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SCHRODINGER SEMIGROUPS

BY BARRY SIMON

ABSTRACT. Let H=-1A + V be a general Schrodinger operator on R”
(v > 1), where A is the Laplace differential operator and ¥V is a potential
function on which we assume minimal hypotheses of growth and regularity,

and in particular allow V which are unbounded below. We give a general

survey of the properties of e~*¥, t > 0, and related mappings given in terms

of solutions of initial value problems for the differential equation du/dr +
Hu = 0. Among the subjects treated are LP-properties of these maps, ex-
istence of continuous integral kernels for them, and regularity properties of
eigenfunctions, including Harnack’s inequality.
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A. INTRODUCTION

Al. Overview. By a Schrodinger operator, we mean a partial differential
operator on R’ of the form

(A1) H=Hy,+V; Hy=-1A; V="Wx)

where A is the »-dimensional Laplace operator A = 3’_,3%/9x/ (the reason for
the convention — 1A rather than —A will become clear later). The name comes
from the form of Schrodinger’s equation which, in units with h = m = 1 reads

(A2) iow/ot = Hy.

H is thus the Hamiltonian operator of a nonrelativistic particle; H, is the
kinetic energy and ¥V the potential energy. The function, V, will not be
supposed smooth, continuous or even bounded, and indeed the Coulomb
potentials present in atomic and molecular Hamiltonians are unbounded as
one approaches certain codimension 3 planes. One of our goals will be to
discuss fairly general V’s.

In §B13 we will discuss operators of the form

=1(-iv—a)+V
which describes the Hamiltonian in the presence of a potential, V, and

magnetic field B = v X a.
By a Schrédinger semigroup, we mean the semigroup

(A3) et

generated by H. Our purpose in this article is to reveiw a variety of properties
of these operators, especially within and between L”-spaces. The symbol
ll 41l , , denotes the norm of an operator A4 from L” to L9. This appears to be a
narrow and probably uninteresting subject. In fact, it impinges on a consider-
able number of different aspects of the study of H and on the general theory of
semigroups, of elliptic equations and of stochastic processes.

(1) There occur examples of interest to the general theory of semigroups. For
instance, we will see (§B5) that for suitable ¥ in C°(R*), the semigroup e~*#
on L*(R*) has an operator norm behaving as Ct/In t as t —> 0.

(2) At first sight, it appears that (A3) is the wrong operator to look at; the
Schrodinger equation (A2) is solved by y(t) = e *Hy(0), so that for quantum
mechanics the correct object to look at is the unitary group

(A4) e itH,

While this is to some extent true, one is especially interested in eigenfunctions
Hy = Ey; ¢ € L? (called stationary states, since then (Y(t), AY(t)) = (¢, AY)
so that the probability distributions of observables is time-independent). Of
course, such an eigenfunction obeys e~*#y = e *Ey so ¢ is in e~*#[L?]. Thus,
for example, results that say e~* maps L? to L*® ensure us that eigenfunctions
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are in L*® (since ¥ may be unbounded, this is not trivial). Moreover, e ~**#[ L?]
is all of L? so e~ cannot be used for this purpose. In fact, a major element
(Chapter C) of our study here will be to study eigenfunctions.

(3) The Schrodinger semigroup is useful for studying any eigenfunction but
particularly so for eigenfunctions at the bottom of the spectrum. The quantity
inf 6(H) is called the ground state energy and if it is an eigenvalue, the
corresponding eigenvector is called the ground state. The ground state is always
unique if it exists, i.e. if the ground state energy is an eigenvalue, it has
multiplicity one. Indeed, this is most easily proven using the semigroup (see
e.g. [162, §XII1.12]); explicitly, the fact that e~"¥f is pointwise positive if f is
pointwise nonnegative. The ground state energy is given by
(AS) inf o( H) = - lim ¢t ' Inlle "]

=
In (AS), the norm is for an operator on L2, but we will see later (§B5) that one
can use an L?-operator norm instead. An alternative formula is

(A6) inf o( H) = - lim ¢ ' In( £, e~"#f)

for any f which is pointwise nonnegative. Finally, if H has a ground state vy,
then

(A7) Y= S-F_I,nw e—tHf/ (f, e-szf)l/z

where again, f is any nonnegative function.

(A7) is particularly important in quantum field theory, where the use of
semigroups has become a standard tool. Because relativistic invariance be-
comes Euclidean invariance if # is replaced by ¢, the associated theory is called
Euclidean quantum field theory. These ideas are especially powerful in a path
integration context; see (8) below. For further discussion of these things, see
[76, 193, 204].

(4) Sobolev estimates are among the most celebrated and useful estimates in
analysis. Since Af, f € L?, if and only if f € [-A + 1]7}[L”], the Sobolev
estimates for —A are statements about the resolvent of ~A mapping L? to L4.
Analogous estimates for H will be proven here (§B2) by using the semigroup
L? estimates and the formula

(A8) (H+E)' = [TetheEar.
0

The limitation on ¢ will come from the divergence of ||e =" || piq@s110. We can

also study (H + E)™* by

(A9) (H+E)* = caf
0

oo
e-tHe—lEta—l dt

so long as & > 0. [c, is a constant expressible as a I' function.] The net result
will be that we recover “inhomogeneous” but not “homogeneous” Sobolev
estimates; i.e. (-A + 1)™ maps L? to L7 if p < g < f(a, p) for an explicit
function f. We show (H + E) * maps L? to L?if p < g < f(a, p) (i.e. we lose
the case ¢ = f(«, p)) and if E is sufficiently large.
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(5) It is a comforting fact to learn that some operator one is interested in has
an integral kernel. This is especially beloved by physicists, in part because the
asymptotics of this kernel at infinity are sometimes related to physically
significant quantities like scattering amplitudes. The theorem of Dunford and
Pettis (see Treves [202]) asserts that

THEOREM A.l.1. Let (M, p) be a separable measure space and E a separable
Banach space. Let A be a bounded operator from E to L*(M, dp). Then there
exists a unique (up to sets of u-measure zero) weakly measurable function, a,
from M to E* so that for each f € E anda.e. x € M

(Af)(x) = (a(x), f).
Moreover llall, = I All.
In particular, choosing E = L?(M, dp); 1<p < oo, so that E* =
LYM, dp) with ¢7' + p~! = 1, and noting the trivial converse of Theorem
A.l.1, we have

COROLLARY A.1.2. If A is a bounded operator on LP(M, dp.) and A is bounded
also from L? to L™ then there is a measurable function a on M X M obeying

(A10) sup [f|a(x, y)Iq]l/q (=14ll,,,) <o
so that, for any f € L?,
(A1) (4f)(x) = [a(x, )f(y) d(»)-

Conversely, if A: L? - L? has an internal kernel, a, in the sense of (All)
obeying (A10), then A is a bounded map from L? to L*.

Of especial interest is the case p = 2. Operators on L? obeying (A10) are
called Carleman (integral) operators and are of classical interest. Corollary
A.1.2 is often attributed to Korotkov [120] especially in the Russian literature.
Although it is a special case of the much older theorem of Dunford and Pettis
[202], Korotkov was the first to emphasize its usefulness in the context of
Carleman operators.

One can ask about continuity of the integral kernels. Let X be a separable
locally compact metric space and let C(X), %f(X ) denote the bounded
continuous functions on X and its dual, the Baire measures of finite total
variation. By o(C, 90) we mean the weak topology on C determined by the
functions f > [fdp and by ¢(IN, C) the weak * topology on M. Given any
Baire measure, », finite or not, on X, L'(X, dv) is imbedded in 9 by
associating f to fdv and if supp» = X, then L' is 6(9N, C) dense. One can
prove quite easily that

THEOREM A.1.3. Let X be a separable locally compact space and v a Baire
measure. Let T be bounded map from L\(X, dv) to L*(X, dv). Then T has an
integral kernel which is separately continuous in x, y if and only if Ran T C C(X)
and T has an extension T from O(X) to C(X) which is continuous in norm and
also when O is given the 6(IN, C) topology and C the o(C, IN) topology. If
supp » = X, then such a T is unique.
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The integral kernel is given by K(x, y) = T(Sy)(x) with §, the point
measure at y.

We will not use the above theorem in this paper because it only yields
separate continuity in x, y; by other methods, we will be able to prove that the
various operators of interest have jointly continuous kernels. It does not seem
easy to get such joint continuity from Banach space continuity properties of 7.

(6) Carleman operators are of especial interest because it is precisely for
them that there exist eigenfunction expansions of the type associated with the
names of Berezanskii, Browder, Garding, Gel'fand and Kac (we dub this a
BGK expansion). In §CS5, we discuss such expansions and compare them with
the more powerful expansion of Povzner and Ikebe (IP expansions). The BGK
expansions are of minimal interest in the study of “N-body potentials” (see
A2) where one knows or expects there is an IP expansion. But with the recent
interest in random (e.g. [148]) and almost periodic potentials (e.g. [192]),
general results which hold for potentials with no special decay properties at
infinity have become very significant. In this article we primarily emphasize
results that hold for potentials without any decay assumptions. The BGK
expansions are exactly of this type and have played an important role in the
study of random and almost periodic potentials.

(7) Properties of integral kernels are important in establishing trace ideal
[195] properties of operators of the form f( H)g(x). Such properties are often
technically very useful and are discussed in §B9.

(8) Thus far we have emphasized connections of the subject of this article
with functional analysis and partial differential equations. There is also a deep
and powerful connection with the theory of stochastic processes, especially
Brownian motion and certain Markovian perturbations of it. In fact, the proofs
we sketch in §§B1 and C1 of the basic results whose consequence we derive
later in the corresponding chapters, are probabilistic in nature. We emphasize
that most of the proofs of consequences are not probabilistic. Moreover, as we
will discuss (and briefly describe for the results of B1), there are nonprobabilis-
tic proofs of these results. We prefer the probabilistic proofs because we find
them natural and moreover, because they set up a close connection between L?
bounds on semigroups and L” bounds on the Poisson kernel for H, the key
object in §C1. From an analytic point of view, this connection is far from
transparent and indeed the analytic proofs seem to be totally unrelated. But, in
fairness, I should emphasize that I know experts in PDE’s who regard the
probabilistic proofs as highly unnatural: Chaqu’un son gout! We emphasize
that because of the probabilistic proofs we are restricted to second order
equations. Occasionally, in this article, we will suppose a familiarity with
Brownian motion and the Feynman-Kac formula; see [194] for the necessary
background.

This completes our overview of reasons why L? properties of semigroups are
interesting. Other than the indications above, we will not bother to sketch the
contents of Chapters B and C; the table of contents lists section titles which
give considerable information.

We have already indicated that it is important to prove results without any
decay assumptions on ¥ and obviously one wants to allow local singularities to
be able to include Coulomb potentials. Virtually all our results will be stated
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for potentials in a class, K,, discussed in §A2; to be more precise, we will
normally require that V.= max(-V,0) lie in K, but that ¥, = max(V, 0) only
lies in K*°. In a sense we describe in §A2, K, is a maximal space for e~*# to
have reasonable L® — L™ properties, at least if V' doesn’t have severe oscilla-
tions. Nevertheless, there are a few papers on larger classes and these are
described in §A3.

We should emphasize that while we are careful to give our results for this big
class, K, it is my opinion, that for most cases one could be quite happy with
results that included Coulomb singularities and all continuous functions. The
only legitimate point of studying larger classes is naturally of results or
methods.

When V is unbounded, the definition of the sum -A + V is not completely
trivial. We briefly discuss the definition of Hif V.€ K, ¥V, € K in §A2.

While we have emphasized that our results generally require no decay
hypotheses on ¥V, many are interesting even for ¥’s with some decay, like
N-body potentials. Of particular interest are results on properties of eigenfunc-
tions and on certain operators having integral kernels.

There is one severe defect in the breadth of our class of potentials. Because
of our central use of e *f, we cannot directly treat the case where H is not
bounded from below (except for the local results of §C1 which are still
applicable). One can reasonably define H as long as H + ¢|x|* is bounded
below for some ¢ even if H is not bounded below. The important case of
constant electric field, i.e. V= W + d -x with d fixed and W in X, is in this
class. In §B12 we will prove such operators have BGK eigenfunction expan-
sions.

Having mentioned my book [194], I should deal with the question of overlap
with that book and this article. §25 of that book deals with the subject matter
of §§B1, B2, B7 and B9 of this paper. While most of [194] involves well
developed subjects and therefore is to some extent in definitive form, §25
represents results obtained in late 1977 when the book was being completed.
There have been considerable developments since then, and this article sub-
sumes and improves most of §25 of [194].

While the present article is of “review” nature in the sense of giving a
comprehensive overview of a subject, there are numerous new results. We will
not generally bother to note those cases where the result stated here are proven
for K, while previous results are for smaller classes. We will indicate results
which are “substantially new”; many in the area of integral kernels of various
operators.

The results and worldview of this paper have been developed during the past
five years, and I owe a debt to many colleagues for useful discussions,
suggestions and arguments during that period. I would like to thank them all,
including S. Agmon, M. Aizenman, A. Berthier, H. Brezis, R. Carmona, E. B.
Davies, P. Deift, I. Herbst, M. Hoffman-Ostenhof, T. Hoffman-Ostenhof, M.
Klaus, E. Lieb, T. Osborne, J. Piepenbrink, M. Perelmuter, Y. Semenov, L
Sigal, B. Souillard and S. Zelditch.
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A2. The class K,. The basic spaces of potentials we will consider are given

by
DEFINITION. A real-valued measurable function ¥ on R” is said to lie in K, if
and only if
(@lfyr=3
(A12) hm[su |x -y 2| v(y)| d"y] =0.
Ix—yl<
®)Ifr=
(A13) lim[sup In{|x—y["'} | ¥(»)] dzy] =0.
al0] x Yx—y<a
©Ifr=
(A14) supf [V(y)] dy < co.
x x—yl=l1

We say V is in K if and only if VX € K” for all R, where X is the
characteristic function of {x || x |< R}.

The earliest discussion of classes related to X, is that of Stummel [200] who
defined the space My, where M, , is given by

DEFINITION (SCHECHTER [172]) V € Mg , if and only if

(A15) sup [x =y P | V(y)Pdy=1IVIE, < .
x Ylx—yl<

If » = 3, we will put the norm || - ||, on K, (in which K is not a complete
space) when we discuss continuity in ¥ in §B10. For » = 2, we use the norm
(A1) sup [ In{lx =y "} | V(»)] 4’

x Yx—y|<1/2

and in » = 1, the uniform L' norm, i.e. || - || 1,1~ In all these cases, we use the
symbol || - ||, for this norm. As we shall see, if » = 3, K|, is not complete in this
norm.

In his book, Schechter [172] does not explicitly single out the space K, but if
one chases through several definitions, one discovers that one of his theorems
has as its hypothesis V' € K. The classes appear explicitly first in Kato’s paper
[112]. Ironically, in the context of the problems studied by Schechter and Kato
(form sum and selfadjointness questions respectively), K, is not the natural
class; e.g. if » = 3 and V(x) = —| x |*(In(| x| +2)}"% then V € K, if and only
if @ > 1 (see Example B below), but V is —A-form bounded with relative bound
zero so long as » = 3, a >0 (and -A-operator is bounded if » =5, a > 0).
Schechter [170] subsequently realized that for form problems, the maximal
classes are larger than K, . [In §B1, we will mention one explanation of why, in
Kato’s proof of selfadjointness, K, enters naturally; that is, while K, is not
maximal for the selfadjointness, it is for one proof.]

The naturalness of the class K, for L? properties was discovered by
Aizenman and Simon [9] in the context of path integral methods, and by
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Agmon [3] using PDE methods. This is illustrated by the following result which
we will prove in §B1.

THEOREM A.2.1 [9). Let V< O0. Then V € K, if and only if e="H is bounded
from L* to L*® with lim, olle”"H |l , , = 1.

If V has both signs, cancellations can take place for highly oscillatory
potentials [9].

Aizenman and Simon also show that ¥ € K!*°is equivalent when V' <0toa
strong version of Harnak’s inequality [9, Theorems 5.1 and 5.2].

We should point out one interesting aspect of Theorem A.2.1. If L® to L™ is
replaced by L* to L?, then the condition lim, olle~*#||,, = 1 follows by the
spectral theorem once e~*¥ is bounded. Thus the analogous question is whether
V is bounded below. In the L? case, one has the phenomena that there are
potentials (like - ~2) so that ¥ is in the class but AV is not for A large. Since K,
is a vector space, we have the remarkable fact that if V' <0, then once
e~*(HotV) js bounded on L® with the norm condition, automatically, the same
is true for e ~*(Ho*AV) for all A.

The function | x — y|*~? arises in the definition of K, because it is (up to a
constant) the integral kernel of (—A)~'. More generally, the integral kernel
Go(x — y; E) of (-A + E)™' obeys (if v = 3; E > 0)

@ Go(x —y; E)y<c,|x—y| 7.

(b) For each r > 0,

lim sup e* I Gy(x—y;E)=0.

E=oo x—yzr
From these facts and the elementary
LEMMA A.2.2. K, C Ly joc = (V] Sup, [ix—y<1| V(¥) | d’y < o0}
One obtains the result (i) = (ii) in the following

PROPOSITION A.2.3 [9]. The following are equivalent:

() VeK,.

(i) lim ;o0 (- + EY' | V|l , =O.

(i) im g, o (<A + E) Wl 4 o = O.

(v) img_ ,IV(-A + E)'ll,, = 0.

(v) For all € > 0, there exist a > 0 so that for all  in D;(A) (the domain of
the generators of the semigroup e’ on L"), we have

(A16) VYl < el Hogll, + bllgll,.

In (ii), we intend the operator (-A + E)™! applied to the function | ¥ | and
take the L®-norm. In (iii), (iv), V is intended as a multiplication operator and
we use an operator norm.

SKETCH (v = 3; THE PROOF IN y = 1,2 IS SIMILAR). We have shown (i) = (ii)
and (ii) = (i) is similar using lower bounds on G,. Since 4 = (-A + E)™'| V|
takes positive functions to positive functions, we have that |Af|< [l f |, (A1)
pointwise (1 is the function which is identically 1). Thus

I(=A+ E)" | V|l = I(-A+ E)"| V|1l
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so (ii) is equivalent to (iii). (iv) is equivalent to (iii) because | V| and (-A + E)™!
are selfadjoint and L2 and L™ are dual. (iv) = (V) since

IVyll, < | V| (Hy+ E) Il [l Hoy Il + Ellyll]
and (v) implies (iv) since (A16) says that
IV(Hy + E) Il , <ell Hy(Hy + E)ll,, + BI(H, + E) Iy,

and one knows that, because H, is the generator of a contraction semigroup on
L,

I Ho(Ho + E) 'y, <2 WI(Ho+ E)'lly, <|E[". O

The understanding of why one takes lim, , in the definition comes in part
from the requirement that one can take ¢ —» 0 (if » — o0) in (A16), in part from
the results on the path integral formulation of X,, and in part from some
continuity conditions. These conditions are responsible for the fact that e~*#
will have only continuous functions in its range (§B3) and the result says that
K, is more or less maximal for this.

PROPOSITION A.2.4. The following are equivalent:

(@ V E K.

®) f(x) = [jmy<1 | x =y [C72| V(y) | @’y is a continuous function.

() If g is any bounded function of compact support, then (-A + E)'[Vglis a
continuous function.

(d) For the characteristic function X of any ball, (-A + E)"'VX , is a compact
operator from L® to L*™.

This result is proven in [9]. In proving (a) = (b), a useful preliminary is to
prove that if ¥V in K, has compact support, then V is the limit in X, -norm of
bounded functions. This is done in [9] using Dini’s Lemma. There is an
alternative and transparent way which will be useful below. If ¥ has compact
support and » = 3, let

fx) = [lx =y m(y)lavy

ie. if g is the Coulomb potential, | x|*~2, then f= g * (V). Let h; be a
positive spherically symmetric C* function with [A4(x)d”x = 1 and with
supp by C {x||x|<8}. Then, by Gauss’ law for Coulomb potentials, (i)
hs * g < g; (ii) (hs *» g)(x) = g(x) if | x |> 8. Thus

lgxhss|V]—g*|Vilo<sup[  |x=y[C2|V(y)|d%
X

[x—y|<8

s0 hy + | V| converges to ¥ in K, norm. Since ¥V € L', hg * | V| is a C*-func-
tion.

We are now ready to discuss some examples of functions, V, in K,

EXAMPLE A. Let p<v, let fE K, and let T: R” > R* be linear and
surjective. Then, we claim that f(Tx) = V(x) lies in K,. This is because if we
integrate | x — y |~ cutoff at large |x — y| over » — u variables we get
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something behaving as | Tx — Ty |*~?. See [9] for a formal proof. Thus, e.g. if
fE€ L', V(x) =f(x,) is in K,. We summarize the moral of this example by
saying that K, C X,

EXAMPLE B (CENTRAL POTENTIALS). Let V(x) = f(| x |) be a positive spheri-
cally symmetric function. Using the fact that such a charge distribution always
produces an electrostatic potential which is maximum at x = 0, one can see
that [9]

PROPOSITION A.2.5. If v = 3 and V(x) = f(| x|), then V € K, if and only if (i)
SUP,»2 fx—y<1 | f(X) | dx < oo and (ii) [¢'r| f(r)| dr < co.

The condition f§r| V(r)|dr < oo is very popular in analyzing the (ODE)
reduced radial Schrddinger equation, see e.g. [12]. Because of the maximum at
X = 0 fact, the finiteness of ||V || ;. implies V' € K, if V' is spherically symmet-
ric. In particular, if ¥ is symmetric, if V is —A-bounded in L' sense, then the
relative bound must be 0.

ExaMpLE C. Let V* be the spherical decreasing rearrangement of ¥ [30].
Then, by general principles [30]

sup [x =y 72| V(y)|a%

x Ylx—y|<a

< sup |x =y 72| v*(y) | dy.
x Clx—y|<a

Since we have just studied when the right side goes to zero with a and since we
can describe V* in terms of the distribution function m,(A) =| {x|| V(x) |=
A}| (| -|= Lebesgue measure), we find [9] that if » = 3 and [°[m(A)]*/? dA
< oo then V € K,

EXAMPLE D (STUMMEL AND SCHECHTER SPACES). The Schechter spaces M; ,
(and their special case Mp,, the Stummel spaces) are defined in (A15). Clearly,
ifv=3,

(A17) Mg, CK, ifB>2.
Also M, , C My, if a < pB by Holder’s inequality and the fact that

(A18) f [x —y[179"d"x < oo.
lx—y|<1

Thus

(A19) M,,CK, ifa>2p

and in particular
M,,CK, ifa>4
(a > 4 is precisely the condition of Stummel if v = 4).
ExaMPLE E (L7 SPACEs). By (A18) and Holder’s inequality L7 C Mg, so
long as B > v/p where
(A20) L? = {fl sup L) d*x < oo}.
<1

x Yix—y
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Thus, by (A17)
(A21) LX(R)CK, ifp>ivr(»=2).

At the borderline L!/? Z K,; for example, a spherically symmetric function
behaving as r %(log ) * at r ~ 0 is in L*/? if and only if a(3») > 1 while @ > 1
is required for it to be in K, (see Example B). As we will discuss below, for
v =5 L’/? is within the regime where — 1A + V is essentially selfadjoint but
potentially not in X,.

ExaMmPLE F (N-BODY OPERATORS). To describe N particles of mass m;
moving in » dimensions, one studies a Hamiltonian H on R*¥~1 describing
motion with center of mass motion removed. It is useful to think of X = R*V—D
as points (ry,...,ry) C RN with Zm;r, = 0. H, is then } times the Laplace-
Beltrami operator associated to the metric m,(dr,)?, ie. if e®,..., e~ D" are
vectors in X with (e® = (&19,...,e\)),

‘ k) —
Emjéf’) : g}' =8,

and X € X is written ¥ = Zx,e'”, then H, = - §3{";""8?/ax}. H=H, + V
with V' = Z,_V, (r, — r;) and V; a function on R’. By Example A, V € K, _,,
if each V,; lies in X,, eg. if V;; € L, p>v/2. For example, if » =3 and
V,;(x) =e;;/| x| (Coulomb potentials), then ¥ € K,. Indeed | x| could be
replaced by | x |~ for any a < 2.

EXAMPLE G (PERIODIC, ALMOST PERIODIC AND RANDOM POTENTIALS). Con-
siderable interest has recently arisen in the study of almost periodic (see e.g.
[192]) and random (see e.g. [148]) potentials. For a periodic potential to lie in
K,, it is obviously sufficient that it lie in K. Almost periodic functions in the
sense of Bohr are by definition continuous. For the machinery of this paper to
be relevant, it is natural to extend the class and to call a function V K -almost
periodic if and only if {V(--t)} is precompact in K, norm. If one defines
L?P-almost periodic in the analogous way, then for p >w»/2, any LP-a.p.
function is K,-a.p. Random potentials of the type discussed in [77], i.e.
continuous functions of Brownian motion on a compact manifold are bounded
and so, of course, in K,. But many random potentials will lead to Hamiltoni-
ans which are not bounded below and therefore the corresponding potentials
will not be in K,. For example, the Poisson model of [81] has this property as
does various Gaussian process potentials. Typically these potentials will at
least lie in K with probability 1.

ExaMPLE H (TRUDINGER CONDITION). In his work on Harnack inequality,
Trudinger [203] (see also [72]) used the hypothesis

(A22a) (o,|V|e) <e(p, Hp) + C(e)(o, )
for alle > 0, ¢ € C§° with
(A22b) C(e) < Ce™

for some M. It is proven in [9], that (A22) implies V' € K, (by picking ¢ to be
the square root of the integral kernel of e "o and using Proposition A.2.6
below). It is remarkable that a purely L2-condition on V like (A22) has L*®
consequences (like e ~*¥ maps L? to L*).
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EXAMPLE 1 (MEASURES IN THE COMPLETION OF K,). Let » = 3. Let o be the
measure X (x, y)8(z) with X the characteristic function of {x> + y < 1}. Let
hg be the functions discussed immediately before Example A. Let o5 = kg * o.
o5 is a C* function of compact support, so clearly o5 € K,. We will prove that
o, is Cauchy, converging in a real sense to 0. Among other things this implies
that K, is not complete. We begin, by noting that by a simple argument

W) =[x =yrtde(y)

takes its maximum at x = 0 and

£,(0) = Zﬂfddr = 27a.
0

But as in the argument before Example A, by Gauss’s law, if § < &', then

llos — o5 Il x, < sup fo(x) = 278’

proving the desired result.

Probably, one could develop a more systematic theory by allowing ¥ to be a
measure obeying the proper condition, but we do not see the purpose of the
extra complication. In some sense, the point is that K is the set of functions
which are distributional Laplacians of continuous functions. Of course, not
every such distribution is a function, in fact, not every such distribution is a
measure (e.g. if » = 1, the principal part is such a distribution).

Next, we turn to the critical connection of K, with functional integrals. E,
will denote expectation for the Brownian motion starting at x € R”, i.e. b(?) is
an R’ valued Gaussian process with

(A23) Ex(bj(t)) = Xj Ex([bj(t) - xj] [Bi(s) — xk]) = 8jkmin(s’ 7).

See [194] for discussion of the construction of this process. The real point of
the definition is that for 0 <s, <s, < --- <5,

(A24)  E(fi(b(s))) -+~ £,(b(s,))) = {e_tlHO[fl e e_t"HOf;z]}(x)

where ¢, = 5, — 5,_; (5 = 0) and the first f, is viewed as a function to which
e~'Ho is applied and the remaining f,’s are treated as multiplication operators.
In (A24), H, = — 1A and the reason for the % in our definition is that (A24)
should hold with the conventional normalization (A23) of E,.

K, has a natural expression in terms of E,:

PROPOSITION A.2.6 [9]). V € K, if and only if
(A25) lim supEx(fth(b(s))|ds) =0.
ti0 0
The proof [9] depends on the fact that

B [IV(e)lds) = [0, = nIV(»)lay
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with Q,(x) = [{(2ms)™"/%exp(-x2/2s). Moreover Q,(x) for fixed ¢ looks like
c¢| x|~ for | x | small and Q,(x) is very small outside the region | x |> V¢ so
[O.(x —y)| V(y)| d’y behaves as ¢t - 0 like

[ x=y )| dy.
lx—yl<vt
One nice feature of (A25) is that it makes the assertion in Example A
particularly transparent, since if ¥ is a function on R” depending only on an
R* in R’, the R*-restriction of »r-dimensional Brownian motion is precisely
p-dimensional Brownian motion.

Brownian motion is important in the study of the semigroup e~*¥# because of
the Feynman-Kac formula

(A26) (e )x) = [ exp - [V(b(s)) a5 ) 16()).

The question of justifying this formula leads us to the final question of this
section, namely the definition of H and the proof of (A26). There are basically
three approaches:

(1) [The approach used by McKean [133].] Prove the integrability of the
quantity exp(—f3 V(b(s)) ds) f(b(s)) for f € C° and that the right side of (A26)
defines a bounded operator A, on L? (we essentially do this in §B1), and then
show that 4, is a strongly continuous semigroup by exploiting the Markov
property of Brownian motion (see [133] for details). Thus 4, = e *¥ for some
selfadjoint H. That is one uses (A26) to define H.

(2) If V_ € K,, then by Proposition A.2.3, ||| V_|(Hy + E)'ll,; - 0 as
E - 0. Taking adjoints [[(Hy — E)™" | V_|ll 4. — 0 as E - oo. Thus, by the
Stein interpolation theorem

I V_|Y2(Hy+ E) 213, = 1| V_|V2(Hy+ E) | V_|?ll;,~> 0

as E - oo, i.e. V_ is the Hyform bounded with relative bound zero, so if
V, € K, Hy + V defines a closed form on Q(H,) N Q(V..). (A26) can then
be proven, initially for nice ¥ and then by a limiting argument; see [194] for
details.

(3) Use the final steps of (2), but prove that V_ is Hy-form bounded by
using the arguments in §Bl. To be more explicit: if V' is bounded and
continuous, one proves (A26) by various methods (see [194]); use the argu-
ments of §B1 to get a bound on llexp[-t(H, + aV)]ll,, depending only on
IV_ |l x, and so a lower bound on H,, + aV depending only on this norm. Then
by a limiting argument using the fact that the bounded continuous functions
are dense in K, one gets (A26) and simultaneously the form bound for all V_
in K,.

The point, of course, is that all the above lead to the same H since all obey
(A26). We summarize with

THEOREM A.2.7. Let V_ € K,, V. € K. Then the quadratic form H, + V
is closed on Q(V,) N Q(-A) and defines a semibounded operator H. The
semigroup e " obeys (A26).
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In §B1 we sketch the proof of the following facts about form and operator
cores for H.

THEOREM A.2.8 (= THEOREM B.1.5) (SIMON [187]). Under the hypothesis of
Theorem A.2.7, C§° is a form core for H, i.e. given ¢ € Q(H), we can find
9, € C° so that Il — @, ll, > 0, (¢ — 9,), H(p — ¢,))— 0.

THEOREM A.2.9 (= THEOREM B.1.6) (KaTO [112]). Under the hypotheses of
Theorem A.2.9, if V is also in L3, then C° is an operator core for H, i.e. given
¢ € D(H), we can find ¢, € C§° so that ||lg, — @ll, » 0 and | Hp — He,ll, »
0.

REMARKS. 1. The condition V_ € K, is explicitly given in Kato’s paper [112]
(V. € K} is not given, only ¥, € L2 and indeed, it is not needed). Simon
[187] does not give the condition explicitly and indeed requires ¥_ = 0 but his
method works for V_ € K, as he noted in [190], see §B.1.

2. See §B.13 for the analogous theorem with magnetic field.

A3. Literature on larger classes. As we have already indicated, the class of
potentials, even negative ones, for which H has a reasonable definition, is
larger than the class K,; e.g. for V(x) ~ — | x|?[-log| x |] for | x | small, we
have (if » = 3), that V' is in X, only if & > 1 but that V is form bounded with
relative bound zero if a > 0. K, is exactly the border for bounded eigenfunc-
tions; indeed ¥’s with & = 1 can have eigenfunctions diverging as [log | x |']#
as | x |~ 0. Of course for potentials not in K, where eigenfunctions may not be
in L®, one can ask about L7-properties. Because the class of potentials
involved is so “thin” and includes none of physical interest, I regard results of
this genre as having rather limited significance but in a comprehensive review,
we should give appropriate references.

For definition of H in wider classes, see e.g. [46, 108, 109, 161].

For potentials where ¥ is L' ~A-bounded with nonzero relative bound (there
are no such potentials among the spherically symmetric ones, but one can
construct pathological examples) and where eigenfunctions can be bounded,
see [123, 150].

As for L?-properties of eigenfunctions, there is a general result of Brezis-Kato
[31].

THEOREM A.3.1 [31]. If V_ is (L?) — A-bounded with relative bound zero,
then any eigenfunction is locally in N p<w0LlP(R").
See [122] for discussion of eigenfunctions when ¥ € L*/%(R”).
B. L?-PROPERTIES
B1. L?-smoothing of semigroups. In this section we prove the following basic
results:

THEOREM B.1.1[34, 123, 194]. Let V_ € K, V., € K*. Then for every t > 0
and p < q, e"'" is bounded from L? to L.

REMARKS. 1. Since e~*# | f| is pointwise monotone decreasing as ¥, increases,
V. can be more singular without affecting the result.
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2. As far as local singularities are concerned this is an expression that e~ is
“smoothing”.

For V’s which are bounded below, Davies [45] proved L?-smoothing of the
semigroup in 1973. The first general results on L?-smoothing were obtained by
Herbst and Sloan [83] but with different hypothesis on V" and often weaker
conclusions. They also noted the importance to the existence of integral kernels
and to the existence of BGK eigenfunction expansions. Their germinal paper
motivated later work. The method of Kovelenko and Semenov [34] exploits
semigroup analytical methods and will be briefly discussed later. Carmona
[123] and Simon [194] independently found the proof we give here. They relied
on a lemma which goes back at least to a paper of Khasmin’skii [115] and
which was later rediscovered by Portenko [156] and by Berthier and Gaveau
[27]. The last paper was the direct motivation of [123, 194].

LemMA B.1.2 (KHASMIN’SKIF'S LEMMA [115]). Let f= 0 be a function on R*
with

(B1) a=spE( [1(b(s) ) <1
for some t. Then
(B2) sn;pEx(exp(jO'f(b(s)) ds)) <(1-a)".

ProoF [115). By expanding the exponential, it suffices to prove that

B swpE ([ s (60s) Aol <a

Fixing s,,...,s,_,, it obviously suffices, by induction, to show that

t

(B) B[ [ ds,f(b(s1)) -+ S(b(s,)) < aB5(b(51) -+ 1(b(s,).
Sn—1

By the Markov property, and the starting afresh of Brownian motion, we can

condition on the path up to time s, _, and find that the left side of (B4) equals

E 75(50) 185, ) Eug o [ 16 (w)) ).

Since f is positive, using (B1), we can bound the last function by a and so
obtain (B4). O

REMARKS. 1. There is an analytic version of this argument, due to Kato
[111], who introduced it in a different context.

2. (B1) and Proposition A.2.6 show why K, enters naturally.

The above proof does not require the equality of the functions f in (B3) and
we note the following immediate extension which will be very useful later
(§B10).

LeEmMMA B.1.3. Let
a,.=supEx(ft|j;.(b(s))|ds); i=1,...,n.
X 0
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Then

@) s ([ A bl o) <.

ProOOF OF THEOREM B.1.1 [123, 194]. As a preliminary, we note that by
duality and interpolation, it suffices to show that e~** is bounded from L* to
L® and L' to L™.

Step 1 (L* to L™). By the Feynman-Kac formula

le-tHf | = s:pEx(exp(— [V(s) ds ) f(b(t)))

5<::-<s

< ||f||.,°s:pEx(exp(f0'IV- (b(s))lds)) <Cliflly

if ¢ is sufficiently small by using Proposition A.2.6, the hypothesis V_ € K,
and Lemma B.1.2. Thus for some T,

sup lle |l <C.

0<!<T
Letting 4 = T~'In C, we obtain by using the semigroup property
(B6) lle= |l o < Cexp(At).
By the same argument, we see that
(B7) e Hot2y|| < Cexp(At).

Step 2 (L* to L®). By using the Schwarz inequality in the Feynman-Kac
formula, we obtain

t 172 1,2
(e ) e) < B exp( -2 [ V() ds )| EL17B () P)
so using the Feynman-Kac formula again, we find that

(B8) | (e=Hf )(x) |<[(e-Ho*21)(x)]"/*[e= o | £ ]2,

But e~*#° is convolution by an explicit function (27¢)™*/%exp(~| x [*/2t). Since
this function is in L®, we have that

lle~*Hogll,, < (2mt)"*llgll,

so by (B7)
(B9) lle=Hf ||, < C'/2exp(3Ar)(2mt)™ 4l f1I,.

Step 3 (L' to L?). By selfadjointness of e~*¥, we have that

le=™ ), = llel5 4.
Step 4 (L' to L*). By the semigroup property,
le ™l o < lle”™ /2|l ,lle="H/2]|,

so by (B9)
(B10) eI, , < Cexp(4dr)(m2)™%. O
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Making explicit the result of exploiting interpolation, from (B6) and (B10),
we find that forp < g¢q

(B11) lle=®1l, , < C't"Yexp(A't)
where
(Bll/) 'Y = zy{p'l — q'l}.

Later (§BS), we will show that one can take A’ to be any number larger than
~inf spec;:( H) where spec;: is the L2-spectrum of H. We will use this fact
when we exploit (B11) in the next section.

The above clearly proves half of Theorem A.2.1. There is the other half:

PROPOSITION B.1.4. If V < 0 and lim, olle="#|| , . = 1, then V €K,
PRrROOF. By Jensen’s inequality, since V' < 0,

1 <stpexp[Ex(_/:|V(b(s))|ds)} <s:pEx(exp(—_/:V(b(s)) ds))
= lle#1ll, = Nl ,

so, by the hypothesis
. t
lim supEx(f |V(b(s))lds) =0.
110 0

By Proposition A.2.6, V€ K,. O

Theorem B.1.1 has at least two distinct analytic proofs:

(1) There is an analytic translation of the probabilistic proof (see e.g. [S0]).
Khasmin'skii’s lemma as already noted has a “Kato-smoothness” analytic
version. The key inequality (B8) can be proven without path integrals by a
“complex interpolation argument” (see e.g. [S0)).

(2) There is a semigroup proof [34]. ¥ in K, implies that V is an L2-relatively
bounded perturbation of H,, with relative bound 0 (see Proposition A.2.3).
Since e~ is an analytic semigroup on L' (using the explicit integral kernel
e~*Ho js defined as a map from L' to L' so long as Rez >0 and for each
0 < m/2, Sup|y ;1<plle”*70ll,; < 00), the same is true of e~ It follows that
lle=*#||,, < Cexp(Atr) and Ran,(e™¥) C D(H) = Dy(H,); the latter
equality is a consequence of the relative bound result and the inclusion is a
general property of analytic semigroups. By a Sobolev estimate, D;:(H,) C L?
if p<v/(v —2) (p<oo if »=1,2). Thus, e"# maps L' to L?° for some
Po > 1. Without loss, we suppose that p;' =1 — 1/n for an integer n. By
duality and interpolation e~ maps L? to L7if p! — q7! = n~! so e " maps
L' to L*. This completes our sketch of the proof of [34].

As a final result in this section, we sketch the proofs of Theorems A.2.8 and
A.2.9 following [187].

THEOREM B.1.5. Let V_ € K,, V. € K!*° and let H be the semigroup defined
by the quadratic form Hy + V on Q(V) N Q(H,). Then Cg° is a form core for H.
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REMARK. As the proof will show, only V', in L} is needed.

SKETCH (FOLLOWING [187]). e #[L?] is certainly a form core for H, but by
Theorem B.1.1 this is in L™, i.e. (since Q(H,) D Q(H)) we see that &) = L® N
L? N Q(H,) N Q(V.,) is a form core for H. Thus, given ¢ in this set we need
only approximate ¢ by functions in C§° in form norm. Pick any j € Cg° with
J©0)=1 and let j(x)=j(x/n) and @, =j,. By dominated convergence
@, > @ in L? and V2%, > VI/% in L% Moreover, Vo, =j(Ve)+
on~!(V,j)(x/n) converges to Vo by dominated convergence again. Thus we
need only prove that the functions in %) which have compact support can be
approximated by functions in Cg°. Given ¢ in this set, pick k € C* withk =0
and [k(x)dx = 1. Let k™(x) = nk(xn) and ¢ = k™ x . Clearly ¢y» €
C¢ and since ¢ € L™ (this is where Theorem B.1.1 enters critically) and
veL., ¢™ - yinform norm. O

THEOREM B.1.6 (THEOREM A.2.9). Let V_€ K,, V., € K!* and V in L2,
and let H be as defined in the previous theorem. Then C§° is an operator core for
H.

REMARK. As the proof shows only V¥, in L% _ is required.

PrOOF. The proof is identical to that of the last theorem with one pre-
liminary step. Namely, to prove that ¢, — ¢ in operator graph norm, one needs
H(j,9) = j.Hp + Vj,- vo = 3(V],)e
and this is proven by showing that both sides have the same inner product with

a function in Cg° and the already proven density of Cg° in form norm. 0O

REMARKS. 1. We emphasize that the conditions ¥ in L (resp. Vin L2 ) are
necessary for Cg° to lie in Q(H) (resp. D(H)). Thus, as far as V', is concerned
the above results with K dropped are “maximal”.

2. As mentioned already, K, is not the maximal condition for ¥_ as far as
form cores and operator cores are concerned. However, since the above proof
uses the L? to L*® result, V_ € K, is the maximal class for the above proof. To
the extent that Kato’s inequality has a “semigroup nature” (see [184, 84, 185)),
one understands why Kato was led to introduce X,.

B2. Sobolev estimates. Sobolev estimates for Schrodinger operators, by
which we mean L”-bounds for the resolvent of H, are an immediate conse-
quence of (B11).

THEOREM B.2.1. Let H=H,+ Vwith V, € K}, V_€ K,. Let a > 0 and
let p, q obey p < q and

(B12) ' — g7 <(2a/v).
Let z be a complex number obeying Re z < infspec(H). Then (H — z)™ is
bounded from L? to LA.

REMARKS. 1. If « is an integer, (H — z)~* means a power of the conventional
resolvent. For nonintegral a, one can define (H — z)™* either by (A9) or,
equivalently, by defining it on L? N L? for z real by the usual L? functional
calculus and analytic continuation.

2. As emphasized already inf spec(H) (more properly inf Re[spec (H)] since
we do not know that spec( H) is real for p # 2) is independent of p; see §BS.
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PRrOOF. For the || - |, , of the integrand of (A9) to converge, one uses (B11)
and finds that @ > vy is needed. This is precisely (B12). O

Open questions. Does the result remain true if p™! — ¢7' = Qa/»); 1 <p <
g < o? Since it is true if ¥ = 0, one would expect that the answer is yes. If it
is yes, under what circumstances can one take z to infspec(H) and remain
bounded from L? to L9 (as one can when ¥ = 0)? Since inf spec( H) may be an
eigenvalue, one cannot always do that.

As for z not obeying Re:z < infspec(H), the resolvent equation (with
w = infspec(H) — 1)

(H-z)"'=H-w)"'"+(z—w)(H—-w)'(H-2)"

immediately implies (a) and (b) below; (c) is a corollary of Theorem B.2.3
below.

THEOREM B.2.2. (a) Suppose that H, p,q obey the hypotheses of Theorem
B.1.1 with & = 1. Suppose that z & spec; ,(H). Then (H — z)™" is bounded from
L7t LA

(b) Suppose that H, p, q obey the hypotheses of Theorem B.1.1 with a an
integer, m. Suppose z & U spec;.(H). Then (H — z)™" is bounded from L? to
La.

(c) (b) is true only if z & spec,2(H), so long as p <2 <gq.

REMARK. We do not know that spec,-( H) is r independent.

Open question. What can one say about a nonintegral (where (H — z)™* will
have to be defined by some kind of analytic continuation)?

Thus far we have discussed f(H) for f(x) equals e *# and (x — z)™*. One
result for general f is easy.

THEOREM B.2.3. Suppose 1 < p <2 < g < oo obey (B12) for some a. Let f be
a Borel function on L*-spec( H ) obeying

A(x)|<C( x| +1)%  x € spec(H).
Then f(H) is bounded from L? to L9,

REMARK. Since f(H) is only a priori defined on L2, one should really say
that for any y € L? N L?, the L-function f(H)y lies in L7 and || f(H)Y Il , <
clly|l , whence f(H) can be defined from L” to L.

ProOF. Let g(x) = (x — w)*f(x) with w = infspec(H) — 1. Pick o/, a” so
a=a +a” and p'—1<2a /v and § —g7' <2a”/v. Write f(H)=
(H — w) “g(H)Y(H — w)™* and use the facts that g(H) is bounded on L? and
(H — w) ™ (resp. (H — w)~") is bounded from L? to L? (resp. L> to L9). O

The requirement p < 2 < ¢ is disappointing, but at least the case p = 1,
q = oo needed to get bounded integral kernels is included.

Open question. What can one say if p <g<2or2<p<gq?

B3. Continuity and derivative estimates. Thus far we have discussed the
L?-properties of Ran(e~**). In this section, we want to show that Ran(e~*#)
lies in the continuous functions and in those functions whose distributional
derivative is locally in L2, These results are new.
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THEOREM B.3.1. Let V_€K,; V,  €EKX. Let f€ L®. Then e *Hf is a
continuous function.

Proor. In §B10, we will prove that for any V with these properties, one can
find ¥, € C§° so that for any compact set K,

lim |[Xy[e™ 7 — etHn] =0

00,00

where H, = H, + V, and X is the characteristic function of K. Thus e *#f
converges to e~ 'Hf uniformly on compacts, so we can suppose V € Cg° without
loss of generality.

The result in this case can be proven in many ways. Here is one: Since e~*#
maps L* to L*, we can suppose without loss that ¢ is so small that

stpEx(Lt|V(b(s))|ds) —a<l,

By the argument in §B.1, it suffices to prove that
5(f Hb(s0) -+ VOG0 | dy -,
0<s;<--- <s,<t

is continuous in x. Let x, — x and let
G(y,0) =V(y +b(s))) - V(y + b(s,)),  F(»,b) =f(y +b(1)).

We want to prove that Ey(G(x,, b)F(x,, b)) = E\(G(x, b)F(x, b)). Since F
and G are uniformly bounded, it suffices that

(B13) Eo(| G(xn, b) - G(X, b) |) -0,
(B14) Ey(| F(x,,b) — F(x,b)|) - 0.
(B13) follows from dominated convergence. (B14) says that

n

Jm) " exp(-y2/20) |f(x + ) = f(x, + ») | &y

goes to zero if f € L*. This is easy to prove, for example, by writing f as the
sum of a continuous function, a function in L' with very small L'-norm and a
function in L supported very far from —x. O

By the semigroup property and Theorem B.1.1, we have

COROLLARY B.32. If V., €K}, V_€ K, and f € L? for any p € [, o0},
then e~'Hf is a continuous function.

Since [Pg(s)e*Hds = e "H°g(s + t)e™*H ds and || [3g(s)e " ds|l - 0 as
t10if [ | g(s)|lle~*H|l ds < o0, we immediately have

THEOREM B.3.3. Let V., € K}, V_ € K, and let p > v/2a. Then for any z
with Rez < infspec(H), we have that (H — z)™® maps L? to the bounded
continuous functions.

Next, we want to turn to properties of V. It is useful to begin with an
example.



SCHRODINGER SEMIGROUPS 467

EXAMPLE (» = 2). Let f(x) be a function on [0, co] which is positive and C*®
on (0, o), equal to r~'/2e~" for r > 1 and which equals 1 — r” for r < . Let
Y(x) = f(| x|) and V(x) = 3 + 3A¢/y, so V is C* away from 0, has compact
support and V(x) =% — 3y*(1 — r")"'r*"? for | x|=r small. Thus V € K,
for any y > 0. But, when y <1, vy € L? only if p <2 /(1 — v). As v |0, the
critical p goes to 2 so we can only hope for L3 results for vy when » = 2.
Since K, C K, if v > 2, the same is true for any » =2. For » = 1, easy
methods show that e *¥fis C' in the classical sense.

That v € L} if ¢ = e"#fis certainly to be expected. After all if f € L?,
then ¢ € Q(H) C Q(H,) = {9 € L?| vo € L?}.

PROPOSITION B.3.2. Let V € K}, Let f € LY, so that —-Af and Vf can be
defined as distributions. Suppose — YAf + Vfis in LL,. Then vf € L} .

PROOF. Since V € L, Af € L} . It is an easy result (see Lemma C.2.1),
thatf € L2 ,Af € L implies vf€ L2, O

In §B.6, we will discuss the semigroup e ‘¥ on the weighted L2-spaces
LZ= {f|(1 + x?)%%f € L?} for any 8, positive or negative. We will prove
then that

tH

LEMMA B.3.3. If f € L2, then g = e~ "Hf is in LY, and the distributional sum
~ 1Ag + Vg lies in LY.

THEOREM B.34. Let V, € K}, V_ € K,. Let f € L? for some p € [1, o).
Then for any t > 0, e *Yf has a distributional gradient in L3 .

REMARKS. 1. The same proof actually shows that f need only lie in L§{ for
some §.

2. In §B.6, we will show that if f € L®, then (H — z)~'f = g has a distribu-
tional gradient in L2 ..

PROOF. Since e *Hf = (e *H/2)(e~'#/2f), we may suppose p = co. But L*®
C L3 for any § < »/2. Now use the last lemma and proposition. [

Open problem. One would guess that if a >4 + »(2p)~' then, for any
f € L?,(H — z)"°f has a distributional gradient in L2 . Prove it!

The example above also shows that eigenfunctions need not be Holder
continuous of any prescribed order. Thus, to obtain results on Holder continu-
ity of Ran(e ") we need stronger hypotheses on V, a theme going back to a
basic paper of Kato [110]; see also Simon [180].

DEFINITION. Let 0 < a < 2. We define K(® as follows:

(1) Wheny=1landa<1,K¥ =K,.

Q) Whena <land»=2ora>1, V€ K if and only if

supf |x =y 72| V(y)| dy < 0.

x Clx—yl<i

3)Whena = 1,» =2, V € K if and only if

lim sup |x =y P V(y)|dy = 0.

ri0  x Yx—y|<r
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REMARKS. 1. Thus for a # 1, » = 2, K(® is identical to the Schechter space
M2—a,l‘

2. By arguments similar to those in Chapter A, K(® C K(® if »<yp;
LP C K so long as p > »/(2 — a). Coulomb potentials lie in K{® if a <1
but not in K. Since eigenfunctions are not in C' in that case (see [110, 89] for
detailed analysis) this is not coincidental.

DEFINITION. Let 0 < a < 2. f € C(Q), @ is an open set of R” if and only if

(1) if @ < 1, for every compact K in £, there is a C with | f(x) — f(y)|< C
|x —y|*forallx, y € K;

Qifa=1,fisC'onQ;

Q)ifl<a<2,fisC'and Vfisin C,_,.

In the remainder of this section, we will prove

THEOREM B.3.5. Let V_ € K,, V. € K*°. Suppose that the restriction of V to
some bounded open set @ lies in K. Let f € U LP(R”). Then, for each t >0,
e 'Hf lies in C(Q).

LEMMA B.3.6. Let v = 3. Let X be the characteristic function of a bounded
open set and suppose XV € K(®. Then (A)™'XV is a bounded map from L™ to
C(R").

PRrOOF. First we consider a < 1. By interpolating between

'a-(v—2) —p (D |< a ™D 4 p~¢—2)

and
|a‘<”‘2) - b V|<Cla—=b|[a® D+ b D]

for a, b > 0 and using
Hx =yl —lz—ylI<|x—z|
for x, y, z € R” we see that for0 < a <1
[lx =y 72 =z =y [*7?]
<C|x-— zla[lx _y‘-(v—2+a) +|y— z|~(v—2+a)].

This inequality immediately yields the required result.

The a = 1 case follows by computing the integral kernel of v(A) !XV and
following the argument which proves Proposition A.2.4(c) [9]. Given the
formula for v(A)'XV, the fact that this map is into C,_, when a > 1 is
identical to the above proof. O

PROOF OF THEOREM B.3.5. Since e~*#/2 maps L” to L®, we can suppose
f € L™ without loss. Since K® C K{® if u > », we can suppose » = 3. Let
g = e 'Hf and let h be the distributional sum ~Ag + 2Vg which lies in L2, by
Lemma B.3.3. Let X be the characteristic function of 2, and let

g=(-A)"'%{h — 2Vg)}.

By Lemma B.3.6, g lies in C,. Moreover, on £, A(§—g)=0s0o §g— g is
harmonic on @ and thus C* there (see e.g. [161, §IX.6]). O
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B4. Localization. It is no accident that we could not prove that (H — z) % is
bounded from L! to L* when a < v/2; even when V = 0, it is not—for if it
were (H, — z)~* would have a bounded integral kernel. But the integral kernel
G§®(x, y; z) diverges as ¢ | x — y |"* near x = y where

(B15) A=v—2a.

But, at least if ¥ = 0, the divergence is only on diagonal and so f(H, — z)™°g
is bounded from L? to L* if f and g have disjoint supports. In this section, we
will prove this for ¥V # 0 with estimates so good later they will control the
divergence on the diagonal by the right power.

The estimate which will yield all others is

LEMMA B.4.1. Let f, g be bounded functions. Then for any p < q
(B16) I fe"”gll,,,q <| fe“(”"””)gll}/jllfe"”°g||}/,§-

PrOOF. By the Schwarz inequality in function space (similar to (B8))
(B17) | (e h)(x) |<[ (e R [)(x)][(e7" | A1) ()]
Multiplying by f(x), setting # = gy and maximizing over y, we obtain (B16).
a

PROPOSITION B.4.2. Fix V with V, € K)*, V_ € K,. Let X, and X, be the
characteristic function of two disjoint sets a distance d > 0 apart. Then for all
0<r<l

||9€1€_’H9€2” 1oo < Ct-v/Ze—dl/M

where C depends only on V.

ProOF. Use (B16) with p =1, g = co. The first factor is bounded by
(Ct~*/?)!/2 by using (B11). The second is bounded by

[2m1)™" exp(-d?/21)]

by the explicit kernel for e=*#o, O
REMARK. By using the Riesz-Thorin theorem and the boundedness of
lle=*¥1, , uniformly in small time, we find that for p < ¢

”%18—:1-1%2“‘,,‘] < C(t‘”/ze‘“'z/“’)x
with K = p~' — gL
THEOREM B.4.3. Fix V with V, €K}, V_€K, and 0 <a <v/2. Let
X, X, be the characteristic function of two sets a distance d >0 apart. Let
Re z < infspec(H). Then X (H — z)~*X,, is bounded from L' to L® with
(B18) 1%, (H — 2) ™%, I, o, < C[min(d,1)]™

where C only depends on V, z, a and X is given by (B15).
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PROOF. [°1* " e?'|le="H||, , is bounded by §B1. We bound
fo e lgn || e HX, |, dt

by (using Proposition B.4.2)
wat-x/z—le—dz/zt dt = cd-
0

by scaling and the fact that
[Fsr e 2as< o ifA>0. DO
0
BS. Growth of L7-semigroup norms as ¢ — o0. In this section, we briefly

summarize results on the large ¢ behavior of |le~*7|| p,p Obtained in [68, 189,
191). The first result implies the p independence of

inf spec( H) (= — lim nlle ).

THEOREM B.5.1 (189]. lim,_ .t~ Inlle™*¥|| , , is p independent. In fact, for
any p

(B19) le=Hll,, < lle™ll, < lle”Hll,, o
and
(B20) el oo < C(1+ 1) 2 eI,

where C depends on V.

SKETCH. (B19) is immediate from duality and interpolation and (B19)-(B20)
imply the first assertion. Thus we only need (B20). To prove this, let f,  be the
characteristic function of the ball of radius R about x and let g, , = 1 — f, ».
Then

| (e 1)(x) |<| (7P r)(x) | +] (e g ) (x) |-

Let a, = -Inlle"#|l,, so, by the spectral theorem, |le~*#||,, = e**2. Clearly
fort=1

(e r) () < e, gl < N1y e @Dl £, gll, = Ce™@RY2,
By the estimate in Lemma B.4.3, fort = 1,
(B21) | (678, r)(x) |< lle=Hat 20172 | (e=Hog, o )(x) /2

< CeAte—DRZ/t

for suitable 4, D (using Theorem B.1.1 and the explicit kernel for e~*fo).
Choosing R = Kt with K large, we have (B20). [

ReMARKS. 1. In [189), (B21) is proven using more involved path integral
properties.

2. In [189], it is proven that for any p <g, lim,_ ¢ 'Inlle” ||,  is
independent of p, g and in [191], that one gets the same limit by taking any
nonnegative f # 0 and looking at lim,_, .t ™' In|le~*#f ||, or even lim,_, ¢ 'In

| (e~ X(x) | at any x.
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The p-independence of inf o( H') raises an

Open question. Prove that the L”-spectrum of H is p independent.

By interpolation and duality one has that for 2 <p <r, spec,2(H) C
spec; »(H) C spec;-(H).

One question of detailed interest is whether e~*'||e~"H||  _ is bounded as
t - . By (B20) the growth cannot be worse than ¢*/2, The main result known
is for a very restricted class.

THEOREM B.5.2 [189, 191]. Let » = 3. Fix V<0 with V € L? N L9 for some
p <v/2<gq. Let a,(\) denote a, for Hy + AV. Then
() If ay(1) > 0, then
lim e—a;r”e-tﬂuw‘w
t—>o00
exists and is a nonzero finite number.
(ii) If ay(X) = O for some A > 1, then

lim lle=#||,, .
t—> 00

exists and is a nonzero finite number.
(iii) If a,(1) = 0, but a,(A) > 0 for every A > 1, then

lim g(¢)"'lle"H 1|, .,
t— o0

exists and is a nonzero, finite number, where

glt) =172 (v=3)
=t/Int (v=4)
=t (»=5).

There are a host of open questions.

Open questions. 1. Is the growth of e~*'||e~"#||  _ ever worse than linear in
t?

2. If so, is it as bad as #*/2?

3. If not, is there a dimension independent bound on the growth?

4. Find some examples which are not covered by Theorem B.5.2 where the
explicit large ¢ behavior is computable.

One theme of [189] is to connect divergence of lle=*# ||, . to the subject of
§C8.

THEOREM B.5.3. Let V € K,, V <0. Then sup,lle™"# ||, ., < oo if and only if
there exists 1 € L* with (i) e "Hy = n; (ii) inf, n(x) > 0.

ReMARKS. 1. Because V<0, if » = 1,2, a, is never 0 so this result is of
minimal interest there. Similarly, if V falls off any slower than | x |2, a, is not
zero. Thus, the result is mainly of interest when V' € L? N LY as it is stated in
[189]. If V' < 0 is dropped, it can happen that a, = 0.

2. Let m, =sup,n(x); n_ =inf n(x). Then [189] suplle#|, =
N4/M- .

Open question. What is the general relation between sup, e~ [le="#|| <
oo and existence of solutions of Hn = —a,n in L®?

For v = 1, this problem is partially addressed in [191].
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B6. Weighted L2-spaces. Here we will study L?-properties of we™*fw~! for
suitable weight functions. We concentrate on the polynomial weight case,
w = (1 + x?)%/2 with 8§ real (positive or negative). Almost identical results
(except for Theorem B.6.4) hold for the exponential weight case w = e (g
real), with very similar proofs.

These results have two consequences. First, when w is chosen to go to
infinity at infinity (e.g. 8 > 0), then we can define e '#f for f growing at
infinity, e.g. if w™'f € L*. When w is chosen to decay at infinity (e.g. § < 0),
we obtain information telling us that if f vanishes at infinity at some rate, then
so does e~*7f.

Rather than explicitly say that we *¥w-! is bounded from L” to LY, it is
more usual to introduce the spaces w™'L? and w™'L? and say that e~¥ is
bounded from w~'L? to w~'L4, With this in mind, we define

DEFINITION. L = {f|(1 + x?)*/2f € LP} with [ f | , 5 = II(1 + x2)*/%f |l .
Il Al , 5,45 is the norm of a map 4 from L{ to L§..

LEMMA B.6.1. For any p < q, e "o is bounded from L§ to L§ and

le=™oll , 5,05 < C, 4.8[1 + 80/2]277
with y given by (B11").

PrOOF. Let Ky(x, y; t) be the integral kernel of (1 + x2)%2%e~Ho
(1 + x2)3/2,

Ky(x, y; 1) = (1 + x2)*?Q2me) ™2 e =0/2(1 + y2)/2,
If 8 = 0, write
(1+x2)"*< C[(l +y2) 4+ |y — x|8]

and find
(B21) | Ky(x, y; 1) |< CKo(x, 5 1) + Cly — x|¥Ky(x, y; ).

An identical estimate holds if 8 < 0 (note the | § |). Since each term on the right
of (B21) is a convolution kernel, one can estimate norms by Young’s inequal-
ity. O

LEMMA B.6.2. (a) Let f € L§ for = p = 2. Then

e~ Bf 1|, 5 < e~ Har 21|12 | g tHo || L/2 ol f1L, 5.

(b) Foranyp, q

_1H" s < ||e—t(H0+2V)||;{3 ”e—tHou 1/2

” e p.28;9,28

p.8:q,
PRrOOF. (a) Follows from (B8).
(b) Follows from the extension of (B17) where the first & on the right is
replaced by (1 + x2)%/2| k| and the second by (1 + x2)"%/2|p|. O
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THEOREM B.6.3. Fix 1 <p < g < co and 8 real. Then e~*¥ is bounded from
L§ to L§ and

e " ]| < Ct7%e*

p.8:9,8
with y given by (B11'). In particular, if é is fixed and if w is sufficiently negative
(H —w)*maps L to L§ if p™' — q”' <2a/v.

FIrsT PROOF. By Lemmas B.6.1 and B.6.2(a), we obtain the result for
g = p = 2. By duality (since we have the result for § and —6), we get the result
for p < g < 2. Use the semigroup propertyifp<2<g4. O

SECOND PROOF. Use Lemma B.6.1, Lemma 6.2(b) and Theorem B.1.1. [0

The following is proven in [190]; an alternate proof appears at the end of the
section.

THEOREM B.6.4 [190]. Let Hy denote the generator of the semigroup e™*! on
L3. Then the spectrum of Hy is independent of 6.

ReMARK. Even if V' = 0, this result does not extend to the exponentially
weighted spaces.

The following will be needed in §B12; since L® C L?, for some § > 0 it also
shows that if f € L™, then (H — z)~'f has a distributional gradient in L _.

THEOREM B.6.5. Let V, € K}, V_ € K,. Then
p(1+x)(H - z)"'(1 + x2)*?
and
(1+x2)*2p(H—2)"'(1 + x2)*?
are bounded on L? for any real 8 where p = iV . Moreover, for any §,

im  sup |p(1+x2)"X(H - 21+ %27, =0.
M- Rez<-M ’

PrOOF. Since [p,(1 + x2)°/?] is a multiplication operator bounded by
(1 + x2)%/2, the boundedness of the second operator follows from that of the
first and Theorem B.6.3. By commuting (1 + x2)%/? and (H — z)~! we see that

p(1+ )Y H-2)'0+x)?=4+B+C

where

A=p(H-2z)"

B=-ip(H—z)"'p-{v(1 +x>)"?}(H—z)"'(1+x2)"?

C=1p(H—z2)"[a0 + )™ (H - 2)'(1 + x2)2
Since v(1 + x2)%/2 and A(1 + x?)%/? are bounded by c(1 + x?)%/? and
(H — z)™' and p(H — z)™'p are bounded (since Q(H) = Q(H,)), 4, B, C are
bounded by Theorem B.6.3. The proof of that theorem shows that

. -1
lim sup (H—2z) ll;5,5=0.
M- Rer<-M
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Also p(H — z)™', p(H — z)7'p are bounded uniformly in a suitable left half
plane. This implies the last assertion. [
We needed the following result in §B3.

LEMMA B.6.6 (= LeMMA B.3.3). If f € L}, then g = e 'Hf is in LY, and the
distributional sum - 3Ag + Vg lies in LY.

PRrOOF. First, we will find a function # € L} which is formally Hg and then
we will show that & is the required distributional sum. Since e ¥ is bounded
and holomorphic in z on L? for Rez > 0, and on all L2 for z > 0, the Stein
interpolation theorem (see e.g. [161, §X.8]) implies that e *¥ is bounded and
holomorphic in z on each L. Thus, He *#/2f € L} so we can define h =
e H/2He~"H/2fin LY C LY . Now, pick ¥, € C& so that e~"#» — e~ strongly
oneach L{ (p < o) and ¥, > Vin K} (see §B10). Let h, = e~ "Hn/2H ¢~'H:/2
and g, = e ' f. Since g, > g in LY (see §B10) for any ¢ € C, ((-A +
V.)e, 8,) = (FA + V)o, g). But since ¥, € Cg°, it is easy to see that ((-A +
V.)e, g,) = (e, h,). Since h, = h (use Vitali’s theorem to deduce convergence
of H,e "H» from that of e~*¥~), we have the required ((-A + V)o, g) = (9, h).
a

As the next idea, we want to note that e *#f can be defined for f growing
rather quickly at infinity.

PROPOSITION B.6.7. Let e~'*(x, y) be the integral kernel of e *H. Then for any
e>0

e "H(x, y)|< Cet"’/zeA’exp[— (x — y)2/2(1 + e)t].
ProOF. By Holder’s inequality in the Feynman-Kac formula

| (e )(x) [<[(e 22| £1)(x)] 2 [eo | £] (x)] /7,

so letting f approach a § function (and exploiting continuity of the integral
kernels; see the next section):

(B22) e"H(x, y) <[e@t(x, y)]"[eHo(x, y)]/“,

The proposition now follows from control of the L' — L* norm of e
(Theorem B.1.1) and the explicit form of e *fo(x, y). O
The following are immediate from this proposition:

~t(Ho+pV)

COROLLARY B.6.8. e **f can be defined (by an absolutely convergent integral
or by requiring (p, e *Hf) = (e~ "Ho, f) for all p € C§°) for all t so long as

|f(x)|< Ce®™* foralla>0.
COROLLARY B.6.9. If f € L' has compact support, then
| (e™"f)(x)|< C, 17 *exp(-x?/ (2 + )t)
for all t > 0.
Here is a sketch of an alternate proof of Theorem B.6.4.

LEMMA B.6.10. Let V_E€K,, V, € K}*. Let f € C. Then pf(H — i)™ is
compact.
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PROOF. Since p(H + E)~'/? is bounded, it suffices to show that
(H+E)f(H—i)"
is compact. This follows by interpolation from the fact that f(H — i)™ is
compact (since f( p? + 1)7'/2 is compact and p(H — i)~! is bounded) and that
Hf(H — i)' = fH(H — i)™ + 2[p, flp(H — i)' + [p,[p, fI(H — i) is
bounded. O

SKETCH OF A PROOF OF THEOREM B.6.4. Let p = (1 + x2)/2. Let g = p'vp
and

H(a) = }(F —iag)* + V.
By the above lemma and a limiting argument [H(a) — H(0))(H + i)' is
compact. Thus o, ( H(a)) = o, (H). For a purely imaginary H(a) = p*Hp™®
and so by the Combes-Thomas argument [43], oy, (H(a)) = o4, (H). Note
that H(a) is unitarily equivalent to H on L2. O

B7. Integral kernels: General potentials. Our goal in this section is to prove
the following theorems, each of which is partly new.

THEOREM B.7.1. Let V, € K*°, V_ € K,. Then the following operators are
integral operators with jointly continuous, uniformly bounded integral kernels:

(a) e-tH;

(b) (H — z)™* where a > v/2; Re z < inf spec(H );

(c)(H — z)"*where a > v/2, a an integer; z & spec;2(H);

(d) f(H); f a Borel function on spec;2(H), obeying

[f(x)|<sc(+|x])%  a>w/2;x € spec;2(H).

Moreover,
(@) Foralle >0

- 2
le=(x, y) |< CA1)exp(- (x = y)’/2(1 + &)1);

b, ) | (H—2)"%(x, y)|< C,sexp(-8 | x — y|) for some § > 0 and if Re z
< Z = inf spec(H), for all § obeying 36> <Z — Rez.

@) |eH(x, y)|= C)exp(~(x — ¥)*/2(1 —e)) if V, EK,;

@) e *H(x, y) is jointly continuous in x, y, t in the region t > 0.

THEOREM B.7.2. Suppose V, € K)*; V_ € K,. Let 0 < a <v/2 and either
Rez <X = infspec(H) or z & spec;2(H), a integral. Then (H — z)™® is an
integral operator with integral kernel, G\®(x, y; z), obeying

(1) G is continuous away from x =y and bounded uniformly in each region

{(x, M| x —y|=d}.
(2) | G(x, y; z)|< C|x — y|™; A given by (B15).
(3) For | x — y | sufficiently small and | x |< R

|G (x, y;z)|= Cr|x —y|™*;  Agiven by (BI5).

IfV € K,, Cy can be chosen independent of R.
(4) For|x—y|=1

| G (x, y; 2) |< Gy o, exp(-8|x — y])
for some 8 > 0 and if Re z < Z, for all 8 with 16> <X — Rez.
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REMARKS. 1. There are previous results (e.g. [83, 194]) implying that e ¥ has
a bounded integral kernel in great generality.

2. Among functions f for Theorem B.7.1, of especial interest is the fact that
the spectral projections of H are integral operators.

3. Looking at the case ¥ = 0 shows that the integral kernel of f( H) will not
have rapid decay as | x — y | oo if fis not smooth. If fis in C§°, one can show
that | f(H)x, y)|< C(ly| +1)/(| x| +1) as follows: one need only show f is
bounded from Lj_, to LY. By writing f(H) = (H + i) "g(H)(H + i)™" as
usual, we only need boundedness from L? to L2. Thus L*-boundedness of
(| x| +1)'[x, f(H)] will suffice. But (following [151]) we have that

[x, f(H)] = @7)™" [{(M)[x, 7]

and
eMNHxe-INH = 5 4 f"d“emﬁpe-mﬂ
0
SO
(x| +1)"[x, e (H+ i)'l < C(1 +|A])
from which

(x| +1)"[x, /(H)I(H + i)
is bounded on L2, Borrowing extra factors from f (see [1511), one can complete

the proof.
Open question. For f € C§°, show that

|f(H)(x, p) < GIx —y| +1D)7"
To begin the proof of these theorems, we note that we already know the
following

LeMMA B.7.3. e~*H is an integral operator with integral kernel in L® and
Theorem B.7.1(a") holds.

PrOOF. The first assertion follows from Theorem B.1.1 and Corollary A.1.2.
The second is Proposition B.6.6. O

We will prove continuity of this integral kernel first for ¥V in C5° and then
for general V' by an approximation argument.

LEMMA B.7.4. Let V € C{. Then e 'H(x, y) is jointly continuous in x, y, t.

PrOOF. Because of the bound (a’) and the semigroup property, it suffices to
prove the result for small . We can choose ¢ so small that the series expansion
in ¢ converges uniformly in x, y and ¢ small by exploiting (B3). It thus suffices
to prove joint continuity of T,(x, y; t) where

n—1
d’x;---d"x,_ds, - -ds, H V(xj)
4 j=

T 5 1) = [
1+ -0 +s j=1

. InI (2wsj)_"/2exp(—(xj - xj_1)2/2sj).
j=1
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The change of variables
(B23a) z; =[xj —-yj(wi)]/\/;, W, =s,/t;
(B23b) yi(w) = (w, +--- +wj)(xn — x4) + X,
(so z4 = z,, = 0) yields
T,(x, %43 1) = 1"t/ exp(-(x, — x0)’/21)

f d’z,«--d’z,_,dw, ---dw,_,

w+ - +w,=1
n—1 n

. 'H‘ V(zj\/; +yj(w)) Hl (277wj)_”/2exp(—(zj - zj_l)2/2wj).
j= j=

If V is replaced by 1, the integral converges (to (2w)™*/?/n!) so the joint
continuity is an immediate consequence of the continuity of ¥ and the
dominated convergence theorem. [J

ReMARK. The change of variables (B23) which works so well is motivated by
the fact [194] that if b(s) is Brownian motion on (0, ¢) conditioned to start at x
and end at y, then t~V/2(b(s/t) — t 'sy — (1 — st™")x) is a process indepen-
dent of x, y, t. Zelditch [207] uses a similar change of variables.

LeMMA B.7.5. e "H(x, y) is jointly continuous in x, y,t for general V with
V,EKNr, V_€K,.

PrOOF. In §B10, we will prove that for any such V, we can find ¥, in C{° so
that for any compact X,

lim H%K[e”” — e"H"]?X,K",,w =0
n— o0

uniformly as ¢ runs through compacts of (0, o). It follows, by Theorem A.1.1,
that e~"#»(x, y) is uniformly convergent as n - oo on compacts of (x, y, t) €
R?” X (0, 00). Since uniform limits of continuous functions are continuous, we
are done. [

REMARK. There is another way of proving joint continuity in (x, y). Lets =
1t and note

ef(x, y)= fe“”(x, z)e " (y,w)e*H(z,w)

since e*#(y,w) = e *H(w, y). Let H be the operator on L*(R?") given by
-3A, — 34, + V(x) + V(). Then the above says that

e (x, y) = (e )(x, y)

where f(x, y) = e~*#(x, y). Since f € L, and V, (x) + V,(y) € KJ%, etc.
(since K, C K,,), Theorem B.3.1 implies continuity of e~*#(x, y) on R?".

LEMMA B.7.6. If Rez < Z and a > 0, then (H — z)™* has an operator with
integral kernel which is continuous away from x =y, and

(a) for a > v /2 continuous for all x, y,

(b) for a < v/2, uniformly bounded on any set with | x — y |> d and the bound
Theorem B.7.2(2) holds.
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ProOF. Since (H — z)™®: L? - L* for suitable p < oo, it is an integral
operator. By using the formula (A9) and the continuity of the integral kernel of
e 'H(x, y), it suffices to get absolute convergence of the integrand. For
a > /2 this follows from (B11) and for &« < v/2, we need only use Proposi-
tion B.4.2 to get the continuity away from x = y and (B18) to get the required
bound. O

LeEMMA B.7.7. For z real and sufficiently negative, the lower bound Theorem
B.7.2(3) holds.

ProOF. Consider first the case V' € K,. By the Schwarz inequality in
function space:

e io(x, y) <[emFotV(x, y)]*[e=Hom ") (x, y)]'/2

so using the Schwarz inequality in (A9) we find

(B24) (H,— 2)(x, y) <[(H = 2)(x, »)]*[(Hy — V = 2)(x, »)]"*

for z sufficiently negative. Since -V € K,, we have an upper bound on
(Hy— V —z)™(x, y) of the form C|x —y|™ and by the explicit form of
(H, — z)™* a lower bound on it by C | x — y|™ from which the desired lower
bound follows.

If V, is only in K, and we want to get the bound for |x|,|y|< R, we
replace H, by H, the operator with Dirichlet boundary conditions on the cube
of side 4R centered at 0 and ¥V by W = V% with % the characteristic function
of this cube. Then, as one proves (B24), one finds

(H, - z)_a(x, y)2 < (ﬁo + W— z)_a(x, y)(H,— W— z)_a(x, y).
Since e " HotW)(x, y) < e~ "HotV)(x, y) (see [194]) it follows that

(Hy = 2)"(x, )" < (Ho+ V= 2)"(x, y)(Ho = W= 2)"(x, y)

which yields the required lower bound since (H, — z)™* can be seen to have a
kernel diverging in the required way for | x| ,|y|<R. O
As preparation for the proof of Theorem B.7.1(d), we need

LemMA B.7.8. Let C be a bounded operator on L?* for which there exists a
function C(x, y) so that

(i) for each fixed y, C(x, y) € L? and y > C(x, y) is continuous in L*-norm,

(ii) for f € L™ with compact support,

(Cf)(x) = [C(x, »)f(y)dy.

Let A be an operator for which A* has a “kernel” with similar properties. Let B
be any bounded operator. Then there is a jointly continuous function D(x, y) so
that for f, g € L™ with compact support, we have

(f,4BCg) = [D(x, ») 7(x) g(») d"xd"y.
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ProOF. Let C, be the function C(-, y). (ii) says that Cg = [g(y)C,d"y as an
L?integral. Thus

(f, 4BCg) = [g(y) f(x) (42, BC,).
By (i), x, y & (4%, BC,) = D(x, y) is jointly continuous. [

LemMA B.7.9. Case (d) of Theorem B.7.1 is an integral operator with jointly
continuous integral kernel.

PrROOF. By Theorem B.2.3 and Corollary A.1.2, f(H) has an L*® integral
kernel. Writing f(H) = (H — z)™*/?g(H)(H — z)~*/? with —z large and g(x)
= (x — z)*f(x), we can apply the last lemma if we note the bound we already
have on the integral kernel of (H — z)™*/2. O

LeMMA B.7.10. Let a be a positive integer, a <v/2. Let z & spec;2(H). Then
(H — z)™* is an integral operator obeying (1), (2), (3) of Theorem B.7.2.

PrOOF. Pick w real and so negative that Lemmas B.7.6 and B.7.7 are
applicable to (H — w) % Pick k so large that a + kK > »/2. Then we can
expand

« k! fa+j—1 - e
(=27 =3 V(T )@=y = )
j=0
where |f(x)|< C(1 + |x|)"** on spec,2(H). Since f(H) (by Lemma B.7.9)
has a bounded integral kernel and we know all about the integral kernel of

(H — w)™*/ we can read off the required properties of (H — z)™* O

LeMMA B.7.11. Forany a > 0,and |x — y|= 1,
| G(x, y; 2) |< Cy,a-exp(-8] x — y)

where « is arbitrary if Rez <= and $8? <X and a is integral and 8 some
sufficiently small number if z & spec;2(H) with Rez = =.

REMARK. One can replace 38° <2 by 462 <X, =infessspec(H); see
§C3.

PrROOF. We combine the machinery used thus far with an idea of Combes
and Thomas [43]. Fix a € R” and let H, be the operator which is formally
e *He % *, i.e.

1(iv —ia)* + V=H,.

Then Re(p, H,9) = H — 1a?. Since Q(H) = Q(-A), the a - v term is H-form
bounded in the sense of Kato [114] with relative bound zero, so H, is analytic
and the spectrum of H, is continuous in a. It follows that, when Rez < Z, z is
not in specRe(H,) if 1 |a|>* <= — Rez and if z is only not in spec(H), then
z & spec(H,) for |a|< & for small § > 0. Using the explicit integral kernel of
exp(-t(H, — V), one can show that (H, — z)~* has a bounded integral kernel
by just mimicking our approach for (H — z)™“ so long as z & spec(H,) [S0].
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But

(H,— 2)"(x, y) =exp(a- (x = y))(H — z)(x, y)
so we conclude that for all x, y

| (H = 2)(x, ) |< Cexp(-a|x ~ y|)
for all a with |a|> <2(Z — Rez) or |a|* <§. Since this holds for all direc-
tions, we obtain the required bound. [

BS8. Integral kernels: Some special operators for some special potentials. In
this section, we want to consider integral kernels for (H — z)~! as z approaches
the continuous spectrum for H and for e ¥, In neither case can one hope for
results for all ¥ with ¥V, € K}, V_ € K, since existence of the first in a
suitable sense implies the absence of singular continuous spectrum which can
be false [149] and even for H = —A + x? we have e ¥ = [ for ¢ suitable and /
is certainly not an integral operator. We will therefore place restrictions on V'
which are undoubtedly too strong.

THEOREM B.8.1. Let (a, b) be an interval in R, let V, € K**, V_€K,.
Suppose that for some 8 > 0, as operators from L3 to L*;, (H — z)™! has a norm
continuous extension from S = {z=p+iA|0<A<1; pE(a,b)} to §=
{z=p+iN|0O<A<]1; pE€(a,b)}. Then the integral kernel G(x, y; z) of
(H — z)™! also has a jointly continuous extension from (R* X R*\A) X S to
(R* X R*\A) X S, where A = {(x, ) x =y}

Proor. We will show that for an integral operator A(z) which has a
continuous integral kernel on (R” X R*\A) X S, (H — z)"' — 4 has a norm
continuous extension from S to S as operators from L} to L%,. It follows that
(1 + | x ) ¥%G(x, y; z) — A(x, y; z)X1 + |y |*)® has such an extension in
L*®(R” X R*)-norm. Since G is known to be continuous in x, y when Im z > 0
(Theorem B.7.1), the theorem then follows.

We write (H — z)™! = A(z) + B(z)where

AZ)=(H-w)' '+ (w=2)(H=-w)?+ -+ (w=2)""(H-w)*
where k = 2 is chosen so that k > »/2, w is very negative and

B(z) = (w—2z)"(H—w)™**(H - z)"(H— w)™".

By the results in Theorem B.7.2, A(x, y; z) has the required joint continuity on
(R” X R*\0) X S. By Theorem B.6.3, (H — w)™*/2 maps L} to L2 and L2, to
. 50 B(z) has a norm continuous extension from Lj to L®; as required. [

REMARK. The proof shows that we have upper and lower bounds on
| G(x, y; z)| by C..|x — y |72 for | x — y | small, uniformly for z € §.

There are three situations where we know that the hypothesis about L2 to
L?, extensions holds (all with arbitrary § > ).

(1) When V is a “short range two-body potential”, e.g. (1 + | x |*)!/?*¢ €
L? + L™ for some ¢ > 0 and some p > v /2, then the required estimates follow
from the Agmon [1] and Kuroda [126] theory (see [162, §XIIL.8] for an
exposition) if (a, b) avoids 0 and any eigenvalues (which are discrete away
from zero).
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(2) The same estimates are known in various long range two body cases, €.g.,

if V=V, + V, with ¥, obeying the hypothesis above and
| D¥V(x) |< Cl1 + | x D—k_e?
see [3, 102, 103, 104, 117, 168].

(3) For suitable N-body systems, such estimates are proven by Perry, Sigal
and Simon [151].

For e *H the results are much weaker. Consideration of ¥ = 0 shows we
cannot hope that they are integral operators in the sense of there being a kernel
K(x, y) with [ | K(x, y)||f(y)| dy converging a.e. x for every f € L. We say
that A is a weak-integral operator with kernel K(x, y) if and only if K € L} _
(R?*) and for all L*-functions of compact support f, g we have

(1, 48) = [f(x)K(x, y)g(y) d"xd"y.
THEOREM B.8.2. Suppose that V is a C*-function obeying
[(DV)(x)|< C(1 + [x )"
for all a where either k(o) = ky — | a| with ky <2 or k(a) = 0. Then e~"*¥ has
a weak integral kernel P(x, y; t) for all t # 0 and it is jointly C* on R” X R” X
(R\{0}).

This was proven by Fujiwara [61, 62] in a series of papers; see also Fujiwara
[63], Kitada [118], Kitada and Kumanoago [119] and see Zelditch [207] for an
alternative and simpler proof.

Zeldtich [207] also has results for k, = 2 when | ¢| is sufficiently small and
studies the case k, = 2 in detail for larger ¢ where, as the case ¥ = x?2 shows, it
can happen that P stops existing for some larger z.

All previous results on e **¥# require ¥ to be smooth. The following new
results illustrate that this is not necessary.

THEOREM B.8.3. Let v = 1. Let V € L. Then e~"*! is a weak integral operator
for t # 0 with integral kernel P(x, y; t) which is jointly continuous in (x, y, t) on
R X R X (R\{0}).

We begin the proof with

LEMMA B.8.4. Fix 0 < a < 1. Then

n n+1
B25 ds, ---ds,| [] 57| < —2—gm0-0e,
( ) '/;0+ s s, =t ' jl;Io ! (n!)l—u

PrROOF. We evaluate exactly the LHS of (B25), call it B, (¢), using the same
method that relates the beta function to the gamma function (n = 2). By
scaling B, (1) = B, ,(1)t"'~®~* Thus

[ B a()e™ di = B, (OT((n + V(1 ~ ).
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But
[*Butyede= [ TI [syesds] = T(1 - )"

(B25) now follows from the asymptotics of I'(x) as x - o0. [
PROOF OF THEOREM B.8.3. Let Q,(x, y; t,V) be defined forn = 1,2,... by

n—1
H Po( 10 Xj3 sj) .I_Il V(xj)

with Py(x, y; ) = (2mis)™"/? exp(—(x — y)2/21s). By (B25) we obtain
(B26) | Qu(x, y; £, V) |< D*(nt) IV (177272
(B27) | Q.(x, y;t,V) — Qu(x, y; t,W)|

< nD"(nt) 22N+ WL Y — WL

Moreover, the change of variables (B23) shows that when V € C°, Q, is
jointly continuous in x, y, ¢. By (B27), this joint continuity remains true for all
V € L' and so by (B26), 22_,0,(x, y; t, V) is jointly continuous. It is easy to
see that this sum is a weak integral kernel for ¥, 0O

The most important defect in the above theorem is the restriction to » = 1.
For v = 2, the integrals defining Q, are no longer absolutely convergent at
s; = 0, but that should not change the situation except to require a stronger
COIldlthl'l on ¥V (V € L' does not imply ¥ € K, if » > 2) and a new proof.
Moreover, the restriction at co required by V' € L1 is the wrong one.

Open question. Prove for a class of N-body Schrodinger operators including
atomic Hamiltonians that e ¥ is a weak integral operator with jointly
continuous integral kernel.

The solution of this would be a special case of the following.

Conjecture. Let V_ € K,, V, € K with (1 + x2)"'V__ in the closure of
Cg in K,-norm. Then for all 1 >0, e~# is a weak integral operator with
jointly continuous integral kernel.

0,(x0s X3 1,V) =/s H ds;dx,

©+s,=t j=1

B.9. Trace ideal properties. Here we discuss when operators of the form
f(H)g(x) lie in trace ideals §P. Such results are often of technical use. For
definition and properties of gp including discussion of the case H = -A, see
[195]. Previous results for f(H) = e~*# appear in [194]. Here we extend these
results to f(H) = (H — z)™* for suitable a. We recall the definition of the
Birman-Solomjak spaces.

DEFINITION. [P(L?) = {G | Zjez’lhy, | G(x) P d”x]?/* = |1 fll2, < oo}
where A is the unit cube centered at j.

We will prove

THEOREM B.9.1. Let V_ € K,, V. € K)**. Let f be a bounded Borel function
on spec(H) obeying

(B28) If(x)|<c+|x])™

for some a > v /4. Let g € L*(R"). Then f(H)g(x) is in %, (the Hilbert-Schmidt
operators).
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THEOREM B.9.2. Let V_ € K,, V. € K)*°. Let f be a bounded Borel function
on spec( H) obeying (B28) for some a > v /2. Let g € I'(L*(R")). Then f(H)g(x)
is in 9, (the trace class).

REMARKS 1. One might hope that (B28) could be replaced by some kind of
falloff of a local L?-norm of f but the existence of point spectrum (even dense
point spectrum) shows that f bounded is absolutely essential.

2. The above theorems and interpolation immediately imply

THEOREM B.9.3. Let V_€ K,, V. € K!°. Let f be a bounded Borel function
on spec(H) obeying (B28) for some a. If p = 2 and a > v /2 p, then f{ H)g(x) is
in 9, whenever g € LP(R"). If 1 <p <2, and a >v/2p, the f(h)g(x) is in §,
whenever g € 17(L?).

Theorem B.9.1 follows immediately from Theorem B.2.1 and

PROPOSITION B.9.4. Let A be a bounded operator on L*(R”) so that A* maps
L? to L*. Then Ag(x) is in $, for any g € L*.

ProoOF. By Corollary A.1.2, 4* is an integral operator with kernel 4*(x, y)
obeying sup, [ | A*(x, y)|*dy < co. Thus gA4* is an integral operator with
kernel in L? so g4* isin 9,. Thus (g4*)* = Agisin9,. O

The proof of Theorem B.9.2 begins with a similar result.

PROPOSITION B.9.5. Let A, B be bounded operators on L*(R®) so that B is
bounded from L? to L and A is bounded from L2y to L%, for some 8§ > v /2.
Then for any g € L}, gAB is trace class with

I gAB”| <Cll g” 2,8 “A”2,-8;oo,-8 Il B“Z,oo'

PROOF. Write g4 B = CD with C = g(1 + x2)¥/2[(1 + x2)7%/24(1 + x?)%/?]
and D = (1 + x?)~%/2B. By the last proposition, C and D are Hilbert-Schmidt.
O

PrROOF OF THEOREM B.9.2. Fix § > 0. By Theorems B.2.1, B.6.3 and the last
proposition || g(H — z)™*|l; < Cligll, 5 with a constant C depending only on
the K, norm of V_ . Since this is translation invariant, we see that

lg(H = 2"l < Cl(1 +|x =i ) gll,.
Thus, for any g € I'(L?)
lg(H —2)"Il, <ZllgX,(H—2)"ll,
J

= Cz g(1+|x _jlz)S/Z%j,’z <C'YlgX;l,
J J

where %, is the characteristic function of A;. [J

In [44], Cwickel proved that if 2 < p < « and f, g lie in the weak L”-space
L2(R”), then f(i v)g(x) lies in the weak trace ideal [195], 9. This leads to

Open problem. Fix V, € K}, V_ € K, and 2 < p < o0. Is it true that for
every gin L? and a = »/2p, the operator (H — z)™°g(x) lies in §2?

This question is primarily of academic interest, in that it does not have the
immediate interest of Cwickel’s results.
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There is a final result on trace class properties due (in a slightly weaker
form) to Davies [47] for which we give a new proof.

THEOREM B.9.6 (DAVIES [47]). Let V = 0, V € K. Let %X be the characteris-
tic function of a bounded set, K. Then X.V'/*(H + 1)~% is in the Hilbert-Schmidt
class so long as o > % + 1v with Hilbert-Schmidt norm bounded by a constant C
depending only on K and not on V.

ReMARKk. The interest depends on the independence of V so that one can
take limits to non-K,V, even non-L' — V. Since f(x)(H, + 1)™*is in 4, if and
only if f € L? [195], the fact that non-L'V are allowed is especially interesting.
Of course the oo in [|¥'/?(x)|* is somehow cancelled by a smallness in
(Hy + V + 1)7% indeed the extra 1 in the condition 2a > »/2 + 1 (rather that
a > v/4) is due to the need for cancellation.

PrROOF. We prove that the diagonal of the formal integral kernel of
(H + 1)"*XV(H + 1)"* is integrable using the formal path integral formulae
[194]. It is easy to justify everything. We first use (A9) to write
(B29)

Tr((H + 1) °XV(H + 1)) = ¢ f " drdst=~ 152 le~ = Tr(e-"HX Ve~sH)
0
< cfwdwwz"_ze’wfwdt Tr(e "HX Ve (w—0H),
0 0

Let E, .., denote expectation with respect to Brownian motion starting at x

and conditioned to end at x at time w. Then

b w -v/2
<cfax[ aww** %[ diQ2mw)™
(B29) cf xfo ww?® %e /0 (27w)

(B30) E, g €777 COS% (5(0)V(5(2))).
Let @Cx,w(b) the characteristic function of all paths with b(s) € K for some
s <wand g(y) = ye’. Then
(B30) < ¢’ fd’x X f % dwwe =2/ 2w x,x;w(?%(b))g( f (b(s)) ds)
0 0
< c"fd"x X foodwwz"_z—"/ze'“’Ex,x;w(?X(b))
0
< cu/fdyx % fwdeZa—Z—v/2e—wexp(_dw—l diSt(x, K)Z) < é
0

The c” estimate follows from sup,.,8(y) = e”! and the ¢"”’ by an elementary
estimation of paths (¢’ is K-dependent). Since 2a — 2 — $» > -1, the last
estimate follows from the finiteness of the integral. O

B10. Continuity in V. Continuity of the map V > e “#o*¥) as a map from
¥ ’s to the bounded operator from L? to L? is a natural question. Moreover, in
§8B3 and B7 we have seen that for proving continuity of e *#f or of integral
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kernels it is useful to have such results. In this section we prove

THEOREM B.10.1. Let V,V, € K, and let |V — V|l x. = 0. Then for any
fixed t, p, q with t =0, p < q we have that ||e""

m—eH]|, > 0asm- .
THEOREM B.10.2. Let V_ ,V_ , € K,; V. ,V, , € K,*. Suppose that

@) lim, o5up,, , E,(J{V_ ,(b(s)) ds) = 0.

(ii) For any compact K, | X x(V,, — V)l g, = O where X is the characteristic
function of K. Then

(a) for any t > 0, any compact K and any p, || X ;(e™"" — e"”m)Hp’p - 0and
”(e—tH _ e—IH'")%x“p,p - 0.

(b) For any t > 0, any compact K and allp < q

X g (e H — e Hm)X e, , = 0.

REMARK. Given any V with ¥V, € K}, V_ € K, it is easy to find V,, € C°
obeying hypotheses (i), (ii) of Theorem B.10.2, e.g. multiply ¥ by the character-
istic function of a large set and then convolute with a spherically symmetric
approximate delta function.

PrOOF OF THEOREM B.10.1. We first claim that it is no loss to suppose that
p = q for we can then handle the general p < g by using Theorem B.1.1 and

(B31)
-2tH -2tH, -tH( ,-tH _ ,-tH, -tH __ ,-tH, -tH,
e — e=2Hn|| | <lle"*H(e e )|l , o+ (e — e~ Hm)e~tHn]|
-tH -tH _ ,-tH, -tH _ ,-tH, -tH,
<lle#ll, lle” — e Hnll,  + lle=# — e~Hnll lle~Hn]| , .

By duality and interpolation, it suffices to treat the case p = ¢ = oo. By using
(B31) again it suffices to also prove the result only for ¢ < T for some small 7.
We can pick T so small that the expansion whose terms are (B3) converges for
each V,, uniformly in m. It then suffices to show that for each n

supE,| [ T V,(b(s1) ~ T V(b(51))| doy -~ s, | = 0.
t O0<s)<---<s,<tf 1 1

This follows by writing
[Ta; - H b,
1 1

and using Lemma B.1.3. O

ProOOF OF THEOREM B.10.2. Since it is somewhat lengthy, we break it into
steps. As a notational preliminary, we denote by K, the set {x | dist(x, K) <r}.
We also note a fact from the theory of Brownian motion [194]: For each fixed
x and ¢

(B32) lim Py(|b(s)|<r,all0<s<t)=1.
r-oo

Jj—1 n
<3 la) II |b,-|][|b,»— a)]
j 1 j+1

This follows from the continuity a.e. of Brownian paths; in fact very good
estimates on the probability are available; see [194].

Step 1. sup,lle” ot < o0; p,q,@>0, t>0 fixed. This follows
from hypothesis (i) and the proof of Theorem B.1.1.
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Step2.p = q = o0; Xy(e " — e~'Hn), We must show that

Ex( [exp(—fotV(b(s)) ds)

t
—exp(- [[Fa(b(s)) s | 7601 || ~0
Let G,, be the integrand inside E,, and let @C,(b) be the characteristic function
of the set of paths with b(s) € K, for 0 < s < ¢. Then, (B32) implies that
(B33) lim sup E,(1 - %,) =0.

r-o xek

sup sup
fllo<1 x€K

By the Schwarz inequality
EX(G,,,(I _ ?X,)) < ”f”ooEx(l _ gcr)l/Z[He-t(Ho+2V)1”°° + ”e—t(H0+2V,,,)1"°°]

go to zero uniformly in x € K and || fll, <1 as r > oo by Step 1 and (B33).
Now let ¥V, V" be V,,, V multiplied by ‘.’X _and let G be the same as G,
with V,, Vreplaced by V") V(). As above

lim sup E (G(’)(l -% )) =0

r-mw e
uniformly in || f|l,. Noting that (G — G,)X, =0, we see that it suffices
that sup) /< SUP,ex E(G{”) - 0 for each fixed r. But, by hypothesis (ii),
this follows from Theorem B.10.1.

Step 3. lim,_, , sup,, I(1 — X Je " #»K |l ,, ., = 0. By Step 2 and Lemma
B.4.1, it suffices to prove it for H,, replaced by H,, which follows from the
explicit integral kernel.

Step4.p = q = ; (e

-tH

— e "Hm)% ... By Step 3, given ¢, we find r so that

%K )[e—tH — e tH,

r

sup”(l— o &

By Step 2, lim,, . | X ™" — e =] %K i

Step 5. General p = g. Follows from Steps 2 and 4 by duality and interpola-
tion.

Step 6. General p, q. Follows from the obvious generalization of (B31). O

B11. Hypercontractive semigroups and all that. In this section, we will
summarize some of the literature associated with the terms “hypercontractive”
and “supercontractive”. Given a normalized function Q in L*(R?, d”x) with
Q >0, let dp be the probability measure
(B34) du(x) = 9(x)%dx.

There is a natural unitary map Uy: L%(R”, d”x) - L¥(R”, du(x)) by (Ug f )(x)
= Q(x)"'f(x). Any Schrodinger operator, H, carries over to an operator Hg on
L%(R’, du) by Hy = Uy HUg". Notice that

(B35) ™o = Q-le~HQ,

What will concern us is whether e *#e is bounded from LP(R’, dp) to
L9(R?, dp). This is seen to be equivalent to asking if

Q-1+2¢" p-tHQ1—2p"!
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is bounded from L?(R”, d”x) to LY R”, d”*x). Thus, except for the case p = ¢
this question is related to but quite distinct from the question of bounded e *#
from a weighted L? to a weighted L7 Indeed, since we will generally be
interested in the case p<g (since g < p will be so easy for the “natural”
choice of ©), and 229 ~27" will then grow at infinity, there is no real hope
that e~*"e will go from L7 to L7 unless V grows at infinity so that there is some
falloff of e~ as x and y go to infinity (even with |x — y |- 0). Since we
already know about local smoothing of e~*¥ it is clear that the question being
asked here is exactly about behavior at infinity. After we make the choice of ,
we will examine this notion further.

There is one especially natural choice of Q. Suppose that H has an L2-eigen-
function > 0 so that HQ = EQ (of necessity, since @ > 0, E = inf spec;>(H);
see [162, §XIII.12]). If we take this choice of 2, then e~*H#a~5) = 1 and we
have

PROPOSITION B.11.1 [196). If e~*4 is a semigroup on L*(Q, dv) with v a
probability measure and if (i) e *4f =0 then f = 0, (ii) e ‘1 = 1, then e~ is a
contraction from any L? to any L? with q < p.

REMARK. Since L? D L? for q < p, the only interesting case is ¢ = p. For a
proof see [196] or [161, §X.8].

Henceforth, we always pick this € and change ¥ by a constant so that
HQ = 0. With this choice, one formally has that

(B36) [ F(x) (Hog)(x)Q dx = [ V() - vg(x)Q%x

something that can be proven for a core of H in many concrete situations (see
e.g., [78, 163, 10]). Because of (B36), the operators Hy, are often called Dirichlet
forms.

If @ = e™*, then V = 1((Vh)* — Ah). If h goes to infinity in a regular way,
Ah is smaller than (Vk)? so one sees that if ¥ ~ x¢, then h ~ x'*%/2 In
particular, 229" ~27"'¢~*" will be unbounded at infinity if a < 2, bounded at
infinity for all £ > 0, p, g if a > 2 and bounded at infinity for p, ¢ depending
on ¢ if a = 2. This suggests qualitatively the precise behavior in the two
theorems below (Theorems B.11.3 and B.11.4) although the quantitative pre-
diction one would make when a = 2 about p, g is wrong.

DEFINITION. A semigroup e~*4 on L%(Q, dv) with © a probability measure
space is called hypercontractive if and only if it is a contraction on each
L?(, dv) and for some ¢, e~*" is bounded from L? to L*. Carmona [34] has
made this intuition precise.

General principles imply that there is then T( p, q) with e~* bounded from
L? to L9if t > T(p, q). Because of Theorem B.11.3 below (see the comments
following it), hypercontractive semigroups played an important role in the
mathematical development of quantum field theory in the period 1965-1971,
especially in the germinal papers of Nelson [141], Glimm [73] and Glimm and
Jaffe [74, 75]. As a result, an abstract theory was developed originally by Segal
[175] with further developments in [S5, 56, 85, 176, 178, 196]. A typical result is
the following abstracted from Glimm [73].
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PROPOSITION B.11.2. If e™*# is bounded from L? to L*, and if H1 =0,
H! {1}*=m >0, then e is a contraction from L* to L* for t sufficiently
large.

A central example in the development is

THEOREM B.11.3 (“NELSON’S BEST HYPERCONTRACTIVE ESTIMATES”). Let
V(x) = $x2? — 1v. Then e *Hs is bounded from L? to LY if and only if

(B37) e¥<(p—-1)/(¢g—1)
and in that case it is a contraction.

REMARK. By a scaling argument, one obtains the same result if
1 14
Vx) =1 3 (b3 - )
i=1

so long as min w; = 1. In quantum field theory, one deals essentially with the
v = oo limit of such operators in describing free frields and the estimates carry
through and are useful in treating perturbations of the free field.

Hypercontractivity of the above semigroup was first proven by Nelson [141]
for any finite ». Glimm [73] proved Proposition B.11.2 in the concrete setting
precisely to show that e *# is a contraction which allows a r-independent
bound critical for the field theory. The “best estimates” were then proven by
Nelson [142). They have evoked a considerable literature, much of it in terms
of some inequalities (called “logarithmic Sobolev inequalities”) which Gross
[78] showed were equivalent to Theorem B.11.3:

[1¥ (¥ dp< (¥, HY)+ 1¥I3l ¥,

and for which Gross provided an intriguing proof. Besides the proofs of Gross
[78] and Nelson [142] of Theorem B.11.3, we mention that of Brascamp and
Lieb [29] and for the case p =2, ¢ =4 of Simon [183]. See Rothhaus
[164-167] and Weissler [205] for additional literature.

DEFINITION. A semigroup e™*4 on L? of a probability measure space is
called supercontractive if and only if e~*4 maps L? to LY forany 1 <p < g < o
and all ¢t > 0.

THEOREM B.11.4 (ROSEN [163] FOR a > 2; CARMONA [34] FOR a < 2). Let V
obey
(B38) 1+ xP) -G =sV(x) <G +]|xP)
for some a >0, C, > 0. Let @ > 0 with HQ = 0. Then e~"¥a is supercontractive

if « > 2 and not bounded from any L? to any L9 with p <gq for any t >0 if
a<2

a/2 a/2

See Rosen [163] for the case @ > 2, » = 1 and Simon [182] for how to extend
to higher ». Prior to Rosen’s work, Eckmann [52] proved the » =1, a > 2
groups were hypercontractive. Both Eckmann and Rosen use ideas of Gross
[78). Carmona [34] proved the a <2 implicitly given lower bounds on the
decay of 2 [182, 35, 37]. See Hooton [96, 97] and Carmona [34] for additional
discussion and results on e~*a,
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Open question. 1f (B38) holds with a < 2, is it true that e ~*#2 is not bounded
from L? to L? for any ¢t > 0 and p < q?

B12. Some remarks on the case when H is unbounded below. The methods of
Faris and Lavine [58] or Kato [112] imply

THEOREM B.12.1. Let H= - 1A+ V + Wwhere V, EK!*,V_€K, V €
L3, and
(B39) | W(x)|< c(l + x*)*"*
for some p < 2. Then H is essentially selfadjoint on Ci°(R”).

For such H'’s, it can happen that inf spec(H) = —oo so e ' is not bounded
on L2 Thus such operators cannot be directly studied by the methods in this
paper. However, one can learn about H by using properties of H = 1A + V.
We want to illustrate this by proving the following result which is important
because it implies that such H’s have continuum eigenfunction expansions
with polynomially bounded eigenfunctions; see §C5. While the restriction from
© <2 top <1 is unfortunate, the important case of atoms in constant electric
field [17, 80, 82] is included; this result is new. Some of the techniques come
from [17, 186].

THEOREM B.12.2. Let H have the form of Theorem B.12.1 with p < 1. Fix an
integer k. Then (1 + x*)™*(H — i)™* is in the trace ideal 9, for any p > v /k. In
particular, the operator is trace class for k = v + 1.

LEMMA B.12.3. Under the hypothesis of Theorem B.12.1,
1+ x2)*?p(H-2)" and p(1+ x*)**(H—z)"

are bounded with norms going to zero as k ~ —o0 if z = k + i. The same is true
of 1 + x> H —z)™..

PROOF. Let H = H, + V and use
A+ x3)"2p(H—z)" = (1 +x)"*p(H - z)"
— (1 +x)™?p(H - z)"'W(H - z)
and Theorem B.6.5. The last statement has a similar proof. O

PROPOSITION B.12.4. For some z, (1 + x*)"*/?(H — z)7'(1 + x>)*/? is
bounded for all a with |a|<v + 1.

PROOF. Let p be multiplication by (1 + x?)!/? and let ¢ = p~'vp so |p|<
p~!. For a purely imaginary
p*Hp* = H — a’¢* + agpVv + a(V)p = H + F(a).
Notice F is defined for all complex a. By the lemma, since p < 1,
lim || F(a)(H—z)'ll = 0.
zz=_;co-l.ii

By standard perturbation theory [114], it follows that (H + F(a) — z) is
invertible for all |a|<w» + 1 if z = x + i with x near —co. But for a purely
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imaginary (H + F(a) — z)™! = p*(H — z) o~ It follows (see e.g. [43]) that
p*(H — z)7'p~* is bounded for all |a|<» + 1.
PROPOSITION B.12.5. For suitable z and all a with |a|< v + 1,
p(1+ x2) T D(H - 2)' (1 + x2)*?
is bounded.

PrOOF. Follow the proof of Lemma B.12.3, using Proposition B.12.4 to
control the new terms (1 + x2)"*/2(H — z)7'(1 + x2?)*/? which replace
(H—2z)'. O

PROPOSITION B.12.6. For suitable z and all |a |< v + 1
(1 + xz)-(a+u+ l)/2(H _ z)—l(l + xz)a/Z
lies in the trace ideal 9, for all g > v.

PROOF. By the last two propositions
(141D +x)2(H = 2)7 (1 + x2)”

is bounded. Since (1 +x*)™"/%(1 + |p|)7' isin all §, ¢ > » (see e.g., §4 of
[195]), we are done. [
PROOF OF THEOREM B.11.2. Write

(1 +x)(H—z2)*=4,4,_,--- A,

with 4, = (1 + x?)™(H — z)/(1 + x*>)/~" and use the proposition together
with Holder’s inequality for trace ideals [195]. O

B13. The magnetic case. We want to explain here why all L?-estimates we
have discussed for resolvents and semigroups hold if H is replaced by

H(a)=Hy(a)+V; Hya)=3(-iv —a).
The following is basic to the study of such operators.

PROPOSITION B.13.1 (SiMON [187)). Let @ € L}, and let Hy(a) denote the
selfadjoint operator whose form domain is {f € L2 |(iv +@)f € LA(R”; R")}
with (f, H(a)f) = iV +@)f |2 Then for any g, we have pointwise that

(B40) | e~ H@g|< e7to| g] .

REMARKS. 1. since @f € L\, it defines a distribution and the symbol i v +af
€ L? means the distributional sum lies in L2.

2. (B40) for smooth a’s first appeared in a paper by Simon [184], who used a
stochastic integral proof of Nelson. One subsequent proof [84, 185] related it to
a basic distributional mequahty of Kato [112]. Kato [113] first worried about
removing the restrictions on @ and raised the general L2 question which was
answered in Simon [187].

3. The proof in [187] for smooth & (to avoid technical difficulties) is
illuminating. For each j, one can find A; so that a; = 9, - A; (no summation of
indices!). Then

(i3, + a;) = eM(id;)e ™™
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s0
exp(—t(iaj + aj)z) = eMexp (137 )e ™.

(B40) now follows from the fact that exp(tajz) | f]1= 0 and the Trotter product
formulae:

exp(-tHy(a)) = s-lim(exp[-t(ia1 + al)z/n] .- exp[-(id, + a,)2/n])n,
n—oo
exp(-tH,) = s-lim (exp(+13%/n) - - - exp(#82/n))".
n—oo
One consequence of (B40) is that for any function f,

I1£1'/2 (Ho(a) + ) |2 < | £1/2 (Ho + ) | £]/21]

since the integral of one operator is dominated by the other. Thus, if V_ € K,
V_ is Hy(a) form bounded with relative bound zero and so Hy(a) + V can be
defined as a form with form domain Q(Hy(a)) N Q(V, ). By mimicking the
proof we gave of Theorem B.1.5, one proves [187]

THEOREM B.132. Let a € L2, V, €EK}!®, V_€K,. Then CZ is a form
core for Hy(a) + V and pointwise
(B41) |exp[~t(Ho(a) + V)] g|< exp[-t(H, + V)] |g] -

(B41) immediately implies that

COROLLARY B.13.3. Forany V, p, q, t, a and z with Re z < inf spec(H)

-tH(a) -tH
le#@||, < lle=®1l, .,

I(H(a) = z) Il , < II(H —Rez)"ll, .

In particular, e **®) maps L* to L9 for all t >0 and q = p and (H(a) — z)™*
maps L? to L9 so long as (B12) holds.

Open question. Does e *#(®) map L* to continuous function? To function
with L3 gradients? Are the integral kernels continuous?

The proof of Theorem B.1.6 does not carry over but the analogous result has
been proven by Leinfelder and Simader [129] using an ingenious argument (see
Schechter [171, 172] and Simon [179, 187] for earlier results).

THEOREM B.13.4 (LEINFELDER AND SIMADER [129)). Ifa € L}, V € L3,
V_ € K,, then Cg° is an operator case for H(a).

Gauge invariance of H(a) is studied by Leinfelder in [128]. Among the
results there is the following, which is of interest even if a = 0.

THEOREM B.13.5 (LEINFELDER [128)]). Let V, €K}, V_€K,, a€ L3,.
Then the essential spectrum of H(a) is either empty or an unbounded set.
C. EIGENFUNCTIONS
C1. Harnack’s inequality and subsolution estimates. In this chapter, we study

properties of eigenfunctions of H and the consequences of these properties for
the spectrum of H and for the various functions, f(H), studied in Chapter B.
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For early results on eigenfunctions, we mention especially the germinal paper
of Kato [110]. In this section, we discuss two intimately related aspects of
bounds on eigenfunctions: (1) Harnack’s inequality, i.e. a priori bounds on
u(x)/u(y) for functions u obeying Hu = 0, u = 0, u Z 0 on @ D x, y with the
bound depending only on ¥V, x, y, @ and not on u and (2) subsolution
estimates, i.e. bounds of the form

(c1) uscf ul)]dy

for u’s obeying Hu =0 in {y||x — y|=< 2} where C depends only on local
norms of V. In discussing both, we consider only solutions of Hu = 0 but since
V can be replaced by V' — E, we will have results automatically also for
solutions of Hu = Eu. The constants will be £ dependent.

(C1) is obviously related to the theme of §B1: If u obeys Hu = 0 globally
and u € L', then

u(x) |< llull, < Cflu(y)|dy

with C = lle"#||, .. Thus (Cl1) is a kind of “local version” of the bounds of
§B1. In fact, as we shall explain, its probabilistic proof is very close to that
used in §B1.

There are two rather distinct approaches to proving the kinds of estimates
we present here. An analytic method of Trudinger [203] (see also [72]) relies on
ideas of Moser [137] and Stampacchia [199]. Although Trudinger’s hypotheses
are slightly stronger than ¥ € K, recently Agmon [3] has used an analytical
approach to obtain Harnack’s inequality for ¥ € K. Moreover, large parts
of the theory of eigenfunctions, especially if one settles for strengthened
hypotheses on V follow from clever uses of subharmonic comparison theorems;
see Simon [182], M. and /or T. Hoffman-Ostenhof [86, 90-95, 8] and Davies
[48].

The other approach is probabilistic. In the context of a general class of
Markov processes but with V' < 0, it goes back to Khasmin’skii [115]; indeed
Lemma B.1.2 was developed in connection with this work. More recently,
Chung and Varadhan [38], Chung and Rao [39], and Aizenman and Simon [9]
have developed this approach. The proof in the Chung and Rao [39] is quite
elegant but requires ¥ to be (locally) bounded. Aizenman and Simon [9] have
the K !*° result independently of Agmon. They also show that if ¥ <0, then a
strong version of Harnack’s inequality implies that ¥ € K, showing once
more the naturalness of the class. In this section, we state the main results in
this vein and sketch parts of the proofs. For complete proofs, see [9].

As a preliminary, the following is useful.

THEOREM C.1.1 [9]. Let V € K and let Hu = 0 in distributional sense on
some bounded open set @ C R’ in the sense that u € L\ ., Vu € L}, and
(A, u) — (9, Vu) =0 for all ¢ € C(R). Then u equals (a.e.) a continuous
function on Q.
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The proof [9] first shows, using the estimates of Chapter B, that u € LY, and
then one writes u = f + g where g = 2(-A)""W%¥ u with % the characteristic
function of . By Proposition A.2.4(c), g is continuous and f can be seen to be
harmonic on & and so continuous.

The first main result is

THEOREM C.1.2 ([9, 203] SUBSOLUTION ESTIMATE). Let V € K and let
Hu = 0 on some open set Q. Pick x € Q. Then for any r > 0 with {x||x — y|<
r}c:

(cr) utscf lu)idy

where C only depends on r and the K, norm of V_ times the characteristic
function of {y||x —y|<r}, but not on u. In particular, if V_ € K,, and
Q = R, then the constant C in (C1’) can be chosen dependently of x.

Theorem C.1.2 follows immediately from an even stronger estimate:

THEOREM C.1.3. Let V € K!*° and let Hu= 0 on some open set Q. Pick
x € Q. Then for somery > 0,

(©2) uIscf  lu(y)lde(y)

where do is the usual surface measure and, for any r, >0, C can be chosen
independently of r for r, <r <r,. The values of C and r, depend only on local
norms of V_.

(C2) implies (C1’) by integrating (C2) over r in (r,, r,). The above estimate
holds also for suitable regular u’s obeying u = 0, Hu < 0 [9]. The other main
result is

THEOREM C.1.3 ([9, 203] HARNACK’S INEQUALITY). Let V € K*°. Let Q be an
open set with x, y € Q. Then, there is a constant C with

(C3) u(x) < Cu(y)

for all continuous u on S obeying (i) u = 0, (ii)) Hu = 0 on Q. The constant C can
be chosen independently of x, y as x, y run through a compact subset K of @ and
depends only on local K, norms of V.

Note that when the estimates (Cl1), (C2) depend only on the norms of V_,
that in (C3) depends on V', also.

The proofs of (C2) and (C3) depend on a probabilistic solution for the
Dirichlet problem associated to H. For these purposes it suffices to solve the
problem for balls but actually a large array of regions are naturally accommo-
dated.Let B, = {y||y — x|<r}; 0B = {y||x —y|=r}.

THEOREM C.1.4. Let V € K}°°. Then for any compact K, there exists an r, so
that, for any bounded continuous function f on any dB] with x € K and r < r,,
there exists a unique continuous function u on B] with (1) ut 9B, =f,(2) Hu =0
on B[ \9B] in the sense that (Hy, u) = 0 for any C*¢ supported in the interior
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of B]. Moreover u is given by the “explicit” formula u(y) = (M, f )(y) with

©)  00) =5 ew(- b)) 16(7)
with T the stopping time
(C5) T(b) = inf (b(s) € 35}.

In addition, r, depends only on the K, norm of V_ restricted to a neighborhood of
K.

For a complete proof, see [9]. The idea is the following: One first shows that
by shrinking r one can be sure that

(Ce) sup sup Ey( f el
x€EK yEB] 0

While T is a random variable, it obviously “shrinks” with r; indeed, if » = 3
and ¢, | x — y |72 is the kernel of (-A)~!, then (C6) will hold if

V_(b(s))lds) <1

sup ¢|x—y[ 2| V_(y)|dy <1l

xeK, |x—y|<r
By Khas'minskii’s lemma extended to stopping times, (C6) implies that M, is
well defined as a map from L®(9B;) to L*(B;). That M, f(y) » fasy —» 0B]
follows by extending the well-known argument for the case V' =0 (see e.g.
[155] for discussion of the ¥V = 0 case). Next, by exploiting the fact that
E,(J7g(b(s)) ds) = [(Hy)™'g)(») where Hy is the Laplacian (time — }) in B]
with vanishing boundary conditions, one shows that u(y) = (M f )(y) obeys

(7) u(y) = E,(f(6(T))) - [(H2) 'va(»).

The first function on the right of (C7) is harmonic, so — $Au = —Vu, i.e. u
solves Hu = 0. Uniqueness comes from the fact that for r small H® + V > 0.
The basic estimates (C2) and (C3) now follow from

THEOREM C.1.5 [9]. Fix A < 1. Under the hypotheses of Theorem C.1.4, we can
pick r so small, depending only on norms of V _ so that for any f

(c8) sup (M, 1)) < €[ I()lda().

Moreover, by shrinking r even further, depending on the local K, -norm of both
V, and V_ , one can be sure that for any f > 0

(C9) inf (Myf)(y)>C' [f(y)do(y)
yEB'

and that (C8) holds for the same r.

Before describing (most of) the proof of (C8), (C9) we note that they prove
(C2) and (C3). (C2) is a direct consequence of (C8). (C8) and (C9) together,
imply that

u(z) < C(C)u(y)
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for any z, y € B}. To get from this to the result for any pair is a standard
covering argument.

One of the nice features of the probabilistic approach is that (C9) follows
from (C8)! For the same argument that led to (B24) implies that for f = 0

(My—of)(»)* < (Myf)(»)(M_,f)(»).

Thus (C9) follows from (C8) for M_,, and (C9) for ¥V = 0. The latter can be
read off the standard Poisson kernel for (-A).

The proof of (C8) directly mimics the proof of Theorem B.1.1. There is an
analog of the semigroup property: if f is given on 9B/, if u is M, f for the M,
associated to B! and if g is u restricted to 0B for # <r, then M,g is u
restricted to B.. The only difficult step is the analog of Step 3 (which was
trivial in Theorem B.1.1); M, is not selfdual. To prove L' to L? boundedness
one must study a process which is Brownian motion run backwards from a
hitting point. Khas'minskii’s lemma and the Schwarz inequality then yields L?
to L™ boundedness of the adjoint of M. For details, see [9].

Open question. The above establishes the existence of an L*® “Poisson
kernel” for H. Study its continuity properties.

A main application of the bounds (C1) is to turn decay of u in L? sense into
decay pointwise; see §C3. As for Harnack’s inequality, we will make an
interesting application in §C8. Another application is due to M. and T.
Hoffman-Ostenhof and Simon [87, 88].

THEOREM C.1.6 [87, 88). Let V € K. Let u be a real solution of Hu = 0.
Then in the neighborhood of any zero of u, either u changes sign or u is identically
zero.

Proor. By Harnack’s inequality, if ¥ had one sign near x, with u(x) = 0,
then ¥ =0 near x,. [

REMARK. In §C9, we discuss hypotheses which imply that ¥ cannot vanish in
an open set without being identically zero.

Rauch [159) has noted that since a set which disconnects R’ must have
Hausdorff dimension [59] at least » — 1, one has

COROLLARY C.1.7 [159]. If V € K!*° and u is a real solution of Hu = 0, then
for any open set Q, either & N {x|u(x) =0} is empty or it has Hausdorff
dimension at least v — 1.

In the atomic case, # is real analytic away from S = {x = (x;,...,xy) €
R | x, = x; for some i, j or x; = 0 for some i} which has codimension 3. It
follows that the zero set has codimension at least 1. Thus

COROLLARY C.1.8 [159). In the atomic case (v = 3N; x = (X,...,Xy);
V(x) = -ZZV| x| + Z,_;| x; — x;|™"), the set of zeros of any real eigenfunc-
tion (which is not everywhere positive) has Hausdorff dimension precisely 3N — 1
(even locally).

C2. Local estimates on V. We have two goals in this section. First, we wish
to show that the L2 bounds on Ve which follow from the results in §B3 for
an eigenfunction in L® hold for any eigenfunction no matter what the growth
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at infinity. Secondly, we wish to show that the bounds only depend on local
norms of V_. This will be of some use in §C4. In this regard, we follow, in
part, ideas of Sch’nol [174] who, however, required that ¥_ be bounded (!)
since he did not exploit subsolution estimates.

LEMMA C2.1. Ifu € LY, Au € L), then Vu € L_ and for any ¢ in C{°

) 1
(C10) fqa(Vu)zd X = Ef(Vq))uz —f<puAu.
In particular, if 1Au = Vu, and ¢ = 0, then
1
(c11) fq)(vu)zd"x < 5/(A<p)u2 + zf(V_qo)uZ.

ProoOF. It suffices to prove (C10) for smooth u and then use a standard
mollifier argument. (C10) follows from two integrations by parts or equiva-
lently from

div(eu(vu) — 1(ve)u?) = (vu) + pudu — 4(Ap)u.
(C11) follows from (C10). O

THEOREM C.2.2. Let Hu=0, V_€ K)*. Then vu € L2 and for any
compact K and neighborhood W of K

2
(C12) / | vul?d’x < c[f |u(y)|d"y]
K w
where C only depends on the K ,-norm of V_ restricted to W and on K and W.

ProoF. This follows directly from (C11) if we exploit (C1) by placing
K C W C W C Wwith W open and write (C1) in the form

sup [u(x)| < C, [ |u(y)ld"y
xXEW' w

and if we use the factthat K, C L .. O
We need the following in the section after next.

COROLLARY C.2.3. Let V. € K}, V_ € K,. Let C, be the hypercube C, =
{x € R”| max | x;|<r}. Then for any solution of Hu = 0 and any integer r

|Vu|2 d"xscf |u(x)|2 d’x

C13
(€13 [G12/C1)

'/[‘Cr»f /Gl
where C is r-independent (and only depends on ||V _|| ¢ ).

PROOF. Let K be a unit cube and K a cube of side 3 centered at the center of
K. By (C12)

2 v v 2 2 v
fK|Vu| d’x < Cl[ff(|u|d x] < CZ-/;Elul d’x.

(C13) results by adding up these estimates for a partition of C,,;\ C, into unit
cubes.
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If we strengthen the hypotheses on ¥ by requiring the ¥V € K(® (defined in
§B3) globally or locally, then by merely following the proof of Theorem B.3.5
and exploiting (C1) one finds that

THEOREM C.2.4. Let V € [K{®]"°. Then any eigenfunction is locally in C,.

THEOREM C.2.5. Let V € K{®. Then for any solution u of Hu = 0,
(a) If a < 1 and for any x

sup  {ly —x[*[lu(x) —u() [} <[ [u(y)|d.
OUlly—xI<1} lx—y|=<2
®)Ifa=1
(C14) s [(vi)(p)<cf  Ju(y)|dy.
Ol —x<1} [x—y|<2
©Ifa>1

-a+1
sup  [x =y [l(vw) () — (v <cf  Ju(y)lay.
lly—xI<1} Ix—y|<2
For more details on Vu in the case of Coulomb Hamiltonians see Kato [110]
and Hoffman-Ostenhof and Seiler [89].

C3. Decay of eigenfunctions. In this section, we discuss decay of solutions of
Hu = Eu with u € L2 One can presumably also study L’-eigenfunctions.
Since there exist continuous functions u € L? which do not go to zero
pointwise, the following is of some interest.

THEOREM C.3.1. Let V, € K!*, V_ € K, and let Hu = Eu with u € L*.
Then u(x) —» 0 as x - oo.

REMARK. Since u is equal a.e. to a continuous function (Theorem C.1.1),
u(x) makes good sense.

PROOF. Since # € L?, lim,_ [}, <1 | #() |* dy = 0. Thus by the Schwarz
inequality, the limit is zero if | u|? is replaced by u. Thus, by Theorem C.1.2, u
goes pointwise to zero. [

From this result and Theorem C.2.5, we immediately conclude that

THEOREM C.3.2. If V € KV and Hu = Eu, then Vu - 0 as x > 0.

Open question. The last theorem has global hypotheses, not only on V_ but
also on ¥V, . Are there results on the pointwise decay of Vu only requiring
global restrictions on V_? Note that by Corollary C.2.3, there is decay of the
local L>norm of vuif V_€K,, V, € K}*.

There has developed a considerable literature on detailed estimates of decay
of the eigenfunction Hu = Eu with E in the discrete spectrum of H; for
example Agmon [2, 4], Ahlrichs [6], Ahlrichs et al. [7, 8], Bazley and Fox [20],
Carmona [35], Carmona and Simon [37], Combes [40], Combes et al. [41],
Combes and Thomas [43], Davies [45, 48], Deift et al. [S0], Hoffman-Ostenhof
[86, 91, 92, 94, 95], Hunziker [100], Lieb and Simon [130], Lithner [131],
Mercuriev [134], Morgan [136], O’Connor [143], Sch'nol [174] (who had the
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earliest results), Sigal [177], Simon [180-182] and Slaggie and Wichmann [197].
Much of this involves detailed results on two special cases: (1) the N-body case
and (2) the case where V(x) — oo at infinity especially in a regular way (e.g.
polynomials). Here, we will concentrate solely on those results which are
applicable to general V. However, we call the reader’s attention to some
beautiful geometry (“Agmon metric”) associated with the two special cases; see
[2, 4, 37, 130, 131].

While the first theorem below is a special case of the third, we state it
separately for emphasis.

THEOREM C.3.3. Let V_€K,, V, € K. Suppose that H has compact
resolvent and let Hu = Eu; u € L2, Then, for any A > 0, there is a constant C
with

(C15) |u(x)|< Ce 4k,

THEOREM C.3.4. Let V_€ K,, V, € K!* and suppose Hu = Eu where E is
in the discrete spectrum, i.e. E is an isolated eigenvalue of finite multiplicity.
Then for some 8 > 0 and C

|u(x)|< Ce™oM.

THEOREM C.3.5. Let V_€K,, V, € K}* and suppose Hu = Eu where
E < 2, = min[o,( H)] with o, (H) the essential spectrum of H. Then for any
A with 14?> < Z_ — E, there is a C so that (C15) holds.

REMARKS. 1. Sch'nol [174] proved Theorem C.3.3 if V is bounded below. His
proof actually works in general given the results we proved in §C2. The proof
we give follows Simon [181] (who used ideas of Combes and Thomas [43], see
Remark 3 below).

2. For multiparticle systems, Theorem C.3.5 was proven by O’Connor [143]
whose proof used the structure of N-body systems. Agmon [2] first noted that
this bound actually holds for general V' ’s.

3. The basic idea we exploit of considering the family H(a) is due to Combes
and Thomas [43]. Agmon [2] has an alternative proof which is more “elemen-
tary” in that only integration by parts is exploited rather than an operator
analysis.

4. It has been noted in several places that one need not require u € L2,
Typically, one can show that if e **)y € L? for suitable p, then e "**)y € L?;
see especially Lithner [131] and Agmon [4] (and also [37, 182]).

The above results require two preliminary lemmas. The first is only required
for Theorem C.3.5.

LemMMA C.3.6 (SIGAL [177]). Let A = B + iC where B, C are selfadjoint and C
is B-form bounded (i.e. A strictly sectorial). Then

infRe 0, (4) = inf o, ( B).

PrOOF. Given & > 0, let P be the spectral projection for B for the interval
(-0, 2., — &) with 2 _ = inf o, (B). By definition, P is finite rank. Then
A+ aP = B(1 — P)+ (B + a)P + iC has numerical range in N = {z|Rez
>3 — ¢} for a sufficiently large. Since the spectrum is in the numerical
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range 0, (A + aP) C o(A + aP) C N. By Weyl’s theorem (see e.g. [162]) and
the fact that limg, ,_, _o[I(4 — z)7'Il = 0, we have that o, (4) CN. O

LemMa C.3.7 (“O’CONNOR’s LEMMA” [143]). Let U(a) be a group parame-
trized by R”. Let P be a finite rank projection so that P(a) = U(a)PU(a)™! has
an analytic continuation from R” to {z € C”||Im z|<a}. Then for any y €
Ran P, U(a)y has an analytic continuation to the same region.

PROOF. Let 1 be an entire vector for U(a), i.e. U(a)n has a continuation to
C”. Since

U(a)Pn = P(a)U(a)n

for a real, we have the required result for the image under P of the entire
vectors. But since the entire vectors are dense and since Ran P is finite
dimensional, this image is all of Ran P. [

Proor oF THEOREMS C.3.3, 4, 5. Let (U(a)y)(x) = e'* *Y(x). Then U(a)y
has an analytic continuation to | Ima |< M if and only if e“*y € L? for all
a < M. If that is true then, by subsolution estimates e®*y € L®. Thus, if ¢ is
an eigenfunction of H, we need only prove that U(a)y has a continuation to
|Ima|< M, with M = o0 (C3.3), M>0 (C34), M= y2(Z — E) (C3.5).
Let H(a) be the operator U(a)HU(a)™! for a real. If H(a) has an analytic
continuation to a neighborhood of R”, any discrete eigenvalue E(a,) of H(a,)
will move analytically for a near a;. But for (a — a;) real, E(a) = E(ay),
since H(a) and H(a,) are then unitarily equivalent so E(a) is constant and
remains an eigenvalue so long as it stays away from o, (H(a)). This is an
argument of Aguilar and Combes [5]. If we show that (1) H(a) has an analytic
extension (in the same sense as Kato) to |Ima |< M, (2) E € oy, (H(a)) for
all a in the strip, then standard eigenvalue perturbation theory [114, 162] will
imply that

P(a) = (2mi)™ le_zlzedz(z — H(a))™

is analytic in the strip and the hypotheses of O’Connor’s lemma are applicable.
Thus, we are reduced to proving (1) and (2) above.
For a real

(Cl1e) Ha)=H+3a*—a-p—p-a

where p = -iv. Since Q(H) = Q(p?), p is H-form bounded with relative
bound zero so that (C16) defines an entire analytic family of type (B) [114,
162]. Thus (1) holds. Since E is assumed in oy, (H) in all situations, by

standard perturbation theory [114, 162], E is o4, (H(a)) for | a |< & for some 8
in all cases. Since H(a) and H(i Im &) are unitarily equivalent,

(c17) 0gisc( H(@)) = o4 ( H(i Im ar))
and thus (2) is proven with M = § in the context of Theorem C.3.4.

For Theorem C.3.3, we need only note that the resolvent of H(«) is analytic
in a and by hypothesis compact for a real and thus compact for all a, i.e.
(H(a)) is empty proving (2) with M = co.

oess
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For Theorem C.3.5, we use Lemma C.3.6 and (C17) to note that
0rs(H(a)) = o (H(i Im o))
C {z|Rez E[inf o (H — } |Ima?), 0]}
={z|Rez€ (2 - }|Imaf’, o)}

s0E & o, (H(a)if E<Z — i(Ima)®.. O

There are a number of natural questions about the relation of decay of
eigenfunctions and the spectrum of H. A natural conjecture is “If Hu = Eu
and | u(x)|< Ce™®*l, then E € o4 (H)”. This conjecture is false! For exam-
ple, if b(¢) is a typical Brownian path in one dimension, then H = -d?/dt* +
cos(b(t)) has spectrum [-1, 00) but only eigenvalues with eigenfunctions which
decay exponentially [77, 135, 36]. That is, random potentials present examples
with nondiscrete eigenvalues whose eigenfunctions decay exponentially.

But the following is still open.

Open question. If V_ € K,, V., € K, and Hu = Eu where | u(x)|< Ce™**
for all a, does it follow that H has compact resolvent?

An equivalent form is: if H does not have compact resolvent, is it true that
for some a > 0, e®*lu & L2? In this form, an attack on this problem (for some
special ¥ ’s) was begun by Froese et al. [60]. Typical of their results is

THEOREM C.3.8. Suppose that V € K, and that W = (x - V)V (distributional
gradient) is also in K,. Then for any eigenfunction u of H, there is an a so that
e®™u is not in L.

SKETCH OF PROOF. We sketch the proof ignoring all domain questions which
are fully treated in [60]. Let D be the gradient operator and let

A=4(X-D+D-%), B=3(r"'%-D+D-%")
(where r =| x |) so both A4 and B are skewadjoint and
(C17a) B=r(4-1%)

since [r~!, D - x] = r~'. Suppose Hy = Ey and that y, = ey is in L2. Then,
by formal calculations,

(C1Tb)  e“He "y, = Ey,, e“He =H—aB— ta>=H,.

Moreover (and here the domain problems are nontrivial since y, may not be a
priori in the domain of 4),

(Ya, AHY,) = E(Y,, AY,) = (H,, AY,) = (Y, HrAY,)
so, by (C17a)
(Yo, [4, HIY,) = 2aRe(y,, ABY,) = 2a(¥,, Ar~'4y,) >0.
Thus, (y,, (-2H, + W)y,) = 0. Since (C17b) and the symmetry of iB imply
that (¢,,(H, — E + V — 1a®)y,) = 0, we conclude that
(Yo, (Hy — V= W+ E),) < -3a*(¥,, ¥,)-

Since Hy — V — W is bounded below by the K, -hypotheses, this cannot
happen for any sufficiently large a. O
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CA4. Eigenfunctions and spectrum. In this section, we prove that

THEOREM C.4.1[174,190). Let V. € K}*°, V_ € K,. Let Hu = Eu where u is
polynomially bounded. Then E € spec(H).

REMARKS. 1. This was first proven by Sch'nol [174] who assumed that V is
bounded below. We will show here that given our preliminaries in §C2, his
proof extends to general V. Simon [190] proved the general case by a different
method. Simon was unaware of Sch’nol’s work.

2. In the next section we will prove a kind of converse of this result. It is not
true that if £ € spec(H ), then Hu = Eu has a polynomially bounded solution,
but at least

o(H) = {E| Hu = Eu has a polynomially bounded solution}

where the overbar denotes closure (see Corollary C.5.5).

3. All the proofs actually show that if for all 4 >0, | u(x)|< Ce”™, then
E € spec(H).

FIRST PROOF [190}. u is clearly in L2, for some § so that E is an eigenvalue of
H_; and thus in spec(H_g). But spec(H_;) = spec(H) (Theorem B.6.4).

SECOND PROOF (FOLLOWING AND EXTENDING [174]). Let C, r = 1,2,..., be
the hypercube {x € R* | max | x;|<r}, let

F(r) = jc lu(x) [2d*x

and let j, be a function in C§° which is supported in C, ., and is 1 in C,. We can
choose j, so 0 <;j and so that for any fixed multi-index a, sup, , | (D%, )(x)|
< o0. We let w, = ju/|l jull,. We will show that for suitable r, > oo we have
that [|((H — E)w, || —> 0 which implies that E € spec(H).

If F(r + 3) = aF(r) for somea > 1 and all r = r,, then F(r, + 3k) = a*F(r,)
which is inconsistent with polynomial boundedness of u. Thus, we can find r,
with

(C18) F(r,+2)/F(r,— 1) > 1.
Note that
(H—E)ju=j(H—E)u+[H, jlu=-3(4))u— (vj)(vu).
Thus, since |4 j, |l , and || v}, |l are uniformly bounded
I(H = E)jul?< ¢, [
foi

r+ I\Cr

[luf + | vuf] @x < Cf |uld’x

by Corollary A.2.3. Thus
I(H — E)w,I1? <[F(r, + 2) = F(r, — 1] /F(r,)
<[F(r, + 2)F(r,— 1)"] =1

goes to zero by (C18) as required. O
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Notice in the above proof that if F(r) » oo at oo, then w, goes weakly to
zero so that we have

THEOREM C.4.2 [174, 190]. If V, € K)>*, V_€ K, and Hu = Eu has a
polynomially bounded solution which is not in L?, then E € o, (H).

CS. Eigenfunction expansions. In this section, we discuss a general eigen-
function expansion for H and related objects like the Radon-Nikodym deriva-
tives dE, /dp(\) of the spectral projection measure. In the context of general
elliptic differential opeators with nice coefficients, these ideas were developed
by a variety of authors, most notably Berezanskii [22], Browder [32], Garding
[67], Gel'fand [69] and Kac [107]; see Berezanskii’s book [23] for further
details. Herbst and Sloan [83] emphasized the significance of L” estimates on
e H to prove the applicability of this expansion to general Schrodinger
operators including ones with rather singular potentials. Further developments
along these lines appear in Kovalenko and Semenov [123], whose discussion we
follow in part here.

We dub the expansion that occurs here a BGK expansion. We begin by
saying a few words about the somewhat weaker information implicit in the
spectral theorem and the much stronger information in the expansions associ-
ated with the work of Ikebe [101] and Povzner [157, 158] which we dub IP
expansions.

Let A be a general selfadjoint operator on L?(R”, d’x) which we suppose
has simple spectrum to avoid carrying along an extra index. Given a cyclic
vector ¢ for 4, we can form the spectral measure du,, on R by (o, e itp) =
Je iE! dp,(E). The spectral theorem asserts that there exists a unitary operator
U: L*(R’, d”x) - LX(R, dp,) so that UAU " is multiplication by x. Since U
clearly maps S(R”) into $'(R), it has a distributional kernel K(E, y), E € R,
y € R’, by the nuclear theorem of Schwarz [160]. Explicitly, for all F € S(R?)
and g € S(R), we have that

(s(H)o, F) = K(g ®F).

If A is a differential operator with smooth coefficients, it is easy to see that K
obeys (4 — E)K(E, y) = 0 in distributional sense, so in some sense K(E,-)
provides eigenfunctions of 4. Of course, this object may not be defined for
fixed E.

In contrast, the BGK expansion will construct honest eigenfunctions,
¢(y, E), for a.e. E with respect to the spectral measure class (defined below)
and these eigenfunctions will be polynomially bounded. Moreover, there will be
an eigenfunction expansion, which in the case of simple spectrum reads (for a
suitable dense set of f ’s)

(C19) (f.8(H)f) = [dp(E)g(E)|F(E) P

where

(C20) f(EY= [9(y, E) f(») .
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For the case when V decays sufficiently rapidly at infinity one has an IP
expansion. There are bounded eigenfunctions ¢( y, k) indexed by k£ € R” and
L*-eigenfunctions {g,( y)}Y_, (where N may be infinite) so that

(@) (fs(@)f) = 3 e(E)ILF+ [1706) Felk?) dk

with f, = (¢,, f) and f(k) = [¢(y, k)f(y)d’y. One critical difference be-
tween (C21) and (C19) is the explicitness of the measure d”’k. This has
important spectral consequences: it implies that H has no singular spectrum in
that case. Another difference is that in the IP case, the ¢ are constructed by an
explicit method which links them to scattering theory. There are related
expansions for certain long range two-body potentials (see e.g. [3, 102-104,
117, 168], for one-dimensional periodic potentials [69, 51] and for higher-
dimensional periodic potentials [69, 186, 206]).

Because one knows a priori little about the measure dp in (C19), the BGK
expansions appear to give little practical information beyond that already in
the spectral theorem. For this reason, some workers, myself included, regarded
them for many years as having little significance. The work of Pastur [148],
who used critically the polynomial boundedness of the ¢ in the BGK expan-
sion to prove that certain H with random potentials have no absolutely
continuous spectrum, changed this attitude. More recently, Avron and Simon
[18, 19] have used the same ideals to prove the absence of a.c. spectrum in
certain H with almost periodic potentials.

DEFINITION. Two Borel measures on R are called equivalent if and only if
they are mutually absolutely equivalent. A measure class is an equivalence class
under this relation. Given a selfadjoint operator, 4, with spectral projections
E(A), pick an orthonormal basis {@,};>, and a sequence a, with a, >0,
Za, < . The measure u(:) = Za,(®,, E(-)p,) has p(A) = 0 if and only if
E(A) = 0. Thus, the measure class of u is independent of {¢,} and {a,} and is
associated to A4. It is called the spectral measure class for A. Any measure p in
this class is called a spectral measure for A.

The BGK eigenfunction expansion comes most naturally out of the follow-
ing “trace class Radon-Nikodym theorem”:

THEOREM C.5.1. Suppose that for each bounded Borel set A C R, we are given
a nonnegative trace class operator A(A) on a fixed separable Hilbert space I,
and that if A= U7_ A, with A,NA;= @ and A bounded, then A(A)=
s-im 3"4(A,). Then, there exists an ordinary Borel measure dp and a positive
trace class operator-valued measurable function A(\), so that

(c22) (i) A(A)=/L\A(x)dp(x),
(i) Tr(A(A)) =1 a.e.dp,

where (C22) is intended in weak sense, i.e. (¢, A(A)p) = [(p, A(N)9) dp for all
@. These two conditions fix p and A(M).

ProOF. Without loss, suppose that 3C = /,[1, o) with standard basis {e,}2,.
Let p(A) = Tr(A(A)). It is easy to see that p is a Borel measure. For fixed i, j,
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let p; (A) = (¢;, A(A)g;). It is easy to see that each p, ; is a signed measure,
that i =0, that Zp,;, = p and that for each finite sequence of rationals
{2}, we have that Sa;ap,; (A) = 0. Moreover, if p(A) = 0, then p, ;(A) =
0. By the ordinary Radon-Nikodym theorem, p; ;(A) = fa;; ()x)dp()\) More-
over, forall A, all i, j and all rational sequences, Za;a;a;;(A) > 0,2a,(A) =
Thus, the a,;(A) are matrix elements of a positive trace class operator A(A)
with Tr(A(A)) = 1. By construction (C22) holds. O
We will get the eigenfunctions via an object of independent interest.

THEOREM C.5.2. Let V, € K}, V_€ K, andlet H= - 1A + V. Fix 6 > 4»
There exists a spectral measure dp(\) and for a.e. N (with respect to p) a
function F(x, y; ) on R* X R’ so that

(i) F(x, y; ) is jointly measurable in x, y, X and for fixed A, jointly continuous
inx, y.

(ii) For a.e. N, [| F(x, y; M) P(1 + x2)°(1 + )% d*xd’y <

(iii) | F(x, 3 M) [< C(1 + x)¥/2(1 + y2)¥/2.

(iv) For any bounded Borel function, g, on R and any @,y € L}

(©@) (9 8()9) = [5O0)| [Fx, 73 N FETU) d7sd*y] do().
(v) For any fixed y, (H, — A)F(-, y; A\) = 0, in distributional sense.

REMARKS. 1. By (ii), the integrand in [ - - - ] in (C23) is absolutely integrable
and the integral is a bounded function.

2. (C23) shows that the combination F(x, y; A)dp(A) is intrinsic to H. Both
dp and F depend on a choice.

3. Because of (C23) we will henceforth denote F by dE(x, y; A)/dp. It is, in
a very real sense, an integral kernel of the R — N derivative of the spectral
projection although it is not an integral kernel in the sense of defining an
operator on L?; only from L? to L?,.

PrOOF. By Theorem B.9.1, for any bounded A, E(A)1 + x?)%/% is
Hilbert-Schmidt, so 4(A) = (1 + x?)%/2E(A)(1 + x?)7%/2 is trace class and
it is easy to see it is a measure. Thus, by Theorem C.5.1, there exists a trace
class operator, a(A), with kernel a(x, y; A) so that A(A) = fa(A) dp(\) where

(C24) p(A) = Te((1 + x2)2E(8)(1 + x2)™7%).

By (C24), it is easy to see that p is a spectral measure. We define F(x, y; A) =
(1 + x2)%%a(x, y; A)(1 + y?)%/2, initially a.e. Then measurability is evident as
are (ii) and (iv) for g’s of compact supports (by a limiting argument from g’s
which are finite linear combinations of characteristic functions).

By Theorem B.6.3, e ¥ maps L?; to L?,. Moreover, if H is the map

- 44, — 3A, + V(x) + W(y) on LA(R?), then e~'" maps L%, to L2,,. By
(ii), F( )3 }\) € L%;. We claim that e #F(-,-; \) = e 2*F(-,-; A) which will
imply that F is locally bounded on account of Theorem B.6.3 again. For, by
definition of H

J(eF)(x, y; ) o(x) w(y) d’xd”y = [F(x, y; A) (e %) (x) (e 7¥)(»)
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so for any bounded g of compact support, any ¢, ¥
J8OO| [ (77 = &) (x, v )99 x| dn(3) =0

which implies the required result for a.e. A.

Similarly e *#F = ¢2*F for all rational ¢. It follows that (H — 2A)F = 0 in
distributional sense so that F is jointly continuous and (iii) follows from (ii)
and Harnack’s inequality.

In the same way, exploiting e ~*x, we see that for any ¢ € C°,

(H, - A)[fF(x, ¥; A)W(y)d”y] =0

in distribution sense, so that by continuity of F, we obtain (v). O

In §B12, we proved that when H = H, + V + W where W obeys (B39) with
p<land V, € K} V_€K,, then (1 + |x[>)*2E(A)1 + x?)"%/? is trace
class so long as 8 > ». In that case, one can construct an F obeying (i), (ii), (iv)
by just following the above proof. However, the proof of pointwise bounds
above exploited the semigroup and will not work in this case. Another method
may well work in general but if ¥ € L2 one can easily show that F is a
distributional solution of (H — 2A)F = 0 and thus obtain (iii), (v) (since F is a
priori only in L} _, VF may not be defined if we don’t know that ¥V is in L2 ).
Thus

THEOREM C.5.3. Let W obey (B39) withp<1.Let V., € K}*, V_ € K, and
let H= - 1A+ V + W. Fix 8 > v. There exists a spectral measure dp(\) and
for a.e. \ (with respect to p) a function F(x, y; ) on R* X R” so that (i), (ii), (iv)
of Theorem C.5.2 holds. If moreover, V € L _, then (iii), (v) of that theorem also
hold.

We note now that the considerations we are about to give for W = 0 can be
made also in this more general case.

Returning to the context of Theorem C.5.2, let N(A) be the rank of a(A). It
is not hard to see that this is a measurable function of A. By the usual
expansion relation for Hilbert-Schmidt operators, there are for each A, N(A),
linearly independent functions { f;(x; A)}*} so that

N(A)
(C25) a(x, y; \) = 2] f(x: ) £(p; N)
j=

where (C25) holds in the sense that
NV

oG v(»)alx, y; M) axdy = 3 (@, LN))(£A)).

j=1
Normally, one writes (C25) with the f.’s orthonormal and an extra factor of a;
added. In (C25), we have orthogonal f; but they are not normalized; indeed
NQA)

(C26) 3 Il =1.
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If a(A) has simple spectrum, the f’s are uniquely determined. If there is some
degenerate spectrum, some choice is involved. It is not hard to see that the
choice can always be made so that f;(A, x) is jointly measurable in A, x (on the
measurable set where N(A) = j). If we now define

g(x,A) = (1 +x2)f(x,X), A, ={A|N(A) =n),
we have

THEOREM C.54. Let V, €EK)*, V_€K,; H=-1A+ V. Fix §>v/2.
Then, there exist a spectral measure dp(x) and a family of disjoint measurable
sets {A,)Y°, whose union supports p so that if A € A,, there are n functions
{9,(x, M)}, obeying

(1) (H — A\)g; = 0 in distributional sense.

() | g (x, M) |< C(1 + x2)%/2,

(iii) For A fixed, the {@;}] are linearly independent.

(iv) For any f € L}, define bounded functions (U fXA) forj < N(A) by

(C27) UHN) = [ 1) f(x) d*.
Then

N\ )
(C28) [dr(¥) -§1 (G| =1712

(v) U extends to a unitary map of L*(R’, d’x, onto ¥ = e,
L*(R,C", X, dp) with %X, the characteristic function of A,. Explicitly

(c27) (Uf)(A) =Lim. flxlq—%(x; N f(x) d’x

where L.i.m. means limit in 3(-norm.
(vi) If g is a bounded Borel function and f € L*(R”, d’x), then

(C29) Ulg(H)f] = s(\)(Uf).
(vii) If f € D(H), then U(Hf ) = AUF.
(viii) If g € X,
" ) min(N,N(A))
(©30) Ul)(x)=  Lim [ 2 sWgx0)de(h)

where Li.m. means convergence in L*-norm.

Proor. Pick N, p, ¢ as discussed before the theorem. Thus (iii) holds and ¢
obeys

2
(Cc31) f lo,(x, M) dx < (1 + )™

Ix—y|<1
Moreover, by the definition of F and the fact that the f are eigenfunctions of a,

9,(x, ) = [F(x, ; N)(1+ ) g, (y, 1) d%
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so by (i), (iii) and (v) of Theorem C.5.2, the ¢;’s obey (i) of this theorem and
then (C31), (ii) holds.
Again by the definition of F, by (C23) and by (C25) we have that for any
feL:
NQA)

(c32) (£,6(1)1) = [dpMEM) T (GO

where U is given by (C27). This formula with C = 1 proves (C28) and thus (iv)
is proven.

Given (C27), U is easily seen to extend to an isometry from L? to I given by
(C27’). The remaining assertion in (v) is that U is onto.

As a preliminary, we note that since e *#xF(-, y; A\) = e~*F, we have that

as a map from L2 to L2, e "Hxp = eAp s0
(C33) U(e~"f) = e~ Uf

initially for f € L} and then for all L? by a limiting argument. Since any
continuous function in [inf spec(H), 00) vanishing at oo is a uniform limit of
polynomials in e~**, (C29) holds for such g’s and then by a limiting argument
for all bounded Borel g’s, i.e. (vi) is proven.

Now, we return to (v) and suppose that # € JC is orthogonal to RanU. By
(C26) and Harnack’s inequality for all A

NV )

> ‘tpj(x, )\)| <Cc(1+ xz)a/z.
j=1

Since h € 3, we have ZV®|h;(A)|* < oo for a.e. A so for a.e. A, we can
define k(x, A) = ¥k (A)g,(x, A) and for any f € C°(R”) and g € C°(R)

[1(x)g(A) k(e XY dp(M)d”x = (h, Ug(H)f) = 0

since sums and integrals can be freely interchanged. It follows that £ = 0 for
a.e. x, A, and so a.e. A(dp), (1 + x2)""k(-,A\) =0 as an element of L2. But
{1 + x*)7/%p} are orthogonal in L? and I[I(1 + x?)™/%;ll # 0, so
Zh(MN)@;i(x, A) =0 implies h;(A) =0, ae. dp. Thus U is onto. (viii) then
follows easily and (vii) follows by a limiting argument from (vi). O

Theorem C.5.4 and the fact that if A, € spec(H) then p(A; — & Ay +¢€) >0
for all ¢ together imply that if A, € spec(H ), then for A’ arbitrarily close to A,
He = N'¢ has polynomially bounded solutions. Thus

COROLLARY C.5.5. 6(H) is the closure of the set of A for which Hp = Ao has a
polynomially bounded solution.

Open question. Does Corollary C.5.5 have a version with multiplicities?
Explicitly, the set A, is uniquely determined a.e. p by the fact that H has
multiplicity n there. Is it true that if Hu = Eu has n linearly independent
solutions, then for all e, 252 ,p((E — &, E+€) N A;) > 0?

As we just remarked

COROLLARY C.5.6. The spectral multiplicity of H on A, is exactly n.
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This has an immediate consequence in 1 dimension where —u” + Vu = Eu
can have at most two solutions.

CoroLLARY C.5.7. If v = 1, H has multiplicity at most 2.
This can be improved.
LemMA C.58. Letv =1, V_€ K,, V. € K}, Define

(C34) E.= lim inf{ (¢, Hp)/ (9, 9) |supp ¢ C {x|xZ2,}}.

If E<E. , then Hu = Eu has at most one polynomially bounded solution as
E - + o0.

REMARKS. 1. Looking at E . is suggested by the general result of Persson
[152] (see also Agmon [2] who rediscovered the result) that in general
(C35)

inf ess spec( H) = Rh_{r:o inf{(¢p, Hp)/ (9, ) |supp e C {x||x|> R}}

(see Theorem C.8.2).

2. Since the inf is monotone increasing in R, the limit exists. It cannot be
—00, but may be + co.

PrOOF. We consider the + case. If E< E_, then we can find R so that
(9, Hp) = 3(E + E_ )9, @) if supp ¢ C {x|x > R}. Let W be defined by

V(x) ifx>R,
W(x)=1{3E+E,) ifx<-R,
a if | x|<R,

where a will be picked shortly. By (C35) and a small additional argument [53],
essspec(Hy, + W) = [$(E + E_ ), o). If a is large and positive, then H, + W
has no spectrum in (-c0, 3(E+ E,)] but as @ > —c0 more and more
eigenvalues exist at lower and lower energies. By continuity, we can find a with
E € spec(H, + W). If u is the corresponding eigenfunction, then u obeys
Hu = Euin |x|> R and u, u’ decay exponentially at + oo by Theorem C.3.4.
If i is another polynomially bounded solution, %’ will be polynomially bounded
in L? sense so that the Wronskian of u and # is in L! at co which implies it is 0;
i.e. there is exactly one solution polynomially bounded at +o00. O
Thus we have

COROLLARY C.5.9. If E . are given by (C39) and if E < max(E, , E_), then
the spectral multiplicity of H in (-0, E) is at most 1.

REMARK. For the a.c. spectrum, a related result appears in [49].

Open question. Obtain some efficient bounds on multiplicities in the quasi-
one-dimensional case where V is confined in » — 1 dimensions. For example, if
we write a point in R” as (x, y) with x € R, y € R*™!, we might suppose that

- 34, + V(y, x) = H(x) on L}(R*~") has compact resolvent for each x. Let
{E (x)}°° ; denote the eigenvalues of H(x). Define E® = inf, E(x) and

llm,c_*,,co E(x). We conjecture: () If lim;_, ,E® = oo, then the spectral
multlphcxty of H=-1A+ V is finite at any energy, albeit perhaps un-
bounded as energy goes to infinity. (i) Explicitly, on (-0, E(?), the maximal



SCHRODINGER SEMIGROUPS 509

multiplicity is at most 2 j. (iii) In more refined form, the maximal multiplicity
on (-0, E) is bounded by j + k if E < E/® and E < E; (or Ey).

We now want to return to the general properties of eigenfunctions. If one
goes through the proof above carefully, one learns that for any fixed f € L2,
f(x)@;(x, A) € L? for all j and a.e. A. This would seem to imply that ¢, € L*,
but unfortunately, the set of A for which fg; & L? could depend on f.
Nevertheless we conjecture that ¢; € L*:

Open question. Prove or disprove that for a.e. A (with respect to p), we have
that ¢;(x, A) € L* for all ;.

We note that it is not hard to show that

(C36) sup [j;dp()\) sqpltpj(x, M| < oo.

It is often stated (e.g. [23, 54]) that the question just raised has been settled
by Maslov [132] who claims to have an example where {A|p; € L*} does not
exhaust supp p. We should analyze (following Faris [53]) this example to
explain why the question remains open.

ExaMpPLE (MAsLoV [132]). Let V(x) = V(-x) on (-o0, o0) where for x > 0

V(ix) = x, 0<sx<l,
= S(x-1), 1<x<3,
= 3(x-3), 3<x<7,

= —21;(x—2"+1), —lsx<2 -,

Maslov shows that for any E € (0, 1), some solution of Hu = Eu is (at least
logarithmically) unbounded. Let 3= = (f € L?|f(x) = *=f(-x)}. Then H
leaves 3 invariant and Maslov shows that spec(H'! 3 *) = [0, o0). He
concludes that the spectral multiplicity of H is 2 so it cannot happen that
@, € L* for a.e. A € (0,1). The error of Maslov is that spec(Ht ¥y =
spec(Ht 9C™) does not imply that H has multiplicity 2. In fact, it may well be
that H has dense point spectrum in [0, 1] in which case, it would of necessity
have simple spectrum there!

As a final consequence of the results of this section, we want to demonstrate
the fact that if H has infinite point spectrum in some interval (either dense
point spectrum as occurs in certain random systems [77] or an accumulation
point of discrete spectrum), then the corresponding eigenfunctions must be
localized in different regions.

TueOREM C.5.10. Let V. € K)*°, V_ € K, Suppose that a bounded interval
A has infinitely many etgenvalues {)\ T for H = - 1A + V with eigenvalues
@(x). Then L(x) = ,|q>](x)|2< oo for each x (and L is polynomially
bounded).
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Proor. We will show that function dE(x, y; A)/dp is nonnegative on
diagonal and that

(C37) L(x)< fAdp(x)%f;(x, %)

For the first assertion, we need only show that the trace class operator a(A)
has an integral kernel which is positive on diagonal. This follows from the fact
that it is a positive operator with continuous integral kernel.

Next we note that for any fixed A, the spectral projection E({A}) is exactly
the projection onto all eigenvectors with eigenvalue A; thus if A is an eigenvalue

dE - —
—=(x, »;2) =[p(N)] 12%(")%()’) )
dp P’
{¢,} being a basis for Ran E({A}). Using continuity of the eigenvectors,
dE -
2 (XN =p(A) 2 |9l P
k

and so (C37) holds. O
Open question. The following is somewhat related to unique continuation
(see §C9). Is dE(x, x; N\)/dp a strictly positive function for a.e. A?

C6. The local spectral density and its classical limit. At the end of the last
section, we showed that dE(x, x; A)/dp(A) = 0. In this section we will discuss
the measure on R” X R:

(C38) dL(x,\) = dp(N)d’x.

dE(x, x; \)
dp

By very different methods, Lavine [127] introduced this object in a distinct

guise and studied its classical limit. Following [127], we call L the local spectral

density. Lavine required more local regularity on ¥ but didn’t require H to be

bounded below. Except for this difference on hypotheses of ¥, we recover

Lavine’s results here. Lavine introduces dL by the following characterization.

THEOREM C.6.1. Let V., € K}, V_ € K,. Then, for every bounded Borel
function g of compact support in R and every positive f € L*(R”),
fY%(x)g(H)f'/*(x) is in trace class and

(€39)  Te(f(x)g(H)f(x)'?) = [f(x)g(A) dL(x,N).

Proor. That f'/%(x)|g(H)|'/? is in 9, is proven in Theorem B.9.1 which
demonstrates sufficient continuity in f, g to show that (C39) need only be
proven for f € C§° and g the characteristic function of an interval A. Thus we
need only show that

(1) B@)10)) = [ _ g0 EEED gp(a)as.

But, since f'/2dEf'/2 /dp is a trace class operator with continuous kernel,

Tr(fl/zz_ﬁf'/z) Ef[f(x)—dEfIi’(;’)}\) d’x
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(see the proof of Theorem 3.9 of [195]). By definition of dE /dp,
dE
1/2 1/2) = 1/2 1/2
Tr(f'/2E(A)f'/?) _fAdp(A)Tr(f dpf ) a

Introducing H, = -h*A/2 + V(x), one can define measures dL,(x, A) so
that (C39) holds if H is replaced by H,. In some sense, one expects that as
h - 0, dL, should approach 27h)™"8(3p> + V — A)d’pd’x. In fact

THEOREM C.6.2 (LAVINE [127]). Let V be continuous on R” and bounded below.
Let f € C°(R”) and g a continuous, bounded Borel function of compact support.
Then

. d’xd’
(C40)  Lma Te(f(x)g(Hy) = [8(p* + V(x)f(x) L.
hL0 (2 T )

REeMARKS. 1. The earliest results of this genre seem to be due to Berezin [24].
See [42, 188, 194, 201] for further discussion.

2. As noted on p. 107 of [194], it suffices that ¥ be locally L' and say,
bounded below. Presumably, ¥_ € K, and V', € K** will suffice.

SKETCH. Let g(A) = e~*. It suffices to prove the result for such g by a
limiting argument. Let dp,,, be conditional Brownian motion starting at
b(0) = 0 and conditioned to b(¢) = 0 (see [194]). Let

F(£) = 072 [d°x1(x) [ oo () exp ot [V(x + o(s)) ds .

F(0) =(2m)™" [ f(x) exp(-a¥(x)) d"x.

As in the proofs of Theorem 10.1 of [194], (C40) for g(A) = e~* is just
lim, o F(t) = F(0). The proof is even easier than in [194] where f is not present
(so there is a solvable difficulty in controlling the d”x integral). By the scaling
properties of Brownian motion

F(0) = [45/(x) [duogon() exp( - [ V(x + fro(s)) ds

so that lim, o F(¢) = F(0) is immediate from the continuity of paths and of V'
and the dominated convergence theorem. [
(CA40) says that A*dL, converges weakly to the measure

dug(A, x) =8(3p*+ V(x) —N)d’pd’x/ (27)".

C7. The integrated density of states. Here we consider some general features
of an object of considerable use in analyzing Schrodinger operators when V is
random, periodic or almost periodic. Fix ». Let %X ; denote the characteristic
function of {x||x|< R} and let 74 be its volume.

DEFINITION. Let ¥ be a potential with V_ € K, V, € K}**. Let H = - 1A
+ V as usual. We say that H has a density of states measure if and only if for
allg € C°(R)

(o) Mg)= Jim 73 Tr(%xg(H)

exists.
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It is easy to see that if it exists A defines a positive linear functional of g and
so there is a Borel measure, dk, called the density of states measure, with

Ng) = [g(N) dk(M).

The quantity

A—0
dk(p)
oo

is called the integrated density of states. dk is precisely the weak limit of the
measures dk » given by

k(A) Ef

dip(N) =75 [

||

dL(x,\)
<R

with dL the local spectral density defined in the last section. Note that
although the measures dk, are all absolutely continuous with respect to p,
indeed

dkg(N) dE )
o T e dp 55V

it can happen that dk is not dp absolutely continuous. In fact, for suitable
classes of random potentials in 1 dimension, one can show that for a.e. ¥ in the
support of the distribution of ¥’s dk exists and is independent of V [21] while
for a.e. pair (V, W), the measures dp are mutually singular [146]!

Standard weak limit arguments show that

PrOPOSITION C.7.1. If k exists and is continuous at N, then
k(A) = lim 7! Te( X g E o p(H))-
We first want to consider several general features of k: (i) upper and lower

bounds on A(g), (ii) independence of boundary conditions, (iii) continuity (in
the sense of weak convergence of measures) in V.

PROPOSITION C.7.2. The density of states exists if and only if for all t > 0
(Ca2) L, (1) = Jim 72! Tr(X ge*H)

exists.

PrOOF. By Theorem B.7.1, X ze =", has a continuous integral kernel away
from |x|=R or |y|=R and this kernel is bounded by a constant M,
independent of R. Thus

(1) = 72" Tr(Kge ™)
is bounded by M, independently of R.

Suppose (C41) exists for all g in C§°. Fix A > 0. Pick g, in Cg° with
0<gA)<e™ and gA)=e " for A<k. Then 0<e ™ —g(A\) <
e-tk/Ze—tA/Z SO

0<m' Tr(%Re"”) — 7' Tr(Xgi(H)) < M, j,e~*/?

so the limit (C42) exists.
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Conversely, suppose that (C42) exists. Given g € C°, we can by the
Stone-Weierstrass theorem, find polynomials P,(A) in e~ so that

sup e g(A) — P(A)] >0 ask - oo.
AEspec(H)
We compute, with F,(A) = e*[g(A) — P,(A)],
|Tr[X g (H)X r — X P (H)X ]|
= Tr(X e #/2F(H)e /2% ) < || Fll, Tr(X e 7% ¢ )
and so obtain the existence of the limit (C41). O
TueoreM C.7.3. (a) Let V. € K}, V_ € K,. Then for any g € C{
lim 5" | Tr(%X zg(H)) |< 0.
R- o0
(b) If V € K,, then for suitable g € Cg°, g > 0,
Tim 73! Tr(%X zg(H)) > 0.
R- o0

PROOF. (a) follows from g( H) < Ce~¥ for suitable C and Theorem B.7.1.

(b) follows from (a”) of the same theorem, since the proof of Proposition
C.7.2 shows that if lim = 0 for all g > 0, then £,(z) = 0. O

If V, €K,, then it can happen that the limit is zero; indeed, if H has
compact resolvent, then k = 0. Here is an example where the density of states
fails to exist.

ExAMPLE 1. Let » = 1 and given V so that V(x) = V(-x) and for x > 0

V(x)=0 ifL,,<x<L,,,
=1 ifL2n+1 sx< L2n+2’
where L, =0, L,,, = L, + 2%. By a simple path integral estimate if x €

(L, +a, Ly, sy — a), |e H(x, x) — 2at)"/2|< C(t)e % and if x €
(Lyysr T o, Lyyyn—a)|e” Hix, x) — Qmt) V%" |< C(t)'d(’)“ Thus

lim (2L,,)" Tr(%,, e™#) = (2mt)™/?e*
n—oo
but

lim (2L,,,,)" Tr(%,, e ") = (2m)"/%
n— o0

Lan+1
In spite of this, the existence of the limit and its value is independent of
boundary conditions.
THeorEM C.7.4. (a) Let V., €K, V_€K,. Let HY be the operator
Hpr + V where Hyy is the Laplacian on L2(|x|s R) with zero boundary
conditions on | x |= R. Then

Jim 2 [Te(a(H)%e) = Te(5(HE))] = 0

(b) Let %% r be the characteristic function of the cube centered at zero of side
R/2. Let Hf be the corresponding operator with periodic boundary conditions.
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Then
Jim [ Tr(g(H)Xz) - Tr(g(HR))] = 0.

(c) Let v =1. Let Hy be any sequence of operators on L*(-R, R) which are
form extensions of the form -d?/dx? + V(x) on CZ(-R, R) with
inf z[inf spec( Hg)] > —o0. Then

Jlim (2R)"[Tr(g(H)Xx) — Tr(g(Hp))] = 0.

PRrROOF. (a), (b) By the proof of Proposition C.7.2, we need only prove the
result for g(A) = e~**. A simple path integral estimate shows that

'e-tH(x’ x) — e "Hi (x, x)l < CCXP(—d(t)[R — | x| *]2)

where | x|, = (x}?)/?if * = D and = max;|x;| if * = P. This immediately
yields the result.

(c) As in the proof of Proposition C.7.2, we need only consider the case
g(A) = (A + a)! for all large a. But (Hg + a)™! — (HP + a)™' has rank at
most 4, so for this g

'Tf(g(HR)) - Tr(g(Hg))I < (4/R)[a + infspec(HR)]_l. o

If g is taken as the characteristic function of (-oo, A), then Tr(g(H})) is
exactly the number of eigenvalues of HY in that interval. This explains the
reason for the name “density of states”.

We have the following continuity result:

THEOREM C.7.6. Let V,, > V in K,-norm with V,,,V € K,. Suppose that each
H,, has a density of states measure dk,,. Then H has a density of states measure
dk and dk,, - dk weakly.

PrROOF. By the argument of Proposition C.7.2, it suffices to prove that
£(¢) has a limit for all # and that £y.(#) > £,(¢). This follows if we show
that

(C43) lim sup |E(f)(t) - B(f)(t)[ =0
m—o R "
for all ¢. But since e ~*# has a continuous integral kernel

|e§(e) — £50(0)| < szple"”(x, x) — eHn(x, x)|

<“e"” —_ e-tH,,,“Lw’

(C43) follows from Theorem B.10.1. [

ReEMARK. Local K, convergence is not sufficient. For example [19], if
H, 4= -d*/dt* + cos x + Acos(ax + 8), then for A, § fixed dk, is continu-
ous at the irrational values of a but, in general, discontinuous at the rational

values!

THEOREM C.7.7. Let V be in K, and in the K -closure of C§°. Then the density
of states exists and is identical to that for V =0, i.e.

dik(A) = dky(A) = (27f)-v/2[r(%v)]—l)\”/2"d}\_
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REMARK. The formula for dk, comes from inverting £,(¢) = (27¢)™*/2
PROOF. By the last theorem, it suffices to prove the result when ¥ € C°. But
in that case if supp V' C {x || x|< R}

le="H(x, x) — e~"Ho(x, x)| < C(t) exp(-d(¢)[| x|* — Rr?Y)

from which £(¢) = £,(¢) follows. O

A slightly more specific argument shows that the same result is true for
N-body Hamiltonians.

The last result says that for N-body potentials, dk is an object of very limited
interest. For sufficiently short range potentials, a different object is of interest.

TueoreM C.7.8. If V € K, and V € I,(L?), then, for any g € C{, g(H) —
g(H,) is trace class.

PrOOF. By an argument of Krein (see e.g. [124]), it suffices to show that
e *H — ¢~*Ho s trace class. Writing

e~tH — o=tHo = f’dse—sHVe—((—s)Ho
0

it suffices that e=*#/2V and Ve ~"Ho/2 be trace class. This follows from Theorem
B9.2. O

One can further show that Tr(g(H) — g(H,)) is of the form [g(A) du(A)
for a signed measure dp. The corresponding distribution function [ dp(A) is
called the spectral shift or Krein spectral shift. As discovered by Birman-Krein
it is related to the scattering matrix in a simple and beautiful way. For further
discussion see [28, 105, 124, 125].

The situations where k is of some interest are random and almost periodic
potentials.

DEFINITION. An ergodic class of potentials is a probability measure du on the
bounded continuous functions on R’, so that the map V(-) - V(- +¢) is a
measure-preserving ergodic transformation.

THeEOREM C.7.9. (a) (Benderskii-Pastur [21]) If du is an ergodic class of
potentials, then for a.e. V in supp p, the density of states measure exists and
spec(H) is precisely the support of dk.

(b) (Avron-Simon [19)) If V is an almost periodic potential, then the density of
states measure exists and spec(H) is precisely the support of dk.

ReMARkS. 1. For » = 1, a result equivalent to (b) was first proven by
Johnson and Moser [106]. [21] proves (a) only if » = 1. For general », and
additional results, see Pastur [144-147], Fukushima and Nakao [64-66, 140],
Kirsch and Martinelli [116], Kotani [121] and Slivnyak [198].

2. Any almost periodic function is naturally associated to an ergodic class of
potentials of which it is a member. However (a) does not quite imply (b) since
in (a) an assertion is only made for a.e. V.

PrOOF. We prove the first assertion in each part. For the second assertion
(i-e. supp(dk) = spec(H)), see [19]. By Proposition C.7.2, it suffices to prove
that (1/7z)/ y<ze”""(x, x) dx has a limit for each fixed rational ¢ > 0. In case
(b), it is not hard (using e.g. Theorem C.10.1) to prove that f(x) = e~*H(x, x)
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is an almost periodic function from which it follows that the limit exists. For
(a), we let g(V) = e~"Ho*¥)(0,0) so that (1/75)/,q<r8(V(- +x)) d”t exists by
the Birkhoff ergodic theorem. [

C8. Allegretto-Piepenbrink theory. We present here some ideas developed in
1974 by Allegretto [13] and Piepenbrink [153, 154] and developed by Moss and
Piepenbrink [138] and Allegretto [14, 15] who relaxed regularity assumptions
on V. Some related ideas occur in Albeverio et al. [10, 11]. Here we will prove
Theorem C.8.1 under what are presumably optimal regularity hypotheses;
Theorem C.8.2 can probably be improved.

The key notion is that the existence of positive solutions of Hu = Eu or of
solutions positive near infinity is connected to the spectrum of H in (-o0, E).

THEOREM C.8.1. Let V_€ K,, V. € K!*°. Then Hu = Eu has a nonzero
distributional solution which is everywhere nonnegative if and only if inf spec(H)
=FE.

PRrROOF. Suppose first that inf spec(H) = E. Pick Cg°-functions f, supported
in {x|n <|x|<2n}sothatf,=0andf, = 0. Let

u,(x)=c,(H—E+ n'l)'lfn

where ¢, is chosen so that u,(0) = 1. Since u,, is everywhere positive (by the
proof of Lemma B.7.7), ¢, can be chosen to obtain the required normalization.
Clearly, u, obeys Hu,=(E — n~')u, for the region |x|<n. Thus, by
Harnack’s inequality, for any R we can find Cy with
Cr'<u,(x)<Cg if|x|<R.

By passing to a subsequence, we can be sure that u, has a limit point in weak
*L§. sense so that (u,l , @) = (u, @) for all p € L! w1th supp ¢ bounded. It is
easy to see that uis a distributional solution of Hu = Eu and that Cr' < u(x)
< (g for | x |< R, so that u is nonnegative and not identically zero.

Conversely, suppose Hu = Eu has a nonzero, nonnegative solution. By
Harnack’s inequality, u is strictly positive and by Theorem C.2.2 u”'vu =g is
in L2 . We will prove that for ¢ € C°

(C44) (¢,(H—E)9) = 3llve — goli}

which implies that H — E = 0. We first prove (C44) assuming u is C*. Then
by a direct calculation

lulvulvu! = {[A — u(Au)] = - (H — E)
)
(9,(H—E)o) = tluv(u'p)I? = tive — (u'vu)opll?

proving (C44) in that case. Given general u, ¥, we know that u is continuous
and locally bounded away from zero. Let ug; be u convoluted with an ap-
proximate identity js. Let V; = u;'[§ Vu,] + E so by the above,

(¢, (Hy + Vs — E)o) = 3llve — gli3.
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But since u; — u locally uniformly (u is continuous) and Vus - Vu in L%
and Aug - Auin L, we have that g; - gin L3 _and V; > Vin L} proving
(C44) in general. O

REMARK. The above proof actually shows that for ¢ € C§°, (¢,(H — E)¢)
>0 (for if vo — gp =0 then ¢ = cu & C5°) and, in fact, ker(H — E) is
either empty or multiples of u depending on whether u € L2,

Of course, if E < infspec(H), then u cannot be polynomially bounded.
Unfortunately, the converse is false!

ExAMPLE (v = 1). Let u be a positive C®-function on (-0, c0) which is
equal to exp(| x|'/?) on [1, 00) and to exp(-| x|"/?) on (-o0,-1]. Let ¥(x)
= du”/u. Then V is C* and V(x) = O(x~") at infinity. Since Hu = 0 has a
positive solution, inf spec(H) > 0 but since u is bounded by any exponential,
by Remark 3 following Theorem C.4.1, 0 € spec(H) so 0 = inf spec(H). u is
clearly not polynomially bounded at + oo, but no other solution, v, can be
polynomially bounded at —oo (for the Wronskian of  and v would be L? at
—oo which is impossible). This illustrates that Hu = inf spec( H) u may have no
polynomially bounded solution, let alone a positive one.

THEOREM C.8.2. Let V., € K., V_ € K. Fix E. Then the following are
equivalent:

(a) For some R, (¢, Hp) > E(@, ) for all ¢ € C§° with suppp C (x|| x|
> R).

(b) For some R, Hu = Eu has a nonzero distributional solution on {x || x |> R}
which is nonnegative there.

(c) The spectral projection for the interval (—oo,E] is finite dimensional.
For general Vwith V, € K and V_ € K,, (a) is equivalent to (b) and both are
implied by (c). Moreover (a), (b) implies inf essspec(H) = E.

REMARK. The equivalence (a) = (c) is clearly related to the result of Persson
[152] and Agmon [2] which appears as (C35). Indeed, the last assertions in the
theorem are precisely (C35).

PROOF. (a) = (b) (a) says that if Hy is the operator

Hy+V onL*({x||x|>R})

with Dirichlet conditions on |x|= R, then infspec(Hz) = E, so u can be
constructed as in the last theorem.

(b) = (a) (C44) still holds for ¢ supported in {x || x |> R}.

(c) = (a) If (a) is false, we can inductively pick r, <r, < --- and ¢, in C{°
with supp ¢, C {x|r, <|x|<r,.,} with (¢,, Hp,) < E(p,, p,). Obviously,
for n # m, (¢,, Hp,,) = 0. Thus, if ¥ is any finite linear combination of the
@,, then (¥, HY) < E(¥, ¥). It follows (see Theorem XIIL1 of [162]) that the
spectral projection for the interval (- oo, E] has infinite dimension.

(a) = [inf ess spec(H) = E] (following ideas of Sigal [177]). Pick j,, j, with j,
in C@ and j, in C*® with j,(x) =0 if |x|<R, so that jZ2+ j} = 1. Now
U Ui HL + [y L2 HII = ~(V)? — (V) so since (ji + jHH =
H(j? + j}) = H, we have that

R . \2 N2
H =j\Hj, + j,Hj, — 3(vj,))" — 3(vi)".
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Now, by (a), Hj, = Eh Moreover, j, Hj, j,Hjl where V i is any function
with ¥(x) = V(x) for x in supp j,. In particular, we can pick V so that H has
compact resolvent. If we do that H = E + F where F is a finite rank operator
1)
JnHiy + i Hy > E + iy

which implies that inf ess spec( j, Hj, + j, Hj,) = E. But — 3(vj,)*>- }(vj,)? is
H-compact so ess spec(H) = ess spec( j, Hj;, + j, Hj,) (see Theorem XIII.14 of
[162)).

(b) = (c) if V € KM, Without loss, suppose E = 0. Pick j,, j, with j, €
Co , 11—/ ECS andjz(x) —01f|x|<R+ Lji(x)=0if |x|=R+ 1 and
jt +]2 =1. Let w=j2+ j2u which is C' since ¥ € K" and let V=
(w) '[4Aw] so ¥V = Vif | x|= R = 1. Moreover V is easily seen to be [ujZw™']V
plus a continuous function and so it is in X,. Pick ¢ € C§° with dp/dn = 0 on
|x|= R+ 1. Then

(9,(-A+ V)o) = (9,(-A+ P)o) + [(V = V)| pPd’x

= [Ive—wlguwP+ [(V=V)|pPd’x  (byC44)

=a(e) + b(9)
where
a(p) = [ | vo — wilovw 2 d’x,
Ix|=R+1
bo)=[  #l-A+Vip+ [  dnlef,
[x|<R+1 |x|=R+1

with o = udu~! /9n is bounded. This uses an elementary integration by parts.
By a limiting argument, this equality holds for any ¢. Let A, B be the operators
on L?(|x|=R + 1) and L*(|x|< R + 1) with forms a,b. Then H=A4 ® B
(one does not have equality because 4 © B has a larger form domain; see
§XIII.15 of [162]). Since o is bounded and V € K,, it is easy to see that B has
compact resolvent. Obviously, 4 = 0 and ker(A) is either zero or one dimen-
sional depending on whether w € L? or not. Thus 4 ® B has a finite rank
spectral projection for (- o0, 0] and so therefore does H. [

Open question. Does (a) = (c) for any V with V, € K}, V_ € K,?

The answer should be yes.

CoroLLARY C.8.3. Let V,W have W, ,V, €KQOV_,W_€K® with
supp[V — W] bounded. Then, for any E, the dimension of the spectral projection
for the integral (-o0,E] for — 1A + V is finite if and only if the same is true for
A+ w

2

PROOF. Solutions of — $Au + Vu = Eu outside a large sphere are the same
as solutions of — $Au + Wu = Eu there. Use (b) « (c) in Theorem C.8.2. O

ReMARK. The proof of (a) = [inf ess spec(H) = E] above shows that if the
corollary could be proved assuming K, whenever K" appears, then one would
know that (a) = (c) in general. This corollary is due to Piepenbrink [153].
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C9. Unique continuation.

DEFINITION. A partial differential operator, P, is said to have the unique
continuation property (u.c.p.) if and only if every distributional solution u of
Pu=0 in an open connected set, 2, which vanishes near some x, € Q is
identically zero.

The following result is “classical”.

THEOREM C.9.1. Let V be a potential which is bounded on compact subsets of
R’\T where T is a closed set of measure zero. Then — 1A + V — E has the
u.c.p.

For » = 2, this is a result of Carleman [33] and for general » of Miiller [139].
For further discussions and history, see Hormander’s book [99] or Reed and
Simon, Vol. IV [162]. The latter uses Carleman’s approach together with a
bound of Heinz [79]. The following elementary estimates can shorten and
replace the Heinz estimates. These estimates are taken from a paper of
Hormander [98] whose proof we follow:

LemMa C.9.2. For any real a, X and any u € C§°(R”\ {0})
(c45) lreti(A + A)ull3 = 4aX|ireull3.
PROOF. Let C = r** (A + A)r—**1 so0

C=r(v —ar'Yr+Ar2=L, + 1L,
where
L=L*=rvr+a*+Ar?, L,=-Lf=-a[rv + vr].
Since L, is the generator of dilations [L,, L,] = [L,, Ar?]. Thus
C*C=(L,— L,)(L, + L,)=[L,, L,] = 4ar?.

Let v = r* 'y and note that (C45) says that ||Cvll2 = 4aAllroll3. O

Theorem C.9.1 follows from the lemma and the Carleman argument found
on p. 243 of [162].

This leaves the question of unbounded V. The following is a natural
conjecture.

Open question. Prove that for any ¥ in K!*°, H has the u.c.p. There are so far
some disappointing results on this problem. The first are due to Schechter and
Simon [173] who prove

THEOREM C.9.3. If V2 is locally Hy-form bounded, in particular if V? is in
K, then H = H, + V has the u.c.p.

Schechter and Simon [173] also have some results requiring L?-properties of
V. These have been improved by Saut and Scheurer [169] and by Amrein,
Berthier and Georgescu [16, 25, 26, 71] who prove

THeoREM C.94. If V € L{, ., p > 2v/3, then Hy + V has the u.c.p.
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