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Abstract

The study of large orders of perturbation theory in various problems is reviewed: the anharmonic ascillator,
the Zeeman and Stark problems, double wells, and the like. Padé and Borel summability and path integral
ideas are discussed. The rigorous results on Lhe subject are summarized.

1. Introduction

Perturbation theory is a theoretical physicist’s most powerful tool. In much of
nonrelativistic quantum mechanics, the relevant series are the Reyleigh-Schrodinger
(Rs) series and in quantum field theory, one has the Feynman series. These are closely
related; indeed, for the anharmonic oscillator, the RS series can be written in terms
of Feynman diagrams (see e.g., Bender and Wu [1] or Simon [2]").

The convergence of the RS series was initially studied by Retlich in the 1930s with
important later contributions by Kato and Nagy. These things are weil described in
the encyclopedic book of Kato [3] with shorter presentations in Friedrichs [4], Reed
and Simon [5], and Rellich [6]. In studying eigenvalues £(8) or Ho + SV = H{(B),
a key role is played by the existence of an estimate of the form

Vel < alHowel + Blel (LD

for some a, b and “all” ¢. Indeed, if Eq. (1.1) holds, if £, an isolated simple eigenvalue
of Hg, then for |#] small, H(8) has a unique cigenvalue E(8) near £, and E{f) is
analytic in § about 8 = 0. Condition (1.1) holds automatically for finite matrices, Ho,
¥, and also for some cases of physical interest; ¢.g., the 1/Z expansion of atomic
physics

Ho=3 =Ai—|nf=1, V=1 |rn=r]-\ (1.2)
=t i<j

{If § = 1/Z, then Ho + 3V is up to rescaling of space and energy, the Hamilionian
of N electrons moving in the field of a charge Z, infinite mass nucleus.)
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However, Eq. (1.1) fails in a number of important cases, indeed in the three most
standard textbook examples

anharmonic oscillator: Hy = p2 + x2, V= x4 (1.3)
Stark problem: Hy=—-A-—r-1, V=¢-x; {1.4)
Zeeman problem: Ho=-A—r71, V=x2+)2 (1.5)

Equation (1.3) is considered with one degree of freedom; in Eq. (1.4), & is a fixed unit
vector in the direction of an applied electric field which is proportional to 8; in Eq.
{1.5), x and y are the components of » orthogonal to an applied magnetic field B; 8
is proportional to B2, and the Hamiltonian H(#) differs from the true Hamiltonian
in magnetic field by a term B-L,. Since [L,, H(3)] = 0, we can diagonalize L, and
each H(B). We see that the effect of this extra term is to add a 8 term to the eigen-
values.

Equation (1.1) fails in these examples for a good reason; the cigenvalue perturbations
serics ulmost surely have zero radius of convergence in all three cases: for Egs. (1.3)
and (1.4}, it is a rigorous result that the series diverge [see Ref. 7 for Eq. (1.3); Ref.
8 for Eq. (1.4)); in Eq. (1.5) there is no rigorous theorem, but there is tremendous
evidence both numerically [9] and theoretically [10] that the radius of convergence
is zero.

The amazing fact is that one can recover the eigenvalues of objects like p? + x? +
fx* from the perturbation series in spite of the fact that these series diverge; indeed
one has obtained the lowest eigenvalues of p2 + x2 + x4 (as an example) to better than
20 places [11,12]!

The situation vis 3 vis convergence in quantum field theory is similar: There is a
very special model, the :cosé: model in two space time dimensions, for which the
Schwinger functions have convergent Feynman series [13]; in all other renormalized
field theories (except for the linear {14] and quadratic Boson theories [15] which are
physically trivial}, the Feynman series are generally believed to diverge (although
there are no rigorous theorems, except for the very simplest models: see Ref. 16 and
references therein). We remark that for certain fermion theories with cutaff it is known
that there is a nonzero radius of convergence [17,18], but there is good reason to believe
that as cutoffs are removed, this radius of convergence shrinks Lo zero.

While we will later discuss the anharmonic oscillator in more detail, we pause now
to explain why it should have an RS series Za, 3" with zero radius of convergence.
There are two reasons: One goes back to a celebrated paper of Dyson [19] who argues
that quantum electrodynamic should have a zero radius of convergences: For if €2 <
0, like charges attract and the vacuum is unstable under decay into a large number
of pairs; since there is no reasonable meaning for the theory when 2 < 0 and series
converge in circles, the series should not converge. A similar argument applies to p?
+ x2 + Bx4% if 8 <0, the potential goes to —= to += and there should be no eigen-
values. While this intuition is very useful, we warn the reader that it can be misleading;
for example, the operator [20]

H(B) = p? + x2 + 28(x? — x) + f2x*
has a ground state energy E (), with an RS series which converges for all 3 (albeit
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to the wrong answer!) despite the applicability of a Dyson-type argument, Another
example [21] is
Ho=—-A-r', V=,

where the series E£(8) = —Y4(8 ~ 1)% is an entire function of 8 even though Hy + 3V
has no eigenvalue if § > 1.

The second reason involves the structure of the RS series. a, is built out of # matrix
elements of ¥ and (n — 1) energy denominators. Since x* couples a given eigenstate
of Ho to at most five others, the number of terms is bounded by 57 and the maximum

. individual term is roughly n2%/ntn=1), s0 a,, should diverge like n! This argument will

yield a rigorous upper bound
laaj < Cm1n!

(see, e.g., Ref. 21), but it seems difficult to get lower bounds in this way because of
possible cancellations in the RS coefficients. One can get lower bounds from the
Feynman diagram formulas since they all have the same sign; see, ¢.8., Ref. 2, Section
20 or Ref. 22. (The original argument is in Ref. 7.)

I Za,f" has a finite radius of convergence B, then B determines the leading as-
ymplotics of the ay, €.8., B~! = liMy—a |2, | /. and if a, is regular, then a, = (B~
+--,If B = 0, then even the leading asymptotics is not a priori clear. For the anhar-
monic oscillator, normalized by Hg = p2 4+ Vyx2, V = Yux4, Bender and Wy [1]
computed the first 75 2,’s and, on the basis of these numbers, conjectured ihe as-
ymptotic formula

an = (VE/m(~1)"'3) T {n+ 'h). (1.6)

Formulas like Eq. (1.6) are onc-half the basic theme to be developed here. At first
sight they appear to be intriguing but somewhat only of academic interest. That this
is not true is connected with the second half of the basic theme.

What is the meaning of perturbation theory when it does not converge? The answer
is somewhat reminiscent of the final chapters of Agatha Christie’s Murder on the
Orient Express, which ate entitled something like “The Answer that Doesn’t Satisfy”
and “The Answer that Satisfies.” The traditional answer is that Za,f8" is an as-
ymptotic series for E(8), i.e., for each fixed ¥:

N
lim B~ME(B) = ¥ a.f ) =(. (.7
B0 n=0
Equation (1.7) says that E{8) uniquely determines the a,: indeed
. (1.8

ay = lim .B‘”(E @~ Nfl anB"
gio G

However just knowing the a, does not determine E; indeed if f{) has a given as-
ymptotic series a,, so will g(8) = f(8) + 10190 exp(—1/ 1019% 82) even though for
any reasonable value of 8, f and g will differ by enormous amounts. Of course, Eq.
(1.7) is not totally unsatisfactory; if 8 is small and £ is not too unreasonable, then one
can hope to approximate £ by taking the first few terms. And physically, B is often
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very small: § = 1/137 in quantum electrodynamics; the natural unit {§ =~ 1) in the
Zeeman problem is about 10° G and in the Stark problem is about 10° V//cm so that
laboratory fields are small. Results on when series are asymptotic were obtained first
by Titchmarsh and are described, for example, in Refs. 3 and 5.

From & purely mathematical point of view, one would like a condition weaker than
convergence of the series and stronger than Eq. (1.7), so that at most one function could
be associated to the series. Calculationally, one would like an explicit procedure for
recovering this uniquely determined function from the series. Together, success in
these searches comprise “the answer that satisfies.” As for the first question, one has
the following theorem of Carleman [23]:

Theorem 1.1 (Carleman’s theorem): Let F(z) be a function analytic in D ={z| |z|
< R, |arg z| < 'hr}, continuous in D. Suppose that for some fixed 4 > 0,

|F{z)| = A= nt|z{® (1.9)

for all #. Then F = Q.
With this in mind, we say that £a,8" is a strong asymptotic series {Sas) for a
function f{8) if fis analytic in a region of the form D and

N
b - £, ant

for all V. Clearly, at most one function f has a given series as SAS; since if g also obeys
Eq. (1.10), F(z) = f(z) — g(z) will obey Eq. (1.9) (with a changed value of 4).
Moreover, if f has Za, 8" as SAS, and g has Zb,5" as SAS, then (i) f + g has Z(a,
+ b,)B" a5 SAS; (ii) fg has Zc, " With ¢p = Zap@mbn—m as SAS; (iii) if by # 0, f/ g
has Zd, 3" as SAS, where d,, is defined inductively by dy, = —b5' [{Z % Lodmbu—m) =
a,]; (iv) if £ has Za, 8" as SAS, dffdf has Zna, 5" as SAS. We will see shortly that
SAS are closely related to Borel summability.

The final element of the answer that satisfies is how to beat a divergent series into
submission and force it to yield an answer. Hardy’s whole book Divergent Series [24]
is on this subject, Unfortunately, more of the book deals with only marginally divergent
sericslike1 —1+1—1+1—1+--, which “clearly” sums to % [e.g., ¥; = lim,¢,
1 — ¢+ 12--- (Abel sum) and if 5, = Z0=;(~ 1)), then 5 = lim,—..{1/7) 25,
(Cesaro sum)]. There are at least two summability methods which have been suc-
cessfully applied to some of the badly divergent series encountered above: the Padé
method and the Borel method.

Given a formal power series Za,z”, and two non-negative integers N, M, we define
the [V,M]-Padé approximant, to be the unique function

JINMY(z) = PINMI()/QINMI(),
with P a polynomial of degree M, ( a polynomial of degree /¥ and with

< ANHINT|B| M4 (1.10)

=)

NeM
'ﬂ”-"‘](z)— Y a,zt| = O(zNHMEL, (111

[The reader should check that Eq. (1.11) places the right number of conditions to
uniquely determine f.] Padé approximants are further discussed in Refs. 25 and 26.
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As for convergence theorems, one has the following remarkable theorem of
Sticltjes:

Theorem 1.2 (the Stieltjes theorem): Suppose that there is a positive measure dp
on [0, =) so that (series of Stieltjes)

ap = {=1) J; x"dp(x). (1.12)
Then, for each integer j and all z & C\(—w, 0), the limit
fi(z) = lim fINA+(z)
N—o
exists and has the form
filz) = J'; (1 + x2)™! dpy(x) (1.13)

where dp; solves Eq. (1.12). In particular, if there is only one measure dp, solving Eq.
(1.12) all the f; are equal. Moreover, if f is even (respectively, odd), then for z > 0,
JINN+i)(Z) is monotone decreasing (respectively, increasing) as N increases.

Much more is known, e.g., Eq. (1.12) has a unique solution if and eunly if f; = fo.
Note that this theorem provides a constructive solution of the moment problem, i.e.,
given a, which are the moments of a measure, one determines dp. Obviously, it is very
useful to have conditions for there to be at most one dp solving Eq. (1.12) for then all
SN+ converge to the same function which is given by Bq. (1.13). The following
is useful (see, e.g., Ref. 27, p. 343).

Theorem 1.3: If |a,| S C"*'(2n)!, then there is at most one dp solving Eq.
(1.12).

As we explain in Section 2, the RS coefficients for any eigenvalue of p2 + x2 + x2m
essentially (after changing *“sign” and dropping ag) obey Eq. (1.12). For m = 2,3, the
coefficients obey the hypothesis of the last theorem and one knows that the Padé ap-
proximants converge to the cigenvalue. For m = 4, there is more than one solution
of Eq. (1.12) and the Padé’s do not converge to the eigenvalue [28]. Indeed, using the
Bender-Wu formula (only rigorously proven [8] subsequent to Ref. 28) and Lemma
3.1 in Ref, 28, this is easy.

Padé approximants have the following advantages: (i) They are very easy to com-
pute. There are explicit determinant formulas for PI¥#1 and Q¥ M in terms of 2
and a,. (ii) For series of Stieltjes, they provide rigorous upper and lower bounds. (iii)
Since f has lots of poles, one can hope to be approximating more singularities than
just the leading singularity one sees in the power series, (iv) The diagonal Padé f1¥-V]
has 2 kind of invariance under fractional linear transformations. (v) If the formal series
Za,z" obeys

(Lanz")* (La.z?y =1, zreal,

in the sense of formal power series, then /1% will obey |/1¥¥)(z)|2 = 1, z real. This
is relevant when summing up Feynman series.
Some disadvantages relative to the Borel method we will describe next are (i) the
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methad is not known to be regular; i.c., even if Za,z" converges for small z, we do not
know if f1¥:¥} converge; (ii) the only pointwise convergence result (there are weaker
convergence results in general situations) is Theorem 1.2 which requires global in-
formation on f(z); thus we know Borel summability for n-coupled x* oscillators but
not Padé; (iii) there is no simple extension to treat a, growing rapidly, e.g., the x®
oscillator; (iv) most importantly, there seems no efficient way of using information
on the large n behavior of 4, to improve convergence of the approximation.

The other summability method is known as Borel summation. This is based on the
formula

j;" xMe=x/t dx = (!, (1.14)
Given a series a, obeying
lan] < Co*int, (1.15)
one can define the Borel transform B(z) for |z] < C~! by
B(z)= T anz"/nl. (1.16)
n=0

Suppose that B(z) has a, analytic continuaticn in a neighborhood of [0, =} and that
for x > 0, we have

|B(x)| < eP=,
Then, for ¢ real and positive with ¢ < D!, we can form
fley =1 ﬁwﬂ(x)e""/‘ dx (117

called the Borel sum of Zant”. If we formally interchange sum and integral and use
Eq. (1.14), we see why f(1) is formally Za,t". If the series does converge, it is fairly
easy to justify this interchange and see that f really is just the sum, i.¢., this method
is regular.
Here is a divergent series which is Borel summable; let
ap = (—1)"n!

Then B(z) = (1 4+ 2z)~! and
fiy = J;"’ (14 yr)~te~r dy.

Note that this a, is also a series of Sticltjes which satisfies Theorem 1.3, so the Padé
method applies here also.
There is a beautiful theorem of Watson, as extended by Nevanlinna (see Sokal [29]
for discussion) which justifies Borel summability under suitable hypothesis. Let
D(d) = fz|Re(z"1) > d~1, '
which is a circle of diameter o tangent to the imaginary axis at the point 0. Let
bid,g= U [¢°D(d)].

{8} <e.B real
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Let
R(B) = z] |z] <B] U {z|Rez > 0, |Imz| = b},
which is a half-strip capped by a semicircle. Let
Rib,e)= U [e"R(b}].
|#] <&@ real
If € = 0, set D{d, €} = D(d); R(b, €) = R(b), The first time through, the reader
should think primarily about this case.

Theorem 1.4 (Watson-Nevanlinna theorem): Let Za,z" be a power series and let
S be a function analytic in D{d, €) for some 0 £ ¢ < 7, and suppose that in that re-

gion
N
2y — ¥ auz”
n=0

Then the Borel transform B is analytic in R{b, ¢} for any & < #~* and Eq. (1.17) holds
for all ¢ (even nonreal r) in D{(d). More generally, if |#] < €and z € e®D(d), then

f(z) = gifz1 J;w B(eix) exp (—e"’x) dx. (1.19)

< ABNFUN 4+ 1) z| M+ (1.18)

z

Remarks:

{a) Under the above Eq. (1.17) converges absolutely. Since |exp(—x/z)| =
exp|—Re{z~1)x], we see that D(d) is the natural region for the absolute convergence
of integrals like Eq. (1.17). Analyticity in [ is necessary if Eq. (1.17) converges ab-
solutely.

(b) If a, is a series of Stieltjes, with |a,| =< Cr+1p), then Eq. (1.18) holds with 4
arbitrary for any € < 4w, The functions are both Borel and Padé summable.

(c) 1If € > 1om, the region D{(d, €) is interpreted as multisheeted region.

(d) One can form modificd Borel transforms by replacing n! by (n + b) {x!=T'(x
+ 1)} for any b and adding an extra x® in the inverse transform. If one knows the
leading asymptotics of a,, a clever choice of b can make the modified Borel transform
have a singularity of-prescribed type as its nearest singularity.

(e} If |a,| = C"H(nk)! but f is analytic in 2 region of opening angle Lok with
snitable estimates, then one can use a modified Boret transform with »! replaced by
{kn)! and B(x) replaced by B(x*).

The advantages of Borel summability are that only local properties are needed and
that remarks {d) and (e) give it considerable flexibility. For example, for plxt+
Bx2m_ one only has Padé summability to the eigenvalue if m = 2,3; modified Borel
summability with & = (m — 1) works for any integer m. The main advantage is that
in numerical analysis, one can feed the asymptotics of a, into the calculation and
improve accuracy; e.g., by clever conformal mapping o remove the nearest singularity.
Trenically, even though summability for the x* oscillator and asymptotics of a, for
large n had been studied for about five years (by Simon and co-workers and by Bender
and Wu, respectively), it was only with the work of Lipatov and of the Saclay group
that this connection was appreciated.
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There is a very unfortunate tendency in the literature to use the phrase “Za,z" is
Borel summable™ to mean that @, ~ (—1)"a"(n")Cn?® for some &, b, C, We emphasize
that first not every such series is Borel summable, e.g., if € = exp(—10190%)_then

a, = nl[(—1)" + entl] (1.20)
is not Borel summable. Moreover, for any # € (0, 7], the sequence
a, = n! cos(nd}

is Borel summable even though its coefficients do not alternate sign. The example
(1.20) is most upsetting. It really says that one cannot hope to prove a series is Borel
summable just by locking at it. In fact it appears one needs to be able to construct f{z)
first and then prove it is the Borel sum of a series by proving Eq. (1.18). For eigenvalue
problems, this is easy but it means in field theory that summability cannot at present
be used as a tmathematical constructive tool.

In Section 2, we discuss Eq. (1.3); in Section 3 we discuss Eq. (1.5); and in Section
4 we discuss Eq. (1.4). We concentrate on an overview of ideas and on the wkB ap-
proach to the asymptotics of a,. In Section 5, we sketch the Lipatov idea in the simplest
case. In Section 6, we say something about double wells, the main examples being

pi x4 28x3 + fxt (1.2
and
A+ x|+ |x — B! (1.22)
(i.e., HY in the large R limit). In Section 7, we summarize the rigorous results and
in Section 8, we tell some personal details of the history of the basic discoveries for
the x* oscillator.

Nothing will be said here about detailed numbers. To some that will be like the
simpleton who tells the whole long buildup to the joke and then forgets the punch line!
The reader should not mistake this attitude. The numbers are very important and
should certainly be urged to consult the other papers here for them, but the ideas are
even more important here. It is impressive that one can compute x# oscillator eigen-
values to better than 20 places with the perturbation series. But it seems even more
impressive that one can in principle determine the eigenvalues ai all from a divergent
series.

1 should like to close this introduction by expressing my thanks to J. CiZek for the
initial suggestion of this workshop, to P.-0. Lowdin for embracing this idea as warmly
as he did, and 1o both of them for their work in implementing the ideca,

2. Anharmonic Oscillator

Let £{a, 8) be the ground state energy of p2 + ax? + Sx*= H(a, 8), , B real, B
> 0. The reason for adding the extra parameter is made clear by a clever scaling
argument of Symanzik [30]. The map x — Ax, p — A~ 'p is unitarily implementable
for A and so

E(a, B) = A2E(Ma, M0f).
In particular, for 8> 0,
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E(1, By = B12E(F~Y3, 1). (1

From Eg. {2.1}, we see that E(8) = E(1, 8) has a kind of three sheeted structure.
Moreover, since Hy = p2 + x4, V = x? does obey Eq. (1.1), E(e, 1) is analytic about
a = 0o that £(1, ) has an expansion

E(@ = ao8'3 + a3 + asf + a5+ (2.2)

converging for | 8] large.

Two papers appearing in 1969-1970 considerably expanded our knowledge of the
analytic structure of £(#) and of its RS series. The first two by Bender and Wu [1,
7] did many things: {a) computed the first 75 coefficients of the RS series for E(5)
about 3 = 0. Tf one thinks of the formulas for the RS coefficients or of Feynman di-
agrams, this seems very forbidding but by using the fact that V only links an unper-
turbed state to five others, one can get recursion retations. As discussed by Cizek at
this conference, this is a theme which in a sense can be repeated in Eqs. (1.4) and (1.5);
(b) numerically analyzed the asymptotics, obtaining the empirical Bender- Wu formula
(1.6); (c) studied the analytic structure of £(8) in a modified Wk B approximation.
While this was not rigorous, all the qualitative features are consistent with the rigorous
results obtained subsequently. The major features they found are (i) there are no
singularities in |argf| < =, i.e., in a plane cut along the negative axis, there is an an-
alytic continuation of E(S) from 8 & [0, =); (ii) on the natural three sheeted surface
given by Symanzik scaling, parametrized by —3w < 8 < 3, there are lots of singu-
larities; indeed, an infinite number of Bender- Wu singularities which accumulate
at § = 0; (iii) these singularities have asymptotic phase £% . Since E(8) is real for
{8 real and has a definite phase for arg = 3%, the singularity structure in 0 < argf
< 3, is repeated fourfold, so this asymptotic phase says that the singularities do their
utmost to stay out of the way; (iv) the singularities are all square root branch points;
(v) by starting at 8 > 0, analytically continuing in A then returning to 8 > 0, one always
obtains an even parity eigenvalue. Morcover, all even parity eigenvalues are obtained
in this way. Unfortunately, this later fact has never been proven but an analogous fact
is known for one-dimensional energy bands as functions of quasimomentun, see Kohn
[31] (and Avron and Simon [32]) and the analog is “generically” true for finite ma-
trices; see Refs. 32 and 33. Feature (iv) also is generically true [32].

In a long paper motivated in part by Bender and Wu [7], Simon [21} studied many
of these questions rigorously:

(i) He proved feature (ii) in the sense that 0 cannot be an isolated singularity of
E(f) on a three sheeted surface.

(ii) He proved feature (iii) in the sense that for any € > 0, there is a B, > 0 with
E(B) as analytic in |8]0 < |8| < B,, |argf| < ¥ — ¢

(iii) He proved the first part of feature (v).

(iv} He noted that if feature (i) holds, then one can write a once subtracted dis-
persion relation for E£(8) and read off the formula for the RS coefficients a,, n =
1:

g, = (1)1 _j; " xmdp(x), (2.3)
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where

dp(x} = (rx) "V ImE{(—x"" +i0). (2.4)
(v) If (p2 + x2 + Bx*) = Ey, then

ImE = Im@ S x4\ dx(f[¥(0] 2 ),

valid if |argB| < w. Thus ImB > 0, implies ImE > O (on the first sheet), so dp in Eq.
(2.4) is positive.

(vi) Not knowing, initially that feature (i) held, he numerically computed Padé
appreximants {using the computed coefficients of Ref. 7) finding rapid convergence
and the monotenicity properties that would hold by the Stieltjes theorem if feature
(i} were true. (Earlier, similar calculations were done in Refs. 34 and 35).

{vii) He noted that formally the asymptotic formula (1.6) is equivalent via Eqs.
(2.3) and (2.4) to

ImE(—B + i0y = (2/m)Y 2 exp(—1/3B)[1 + O(1)]. (2.5)

The main moral to be drawn from the above is that the analytic properties can be
quite complicated and that summability can work in spite of the Bender- Wu singu-
larities. Those singularities will not enter in our discussion again although they do enter
in some elements of the Stark problem as discussed by Benassi and Grecchi [36].

With this background we turn to the main themes of summability and large or-
ders.

Subsequent to the work of Bender and Wy and Simon, Loeffel, and Martin [37]
were able to prove feature (i) by expiditing some very clever ODE arguments which
do not extend to multidimensional oscillators. Loeffel et al. [31] then combined these
results to announce Padé-Stieltjes summability of x* and x® oscillators and Graffi
et al. proved Borel summability of £(8) including the result that the Borel transform
B{x) is analytic in a plane cut only in {—=, —B) for some B [38].

As for deriving Eq. (1.6), Bender and Wu have published three different demon-
strations (in the sense of convincing a reasonable but not a stubborn man). Their first
[39] analyzed the recurrence relation and I must confess to have never been convinced
that this was much more than the numerical analysis already given. The third dem-
onstration [40,41] is an intriguing analysis of the size of a typical Feynman diagram;
in my opinion, this approach deserves much more attention and development than
it has received.

The middle demonstration of Bender and Wu is one of the definitive approaches
to the large order problem which we will call (along with others) the Bender- Wu
method. It has three steps [39,42].

S'tep (1): Obtain, as Simon [21] did, the RS coefficients via a dispersion relation
and thereby reduce the problem to obtaining the asymptotics of ImE(—8 +i0) as 8
{ 0. Much later, Herbst and Simon (43] noted that this step does not even require
global analyticity. Suppose £(S) is a function obeying (a) E analytic in {80 < |8|
< R, |argf| < }, continuous in the closure of the this region; (b) ImE(—£ +i0) 2
0 for 8> 0; (c) £(B) has Z7-¢a,H" as asymptotic series for 3 | 0, 8 real. Then write
E () for 8 > 0 using the Cauchy integral formula and a contour starting at —R —
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{0, running around the circle of radius R to —R + /0, then just above the negative axis,
around 0 and finally just below the axis to —R — /0. One finds [using (b) for technical
reasons], that

R
ay = (=1)r*! j' x1dp(x) + En,
4]

with dp still given by Eq. (2.3) and with
|Ex| < CR-.

Thus again, the large # behavior of @, can be obtained by finding the small § behavior
of ImE(~8 + i0).

Step (2): Interpret ImE(~5 + i0) as the lifetime of a decaying state. In the an-
harmonic oscillator case, when 8 is very small, p2 + x2 — Sx* is the formal Hamilto-
nian in a potential which has high bumps before going 10 —= at x = + o, Thus the
cigenvalues of p? + x2 should decay by tunneling.

Step (3): Compute the width ImE(—§ + {0) for 8 small by using WKB ideas. Indeed
by doing a detailed calculation, Bender and Wu [42] obtained not only Eq. (1.6), but
the leading errors in the format of multiplying the right-hand side by [} + a/n +
O(1/nD)] for explicit a. _

These ideas were further developed and extended to other types of oscillators in
papers by Bender, Wu, and Banks [44-46]. The paper of Bender and Wu [42], while
not rigorous, is sufficiently careful that the rigorous proof of Harrell and Simon [8]
could be based on Ref. 42 not only in strategy, but at some points in tactics also. The
main problems in the proof are that p? 4+ x2 — Bx*is not a reasonable operator (indeed
it is not essentially self-adjoint) and so Step (2) must be properly interpreted and that
one must do a fot of slugging to get rigorous error estimates in WKB. One exploits a
variation of parameters approach to WKB developed especially by Froman and Froman
and co-workers [47-49].

3, Zeeman Problem

By the (hydrogen) Zeeman Hamiltonian, we mean the Hamiltonian of a “hydrogen”
atom in a constant magnetic field B. If the field is in the z direction it is convenient
to use the azimuthal gauge

a(x,y, z) = (—/:By, :8x,0),

sothat (inatu,m=e=h=1)

»

H(BY="h(V — a)2 + {r| ™! (3.1
commutes with L, = —i(x 38y — y 9/dx), indeed,
H{B}y=—"hA — |¢| ! = BL, + Y4B%p?, (3.2)
where
p2=x1+yL

Because L, and H(B) commute, L, can be diagonalized and so the BL, term acts
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like 2 constant; i.e., in studying Eq. (3.2}, we may as well drop the BL, and think of
the operator

=1hA = |r|~1 + ap?, 3.3)

Analytic properties of the eigenvalues in a were studied by Avron, Herbst, and
Simon [9,50,51] (who did not restrict themselves to hydrogen). The region of analy-
ticity includes a cut circle so they were able to obtain Borel summability for hydrogen
and for all other atomic systems.

Mathematically, there is a subtle problem Avron et al. had 1o solve which does not
enter in the oscillator case. An important step in controlling complex coupling constant
is stability of eigenvalues, i.c., there are eigenvalues of Hy + e (@ complex) close
to those of Hy. In the oscillator case this follows from #ormr convergence of the resolvent
of p2 + x2 + x4 to that of p? + x2 as | 8| | 0 as long as jargB| staysin (—7 + ¢,
= ¢€). This cannot hold for Eq. (3.3) because for a = 0, |arger| < 7, Eq, {3.3) cutoff
in z, has a compact resolvent but ~1,A — |r|~? does not. An interesting alternative
to the approach Avron et al. used for this stability question has been presented by
Hunziker and Vock {52).

The above concludes the first step in the Bender-Wu scheme as described in Section
2. The other steps in the scheme were implemented by Avron [10] (see his contribution
to this issue) who found E{B) ~ Z upa:,82" + a8 with

a2 = (=121 (4/m)5 2 —dn(4n + ) (3.4)

in agreement with numerical calculations [9]. The difficulty is that even afier taking
azimuthal symmetry into account, the problem is intrinsically two dimensional so that
WKB is conceptually and especially mathematically in much worse shape than in one
dimension. For this reason, Eq. (3.4) has alluded mathematical proof thus far.

Another aspect of this problem is that the path integral formalism does not appear
to be applicable; see Section 5.

Finally, we note that the units here are such that B = 1 corresponds to a field of
about 10° G. The laboratory fields are extremely small but in astrophysical applica-
tions, one would like to be able Lo compute E(B) fairly accurately for 8 ~ § to 1000,
In the analogous regions for anharmenic oscillators, one can compute £ to 20 places,
but so far accurate computations in the hydrogen Zeeman problem have not been
made. (At this conference, Zinn-Justin described preliminary calculations which seem
to be very accurate.) One of the difficulties is that the large B asymptotics is slow and
complicated containing {InB)~! and In(InB)/InB terms [33,54].

See Ref. 55 for additional information including degenerate levels.

4. The Stark Problem
By this, we mean the family of Hamiltonians
H(Fy=—A— 1"+ Fz=Ho+ FW, (.1

describing hydrogen in a constant electric field. At first sight, it appears that sum-
mability methods cannot possibly be applicable here, because the eigenvalues of Hg
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dissolve into continuous spectrum for F = 0 {and real). In some sense, what occurs
is a resonance and so it should have an imaginary part. But direct summation of a real
series (and the RS series is real) should be real. In addition, one finds that for the ground
states, the series have the form Za;,F2" and calculation of the first few @3, show they
do not seem 1o alternate sign but to all be negative.

The beautiful discovery of the applicability of summability ideas to the Stark
problem in hydrogen by Graffi and Grecchi [56] was a considerable surprise. Their
work is based on an old idea of Schradinger [57] and Epstein [58] that if H{(F)y =
Ay is multiplied by r, the system separates in “squared parabolic coordinates™ into
anharmonic oscillators; explicitly, if A(F) is an eigenvalue of angular momentum /
of Eq. (4.1), and if E{a, B) are the eigenvalues of ~d%/dx? + ax? + x4+ (17 -
AT )

E{(—=X,WF) + E{=X, —hF) =2 (4.2)

{Subsequently, Benassi et al. [59] realized that Eq. (4.2) implies that a formula of
Banks et al. [46] for ImE(1, =8 + i0) is “equivalent™ to “Oppenheimer’s formula™
for ImA(F).}

The Graffi-Grecchi work was considerably illuminated by simultaneous work by
Herbst [60] on extension of complex scaling ideas [see the review issue of Int. J.
Quantum Chem. 14 {(1978)] to Eq. (4.1). The two were then synthesized by Herbst
and Simon who were able to prove summability in general complex atoms [20,43].

What arises is the following picture:

(a) If M(F) is defined to be the resonance of H(F) near Eq = = with ImA(F) >
0, then A{F) has an analytic continuation to a region {F|{F| < Fo; =8 <argF <«
+ &) (actually & can be taken to '4m).

(b) A(F) has an asymptotic series in the region above of the form Za,, F2*,

(c) By writing A as a function of 2 and using the ideas in Step (1) of Section 2 or
equivalently using a Cauchy formula with a contour consisting of a semicircle and
a piece above the axis, one reads off the Herbst-Simon formula

R
azy =27 J’; F-24=1 ImE(F) dF + O(R-"), (4.3)

(d) The function g(x) = A{ix) is Borel summable from the series (—1)"as,. A(F)
for real F cannot be recovered directly from Eq. (1.17), but it can be recovered from
Eq. (1.19) by choosing # suitably.

1f one plugs the asymptotic formula for ImA(f} [61],

ImMF) = —1{F =) exp(—YF) (4.4)

into Eg. (4.3), one finds

az, = =62+ 1(2x)-12m1 + O(1)) {4.5)
in agreement with numerical calculations by Silverstone [62] and by the Waterloo
group [63]. For further details including excited, especially degenerate states, see Ref.

63. Privman [64] has found that with proper normalization the a, are all integers and
computed the first 30 a, exactly, e.g., @30 is given as a 130 digit number!

Er———Y
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§. Path Integrals

There is a very elegant and powerful approach to the large orders problem invented
by Lipatov [65] and extended and developed especially by the Saclay group in a series
of papers including [66-69]. To describe the idea, let #{8) = '4(p? + x2 — 1) + x4,
and for T fixed, look at the perturbation series

Zha ()" (5.1
for
Ttlexp[-TH(D} (5.2)

T:he theory of path integrals (see, e.g., Ref. 2) yields an expression for Eq. (5.2},
viz.,

s exp(—ﬂ f T g4s) ds] (), (5.3)

where dr(g) is 2 measure on continuous functions ¢:[0, T] — (—=, ) [with boundary
condition g( T} = g{0)] which is formally

| o7
N1 exp(— 3 L G3(s) ds — % J; ’ q(s) ds] d=gq. (5.4)

Here /¥ is a formally infinite normalization constant arranged so that {dv» = 1 and
d=g is formally 7 dg{s). Reading b,(T) from Eq. {5.3), we see that

ba(T) =(_—n'!)1 cxp[n In( j; T 44s) ds)l dv(q) (5.5)

Changing variables from g to +/n g, we get a formal expression

n — =
b (T = (_l)n%fM_(gl]_d__‘l' (5.6)

N

1
F(q)=EJ;T¢1(s) ds+%J;Tq2(.r)—]n ‘I;Tq‘(s) ds.

If fu(7) is the minimum of F over all g obeying the g(T) = ¢(0) boundary condition,
this suggests that the leading asymptotics for b, should be (—1)"[n?"/n!]
exp[—nfo( T)}. Using the formula

with

E(B)=— lim — l1n Friexp[-TH(®])
R

and interchanging the T and n limits, one finds E(f8) ~ Za,B" with

a, = (1)1 [n*/n!] exp(—cn),

¢ = min (% f_: G2(s) ds + % J'_: %) ds = In j: q“(s)ds).‘

where
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This, in fact, yields the leading [i.e., the n! and (3)” in Eq. (1.6)] behavior in the
Bender-Wu formula. By making a Gaussian approximation about the minimizing
point, one finds that one can alse compute the constant and a systematic 1/n se-
ries.

This “Lipatov methed” has the advantage of being formally extendable to field
theories and other sitnations.

Interestingly enough, the asymptotics of integrals like

§ exp[—nG{x/v/m)] dv(g)

using these ideas was studied in the mid-sixties by two students Pincus [70] and
Schilder [71} of Donsker although the context was rather different and their G not
so singular. For more recent developments of these ideas, see Donsker and Varadhan
[72], Simon [2], Ellis and Rosen [73-75], and Davies and Truman [76]. Spencer [77]
found an elementary way of rigorously proving the very leading [#! and (3)"] behavior
in the Bender- Wu formula with these ideas. Breen [78] has with more work obtained
for the full formula.

Avron et al. [50) have noted that these ideas do not seam to be applicable to the
Zeeman problem, The corresponding exp[—TH ()] does not have a {inite trace. The
natural thing to look at is

(Yo, exp[~TH(5) o)

with g the unperturbed groind state. But the corresponding b,{T) are bounded for
T fixed by e{ T)"{n/2)! while the coefficients of £(3) go like n! s0 that one cannot in-
terchange the 7 and # limits.

As a Tinal remark, we note that the Bender-Wu method is applicable to excited
states while the Lipatov method seems to be limited to the ground state.

6. Double Wells

A very interesting class of examples is illustrated by the double-welled anharmonic
oscillator:

H(B) = —£+ x4 26x3 + B2x4. (6.1)

Since F(x} = x2 + 2Bx3 + f2x* = x2(1 + x)? is even about the point x = —1/28
V has identical minimum about the points A = 0 and A = —f separated by a high wall
of height '¢5? for 8 small. Thus for small 8, we expect two cigenvalues near each
eigenvalue of —d%/dx? + x2. The following are the main features:

(1) The pair of levels is scparated by an amount going to zero exponentially in 1 /8
as 8 | 0, with asymptotics given by Wk [5,68,79-81].

(2) The perturbation coefficients az, of the cigenvalue defined by £ (B) ~ ZaB™
diverge like DC”n! {to be compared with (—1)**'DC"n! in the single-welled case)
[68].

(3) There is a formal, only partly correct formula analogous to (2.3), (2.4):

a~ | % g-n dp(), (62)
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dp(f) = B'['LAE(B)]* 4B, (6.3)

where AE () is the splitting of the corresponding eigenvalue [82,83], Equations (6.2)
and (6.3) are semiempirical, based in part on a Lipatov intuition, They seem to give
the right answer for D and C but not for the 1/a corrections.

An interesting application of these ideas has been to the 1/ R expansion in H7, i.e.,
to E{R), the cigenvalues of

~A—|x|-! - |x - Ré|,

with & a fixed unit vector. Since this looks like a double well [79,80], Morgan and
Simon [84] expected the coefficients a, in an asymptotic series to grow like DC n!
The first 11 a,, which had been previously calculated did not seem to have #! growth
but almost magically at n = 12, the ratio a,4/a, locked into a proper ratio. They
numerically computed C and D to two figures. Brezin and Zinn-Justin {83] tried
formulas (6.2) and (6.3) 2nd from the known [85,86] asymptotics for (AE)(R), they
determined C and D analytically. See Ref. 87 for more accurate formulas for g, and
numerical asymptotics.

At this conference both Damburg and Silverstone (the Jatter describing joint work
with Graffi and Harrell) indicated an approach for computing asymptotics of double
well @, which might lead to a rigorous proof, The idea is that the models are summable
along 8 = i and can be continued back to real § where they have a nonzero imaginary
part. (In some double wells, this has been done by Caliceti, Graffi, and Maioli [88]).
On the real axis, the value is the eigenvalue of the initial differential equation but with
a non-self-adjoint boundary condition. If wkB methods can compute the asymptatics
of the imaginary part of this eigenvalue, then a dispersion relation will yield the as-
ymptotics of a,.

7. A Summary of Rigorous Results

Here we want to give references for which proofs are given for things discussed here
are proven rigorously and to state the more important open questions from a mathe-
matical point of view. We emphasize we use “Borel summable”™ to mean more than
just (—1)"CD"n! asymptotics.

A. Anharmonic Oscillator

The series are asymptotic (see Refs. 3 and 5 and references therein), Borel summable
for any finite number of degrees of freedom [38] and Stieltjes summable for one degree
of freedom [89]. The Borel transform is analytic in a plane cut in (—, —A4). The
Bender-Wu formula has been proven by a method following the Bender-Wu method
[8] and by a method following the Lipatov method [78].

o ot i i e e 2 e
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B. Field Theories

The earliest Borel summability results for cutoff ¢4 theories are in Refs. [90,91].
The Feynman series for the Schwinger functions for @3 [92], ¥ [93,94] and ¢ are
Borel summables [95]. (For earlier results on asymptotic series see Ref. 96 for ¢4, Refs,
97 and 98 for ¥, and Refs. 99 and 100 for ¢1.) Many other series in the ¢3 and ¢}
theories are also Borel summable [101,102].

C. Zeeman Effect

The RS series are asymptotic and Borel summable [54], Enough analyticity is known
to reduce the large # behavior of a, to small  behavior of ImE(—8 + i0).

D. Stark Effect

The RS series for the resonances in hydrogen are asymptotic [60] and Bore! sum-
mable [56] about imaginary field, The same is true for complex atomns [43,103]. There
is enough analyticity to reduce the asymptotics of a, to those of ImE{(S + i0) [43].
For hydrogen, these asymptotics have been rigorously controlled [8].

E. Double-Well Oscillator

The levels split in two with each having the same asymptotic RS series [5]. The
splittings are given rigorously by WKB tunneling formula [81,86].

F. 1/R Expansion

For general molecular systems, the series are asymptotic [84]. For H7, the splittings
have been rigorously computed [86].

Here are some of the major open questions in this area from the point of view of
rigorous results:

(2) Double wells: Asymptotics of a,: Is there any precise meaning one can give
to something like Eqs. (6.2) and (6.3)7 If not, can one rigorously obtain asymptatics
of a,, by some kind of instanton analysis?

(b) Double wells: Summation: s there any natural procedure to obtain the ¢i-
genvalues (there are two of them) from the perturbation theory? It would be very
impressive to obtain the Born-Oppenheimer curves for Hito 20 place accuracy!

(c) Zeeman: Asympiotics of a,; Can one make Avron’s analysis [10] rigorous?
This would be very interesting since it would require mathematical control of multi-
dimensional WKB of the type thus far only available for one-dimensional WKB by the
use of ODE methods.

(d) Srark for complex atoms: Can one control the width of atoms other than hy-
drogen as F | 07 This would also require multidimensional Wks.

(e) Lipatov method for field theories. Can one prove rigorous results on the as-
ymptotics of the perturbation ceefficients in a field theory? The simplest obiject (the
analog of Triexp[—TH(B)]} controlled in Ref. 2) would be

Sduo(d) elp(—ﬂ ﬁ,|<1:¢4(x):d2x)’

era il
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with dug(e) the Euclidean field Gaussian measure [2] and :-: is Wick ordering.

(fy Average Feynman diagrams: Can one prove the Bw formula rigorously by their
approach in Ref. 1047

(g) Bw formulas for the coefficients in n™ expansion: We have heard from Sil-
verstone at this conference the coefficients by in the improved equation (1.6},

@ = (Vo/TYH—1)"" 13T (n+ L)1+ byn~' -+ b~/ + -+ ),

themselves seem to obey a BW formula. Can one prove anything rigorously about this?
Since the b; are given in terms of diagrams [105], maybe the approach of Ref. 104
would be useful.

At the conference, intriguing ideas were presented concerning problems (a) {by
Damburg and by Silverstone), (b} (by Zinn-Justin), and (d) (by Avron).

8. Some Personal Reminiscences

Having spent much of my professional career so far as a kind of wunderkind, it is
a new (and on the whole pleasant) experience to be in a position where 1 can (perhaps
immodestly) regard myself {together with Car! Bender and Tai Wu) as one of the
“grand old men” of the subject of a conference. I hope 1 will therefore be indulged,
especially in light of the retrospective nature of part of this conference, if I tell a few
of the incidents in my own part of the story.

Around 1967 both Arthur Wightman at Princeton and Carl Bender and Tai Wu .

at Harvard, unaware of the other’s interest, began to think about the question of
whether the perturbation series for the eigenvalues of p? + x2. 4+ 8x* had more todo
with the eigenvalues than merely being asymptotic, whether other perturbation series
(for example, about § = =) might be useful and the related analyticity questions.

1 should emphasize that in both cases the motivation was to think of this as a model
quantum field theory. I know Wightman and [ assume Bender and Wu were not really
concerned with accurate calculations of the eigenvalues; indeed, one can get extremely
accurate eigenvalues with variational methods. This point was lost by some of the
people who wrote later; one of the few penalties of having worked in this area has been
the refereeing of papers which find a method which can get eigenvalues to only two
or three places by some uncontrolled technique with my paper and the Bender-Wu
papers quoted to show why the subject is interesting!

Wightman gave the subject as a Ph.D. thesis problem to Arnie Dicke, a graduate
student at Princeton and Bender used this as his thesis problem. By early 1968 when
1 got involved 1 was working on a different problem under Wightman's supervision,
also one on convergence of field theory perturbation series [ 18]. I got involved originatly
because of a technical problem Dicke and Wightman were having justifying Symanzik
scaling for complex coupling.

At the time I was trying to absorb some of the things in Kato’s famous book on
perturbation theory [3] and was regarded as a local expert on the subject although
i was only an expert in the relative sense (considering others in Princeton) rather than
any absolute sense. When I initially tried to read Kato, T cursed it soundly: Here he
was telling me all about the problems of general operators while 1 had the feeling that
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no one could possibly care about anything but self-adjoint operators which wete clearly
much simpler, However, once I got into the complex coupling business and later when
| worked on complex scaling, I blessed the book!

The solution of the complex Symanzik scaling problem was simple: One implements
the scaling for real parameter and then rather than trying to implement the scaling
for complex parameters, one only invokes analyticity of certain subsidiary functions.
That is, rather than argue that the operators p? + x? + Sx* and e~ 20(p2 4 ¢4fx?
+ ¢%08x4) are unitarily equivalent (they are not), one deduces equality of eigenvalues
by invoking analyticity of the cigenvalues of p + cx? + Bx* in o and § and the
cquality if ¢ is replaced by a real number.

This is of course one part of the ideas introduced by Combes under the rubric *di-
lation analyticity,” now usually known as complex scaling. This illustrates the “missed
opportunities” aspects of the history; places where looking back, one can see that 1
failed to pursue a direction that would have been promising. This is not to say that
I can imagine having made the Combes discovery by pursuing this line. Rather, while
| worked in both areas, 1 am embarrassed to say that I did not appreciate the close
connection until the work of Graffi and Grecchi [56] roughly five years after the
Combes work. And this realization overcame some psychological barriers | had in
trying to understand how the Bender-Wu method could be made precise leading to
my joint work with Harrell (8].

It is not sutprising that Wightman and Wu had professional connections but perhaps
a trifle surprising that Bender, Dicke, and 1 did; after all graduate students at different
schools often don't know one another. But 1 had been an undergraduate at Harvard
when Carl arrived as a graduate student and we took a number of courses together.
Moreover, a fellow graduate student of Carl’s named Kenny Klein had known Arnic
Dicke as an undergraduate. In fact, most of the Bender-Wu results {from Ref. 1) were
learned in Princeton first by Kenny telling Arnie. One should not think that there was
A situation of tremendous competition between Harvard and Princeton in this work,
In the first place, Bender and Wu had results six months toa year before we had any
inleresting results, More importantly, the level of rigor and thus the methods were
very different and to some extent the concerns differred: Bender and Wu worked
mainly an the series itself and we on how the series related to the eigenvalues. The main
overlap was in the analyticity properties where there is no question that the intuition
developed by Bender and W using an uncontrolled approximation was invaluable
in the rigorous work we did.

One example involved the Bender-Wu singularities. The initial hope at Princeton
was that perhaps the large § expansion (2.2) had infinite radius of convergence, thereby
making up for the zero radius of convergence of the RS series. The Bender-Wu
singularities, if they really existed independently of the WKB approximation, destroyed
this idea and their existence became important to us. In 1968-1969, Wightman was
on leave at the IHES near Paris. He discussed the anharmonic oscillator at several

places he visited and in particular at CERN where H. Epstein, V. Glasser, J. J. Loeffel
and especially A. Martin made valuable comments during his visit and later. In par-
ticular, Martin gave a simple proof that E(«, 1} could not be an entire function: If
(p? + ax? + x*)¢ = E(a, 1)p, then
ImE(a, 1) = Ima( fx|e(x)]* dx/ [} (x)|* dx)
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so that E{a, 1) is a Herglotz function, i.e., ImE > 0 when Imee > 0. Every such entire
function is linear but it is not hard to see that E(c, 1) is not linear. Thus E cannot be
entire and Martin had proven the existence of at least some singularities.

Fortunately, when Wightman wrote me abont Martin's result, and 1 went to the
library to look up the proof of the fact that every entire Herglotz function is linear,
I could not understand the proof which appealed to the Herglotz representation the-
orem. 1 had to find my own proof which extended to show that if f{«) is analytic near
o, and if Imf > 0 when Ima > 0, then -

fay = :i aa”n,

and from this one could see that E{e, 1) could not be analytic near infinity, L.e., it had
to have infinitely many singularities.

Encouraged by Dicke and Wightman, I continued studying the analytic properties.
In the early spring of 1969, 1 got a letter from Wightman which began “The specter
of Padé is haunting Europe. § Matricists of the world unite” (I always gave him high
Marx for this suggestion). During 1968-1969, Daniel Bessis in Saclay had system-
atically been applying Padé to partial wave amplitudes in the perturbation theory for
realistic field theories and he found that if coupling constants were arranged to get
a few particle poles right, other poles came right (thus partially verifying the vision
of G. Chew enshrined in the then popular “S-matrix theory™}. Bessis had a large
number of very talented young theoretical physicists working with him; three of them,
J. Zinn-Justin, 8. Graffi, and V. Grecchi, eventually played important roles in the ideas
I have reviewed in this paper. Saclay is just down the valiey from Bures where the IHES
is situated and Wightman got a good dose of the potential of Padé. He wrote suggesting

that I try to compute Padé for the anharmonic oscillator (I heard later that Sidney

Coleman had asked Bender during his Ph.D. oral exam if he had considered computing
Padé approximants from his series but the suggestion was never followed up).

1 know almost nothing about computers (and what I learned then was somewhat
like the German I learned for my language exam in grad school; having crammed it
in rapidly, I quickly forgot it all!). I was fortunate in several ways. First, Bender and
Wu had already computed the a, up to # = 75 and secondly the Padé¢ table is given
by very simple determinantal formulas. With good determinant subroutines, the
program is rather trivial. Thirdly, 1 had a good fricnd named Rick Bauer who wasa
fellow graduate student and who helped me to write the program. Finally, at the time
graduate students could compute for free on a program called WHAT FOUR (or
WHATNOT or something like that) which allowed one to run for up to six minutes
al a time (real time in a time sharing system). I discovered that I could compute di-
agonal Padé's, up to [20,20] within the allotted time, This was lucky since I later heard
that around [23,23}, roundoff error tended to pile up giving nonsensical answers. The
numbers were spectacular; one had rapid monotone convergence to answers in
agreement with the variational numbers. (I later learned that Reid [95] and Rousseau
[35] had done a similar calculation but not having the Bender-Wu numbers not to
such high order.)

I had beginner's luck with the program. The first one [ wrote worked beautifully
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after one hitch. Initially, 1 put in the a, all as positive numbers without putting in the
alternating signs but once I caught this it computed perfectly.

1 misunderstood a result quoted in Baker’s review article [25] and using the non-
theorem that resulted, T found a “proof” of the convergence of Padé which the referee
ripped to shreds. That summer (1969), [ attended a summer school at Brookhaven
where Nick Khuri was one of the lecturers. He was so taken with my numbers, he made
sure | visited Rockefeller to show the results to Andre Martin who was passing through.
He and Loeffel then were able to provide most of a proof which was hammered out
in some correspondence between them and Wightman which resulted i our joint
announcement. Loeffel, who 1 did not meet for some years afterwards, was the first
of my coauthors whom I only met subsequent to our coliaboration.

Having met success with Padé, I took Hardy's book [24] out of the library. However
a quick perusal only showed me methods devoted to marginally divergent series and
I missed his discussion of Borel summing completely. During 1969-1970 § preprinted
my long paper [21] and sent it to various people and fortunately S. Graffi and V,
Grecchi got a Xerox copy from someone, probably Bessis.

In the summer of 1970 T traveled to Europe for the first time mainly to be a minor
spoaker at 2 Padé festival Bessis was running in Cargdse and to be a student at a
summer school at Les Houghes, While I was in Cargése, Grecchi sought me ont. He
and Graffi had done some Borel sum calculations for the anharmonic oscillator and
he came to me with that, with a Xerox of the relevant part of Hardy's book and with
a sketch of how to use my results to verify the summability. There was one step that
they wanted me to fill in. When I was able to, we agreed to write a three-authored
paper. He and Graffi were supposed to visit me in Les Houches but due to some pas-
sport irregularity Grecchi was stopped on the Italian side of the Mont Blanc tunnel
s0 only Graffi showed up. This time, I had met both coauthors, but not together!

[ should mention a few facts about the Bender-Wu formula before closing this
section. Perhaps the most impressive element in the history is the constant Va2
in front. The I" and 37 are almost trivial to read off from the a, and when they were
done Bender and Wu had a constant to a few figures. They somehow concluded this
constant was 4/6/73/%; amazingly this was the right answer!
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