since x 2 > 0, the 

proof is complete. 

Corollary Eo(lX, 1) is not entire. 

Proof It is not hard to show Eo cannot be linear. 
To improve this result, we must first strengthen the lemma on Herglotz 

functions: 

Lemma If fez) is a Herglotz function for Izl > R, then its Laurent 
00 

series at I anzn has an = 0 if n > 1. 
n=-C() 

Proof If we mimic the entire function argument, we find 

a1r - a_1r-1 ± (amrm - a-m,-m) > 0 

for all r large, which implies am = 0, m > 1. 
E. Lieb (private communication) has suggested the following more 

classical proofs of the two Herglotz lemmas: 
The lemma on entire Herglotz functions Let g(z) = fez) - f(O) which 

is still Herglotz. If {z Ilzl < R} has n zeros, arg g(Re iB
) changes by 

2nn as 0 runs from 0 to 2n (the argument principle). But in the upper 
half plane arg g cannot change by more than n, so L1 arg g(re IO

) :;; 2n. 
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As a result g(z) has no zeros at z =l= O. Thus h(z) = g(z)/z = eH(zl for 
some entire function H. But IImHI ~ I arg(h(z») I ~ larggl + largzl ~ 4n. 

This can only happen if H = constant. 
The lemma Herglotz on functions near infinity Bya _Z-1 change of 

variable, we can suppose f is analytic and Herglotz in a punctured disc. 
As in the above,fhas at most one zero with z > 0 and one with z < 0, 
so we may suppose (by shrinking the disc)fis never zero. Let us consider 
L1 argf(Re1o). As above, it is 0, +2n or -2n. Since L1 argf(Re

1o
) 

= _1_ f I'(z) dz it is independent of R. Thus, by letting g = J, 
2ni fez) 

Izl=R 
z-1f or zf we can assure L1 arg g(Re lO

) = O. Then g = eH and since H 
has a bounded imaginary part, H has a removable singularity; thus so 
does g. Sincef = g, zg or z-1g ,fhas at worst a pole of order 1. 

We can now combine this Herglotz property, scaling, the asymptotic 
nature of perturbation theory, and the divergence of the perturbation 
series to prove: 

Corollary IX = 00 is not an isolated singularity of EilX, 1). 

Proof If it were, En(lX, 1) would actually be analytic near IX = 00 

(there couldn't be a branch point by our argument using reality on the 
1 

real axis), so by the lemma EilX, 1) = I bmlXn for IX near 00. Thus 
00 n= - co 

En(l, .1,.3) = I b_mA(1+2ml, convergent for IAI small and non-zero. But 
m=-1 

00 

En(l,A3) '" I amA3 ad! o. This is only possible17 if b_1 = 0; bo = ao; 
m=O 

a
1 

= b1 , etc. i.e. only if the series are identical. But, then perturbation 
theory would converge. This contradiction completes the proof. 

Thus, En(l fJ) must have 0 as a limit point of singularities; by our 

discussion in IV, these singularities have asymptotic phase ±3n/2. 

VI The Loeffel-Martin arguments for one-dimensional 
oscillators 

As we shall see, the presence of no singularities on the first sheet 
in En(I, fJ) is critical for reasons that will be shortly apparent. That no 
singularities occur on the sheet, larg fJl < n is a result due to J. J. Loeffel 
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and A. Martin. The proof has two absolutely characteristic features of 
an argument of Martin: First, it is very clever and very simple; secondly, 
it makes critical use of the positivity of something. 

First suppose one has a path in the .x plane beginning and ending 
at .xo > 0 and suppose the path stays in the region larg.xl < 2n/3 - e 
and that one can continue EnC.x, 1) along this path. We want to show 
that after continuation, we return to EnC.x, 1). 

One employs a solution 1Jl(.x, E, z) Of[- d
2 

+ (.xz2 + Z4 - E)] 1Jl = 0 
00 dz2 

which has 1Jl '" e-%3 as z -+ + 00. Such a solution can be shown to exist 
00 

(Ref. H) and to be entire in .x, E, z. 
Loeffel and Martin prove the following facts about zeros of 1p: 

00 

- When .x, E are real and positive, every zero with larg zl < n/3 is 
on the real axis. 

- When .x is on the above curve of continuation and E = the con­
tinuation of EnC.x, 1), 1Jl(.x, E, z) has no zeros in the shaded regions of 
Figure 3. 00 

/ 
Rt:GION OF NO ZEROS 

FIGURE 3 

Suppose n = 2m + 1, so 1p(.xo, Eo, 0) = 0 and 1Jl(.xo, Eo, z) has m 
00 00 

zeros along the positive real axis. As .x varies these zeros may move 
around but exactly mare "trapped" inside the Leoffel-Martin walls 
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and no new ones can come in; they cannot "sneak out" at z = 0 or 
collide since double zeros are not allowed (1Jl solves a homogeneous 

00 

second order equation). Thus when we return to .xo we have m zeros 
all caught back on the real axis, i.e. we are at E,,(.x, 1). 

Note what happens when we let arg.x > 2n/3 (go onto the second 
sheet after scaling). 1Jl is an entire function and thus it probably has an 

00 

infinity of zeros18
, so there are presumably infinitely many "barbarian" 

zeros lurking outside the Loeffel-Martin walls. As arg.x approaches 
2n/3, the lateral walls shrink to nothing. If we wander around and then 
return to the positive real axis, we may have captured or lost a few 
extra zeros when we rebuild the L.-M. walls; thereby we return to 
E,,+2A"(.x, 1). 

In the above, we have supposed continuation is always possible; i.e. 
that no natural boundaries occur. Loeffel and Martin also prove this 
by showing it is impossible to have E,,(.x, 1) -+ 00 if we stay in 
larg.xl < 2n/3 - e. For they show, if E -+ 00, 1Jl is well approximated 

00 

by a simple cosine function which as E -+ 00 has infinitely many zeros 
in the region protected by the L.-M. walls; an application of Rouche's 
theorem shows 1Jl and this cosine have the same number of zeros con-

00 

tradicting the fact that there are only m zeros inside the walls. A Hilbert 
space argument proves that so long as E stays finite, only isolated 
algebraic singularities can occur. By keeping track of the zeros within 
the walls, we see even algebraic singularities cannot occur (the first 
part of the above argument). 

While we have described the L.-M. walls, we have not yet described 
how they are constructed. Let us attempt to present the general idea. 
The walls are built up one piece at a time so we only present an overall 
technique. To understand the exact position, one must see the details. 
One writes the differential equation for 1Jl(.xx + (3) = 1Jl(x) [.x, f3 complex] 

00 00 

as -1p" + Pa.p(x)1Jl = 0 and integrates it: 
00 00 

b 

!'(b)* !(b) - !'(a)* !(a) = J ll!'(x) 12 + Pa.p(x) I!(x) n dx. 

Then either one picks f3 = a = 0 so one can use the boundary con-
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dition 1p(0) = 0 or 1p'(0) = 0 or one picks larg lXl < n/3, b = 00 so one 
00 00 

can use the exponential falloff of 1p at z -+ oo(larg z/ < n/3). If lX, (J, a, b 
00 

are such that Pa.p(x) has argument in some sector y < arg P
It

•n < <5 

with y < 0 < f> If> - yl < n, then the integral cannot vanish (as a sum 
of numbers in a sector), thus one concludes 1p(a) =1= 0 (if b = 00) or 

00 

1p(b) =1= 0 (if (J = a = 0). In this way the walls are constructed. 
00 

Finally, we mention one final conjecture of Martin that would be 
very useful could it be proven. He conjectureslSa that as n -+ 00, the 
radius of convergence of EnClX, 1) about lX = 0 goes to 00. This would 
mean that at any finite lX, only finitely many levels can cross each other 
which implies one need only consider an essentially finite-dimensional 
problem; this would allow one to prove the non-occurrence of natural 
boundaries on any sheet. 

VII Pade approximants 

We have seen that the perturbation series for the energy levels of 
p2 + x2 + {JX4 diverge but are asymptotic. Since an infinity of functions 
have the same asymptotic series, the situation is not exactly satisfactory 
at this point of our development. One might hope that some summability 
method might allow one to recover the levels from the series. In fact, 
it was the search for such methods that led Wightman to suggest the 
analytic study of the levels in the first place19

• The hope was to find a 
method which was successful in the oscillator and then attempt to use 
it on the divergent field theory models. The inspiration came in the 
opposite direction: the success of Bessis-Pusterla and Copley-Masson 
in applying Pade approximants to (4)4)4 theories suggested one try 
them for the anharmonic oscilIator20• What are Pade approximants? 

Definition Let L anzn be a formal power series. Its [N, M] Pade ap­
proximant is the rational function 
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of degree M, Q of degree N obeying 

N+M 
pN.Ml(z) - L anzn = O(ZN+M+l). 

n=O 

1. Let us count the free parameters in P/Q to be certain our asymptotic 
condition has the correct number of restrictions. P has N + 1 free 
parameters, Q has M + 1. Since P/Q does not depend on the individual 
normalizations of P and Q but only on their ration, P/Q has N + M + 1 
free coefficients. 

2. As Professor Baker will discuss, j[N.Ml has a specific elementary 
formula in terms of determinants. 

We make several simple comments about Pade which will no doubt 
be repeated by several lecturers : 

- In many examples, the "diagonal" sequences j[N.N+JJ, j fixed, 
converge more rapidly and in larger regions than the Taylor series. 

-One possible reason for this is that j[N.N+JJ has many zeros and 
poles as N -+ 00 and these can mock up singularities; we will see how 
this happens for a particular class of functions in the next section. 

- The pN.Nl(z) have a covariance property which may help explain 
why they are so nice. If g is the function obtained from j by the sub­
stitution z -+ Z' = az + b/cz + a then pN.Nl(Z) = g[N.NJ(Z'). Thus, if 
one could prove some subsequence of the pN.NJ converged on every 
compact of the circle of convergence (the Pade conjecture), it would 
follow that it converged in every circle of analyticity containing 0 (for 
one can find a fractional linear transformation taking 0 -+ 0 and the 
circle into one with 0 as center). 

VIII Stieltjes functions and series 

Definition A function of Stieltjes is a function of the form: 

00 

F(z) = f de(x) (z =1= negative real) 
1 + xz 

o 00 

where e is a positive measure with f xn de(x) < 00. 

o 
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<Xl 

Definition A series ofStieltjes is a series ofthe form a" = (-1)" f x" de(x); 

e as above. 0 

We first note two elementary theorems; one relates Stieltjes functions 
and series and the other defines Stieltjes functions in terms of their 
analytic properties. 

Theorem (1) Every Stieltjes function has an asymptotic series valid 
uniformly in every sector larg zl < 0 for any 0 < n. The coefficients of 
the series are a series of Stieltjes. 

(2) For every series of Stieltjes, there is at least one Stieltjes function 
for which it is the asymptotic series. 

<Xl <Xl 

Proof (I) Iff = f de(x)JI + xz, let a" = (-I)" f x" de. Then 
o 0 

N 

fez) - I a"z" == RN(Z) 
obeys o 

so 

<Xl 

RN(Z) = f de [(1 + XZ)-l -,,~o (-I)" z"x"J 
o 

= (_l)N+l f de(x)(1 + xz-1)(XZ)N+l 
o 

00 

IRN(z)JzNI = Izl f (x"+l de(x») 11 + xzl-1 -+ 0 as Izl-+ 0 
o 

uniformly in sectors avoiding the negative axis. 

<Xl 00 

(2) Given a" = (-I)" f de(x), just let fez) = f de(x) (1 + XZ)-l and 
o 0 

use (1). 

Theorem Let f be a function with the following properties: 
(1) f is analytic in the cut plane. 
(2)f -+ 0 at 00 (uniformly if larg zl < 0 < n). 
(3) - f is Herglotz. <Xl 

(4) f has an asymptotic expansion f '" L a"z" valid as z ! 0, z > rOo 
,,=0 " 
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Thenfis a function of Stieltjes (and an a series of Stieltjes). Conversely, 
iffis a function of Stieltjes, it obeys (1)_(4). 
Sketch That Stieltjes functions obey (1)_(4) is simple. Given (1), (2) 
write down a dispersion relation for J, 

o <Xl 

fez) = - , Imf(z' + is) = 1 f dz' f 
n z - z 

-<Xl 0 

de(x) 

1 + xz 
(21) 

where cJe(x) = -(nx)-l Imf( _x- 1 + is). Since -fis Herglotz, we see 
<Xl 

f has a Stieltjes form, so we need only show f x" de < 00. But 
o <Xl 

, (l + XZ)-l -+ 1 monotonically as z i 0, sof(z)! ao implies ao = f de(x). 
o 

By repeated application of (4) and the monotone convergence theorem, 
<Xl 

one proves f de(x) x" < 00. 

o 

There are two simple questions raised by these two theorems. First, 
when is there a unique Stieltjes functions with perturbation series a,,? 
The answer is simply answered by the last theorem. If (h and e2 both 

<Xl 

are positive measures with an = (-1)" f x"cJel(X), i = 1,2 then}; = f del 
o 

(l + XZ)-l are both Stieltjes functions with the same asymptotic series. 
On the other hand, iffl andf2 are distinct functions with same asymptotic 
series we must have Imfl(x- 1 + is) =1= Imf2(x- 1 + is) [or else fl - f2 
is entire with zero asymptotic series I], so el =1= e2' Thus: 

Proposition Let a" be a series of Stieltjes. Then, there is a unique 
Stieltjes function f with L a"z" as asymptotic series if and only if there 

is a unique measure de with a" = (-1)" f x" de (in which case we say 

the moment problem for lalll has a unique solution). 

While there are necessary and sufficient conditions for the moment 
problem to have a unique solution, they are not simple; there is a simple 
sufficient condition however: 
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00 

Theorem (Carleman's criterion)22 If L: lanl-1/2n = 00, and an is a series 
n=l 

of Stieltjes, then the moment problem for lanl has a unique solution. 
The second point involves allowing subtractions in our dispersion 

relations: 

Definition If f is analytic in the cut plane with asymptotic series as 
z ! 0 and obeys either 

(a) If(z) I < Aizi + Band -fis Herglotz 
or (b) If(z) I < Alzln + Band -Imf(z + is) exists as a positive measure 
for ze (.- 00,0) then we say f is a Stieltjes function in the extended 

sense23. 
U sing subtracted dispersion relations implies: 

Proposition If f(z) is a Stieltjes function of extended type, then we 

have 
00 

f(z) = nto bnzn + zm+l f 
o 

for a measure de with all moments finite. 

de(z) 

1 + xz 

Finally, we come to the question of the relation between Stieltjes 
functions and Pade approximates. The basic theorem was proven by 
Stieltjes before 1900 and is one of the most impressive pieces of clas­
sical analysis; it remains the only really basic result in Pade theory: 

Theorem (Stieltjes) Let an be a series of Stieltjes. Then 

(1) The diagonal approximantspN,N+JJ converge as N -+ 00 (j fixed) 
uniformly on compact subsets of the cut plane to a Stieltjes function jj 
with an as asymptotic series. 

(2) If j is odd and x > 0, the PN,N+J] increase monotonically in N; 
if j is even and x > 0, the f[N,N+JJ decrease monotonically in N. 

(3) The moment problem for lanl has a unique solution if and only 
if f1 = fo and in that case all the jj are equal to that unique Stieltjes 
function with asymptotic series lanl. 

Before making some remarks about the proof, we note: 
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Corollary Let f be a Stieltjes function of extended type. Then all the 
diagonal Pade sequences, f[N,N+J](j > m - 1) an, the asymptotic series 
for J, converge uniformly compacts of the cut plane and if the moment 
problem for lain>J) has a unique solution, then they converge to f. 

Sketch of Proof Writef = P + zmg with P a polynomial and g Stieltjes. 
It is not hard to show the Pade's for f and g are simply related. 

We have no intention of proving Stieltjes' theorem completely but 
we will make a series of comments which almost comprise a proof of 
sorts. 

1) The theorem is actually in a weaker form than appears in say 
00 

Baker's review article. If (_I)n an = I x" de(x), one concludes 
o 

Lk lnlmlan+m+ll > 0 all l, kj; l = 0, 1. One remarkable discovery of 
n,m=l 

Stieltjes is that these conditions are also sufficient for there to be a 
solution of the moment problem for lanl. His proof involves showing 
that when the positivity conditions hold the Pade's converge to a 
Stieltjes function with an as aymptotic series. If one wishes to prove 
the theorem with the apriori weaker positivity conditions (instead of 
the assumption that an is a series of Stieltjes) one must use several 
obscure theorems on determinants; alternately the Hahn-Banach 
theorem implies their conditions are sufficient for the moment problem 
to have a solution. 

2) The Pade's PN,N] have all their poles and zeros on the negative axis 
(thus mocking up the cut). There is a very beautiful way of seeing this 

due to Basdevant, Bessis and Zinn-Justin24. Let QN(Z) = ZNQ[N,N] ( - :) 

is a polynomial of degree, N. There is a measure e on [0, 00], related 
00 

to e with I QN(Z) QM(Z) de = 0 if N =1= M. This implies QN has N zeros 
o 

in [0, 00], i.e. the poles of P/Q lie on the negative axis. Since -I/f is 
an extended function of Stieltjes, P[N,N] has its zeros on the negative axis. 
One also sees that the zeros of Q[N.N] interlace as N -+ 00 and the zeros 
of P[N,N] and Q[N,N] interlace so all the residues of the poles of p N•N] 

are positive. 

26 Bessis (1518) 
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3) Tiktopoulos and Treiman (unpublished) have a nice way of looking 
at the monotonicity properties of the Pade's. Suppose {an}n=0 •...• 2N are 
given such that 

has a solution. The non-empty set of solutions S is convex and in a 
suitable topology it is compact. In this topology the mapping 

e -+ J de(1 + XZ)-1 = Fz(e) is continuous for any z real. Thus the largest 
o 

value of Fz(e) is actually realized for a e s S which is an extreme point of 
S. But the extreme points of S are sums of at most (2N + 2) point-meas- . 

2N +1 a 
ures. So the maximal value is realized for a functionf(w) = L n; 

o 1 + bnw 
bn, an > O. By a variation of parameters argument, Tiktopoulos and 
Treiman show this is precisely the [N, N] approximant. Thus 
f[N,N] >f[N-l,N-l] > .... 

4) Once one knows the pN.N1(Z) are monotone for z > 0 and are of 
the form 

the convergence of the approximants uniformly on compacts is simple. 
N 

For pN.N1'(0) - a1 = L bn' Thus IPN.N1(z)1 < ao + a1M(z) where 
n=l 

M(z) = max Izll + Azi is finite in the cut plane and bounded on compact 
0<"<0() 

sets. Thus the f[N.N1(Z) converge on the real axis [they decrease and are 
bounded below by f[1·21(Z)], and are uniformly bounded on compacts 
so they converge uniformly on compacts to an analytic function fo 
by a theorem of Vitali 25. It is clear that - f is Herglotz as the limit of 
Herglotz functions; and it is not hard to show it has L anzn as asymptotic 
series. 

5) Since each limiting function is Stieltjes, it is clear that they are all 
equal if there is a unique Stieltjes function with asymptotic series 
L anzn, i.e. if the moment problem for lanl has a unique solution. On 
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the other hand, if f is a Stieltjes function with series L anzn, then 
pN.N1(X) > f(x) > fCN.N+l1(X) for all N; x > 0 so fo(x) > f(x) > f1(X). 
If fo = fl' then only one such f exists, i.e. the moment problem has a 
unique solution. 

IX Pade approximants for the anharmonic oscillator 

We have seen for the levels of the anharmonic oscillator that: 
-En{1, fJ) has an asymptotic series around fJ = O. 
-IEn{1, B)I < A + BlfJ1 1/3 in the cut plane. 
- EnCl, fJ) is analytic in the cut plane. 
-En(l, fJ) is a Herglotz function. 
Thus: - En{1, fJ) is a Stieltjes function in the extended sense and so 

the Pade approximants f[N.N+Jl formed from the R.S. series converge. 
In order to be certain that they converge to the "right answer", we 
must know the moment problem for the Rayleigh-Schrodinger series 
has a unique solution. To apply Carelman's criterion one needs an upper 
bound on the coefficients26, in fact one can prove: 

Theorem Let an be the Rayleigh-Schrodinger coefficients of some energy 
level of a p2 + x 2 + fJx2m oscillator. Then, for some C, D: 

lanl < CDnn(m-lln. 

Thus, for the X4 (or x 6
) oscillator L lanl- 1/2n = 00, so: 

For any level of the one-dimensional X4 oscillator, and any j,the PN,N+Jl 
Pade approximates converge uniformly on compacts of the cut plane to 
the energy level. ~f j is even, they are monotonically increasing for fJ > 0 
and if j is odd they are monotonically decreasing. 

Of course there is no reason that the convergence should be very 
rapid. But numerically27 it is quite rapid for fJ not too large. For 
p = 0.1,f[5.5] is accurate to one part in 105 andf[12. 121 to one part in 
1011 . Even when fJ = 1, p5.51 is good to 0.1 %. For fJ very large, the 
convergence must be bad for pN.N1(fJ) -+ constant at 00 while 
E(I, P)lp1/3 -+ constant at 00. For p = 15, f[5.5 1 is still accurate to 
30%. For a dramatic demonstration of the divergence of perturbation 
theory and convergence of the Pade's, see table 1 : 

26'" 
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TABLE I 

N 

N L a.p' j[I/2N.l/2N1 

n=O 

1.150000 
2 1.097500 1.111111 
3 1.153750 
4 1.105372 1.117541 
5 1.176999 
6 1.049024 1.118183 
7 1.314970 
8 0.686006 1.118273 
9 2.353090 

10 -2.442698 1.118288 
11 13.253968 
12 -42.333586 1.118289 
13 168.895730 
14 -796.466406 1.118289 
15 3005.179546 
P = 0.2; E(f3) = 1.1182892 ... 

X Extensions of the Pade method 

One can ask to what extent the method generalizes. Since scaling 
was used so crucially it seems unlikely we can say much about arbitrary 
singular potentials. There are thus two natural directions to attempt 
to generalize in: x2m perturbations and to more than one dimensional 
oscillators; perhaps even to infinitely many degrees of freedom! 

The situation is described by the table28 : 

TABLE 2 

Results of § I-V 
Loeffel- Carleman 

n m Bender-Wu Martin Condo Pade 

1 2 A.S. A.S. A.S. A.S. Yes 
1 m>2 Yes Yes Yes No if U.if 

(f31/3 ---+ pl/m+l) m>3 m>3 
n>1 m=2 Yes Probably U. Yes U. 

not 
n>1 m>2 Yes Probably U. No if U. 

not m>3 
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Thus, for p2 + x 2 + {Jx2m Hamiltonians, the Pade's converge but 
since the moment problem is not known to have a unique solution, 
they may not converge to the" right answer" or to an answer independent 
of j. And for multi-dimensional problems, the Loeffel-Martin argument 
which depended so crucially on keeping track of nodes fail so we no 
longer have cut plane analyticity. 

For infinitely many degrees of freedom, another blow awaits us. 
GIimm and Jaffe have shown how to construct some well-defined 
systems with infinitely many degrees of freedom. Let 4> a free field .Qf 

mass m in 2-dimension space-time. Let Vg = f dx g(x): 4>2m(x): where 

geL! (') L2; g > 029• For such theories, Simon and Hoegh-Krohn 

have proven: 

Theorem Let H({J) = H 0 + {J Vg , and let E({J) be the ground state 
energy. Then even if E({J) is analytic in a cut plane, E({J) + C{J is not 
Herglotz for any C. 

In some sense this is due to the infinite subtraction involved in: .. 

These authors conjecture that one might have an = (-1) f xnde(n >2) 
00 0 

with f X de = 00. 

o 

XI Carleman's condition revisited 

In a sense, the primary question we are asking is whether we can 
establish some additional property of the energy levels which together 
with the asymptotic series determines the levels uniquely. Thus, we 
have seen that once one knows the moment problem for the lanl has a 
unique solution and that Eo (I , {J) is Stieltjes, Eo (1 , {J) is uniquely deter­
mined. The fact that one can compute Eo easily is an added bonus but 
in some sense the critical question involves the unique determination 
from the perturbation series. It is thus worthwhile delving into the 
reason Carleman's criterion works. It is actually based on a more 
fundamental theorem of Carleman: 
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Carleman's theorem Letf(z) be analytic in a region D = {z Ilzl < B; 
larg zl < kn/2} and suppose 

(1) Ij(z) I < b" Izl" in D; 

00 

(2) L b;l/k" = 00. 
,,=1 

Thenf = O. 

Corollary Let f and g be two functions analytic in D as above. Let 
a" be a sequence so both f and g are have L a"z" as asymptotic series 
in the strong sense, i.e. for some A, (f, and all zeD, N: 

Thenf= g. 

k(Z) - "toanz"/ < A(fN+l[k(N + 1)]! IzlN+l 

/g(Z) - ,,~oanz"/ < AaN+1[k(N + I)]! IzIN+I. 

Proof Let bN+1 = 2A(fN+l [keN + I)]!. Thenf - g obeys the conditions 
of CarIeman's theorem and 

I b;l/k" > C I n- l = 00. 

Remark If such a strong asymptotic condition holds then la,,1 < Aan(kn)! 
Given a", this suggests what value of n to take. In fact one has: 

Theorem Fix m and e. For any 8 < (m + 1) n/2, one can find a, B 
and A so that 

IE~m)(p) -,,~ a~~~P"1 < Aa
N
+1[(m - 1) (N + 1)]! IPI N+

1 

if 0 < IPI < B; larg PI < 8. Here E<;)(P) represents the eth level of an 
p2 + x 2 + px2m oscillator. 

Sketch By scaling, one needs to obtain bounds as IPI ~ 0 on the eth 

level of p2 + yx~ + IPI x2m uniform in Nand Iyl = 1, largyl < (_2_) 8. 
m+ 1 

It is not hard to show that ratios of functions with strong asymptotic 
conditions obey a strong asymptotic condition, so as in § 4, by writing 
E~m)(y, IPI) = (H(y, IPI) 11'0' PilPI) 11'0)/(11'0' Pi/PI) 11'0) and PaClPI) as 

A SINGULAR PERTURBATION THEORY 407 

an integral of the resolvant, we need only control the error in the geom­
etric series expansion for the resolvant; it is sufficient to prove: 

II [x2m(p2 + yx2 - A)-I]N V'e(y) II < A(fN[(m - 1) (N + I)]! 

with V' (y) the eth level of p2 + yx2 and with A arbitrary obeying 
IA - (2~ + 1) yl/21 = 1- Introducing scaled creation and annhilation 
operators a(y), bey) [since bey) = a+(y), we call it b!] and unnormalized 
states: V'h) = b(y)e (e!)-1/2 V'o(y); V'o(Y) = n-1/2 exp (_yx2). One can 
show IIV'oCy)II < CDe where C, D can be choosen independent of y for 

largyl < ( 2 )8; Iy = 11. Now one just expands x2m in creation 
m + 1 

and annhilation operators and obtain the required bound on 

II[x2m(e2 + yx2 
- A)-l]NV'oll· 

Remarks 1. This argument goes through without any change to N-dimen­

sionaloscillators. 
2. Thus, for any x2m oscillator in any finite number of dimensions the 

perturbation series with the strong asymptotic series determines the 

energy levels. 
3. For additional details of the vague sketch above, see the paper 

of Graffi, Grecchi and Simon (F 5). 
Since the above use of the CarIeman theorem only requires analyticity 

near P = 0 which may be approached by semi-perturbative methods, 
there is some hope for extension to infinitely many degrees of freedom. 

In fact, one can prove: 

Theorem Let g > 0; geLI n L2. Let Ho be the free Hamiltonian 
for a neutral scalar find ¢(x) in two-dimensional space time and let 

V = f dxg(x): ¢4(X): Let a" be the coefficients of the Rayleigh-SchrMin­

ger series for the ground state energy, E(P) for Ho + pV. Then 
(a) For any 8 < n, there is a B with E(tJ) analytic in {PIO < IPI < B; 

largPI < 8} = Do· 
" 

(b) For any 8 < n, there is a a and an A with IE(P) - L a"p"l 
,,=0 

< AaN+1(N + I)! IPI N+1
• 

In particular, the perturbation series determines the ground state 
(vacuum) energy uniquely. 
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Remarks 1. The Rayleigh-Schrodinger series for E(fJ) is well known to 
agree with the Feynman series obtained by summing all connected 

vacuum diagrams [with HI = f g(x): </14(x): dX]' 

2. This theorem fails for </12m in two critical ways. First the analyticity 
result uses the fact that IV/ 1/2 is a Kato small perturbation of H. 30 o . 
Secondly the n! growth is peculiar to </14 ; for </12m, one expects [n(m - I)]! 
growth and would require analyticity in some higher sheets. 

XII Borel summability 

While we have seen that the perturbation series and the strong 
asymptotic estimate determine the eigenvalues, we do not, as yet, have 
any method for constructing the eigenvalues from the perturbation 
series. Using the fact that we have a little more analyticity than the 
bare minimum needed to apply Carleman's theorem, we will find the 
method of Borel (or its obvious extension due to Leroy) applicable. 

00 

The Borel method is based on the observation n! = fe-xx" dx so that 

formally: 00 00 0 

L anz
n 

= I :~ f e-X(xz)" dx = f e-Xg(xz) dx. 

o 0 

It is clear that if lanl < Aa"n! then g(z) = I~z" has a finite radius 
n! 

of convergence. Of course, we need more that g(z) in a finite circle to 

try to recover fez) = I anz" from its Borel transform g(z) = L!!!!... z". 
n! 

That one has more in certain cases is a theorem of Watson: 
Theorem (Watson) Supposef(z) is analytic in a sector D = {z/O < /z/ < B; 
/arg z/ < (n/2) + O} and obeys a strong asymptotic condition: 

jI(Z) - "ioanznl < AaN+l(N + 1)1 /Z/N+l 

00 a 
in D. Then, the Borel transform g(z) = L _n z" which is apriori 

n=O n! 

A SINGULAR PERTURBATION THEORY 409 

analytic in a circle of radius r = a- l about z = 0, has an analytic 
continuation into the sector {z //arg z/ < O} and for any ZeD with 
/J = {z/O < /z/ < B; /arg z/ < O} one has 

00 

fez) = f e-Xg(xz) dx. 
o 

Remarks 1. By taking z ~ w = zl lm, we can make a trivial extension 
to Watson's theorem: Replace D with {z/O < z < B; /arg z/ < k(n/2) + O} 
(f may be multivalued, i.e. many sheeted), the strong asymptotic con-

dition with jI(Z) -n~ anznl < AaN+1[k(~ + I)]! /Z/N+1, the Borel trans­

form with Leroy transform g(z) = L ~ zn and the inversion 
00 n=O (kn)! 

formula withf(z) = f e-X g(ZXk) dx, one has an identical formula. 
o 

2. When the above holds we say / is Borel summable 0/ order k and 
call g the Borel transform of order k. 

We thus have: 

Corollary Let / be the eth energy level of an n-dimensional oscillator 
H = Ho + {3V where V is a homogeneous polynomial of degree 2m, 
which is strictly positive on JR,n - {O}. Then, / is Borel summable of 
order m - 1 from the Rayleigh-Schrodinger perturbation series. Its 
Borel transform is analytic in the cut plane, cut in (- 00, -a) with 
a> O. 

Corollary Let/be the ground state energy of a two-dimensional spatial­

ly cutoff :</14
: field theory: H = Ho + (3V where V = f g(x): </14(X): dx 

geLl n L2; g> O. Then / is Borel summable from the Feynman 
perturbation series. Its Borel transform is analytic in the right half 
plane. 

We note that while it is much easier to prove Borel summability 
than Pade summability the Pade method is far superior from a com­
putational point of view. First the Pade approximants have simple 
explicit formulae and in the Stieltjes' case provide upper and lower 
bounds (and thus built in error estimates). Most critically, the Borel 
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method is implicit rather than explicit in that it involves an analytic 
continuation at a critical point. One way of attempting to do this 
continuation (of the Borel transform) is by forming Pade approximants 

for the series ~ and then taking the inverse Borel transform. While 
n! 

this procedure is unjustified31 the numerical results are even better 
than the ordinary Pade's(!) and give much better approximations at 
intermediate p. 
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1. We shall be vague about various subtleties of a mathematical nature throughout 
these lectures; for mathematical rigor, the reader is referred to the literature 
quoted above. In particular, I have tried to cross every t in my Ann. Phys. pa­
per which is the basis of much of the lectures. 
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2. This theorem deals with perturbations of so-called type (A). There are several 
other results which are sometimes useful. See Ref. c.1. 

3. Technically, H(fJ) must be closed on this domain and H(fJ) must have a non­
empty resolvant. 

4. This simple criterion holds in the self-adjoint case. When H(fJ) is not self-adjoint, 
the distance to the nearest eigenvalue must be replace by norms of (H(fJ) - A)-l 
for various A. See Kato's book (C.1) for details. 

5. One must exercise some care in arguing about the meaning of perturbation 
series where they converge; see my Ann. Phys. article, Sec. 11.3. 

6. Consider exp (-tz-1) and [exp (_Z-1) + 8]1/2 near z = O. 
7. No features of the structure have been proven to occur. One of the most intriguing 

of these features is that by analytic continuation one can go from any level to 
any other of the same parity; i.e. there is only one" coupling constant trajectory" 
of each parity. 

8. Recently, Bender and Wu have given a series of reasonableness arguments which 
predict this asymptotic behavior. 

9. While one expects En(rx,l) to have only isolated signularities, it has not been 
proven that natural boundaries and other hairy beasts don't prevent continuation; 
we ignore this subtlety. For some (unfortunately feeble) discussion see my Ann. 
Phys. paper. For some real results and a beautiful conjecture of Martin, see § 6. 

10. (J larger than n is possible for a function with a many sheeted structure; "regular" 
means continuous on D, analytic in the interior. 

11. What is small is dependent on!; there is no reason why 1/137 is small and 14 
is not! 

12. The approach we use is less general but easier than that of Kato. For still a third 
approach, see appendix II of my Ann. Phys. paper or the paper of Greenlee (D.1). 

13. It is our feeling that one should distinguish regular and asymptotic perturbation 
theory by saying that the former is associated with resolvant convergence 
(H(fJ) - A)-1 --+- (H(O) - Atl in norm as fJ --+- 0 in a circle while the latter involves 
convergence in norm but in a sector. This is in direct conflict with the Kato notion 
of comparing convergence in norm and convergence in the strong operator topology. 
We remark that if one has norm convergence in a sector, the stability criterion 
needed by Kato is true easily. 

14. This definition differs from another sometimes used which only requires 1m!> 0 
if 1m z > 0 but with q; the entire upper half plans. 

15. This distinguishing characteristic of p2 + rxx 2 + X4 from p2 + x 2 + fJx4 enters 
again! 

16. The strange mixture of analytic function theoretic arguments with Hilbert space 
theory gives the subject an eerie quality. 

17. This depends critically on the fact that the}; b_nA2n+1 series has only a finite 
00 

number of negative term e.g. }; bnA2ft+! --+- 00 as A J. 0 unless b_1 = 0 which lets 
us conclude b_ l = 0, etc. n=-l 

18. A famous theorem of complex analysis says every entire function which is not a 
polynomial takes every value with the possible exception of one an infinity oftirnes. 
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18a. For p2 + x 2 + x2m; m> 2, the Martin conjecture has be proven. 
19. It was Wightman who first proposed the problem to me and who provided 

inspiration both directly and through his getting Loeffel, Martin, and Symanzik 
interested in the problem. 

20. I first learned about Pade in a letter Wightman sent me from France (where he 
spent 1968/69) which began: "The spectre ofPade is haunting Europe. S-matricists 
of the world unite! You have nothing to lose but your Chew." 

21. It is a theorem about Herglotz functions that Im/(z' + is) dz' always exists as 
a measure in the limit, and that (2) justifies an unsubtracted dispersion relation. 

22. We discuss this further in § 11. 
23. This is not quite standard terminology. 
24. See their paper for details. 
25. The Vitali convergence theorem says any sequence of analytic functions uniformly 

bounded on compacts, converging pointwise at a set of points Zn with a limit 
point, converge uniformly on compacts. Proof: By the Cauchy integral theorem, 
uniform boundedness implies the 1m are equicontinuous, so any subsequence 
has a subsubsequence converging uniformly on compacts. All the limits are 
analytic and agree at the Zn so they are all the same. 

26. Note the Bender-Wu rigorous bound lanl < CDnn5n /
2 does not imply 

~ lanl-1/2n = 00, but the "conjectured" asymptotic behavior lanl"" CDnnn does 
have ~ lanl- 1 /

2n = 00. 

27. For numerical tables, see my Ann. Phys. paper, the Loeffel et al. Letter or Reid's 
paper. 

28. n == dimension of space; 2m = degree of perturbation; a.s. = already seen; 
u = unknown. 

29. We emphasize that these cutoff theories are only the beginning of the GIimm­
Jaffe program. 

30. For: </>2m: Hoegh-Krohn and Simon have proven a similar analyticity result but 
with () < n/2. 

31. In particular, the series is definitely not a series of Steiltjes. 

Dr. A. Martin has given two series of lectures: one about the pion-pion inter­
action is almost a word by word repetition of the lectures given at the IX Universitat 
fUr Kernphysik Schladming 1970 (P. Urban editor). 

The other series is about the treatment of the anharmonic oscillator. We reproduce 
here a lecture in French, given at the University of Strasbourg, which covers the 
subject fairly well. 


