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ABSTRACT

Using time-dependent geometric methods we obtain simple

explicit upper bounds for total cross sections Otot in potential-

and multiparticle-scattering. Utot is finite if the potential

decays a bit faster than r_2 {in three dimensjons) or if weaker

direction dependent decay requirements hold. For potentials with
support in a ball of radius R bounds are given which depend on R
but not on the potential.

a
We obtain upper bounds on ot

the power of ) depending on the falloff of the potential. For
spherically symmetric potentials the variable phase method gives
also a lower bound growing with the same power of A.

In the multiparticle case for charged particles interacting
with Coulomb forces the effective potential between two neutral
clusters decays sufficiently fast to imply finite total cross
sections for atom-atom scattering.

We reexamine the definitions of classical and quantum cross
sections to discuss some puzzling discrepancies.

1
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1. OUTLINE

The total scattering cross section in guantum mechanics is a
simple measure for the strength of a potential when it influences a
homogeneous beam of particles with given energy and directien of
flight. It can be easily measured in experiments, therefore various
approximation schemes have been developed for its calculation. On
the other hand relatively little attention has been paid to a mathe-
matically rigorous treatment, probably because it is a rather
special quantity derived from basic objects like the scattering am-
plitude or the scattering operator 5. Moreover various assumptions
and estimates were motivated by technical rather than physical
reasons. In contrast to the conventional time independent approach
Amrein and Pearsen [ 1 | used time dependent methods te obtain new
results. In Amrein, Pearson,and Sinha [ 2 ] this was extended to
prove finiteness of the total cross section in the multiparticle
case if all pdirs of particles which lie in different clusters
interact with short range forces.

In our approach we add geometric considerations to the previous
ones. The main bounds are derived by following the localization of
wave packets as they evolve in time. This method 18 both mathemati-
cally simple and physically transparent. Nevertheless it allows to
recover or improve most results with simpler proofs. We need not
average over directions but we keep the direction of the incident
beam fixed. The main defect of the geometric method so far is that c
we have to average over a small energy range; our bounds blow up -
in the sharp-energy limit. Consequently we get poor bounds for the
low energy behavior or (connected by scaling) for obstacle acatte-
ring with the radius going to zero.

In Section 3 we determine the decay requirements for infinite-
1y extended potentials which guarantee finite total cross sections
both for the isotropic and anisotropic cases. They are close to
optimal. We obtain explicit bounds which have the correct small
coupling and high energy behavior. The Kupsch-Sandhas trick is used
in the next section to give a bound independent of the potential if
the latter has its support inside a ball of radius R. The bound has
the correct large R behavior.

One of our main new results combines the two bounds to
establish a connection between the decay of the potential at infi-
nity and the rate of increase of the total cross section in the
strong coupling limit (Section 5). The variable phase method gives
lower bounds with the same rate of increase for spherically
symmetric potentials.
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The main advantage of time dependent {(and geometric) methods
is that two cluster scattering is almest as easy to handle as two
particle (= potential- ) scattering. One has to use a proper effec-
tive potential between the clusters which may decay faster than the
pair potentials due to cancellations. For a system of charged
particles interacting via Coulomb pair potentials the effective
potential between neutral clusters (atoms) decays fast enough to
give a finite total cross section for atom-atom scattering {inclu-
ding rearrangement collisions and breakup into charged clusters).
This new result is derived in Sectiom 7.

In guantum mechanics textbooks usually the classical total
cross section is defined first and then the quantum total cross
section is derived by analogy. Therefore it is puzzling that both
quantities differ considerably even if the quantum corrections
should be small. E. g. the quantum cross section is twice as big
as the classical one for scattering from big hard spheres
("shadow scattering"), even when h + 0 .

In Section 2 we examine the limits involwved in the derivation
of the gquantum total cross section and show that it is basically
a pure wave- (and not particle-) concept. This suggests our defi-
nitien of the guantum total cross section (2.5), which agrees with
the traditional one for suitable potentials. (Or one might use

(2.5) as an equivalent expression for Siot which is convenient for

estimates.} This point of view explains naturally the discrepancies;
we discuss some aspects of the classical limit in Section 6.

For detailed references to earlier and related work see [1,2,
8, 11 ]. We restrict ourselves here tc three dimensions, the results
for general dimension as well as varicus refinements and extensions
can be found in{ 8 1.

one of us {V.E.} would like to thank the Institute for Advanced
Study, Princeton, for its hospitality and support under the
Albert Einstein visiting professorship endowed by the Federal
Republic of Germany and for a travel grant provided by
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partial support by the National Science Foundation under Grant
Ne, MCS 78-01885,

2. THE DEFINITION OF CLASSICAL AND QUANTUM TOTAL CROSS SECTIONS

When scattering experiments are performed with microscopic
particles like atoms, electrons, nuclei, then (in contrast to
billard balls) it is practically impossible to ohserve the time
evolution of individual projectiles. We have to restrict ourselves
to very few observables which can be measured well enough,
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e. g. the direction of flight of the particle when it has passed the
target. This direction is asymptotically constant, thus there is
enough space and time available to measure it with arbitrary preci-
sion, In classical physics where the possibility to prepare partic-
les with a given trajectory is not restricted by basic principles,
the scattering angle depends strongly on the impact parameter. If
the latter cannot be controlled the next best thing is to use a
homogeneous beam of incoming particles and to observe the distri-
bution of the outgoing particles aver the scattering angles. This
is the cfassical digfenential ecross section, Let the incoming beam
consist of particles flying in the direction & with momentum p

and a given density (= number of particles per unit area orthogo-
nal to &); then one defines:

(p,&;d0) = number of particles deflected into di
Besi density of particles

(4]
class

where d@ does not contain &, Integrating over the outgoing
directions yields the classical totfal cross section:

(p,8) = f2 o (p,&;dQ)

a
tot,class s

_ number of deflected particles
" density of particles

(If one thinks of an experiment running forever one should under-
stand the numerators and denominators per given time interval.)
Note that the idealization of a beam of finite density which is
homogeneous in the plane perpendicular to the beam direction &,
necessarily involves infinitely many particles for two reasons.
First one would need infinitely many particles per unit area, but
this is compensated by the denominator in the definition of the
cross section. The second infinity is more delicate which comes
from the infinite extension of the beam. If the target has finite
size (potential of compact support} then only the particles which
hit the target can be deflected, the infinitely many particles which
miss the target go on into the forward direction & and won't be
counted. (The infinite extension of the beam allows to specify the
beam independent of the size and localization of the target.)
Excluding one single direction from the observation we have singled
out the finitely many particles of interest (for finite density}
out of the infinltely many incoming. This prevents us from measu-
ring the total cross section exactly if the incoming beam cannot
be prepared with all particles having the same direction. The
{idealized) concept of the total cross section requires for its
definition that there are beams of incoming particles with a sharp
direction. On the other hand it is irrelevant whether beams with
sharp energy (or modulus of the momentum p) are available or not,
We will use this freedom below.
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Cuantum mechanical scattering states for potentials wvanishing
at infinity are known to behave asymptotically like classical wave
packets. Therefore it is reasonable to extend the notion of cross
sections to guantum mechanics. However, a further limit is involwved
because there are no states with a sharp direction in the quantum
mechanical state space. Let the z-axis be in the beam direction &,
then a sharp direction would mean that p, = p, = 0 . By the uncer-
tainty principle this implies infinite extension of the states in
the x-y-directions. Thus the infinite extensicn of the state per-
pendicular to &, which might look unnecessary in the classical case,
is forced upon us in quantum scattering. We will have to handle wave
functions which are constant in the plane perpendicular to &, there-
fore the quantum cross section behaves like a gquantity characteris-
tic for classical waves rather than classical particles for any
h > 0 , A classical particle approximation would require a wave
packet well concentrated compared te a length typical for the po-
tential. Thus it is no lenger mysteriocus that in the claasical
limit (h + 0) the quantum cross section need not converge to the
classical cne {e. g. shadow scattering off hard spheres).

Another peculiarity of the classical cross section is its dis-
continuity under small changes of the potential. Consider e. g.

Vyray,zh = fatbx) g (=) X _p g XY X _pogy (v}

for some parameters a,b,r,R where r <«<R . If the beam direction is
along the z-axis {(near the z-axis) for b = 0 the total cross section
is zero (tiny) but for any b # 0 is jumps to 4r2{% 4R2). If one
could easily count the particles which have been influenced by

vie. g.time delay for a > 0) the discontinuity of ¢
tot,class

at b = 0 would disappear and it would always have the size of the
gecmetric cross section 4R2, For such a potential with b = 0 the
quasiclassical limit h + 0 of the gquantum cress section does not
converge at all!

Following the ahove consideraticns about the quantum cross
section as a wave limit we use for its definition “plane wave
packets" which are chosen to describe waves with a sharp direction
of propagation & parallel to the z-axis, but they are normalized
wave packets in the longitudinal direction, thus being as close
as possible to a Hilbert space vector, For a given direction &
the plane wave space h, is isemorphic to (and henceforth identi-
fied with) Lz(Il,dz). %he configuration space wave function is

gi{x,y,z) = glz) with Slg(z)l 23z -1. (2.1}
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In momentum space we denote by a(k) the one-dimensional Fourier-
transform

k2 g2, (2.2)

- 2 = |
¥ = o0 Y2 jaz et
corresponding to the three-dimensional Fourier transform
K =g 8 8 (2.3

k) = gk} (2m) 8(k,) Sk .
Since a beam should hit the target from one side only we assume:

supp d(k} C (0,=), (2.4)

>
which implies in (2.3} k_ = Ixl=: x .

The scattering operator S is the unitary operator which maps
incoming states to the scattered outgoing waves, 1t is close to one
on states which are weakly scattered. (S - 1)g corresponds to the
scattered part of the wave g. The probability to detect a scattered
particle is_then |(S-1)g|2 where the norm is that of the Hilbert
space K = 12(m?). Thus we define as the quantum mechanical
- total cross section

n, 2 2
o (ko8 Igik}! © dk = V(s-1)gl ", (2.5}

a - g

where g € ké with {2.4). We will show below that for a class of

potentials with suitable decay properties S5-1 extends naturally
from an operator on ¥ to a bounded map from hé into A, then the

definition makes sense. We average over the energy of the incident

beam but keep the direction fixed. (See also the similar construction

in [14].) Certainly we have to verify that our definition agrees
with the conventional one given below.

Within the time independent theory of scattering for potentials

with sufficiently fast decay the solutions of the Lippman Schwinger
equation have the asymptotic form

(R, %) ~ explik - X) + E(k;aek) =X ‘;‘tkl"”

F{k;x+k) is the continuous on shell scattering amplitude.
Equivalently the kernel of 5-1 in momentum space is

(8-1) (X', %) = 2:_::; stk Z/2m - k2 2m) £ (kR )

- -+ -+
where k = k/k, k = |xl, etc. Then

- a2
= v o i . 2,
O or K8 fanel £ik;a'+e) (2,6}

c

C
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The physical motivation for this cheice as given in most*texgbooks
on quantum mechanics uses the “"obvicus" fact that exp(i k * x)
describes an incoming homogeneocus beam 7f particles with momentum

, direction k and density one (or(?ﬂ)3 2) particle per unit area,
similarly for the outgoing spherical wave.

More careful guthors give the following time dependent justi-
fication. Let ¢11{k} be the Eguare integrable} wave function of a
single incoming particle with momentum support well concentrated
around a mean value g . The corresponding outgoing state has a
momentum space wave function

out

oPUE@E Yy = (s ¢t Ry = sadk s@KY ¢ +

+ 2—;6Id3k s 2/mmek%/mm) £k o), 2.7

The "scattering into cones™ papers [6, 9 ] show that the asympto-
tic dlrection of flight is k for the incoming and k' for the out-
going state. The first summand in {2.7) is then identified as

"not deflected" and for continuous {or not too singular) f£'s the
second term gives the deflected part. Although this splitting is
natural it cannot be justified by observations for directions lying
in the support of ¢in(ﬁ). Under this assumption the probability
w{¢iN) that a particle with incoming wave function ¢1P will be
deflected, is

i

s rade skt amk/om £ ke 617 B P <

wiei™) =radcrd

= 1is=1yet™ 2,

To represent a homogeneous beam one translates the incoming state
by a vector a in the plane orthogenal to the mean direction &,

i -i a‘k,in >
$3® = e s,
different ;'s. fdza represents a homogeneous beam with particle

density one per unit area. The resulting number of deflected par-
ticles is then

and one sums up the contributions for

2 n in
fd"a w(¢§ )} = ctDt(¢ ) (2.8)

[k k@™ raatt a2 16 2,

in >+ ,2 > > -
In the limit ¢ (k)1 “ + 6{k-q) expression (2.6) for Utot(q.q}
is recovered and '¢in(;)|2 > 6(k,)|a(k)|2 yields
jak otot(k;é)i&(k)l 2, the left hand side of (2.5)., Note that the

&
suymnation over a's is inccherent, we have added probabilities and
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not states, because we are interested only in interactions between
the target and single particles, interference between particles in
the beam has to be eliminated.

Let us now calculate the cross section according to our defi-
nition.

is-nal? = sl 5= rak 8 (x*2/2mk2/2m)

£k (2m 8k Y ot ?

Fax rag'l £ ket 21§00 2.

Thus our definition coincides with the conventional cne if the
scattering amplitude is continuwous {(or not too singular}.

At first glance it seems strange that the incoherent super-
position in (2.8) yields the same result as the coherent super-
position of wave packets with strong correlations which forms the
plane wave-packets. The following heuristic argument easily ex-
plains the phenomenon. Since (S-1)g € L2{R ) the action of S-1
"localizes™, it essentially annihilates the parts of the state
which lie beyond some radius r. Let R *»r and use in the inccoherent
case (2.8) the normalized wave function

gtz) (207! Y _p,m P Yor,m Y

in &
whose {3-dimensional) Fouriex transferm ¢ln(k) cbeys
Pein )12 + 1§ k)1 2 §(k,) as R + = (g is the 1-dim. Fourier trans-
form) . Then
Il <=r

viodh = 10 ? A { o 1s-ngh? for la, ,

0 otherwise

and

2 in R R ing2 2
fa%a wioxh ® Jda, faa, His-1)43) ¥ Ns-1)g1*° .
a R 1 R 2

The sharp direction - limit forces us to use states which are
eventually constant in an area much larger than the localization
region of S-1. Up to negligible boundary terms all contributions
become parallel and the properly normalized coherent and incohe-
rent superpositions do not differ.

In Section 6 we will return to the comparison of the wave
picture and particle picture when we discuss the classical

c

c
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limit. There we will explain why it is natural, although it looks
unnatural, that the gquantum cross secticn of a hard sphere is

twice the corresponding one for classical particles (“shadow scatte-
ring"}. In the same section we will explain why classical cross
sections are generally infinite for potentials with unbounded sup-
port although the quantum cross sections may be finite.

3. THE BASIC ESTIMATE FOR ©
tot
We assume in this section that the potential V(;) is a per-

turbaticn of the kinetic energy Ho = -5 A with Ho—bound smaller

than 1(we have set h=1 and the particle mass m=}, therefore mamenta
and velocities coincide). If the potential is of short range ({(we
will impose stronger decay requirements shortly) then the isometric
wave operators

9% = 5 - lim ef A% 71 Fot
trtes

exist and are complete, the S-operator

s= @)% at

is unitary and on states in the domain of H_ the following "inter-
action picture" representation holds: e
- » + -
5-1=(2) [Qa -a]

o

i Bt -1 Hgt

- %
= Q) fat e (1Vie (3.1}
—
Cook's estimate gives
o0
Lis-nyol < [ delv et Hotar | (3.2)

-
2 3

Let $ € H = 1" (R”) be an approximating segquence of atates which
tends to the plane wave packet g as R + ®, For a suitable class of
potentials we will show that

@

lim sup fat v ewi H°t(@R.-@R]| =0 (3.3)

R+ R'>R -

which implies by (3.2) convergence in ¥ of lim (S—I)QR =: (§-1}g

and the finite bound R
o
Lis-11gl < far ly et Botqn | (3.4)

—
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It is convenient to use product functions

N
¢R(r) = g(z) fR(x,y) (3.5}

because the free time evolution factorizes:

(o~3 Hot 8 &y = et Pt gy £ leixy)

where

. 52

b= - 3 a¥a?, £ mxaexpl- 23+ otk oy -

o 2 R 2.2 2 R
dx dy

In particular the plane wave packet space hé is left invariant:

e—i H,t he = e—i het ho= h~ .
e e e
s 2, 2 2, .,
For Gaussian fR(x,y) = expl - (x"+y )/ R’] it is well known that
IfR{t;x,y)l <1 Y otX.Y .
and for any L,T,e there is an Ro such that for R > Ro
||fR(t;x,y}|2 -1l < e if x2+y2 < L2,|t1 <T . (3.6}

Then for the convergence (3.3) it is necessary and sufficient to
show the finiteness of the bound

=

racly 1 Hot g
= fdt{fdz [fdx dy'v(x,y,z”z I[e'i hot gl (z)lz}”2 3.7
> saeifa’e vl ? 11e™ POt ge ) T3Yhe A (3.8)

—

The contribution to this integral is arbitrary small if for some
L,T we have |tl > T or x2+y2 > L2 whereas inside this region the

wave functicns of e ' HOt(OR| - ¢R) are small for R' > R big

enough. Any cutcff fR which fulfills (3.6} gives the same result.

In the bound (3.7} the potential enters only through the

function
w{z) = {fdx gy |V(x,y,z)|2}1/2 {3.9)

¢ C

¢ C
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where we have fixed the z-axis in the beam direction é, and the

one-dimensional estimate
o

[ {fd= \'»12(2)|[t=_-“i hot g]{z)l2 ]1/2 dat

-t

I(5-1)gH

[ES

jat lw e

oty

-i hot

gl <= (3.10

will imply finite total cross sections,

N
Here we have taken multiplication by V{x) as a map from h~

into ¥ and we have used that b

(3.11}

By gl = tw gl

2 3

L (R7) 2 )

LT(R)
We collect a few well known facts about wawve packets in the
following

Lemma.
Let G(z) have the (one-dimensional) Fourier transform E(k}e cm(lz),
supp G € (-68,8). Define o

BTl )
¢ 00 = = Gtk-v). (3.12
Then for v » 2§ there are Cm independent of v such that
fdz l[e Dot Gl (2112 < ey U+ vt 7 (3.13)
Izl <X
z 12 t
Proof. Using the stationary phase method (see e.g. Theorem XI.14

in [ 12 ]) one easily shows that for lzl /el > &

e-i hot

I 6l =)l <cb (1+lzhy™

Next observe that

. R 2 . .
[t Pt )y =o' © 7 72 Lle-vivey -1 hot g e 4y,
and
1[eL hot ] @) = 11e Pt g (zeveyl .
Thus for lz-vtl / 1tl > &
I[e-i hot Gv](z)l f_Cé(l P P R
For lzl < vltl /2 this implies (3.13) . a
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Remark. With some obvious modifications the Lemma and the results
belgw hold for an extremely w%de class of "free" Hamiltonians

H_(p) with velocity cperator V, H_(p). Only the constant €{8) in
(9.18) will change.

Let F(lzl < R) be the cperator of multiplication with the
characteristic function of the indicated region. The real function
v E C: (R) should obey 0 < ¥(q} < 1 and Y(q) = l{resp. 0) for
iql<8(resp.>28). Denote by (K} multiplication of wave functions
a(k) with §(k), then $(K) is in z-space convolution with a smooth
kernel of rapid decay-

B one-dimensional potential W is called a 4hort range polen-
ol if

MW (K} F(lzl > R)N =; h(R} € LI(R+ , dr), (3.14)
or equivalently

WwFlzl > R) ¢l € LI(R+ (AR) .

Going back to the three dimensional potential V from which W was
derived in (3.9) and using (3.11) for V as a map from hé into
¥ we require (depending on the direction e):

v piorFitzl > mV, o =2 h(R) € L1(2R+ LdR) (3.15)
~F
e

with the correspeonding norm

lvlézh(O) + f h(R} AR . {3.16)
o

We will discuss simple sufficient conditions for (3.15) below,
first we will complete our estimate (3.10).

Observe that y(K-v) depends on v in z-space only through phase
factors which commte with F and W, thus MW 3 (X-v}F(lz|>R)N=h(R}
for all v. Let § have support in (v-§,v+8),v>2§, then
g = y{K-v)g and with the Lemma we cbtain

I (s-13g1 < Jjat lw et ot g1
- i ht
< fatlw pix-v)} P(lz! > vltl/2) ¢ "o gl
- -1 hot
+ Jatlw p(k-v) Filzl < vlel/2) e gl <

—x
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| A

% fa(vt) {2 hivitl /2y + 2h{D) C2(1+|vt| )_2}

¢ v Hni® + rar nm ) = ¢ v'llvlé (3.17)
Q

| A

where the constant C depends on the shape of the wave function 3,
but it is independent of v and W.

Let us take forg a function with supp a C (v-8,v+§)and &{k)=1
for lk-vl < 8/2; furthermore we introduce a coupling constant X,
then we can sum up our results in the following

Theorem. For the pair H , B = H_+ AV and incident beam direction

& the total cross section is.bounded by

v+6/2 . 2 2

! a. tk,e)dk < C{8) (A/v}° Tvls | (3.18}
ot - e

v-6/2

Note that the bound can be calculated explicitly and that it de-
pends on the beam direction for non-isotropic forces. It is correct
or close to optimal in its dependence on several properties as we
will discuss now.

There are scme simple sufficient conditions for 'Vlé < o,

Assume that V is locally square integrable and continuous ocutside
a ball of radius ¢. Then lvlé is finite if

fdg sup {/dx fay \J’z(x..y,z)}ll2 < w (3.19)

o lzl>g

If singularities may occur at arbitrary distances we use the fact
that Y({K) maps LZ(R) into L™(R) in z-gpace and the kernel decays
rapidly. Therefore the decay of local L“-ncrms is sufficient and
we obtain

@

|V|; < const fd;  sup fdz {fax fay v x.y,2)) ,
L] L}
o lz'l>p lz-z'l<1 (3.20)

172

We will get a finite total cross section if the potential
is bounded at infinity by

|x|'“/2)‘E|y|"“/2“°|zl'1"‘:, £ >0 . (3.21)

The total cross section is finite for all directions if the




14 V. ENSS AND B. SIMON C" '(

decay is like

17172 (enif1y~1E

P E>o0 . (3.22)
Up to a sguare root of the logarithm {see [11 ]) this is optimal.
Using the variable phase method of Calogero | 4] and Babikov I 31
one proves that the total cross section is infinite for some

spherically symmetric potential with lxt-2 (enl2h~1/2 - gecay (see i
the remark after Prop. 2.3 and Appendix 2 in [ 8 1).
If the coupling constant A is small or the energy high (i.e. ,

(A/v) small)} then the Born approximation converges and it gives
the same (i/v)2 - behavior as our bound (3.18).

Alsc in the strong coupling limit A & = (v fixed) there is
for any u < 2 a spherically symmetric potential with |V|é < = guch

that the total cross section increases at least like { A }Y. For
potentials with faster decay, however, we will prove a slower in-
crease in A in Section 5.

The main drawback of our geometric method is that we do not
get estimates for sharp energy: our bound C(8) in {3.1B) remains
bounded but does not decrease like 0(8) as 6§ + 0. Related to this
we get poor estimates on the low energy behavior. The reason for
this limitation is our estimate

¢ C

-]
| rat of Bt v o7 Hot g (3.23)
-—0

< Jacdve

—

A (3.24)

For a small momentum spread §(and similarly for potentials with
small support} the size of the wave packet g in z-space becomes
large compared to the size of the region where V is strong: the
main contribution to the integral (3.23) comes from a time inter-

val » 51 . In the continucus spectral subspace for H, away from
zero-energy resonances, one expects a growth
6-1

(ETAPSCILARY I §~1/2

_5-1
rather than the 6_1 of our estimate. The cancellaticns in (3.23) l
which are lost in (3.24) would be necessary to get good bounds
for sharp energies {or small cbstacles). '

To sum up our strategy in this section was as follows:
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according to our definitien (2.5) of ¢ we have to estimate

tot
I (5-1)gl for plane wave packets g. It is bounded by

"
far ly e+ Bt g1 (3.25}

This expression is particularly convenient because it uses freely
evolving wave packets and the potential V, but it does not use the
full Hamiltonian H. The same properties are shared by the first
order Born approximation which will give better approximations in
the parameter range of its applicability. Our bound, however, is a
universal upper bound.

The travelling plane wave packet e-i Hot g is mainly localized
in a region where z ¥ vt, vE€ supp 8, the velocity(=momentum)
support of g; the talls into the classically forbidden region decay
rapidly. Thus one has to control that V as a map from suitable plane
wave packets localized in lzl > R into the Hilbert space is of short
range {has a norm integrable in R). This is exactly what the
I-1--pnorm controls (the factor y(K) is simply a regularization which
smogthes out local singularities; it does not affect the decay pro-
perties of the potential). At each time the effect of the potential
on the plane wave packet is independent of the mean velocity v,
but the time neTessary for the wave packet to pass the potential
behaves like v ~ . Thus the (A/v)zlvlg -bound is quite natural.

For potentials V with stronger singularities like the Rellnik
class which are form bounded perturbations of H, one can use the
intertwining property of the wave operators to get the estimate

1{s-1)gl

< faclyl (28

—tu

a.c)1/2 ] v ¢[(2H°)1/2 ~‘v]e_i Bt gl

for states with momentum support around v . Here we have used that
g =yY(K-v}g = {{ (2H°)1/2 -v]g for these states.

If the interaction term
w[(zﬂa.c.)1/2

is of short range as a map from plane wave packets into the Hilbert
space umifoam in v, then all the above results remain true. There
i3 another way to handle even stronger local singularities with

the Kupsch-Sandhas trick, explained in the next section. But then
the high energy decay in (3.18) is lost.

- wl vl @ -

B
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4. POTENTIALS OF COMPACT SUPPORT A

If the support of the potential V is contained in a ball of
radius R then the classical total cross section can at most be

m Rz no matter what the potential is. We have just counted all par-
ticles entering the interacticn region as potentially being deflec-
ted. Similarly in the quantum case we get a uniform bound (inde-
pendent of the potential) by estimating the part of the plane wave
packet which can possibly be influenced by the potential. The tech-
nical trick used for this estimate is due to Xupsch and Sandhas

| 10].

Ll

> ’ -
Let j(|;|) = 1{resp.0} if irl < 1 (resp. ? 2) be a smooth
cutoff function and define

jR(I;'H = j(lr+l / R). . (4.'1)

For any R < = and any ¢ € ¥ we have

i Hgt

IjR ¢l + 0 as el -+ . ) ’ (4.2.)

and the same is true if ¢ is replaced by a plane wave packet g
(see the Lemma in Section 3). Therefore

i = s-1lim ei HE e_i Byt
- s-1im eb Bt “_jk)e-i Bt (4.3}
and with the Cook argument
o
+ - i Ht C(1_a -1 Hot
Q-0 =i fdte {B(1-j,0- {1 jR)HQ]e

.m i Ht -i Hot
-i fat e [HO,jR]e

A RUE REICENE Tiet Hot | (4.4)

-0

k]

Here we have used that V(l—jR) = @ if V has suppert inside a ball

of radius R, nq matter how bad the singularjties of V' may be. If
for the description of hard cores or other severe local singulari-
ties an identification operator is used to define the wave opera-
tors then the second line of (4.3) and {4.4) are still true for
big enough R. '
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Inserting the "potential” {—;— 83, (¥ jR) - %) in the estimates
of the preceding section, e.g. (3.19) with p = D, one easily obtains

Theorem. Let H = HO + ¥V, V any potential with support contained

in a ball of radius R > R , then for v > 26

v+§ . 2
J Utot{k,e) dk < const. R, (4.5}
v-§

where the constant depends on § and Ro but is independent of v,R
and V.

Except for the value of the constant in (4.5) (see Secticn 6
for estimates) the bound is saturated for large R by hard cores
giving 27R2. The energy decay has disappeared because the gradient
applied to g in (3.17) ylelds an increase proportional to v. The
remarks following (3.24) showed why the small R behavior of cur
simple bound is not optimal. The correct behavior as R*) should be
a constant because theré are point interactions with non trivial
scattering, see [8] for a discussion.

5. STRONG COUPLING BEHAVICOR

For strong coupling, when the Born approximation does not
converge, the traditional time independent methcd yields finite~
ness of the total cross section but no control on its size because
a Fredholm alternative is used to solwve the Lippman Schwinger
equation. Recently Amrein and Pearson [ 1 | gave a bound indepen—
dent of A for potentials of compact support and increasing as
22 otherwise. Martin [11 ] proved a 14-pound for spherically
symmetric Rollnik potentials.Actually the increase in the coupling
constant A will depend an the decay at infinity of the potential.

- -+
Theorem. Let V(r) obey for some o > 2, r := Il 3_Ro H
> -
lv(3)) < const. (1 + 1) . , (5.1)
or
vz < const. e M {5.2)

then for given direction e and Hamiltonian ED + AV

. v ] ‘
Y R (), y=2/ (a-1} {5.3)
via utot(k,e;A) dk < D{d) or

2n? (A/v) (5.4)
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where v > 2§, (A/v) > 2 .

Remark. The power y in {5.3) is correct because there are spheri-
cally symmetric potentials decaying like (5.1} with a lower bound
increasing like (5.3}. For o > 3 trace class methods give similar
results (see Rppendix 2 and 3 in [ 8]).

Proof. Using j_ (4.1) we get in (4.4) in addition to the commu-
tator a tail term AV(1-j_). Combining the bounds (3.18) for the
tail part and (4.5) for ~the inner part which is independent of V
and &, we obtain

v+d . 2 2 ‘2
v{G Utot(kre;l)dk < D{8I[R" +(3/v} lv(i—JR) é] .

1/ (o=1)

We minimize the bound by choosing R = (A/v) in case (5.1}

1

and R = (u') ~ &n(3/v}, p' < u in case (5.2}.

a

6. THE CLASSICAL LINIT

So far we have chosen our units such that Planck's constant
h=i. We reinsert it to study the classical limit h*? for the pair
H = - th /2)&. H=H +V. The wave number is B=h™'P for the physi-
cal momentum p(= veloCity). Scaling the time this corresponds to
scattering for the pair H = 7 (1/2}A, E=H + h-2 V; thereby the
S-operator and its kernel in k-space are not changed. With the
physical momentum p fixed the wave vector k diverges as h- in the
classical limit h=+0 and the coupling constant A grows as 12, In
terms of the quantites of the previous section we have 1
v &~ h=l (h v = const is the physical velocity), thus (Mv) ~h
diverges and the classical limit is a strong coupling limit. We
have seen that the total cross section then generally diverges un-
less the potential has compact support, Therefore infinitely exten-
ded potentials will in general have infinite classical total cross
sections.

Fix now an obstacle or potential of compact support and let
F be its area as seen from the fixed incident beam direction e.
The classical cross section can be determined with any beam which
covers F, the particles passing outside F will miss the target
and they do not contribute, Similarly in the quantum case the part
of the plane wave packet which is at time t = 0 far-away from F will
hardly be scattered by the potential. The main contribution to the
total cross section comes from the part that covers F, the outside
part does not contribute in the classical limit h-0. This gives

simple estimates of o in the quasiclassical regime and moreover
tot

allows to give bounds on the constant in (4.5) for the large R be-
havior.
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For simplicity we treat obstacles inside a ball of radius R,
the changes necessary to treat other shapes are cbvious.

Similar to (3.5} we use a family of smooth cutoff functions in
the plane perpendicular to e. Let ¢ € C”{R) be monotone with
glu] =1 { resp. 0) if u < 0 (resp. > 1). Define for R,s > 0

fR s(x.y) T o= ¢[{{x2+y2}1/2 - R - 28}/s], (6.1)
L]
this implies
1 £ 2+ 2 < (R+25)2
or x4y 2 {6.2)
fR,S(x'Y) = ) 3 5
0 for x"+y" > (R+38) .

Now split the plane wave packet g as

g=g fk,s + g(l-fR's) (6.3}

then the Hilbert space norm of the first summand is bounded by

2 2 2 ‘
Ig fR'Sl < Mgl© n{r+3s) {6.4)

2
where the norm of g is in L (R).
Now consider the normalized sequence of wave packets

3 00 = ' YA evm]

for 3 € Cw(ll). v a given physical velocity. Then in the limit h+0
|gh(z?|2 dz converges to §(z) dz and the distribution of the
physical momentum p = h k converges to 8(p-v)dp.

2 2 2
With the free time evolution generated by h, = - th“/2)a" /dz
the estimate {(3.13) of the Lemma in Section 3 can be changed to
faz et et gl ? < e aeve) ™ (6.5)
lzl g vt/2

As in Section 4 we use again the Kupsch-Sandhas trick for the
estimate of

I(s~1)g!1 (1-£_ (6.6)

R,s
< fae 1{(1/2) 831+ (F3) ¥t o F Bt g (-
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where we choose j € C: with j[;)= 1(0) if 13 < R{> R+s) and

lajl, Aj are proporticnal to s_l, 5-2. The support of the "bounded
potential” in curly brackets in (6.6) is contained in a ball of
radius R+5. With the estimate (6.5) the time integration in (6.6)
has a contribution for lt| > 2(R+s)/v which is bounded by

const W (s~ 1ig=2y,

It remains to estimate the tail of

-i H.t
e © (l—fR's(x.Y)) (6.7)

which propagates into the region x2+y2 f_(R+s)2 for the time inter-
val Itl < 2(R+s)/v < 4R/v (if s < R) independent of h. Now we let
s tend to zero slowly as h+0, e.g. like a small power h€®, then the
momentum distribution shrinks as h(l‘sl, we have to control propa-—
gation beyond a distance hE into the region where the "potential"
of strength h™4® acts. The same kind of estimate as above yields

1{(1/2} (A +(V5) -V} x

lim sup
h+0 [l < ar/v {6.8)
=i H .t
(] - 1 = 0.
e g, (1 fR,s) 0
Thus the contribution to Utot from the cuter part disappears («,
f)

lim N ¢s-1)g, (1-£_ 31 = O.
0 kY R,s

With (6.4) and ¥5-1l < 2 we obtain
2

6. (vih=0) : = 1im V(s-1)g, £_ |

tot B0 h “r,s

< 4m R2 .

In the classical limit the sharp energy quantum Sross section is
bounded by four times the geometric classical R (or 4F for general
shapes) .

By scaling one can see that the relevant quantity is the
dimensionless k R = p R/h which has to be big. Thus h+0 is equiva-
lent to the high energy or large R limit for given physical h.

Using this {or ap analogous estimate as above with s growing slight-
ly slower than R} we can improve (4.5) in the Theorem of Section 4
th fixed): ’
v+8
J o
w5 to

o (k&) < 28 4 R + o(rd). (6.9)
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The remainder term can be estimated explicitly.

This bound (6.9) is saturated if S % - 1 on g £. This happens
for potentials of the type

Vix,y,z) = a X or r](z) X 2(x2+y2)
' R

discussed in Section 2. For & small and suitably adliusted parameters
a and r depending on v/h the S operator can approximate any phase
factor. In particular for h+0 it oscillates between $ % -1 and

s % 1, therefore Tt does not converge as h-0.

For typlcal potentials, however, the particles are deflected
if they hit the target and only very few of them continue to fly
approximately in the forward direction. Then g £ and 8 g f are
approximately orthogonal and

2 2, 42
Iotot(k)!a )l “ak & 27 rRNgNA, (6.10)

For general shapes 2 7 R2 is replaced by 2 F. This is the well known
"shadow scattering”-result which holds e.g. for hard spheres. A
short time after the scattering g f and S g f are essentially loca-
lized in disjoint regions, thus for these particular beams simple
amplitude measurements close to the target can be made. In Section 5
of | 8] we propose a characterization of potentials which should

be "typical" in the above sense.

Te sum up this discussion we have seen that with our definition
of the total cross section it 1s perfectly justified to use beams
of Finite width. For small but macroscopic targets {k R big encugh
depending on the admissible error} a beam is even wide enough if it
just covers the target. Moreover for typical potentials simple
measurements can be carried out near the target which should yield
good approximate results.

Onr the other hand the conventional definition based on counters
detecting deflected particles will always require a much wider beam.
An extremely well colliimated beam of finite width 2p(like a laser
beam} will typically have the following shape. Up to a finite
distance it looks like a plane wave restricted to a tube of radius p
and asymptotically it looks like a spherical wave restricted to a
cone. By the uncertainty principle the momentum- (=velocity-)
spread perpendicular to the propagation direction is of the order
f p~! which should be small compared to the average velocity v. The
opening angle of the asymptotic cone is then h(pv) ™. The transition
between the two regimes happens near a distance D where the cone is
as wide as the tube, i.e. D % p2 v/,
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A counter which should detect only deflected particles must be
located outside the union of the tube and the cone where the in-
coming beam would propagate. Consider for example a target of radius
R £ p. Typically most particles which hit the target will be signi-
ficantly deflected and are detected easily giving the classical
gecmetric cross section 7 R“, The subtle effects come from the
"shadow", the particles missing behind the target; their wave
function is the negative of the part of the plane wave packet re-
atricted in the perpendicular direction to the radius R at time
zero. Its tube region is contained im the bigger tube of the in-
coming beam and thus never matters. Later it spreads into a cone
with angles tan 9 f_h(Rv)_ . For the main part of this wave to be
detectable outside the cone of the incoming wave one has to choose
p ®»R. One can see these "shadow"-particles only if their cone
region is wider than the tube of radius p, i.e. beyond a minimal
distance 4 ¥ R p v/h from the target. To get an idea of the order
of ?agnitude take a neutron of energy 100 eV, a tgrget of radius
10 °m and a beam ten times wider, then d %2 . 10°m! Increasing the
mass or energy of the projectile or the size of the target will only
increase this distance. In the laboratory one will see nothing but
the classical cross section for tiny but macroscopic targets if de-
flected particles are counted. (See also [13) where an approximate
calculation for hard spheres is given.) Although both definitions
of the total cross section agree asymptotically our definition has
the advantage of giving a good approximate value from cbservations
within a reasonable distance of the target.

7. TWC CLUSTER SCATTERING

80 far we have studied potential scattering. This is equiva-
lent to two particle scattering if one can separate off the center
of mass motion, i.e. if the potential depends cnly on the relative
position of the particles. Similarly one can consider in the mualti-
particle case scattering of two bounded subsystems like atoms) the
relative position and momentum of the centers of mass for the two
subsystems corresponds to position and momentum in potential scat-
tering. A "channel” is specified if both the decomposition of the
particles into clusters and the bound states for each cluster are
given. For each channel (labelled by the index a) there is a sub-
space ﬂ; of the state space X consisting of product wave functions

¢ Tay (7.1)

i

where ¢ is the square integrable function which describes the re-
lative motion of the centers of mass of the clusters, and n, are

the cluster bound state wave functions. The cluster Hamiltonian
H(a) which leaves ﬂ; invariant is obtained from the full Hamiltonian
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H as H(a) = H - Ia' where Ia is the sum of all potentials which

couple particles in different clusters. The channel wave operators
are mappings from ﬂ; into ¥ defined as

0F = 1im et Bt g1 HlWE (7.2)
o+t
and the full wave operators
SR I (7.3
o

are isometric mappings into ¥ from @ H; which is interpreted as

space of outgoing or incoming configurations, respectively. The
scattering operator

s = mH* ot

maps incoming cenfigurations into outgeing ones. {See Section XI.S
of [12] for details.) For the channel o and a given incoming state
Yu & H; one has

+ -
Fs-1y¥ 1 <1 (na—ﬂu)?al (7.4)

< fat 11 e
- [+

-iH(a)t "
o

(7.5)

similar to the two particle case. (7.4} is an equality if asympto-

tic completeness holds.

Fix now a {Wwo chuster chanrel o, then the incoming wave function
in ﬂ; is of the form

n (7.86)

and ¢a is a function of one variabkle, the relative coordinate of

the two centers of mass. (As usual we have separated off the total
center of mass motion.) The total cross section is now defined
analogously. In addition to the clusters which are scattered elasti-
cally and deflected cne also counts all excitations, breakup and
rearrangement collisions. In our wave-limit approach we use in-
coming plane wave packets of the channel ¢ described by

gi=a My N, (7.7
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where n, are the corresponding bound state wave functions {cr one
if the cluster consists of a single particle) and g is the familiar
plane wave packet for the relative center of mass motion, obtained
as a limit of square integrable functions as discussed in Sectlon 3.
We now define

» ”, 2 2
Oy (i@i® Igeyl© ax : = |{S—1)gu| . {7.8)

O 8

and we use (7.5) as a simple estimate.

H{a) acts trivially on ny and Ny and reduces on g to

ha = -{1/2 mu) d2/dz2 where m is the reduced mass of the two
clusters. Therefore
bt el Bt S oy ot Pat g (7.9)
a o a

with the effective potential between the clusters

-+ -+ 2 2 2 1/2
va(r)zlflxatr.cl,czal lnl(cl)l fnz(czli ac, ag,]

{7.10)
¥
Here r is the separation of centers of mass and [; are the inner-
cluster coordinates (of dimension 3{k-1} if k particles belong to (ﬂt

the cluster). The analysis of Section 3 immediately applies and
all we havg to do in the multiparticle case is to control the de-
cay of v_(r) for a proof of finite total cross sections. On the
other hand the analysis of Sections 4 - 6 cannot be used directly
because effective potentials won't have compact support, and a
growing coupling constant will change Iu and the bound state wave

functions nj simultanecusly. This makes it difficult to control the
strong coupling or classical limits.

Typical bound state wave functions {except at thresholds) have
exponential decay [5]. If there are bound states with slow decay
we will omit in the following the corresponding channels. If all
pair potentials contributing to Iu

> -+ +
v, . (r, —x ) =v_ _(r+

.
- 7.11
135 Ty i3 SR 710

decay faster than i;i - ?j’—z as specified in (3.22), then the

convolution in (7.10) preserves this property apd the total cross
section is finite. Of particular physical interest, howsaver, is
the case of long range pair potentials like the Coulomb force bet-
ween charged particles which may nevertheless give rise to an
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effective potential of short range. This is the case for atom-atom
gcattering. If both clusters are neutral then the contribution with
si°"35t decay is the dipole-dipole potential which behaves as

I¥l =2,

Let 1 label the particles in cne cluster and j label those in
the other. Consider as a typical example pair potentials of the type

-1 2

-+ >
e, elr -r,
i i j Roc

- -> c
3 + vij(ri - rj) L
(7.12)

-+ [
v . = olW ) for 1 >R .
ij - "o

If both clusters are neutral: Zei = Eej = 0, then Va(;)satisfies

(3.20). This proves the following

Theorem. Let N charged particles interact. with pair potentials which
fulfill (7.12). Let o be a channel with two neutral clusters whose
bound state wave functions have rapid decay. Then

v+§
f L

{k,e:;0)dk < C(8) vyl (7.13)
v-6 o e

t

is finite and C{8) is independent of the channel.

One expects that a similar result holds if cone cluster is neu-
tral and does not have a permanent dipole moment, but we cannot
prove that {[ 7] and Section 6 of {8]).
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