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SPECTRAL ANALYSIS OF MULTIPARTICLE SCHRODINGER OPERATORS
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The first lecture is an introduction to some recent work by Peter Perry,
Israel Sigal and me [2,3] on the spectral analysis of N-body Schrodinger opera-
tors. Our work is based in part on some beautiful ideas of Eric Mourre [1].

Given masses m. and functions (potentials) on RY, Vij’ with 1 <1 < 3§ <N,
we define an operator H on LZ(RV(N'])), as follows: think of R¥N1) a5 N tuples
N .
of vectors r; in R” with miry = 0. LetV = ‘Z' Vij (r; - ry) and let H, be the
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Laplace Beltrami operator associated to the metric Z mjdrg. Then H = HO + V.

Perry, Sigal and Simon consider potentials Vij = VE}) + Vgﬁ) + VE?)
the following six operators are -a-compact on LZ(R“}: (1} (]+ixéng(]);
@ v @) e ® ) v sy w3,

(6) (1+Jx|)2vvv 3. Roughly speaking any x & potential is allowed; sTower

where

falloff requires more smoothness but very slow falloff {e.g. (Rnr)-]-g) is
allowed.

Theorem [2,3] Under the above conditions:

(i) H has empty singular continuous spectrum.
(ii} The thresholds of H are a closed countable set.
(iii) Non-threshold eigenvalues are of finite multiplicity and such eigen-
values can only accumulate at thresholds.
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SCHRODINGER OPERATORS WITH ALMOST PERIODIC POTENTIALS

In the second lecture some general conjectures and results about operators
of the form :
~d/dx% + V(x) = H
on L2(-m,w), where V is a (Bohr) almost periodic function,are discussed. This is
a subject of intense current interest [1,2,4,5,9). Earlier significant results
can be found in [3,6,7,8].
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Two main features are to be expected: .
(i) The spectrum of H is a Cantor set for "most" almost periodic V.
(ii) If ¥ is multiplied by a sufficiently large constant, H will have
dense point spectrum at low energies.

Connected with (i) is anomalous long time behavior for the quantity
(¢, exp(-itH)¢) [1]. So far the proven results concerning (i) and (ii) are
somewhat limited: (i) is proven for generic limit periodic Vv [1,5], and (ii)
has been announced [2] for some special finite difference analogs of H. Sarnak
[9] has proven (i1} for such operators with ¥ a special complex valued function.

One interesting application is to think of H as a Hi11 operator (1inear
stability operator in classical mechanics) as would arise in the study of the
rings of Saturn. [1].
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