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Ahstract  Presentation and discussion of a number of important open
problems in mathematical physics.

0 Introduction

When the editors of this volume asked me to contribute, I had mixed
leclings. Since I had recently written several long review articles, I was very
reluctant to write another. One the other hand, I had fond remembrances of the
scattering theory meetings I attended at Oberwolfach in 1971, 1974 and 1977,
meetings which clearly had an important positive influence on the field. In
thinking of the rather special character of Oberwolfach and its vitality, I realized
an article which looks towards the future belonged among those rigthfully
celebrating the past. The editors responded very warmly to my suggestion of an
article on open problems in mathematical phystcs: hence this article, By looking
towards the future, I also was able to survey broad areas of mathematical
physics; unfortunately, Oberwolfach has intersected mathematical physics
miginly in scattering theory and in classical mechanics, but [ hope the future sees
conferences in areas like quantum field theory, statistical mechanics and mathe-
matical aspects of condensed matter physics!

It is with some misgivings that I set out in writing this article. Broad
problem survey articles bring to mind Hilbert’s famous article [1]. 1 am no
Hilbert, and I certainly don’t want anyone to think I feel any comparison is
possible except using Lev Landau’s logarithmic scale. Nevertheless, I have
borrowed some of Hilbert’s devices, While many of the problems stated are quite
explicit and precise, some are so vague as to be close to Judicrous. Also, even
more than Hilbert, I use the device of grouping several problems into “one”, but
when I do that, I have labeled them A, B,. .. Indeed, my 15 problems are really
32, explicitly:
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Problem 1A:
iB:

Problem 2A:
2B:
2C:

Problem 3

Problem 4A:
4B:

Problem 5A:
5B:

5C:
5D
Problem 6
Problem 7
Problem 8 A:
8B:
Problem 9 A:

9 B:
Problem 10 A:
10B:
10C:
10D
10E:
Problem 11
Problem 12 A:
12B:
12C:

12D:

12E:
Problem 13

Problem 15

Almost always global existence for Newton’s equations
Existence of non-collisional singularities in the Newtonian
N-body problem

Ergodicity of gases with soft cores

Approach to equilibrium

Asymptotic abelianness for the quantum Heisenberg dynamics

: Turbulence and all that

Fourier's heat law

Kubo formula

Exponential decay of v=2 classical Heisenberg correlations
Pure phases at Jow temperatures in the v23 classical Heisen-
berg model

GKS for classical Heisenberg models

Phase transitions in the quantum Heisenberg model

: Existence of ferromagnetism
. Existence of continuum phase transitions

Formulation of the renormalization group

Proof of universality

Asymptotic completeness for short range N-body quantum sys-
tems

Asymptotic completeness for Coulomb potentials
Monotonicity of ionization energy

The Scott correction

Asymptotic ionization

Asymptotics of maximal ionized charge

Rate of collapse of Bose matter

: Existence of crystals

Existence of extended states in the Anderson model
Diffusive bound on “transport” in random potentials
Smoothness of & (E) through the mobility edge in the Andetson
model

Analysis of the almost Mathieu equation

Point spectrum in a continuous almost periodic model

: Critical exponent for self-avoiding walks
Problem 14 A:
14B:
14C:
14D:
: Cosmic censorship

Construct QCD
Renormalizable QFT
Inconsistency of QED
Inconsistency of ¢}

In deciding what is mathematical physics, I have generally tried to follow
two basic rules: (1) Problems like “quantize gravity”, where it is clear that the
basic underlying physics is not undersiood, have not been included even if their
solution is likely to involve a lot of mathematics. (2) Problems in “pure mathe-
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matics”, even quite close to mathematical physics (like operator algebras) have
generally not been included (which forces me to give some explanation in
connection with Problem 13).

In an undertaking like this, [ bave benefited greatly from advice and
information I received from a number of colleagues whom I consulted. I would
like to thank Jiirg Fréhlich, Bob Geroch, Jim Glimm, Anatoly Katok, Joel
Lebowitz, Elliott Lieb, John Mather, Roger Penrose, Derck Robinson, Don
Saari, Alan Sokal, Arthur Wightman and most especially, Tom Spencer, for
their aid.

1 Existence for Newtonian Gravitating Particles

Newton’s equations for N-particles of masses m,,...,my interacting
gravitationally in units where G=1 are

m.'?'.'=Emimj(fj":f)l’:f_fjra (1.1}
i¥i

It is obvious that already for N = 2, (1.1) can fail to have solutions global in time
for suitable initial conditions, e. g. /; =F, =0. For N =2, it is easy to see that the
set of initial conditions leading to a collision is a subset of those conditions of
total angular momentum zero, so the set of initial conditions for which global
existence fails has measure zero if N =2,

Problem 1 4 (Almost always global existence for Newton's equations). Prove that
the set of initial conditions for which (1.1) fails to have global solutions has
measure zero in RS,

We show our general feeling for what we believe is the answer, but we
should emphasize that some excellent mathematicians believe that there may be
an open set of initial conditions leading to non-global solutions.

To be more precise, the problem of singularities of (1.1} is connected with
some pair colliding, i.e. we say a global solution fails to exist if at some finite

time, T, lim [min|F, (f}—7;()]1=0. It is easy to see that the set of initial
11T j

LR - . .
conditions, N E, leading to this is an F, so if N E has measure zero, its comple-
ment is automatically a dense G,.

We call a singular time, T, a collision if, for each i, lim F; () exists (and is a
1

1T

finite point). A binary collision is one where only pairs of 7, {T) are equal. The set
of all initial conditions leading to a collision we will call C, and its complement in
NE we call NC. The subset of C leading to binary collisions is denoted BC.

Painléve [2] appears to have been the first person to have seriously
discussed these questions and, in particular, he proved that NCisempty if N = 3.
Much more recently, Saari [3] proved that N C has measure zero if N=4. The
analogous problem is open for N = 5 and, as we shall see, is the key question.
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BirkhofT [4], applying a result of Sundman [5], showed that BC has
measure zero, and in 1972—73, Saari proved [6]:

Theorem 1.1 C has measure zero and is Baire first category for any N.

This result does not immediately imply the same for various invariant
subsets of lower dimension (i.¢. f~C has zero measure in the appropriale
measure on an invariant subset of lower dimension). For [ the set of configura-
tions lying in a fixed plane, this is proven by Saari in the same references, and for
the manifold of fixed angular momentum, it is a result of Urenko [7]. Saari’s
proof depends on an interesting and detailed analysis of precisely what happens
at a collision.

Theorem 1.1 reduces an affirmative solution to problem 1 A to showing
that N C has measure zero, and in particular, Saari’s later result that ¥ C has
measure zero if N =4 settles Problem 1 A in that case.

One general fact is known about N C, namely:

Theorem 1.2 (Sperling [8], based on ideas of von Zeipel [9]). For a solution
whose initial conditions is in NC,

lim ¥ |7 (1) = o (1.2)

T

As we have remarked, it is known (Painlévé) that NC is empty when
N=3. There is no proof that it is not always empty, but there are strong
indications it is not. First, for particles on a line there is an obvious way
continuing through a binary collision (have the particles bounce off each other in
their mutual center of mass frame). Mather and McGehee [ 10] found an initial
configuration of 4 particles on the line which, if continued through binary
collisions by this rule, have a time T which is an accumulation point of binary
collisions, and (1.2) holds.

Recently, J. Gerver [11] produced a simple mechanism for non-collisio-
nal singularity in ¥ = 5. He imagines a situation of 3 very massive particles at the
edges of an isosceles triangle. A light “moon™ is rotating about the particle, §, at
the distinguished vertex and it is the “falling™ of this moon into § that serves as
the “engine” pumping energy into the system. A fifth particle travels more or less
around this triangle. Tt moves essentially in a hyperbola as it swings around each
vertex with the edges of the triangle being the asymptotes of the hyperbola. As it
passes each vertex is gives an “outwards” kick to each particle. As it passes by §
it picks up enough energy from the “engine” (i.e. the moon of § ends up in a
smaller orbit after the passage of particle 5 trongh the area of 5) to enable it to
continue its circuit around the enlarged triangle. Scaling arguments show that as
the triangle gets bigger the circuit time of particle 5 decreases geometrically, and
in finite time the triangle becomes infinitely larger. Gerver presents a number of
detailed calculations to support this picture. Since he doesn’t present a complete
proof, we have
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Problem 1 B { Existence of nen-collisional singularities in the Newtonian N-body
problem) Show N C is non-empty for some N and suitable m;.

We caution the reader that Mather has made significant progress on
making a rigorous proof of Gerver’s scenario.

Next, a reason we tend to believe N E has measure zero. In quantum
mechanics, it is a theorem of Kato [12] that globa! solutions of the Schrodinger
equation with Coulomb potentials exist, Since quantum mechanics tends to only
smooth out sets of measure zero, one expects that N E has measure zero. No
doubt this reasoning will infuriate classical mechanics. In any event, if ¥ £ turns
out to have an open subset, the classical limit of the corresponding quantum
theory will be very interesting,

The quantum analog of Problem 1 A is, as we have noted, solved. Indeed,

there is an enormous and more ot less complete literature on the solubility of the
Schrodinger equation summarized in Reed-Simon, Vol. IT[13]. With the recent
paper of Leinfelder-Simader [14] who solved one interesting open question in
this area, only one basic selfadjointness question remains:
Jorgen’s Conjecture Let W(x) Z V(x)on R’ and let M be a finite union of closed
submanifolds in R’. Suppose that —A+V is essentially selfadjoint on
C2 (R™ M) and bounded below. Then — 4 + W is essentially selfadjoint on
CY(R™M).

We note there are counterexamples if the assumption the —A+ V is
bounded below is dropped (see Pg. 155—156 [13]).

We have been careful not to include this among our list of problems. It
has intrinsic interest but its importance is primarily technical. It is significant in
part because it is over 10 years old and several technically strong people have
worked on it withoul success.

2 Open Questions in Ergodic Theory

The founding fathers of statistical mechanics, especially Boltzmann and
Gibbs, realized that the deepest aspect of thermodynamics from a microscopic
point of view was the “zeroth law”, that bulk systems rapidly approach equili-
brium states parametrized by a few macroscopic parameters. By 1530, the
standard wisdom was that the key notion is a proof that the classical dynamics
on the constant energy manifolds of phase space is ergodic (see e. g. Avez-Arnold
[15] for a discussion of the basic notions of ergodic theory). It is ironic that
Sinai's celebrated result that the hard sphere gas is ergodic was announced [16]
at approximately the same time that the KAM theory developed, for one
important consequence of KAM is that many classical systems will not be
ergodic: There will be an invariant subset of phase space consisting of a union of
invariant tori of positive total measure.

It has been 20 years since Sinai’s announcement, and a complete, detailed
proof has not yet appeared except for the (nontrivial) case of two particles [17].
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A partial sketch for N=3,4,5 appears in [18]. Recently, Sinai and Chernofl
[19] have proven that the Kolomogorov-Sinai entropy of a hard sphere gas is
positive, and even that the entropy per particle is positive in the thermodynamic
limit. (While these results are mathematically independent of ergodicity, the
ideas in their proof are presumably an important aspect of a possible proof of
ergodicity.)

Despite the blow that KAM gives to the 1930°s wisdom, it is an intere-
sting question to extend Sinai’s proof beyound the hard sphere gas: His system in
its simplest form involves N particles in a cubic box bouncing elastically off the
walls and each other.

Problem 2 A (Ergodicity of gases with soft cores) Find a class of repulsive
smooth potentials for which the N-particle dynamics in a box (with, say, smooth
wall potentials) is ergedic.

The expected lack of ergodicity for systems with interacting potentials
which are not strictly repulsive requires a convincing revised standard wisdom to
explain the approach to equilibrium. One idea advocated by Wightman [20]
among others is that there is one ergodic component of such systems which, in
the limit as the volume goes to infinity (with constant particle density), occupies
a larger and larger fraction of phase space.

Problem 2 B (Approach to eguilibrium) Verify the above scenario to justify
approach to equilibrium of large systems with forces which are attractive at
suitable distances, or else find an alternate scenario which doesn’t rely on strict
etgodicity in finite volume.

We want to emphasize that the studies of ergodicity of the dynamics of
infinite partial systems (see e.g. [21]), while interesting mathematically, does
not, in our opinion, address this issue. The ergodicity of the infinite particle non-
interacting gas shows that this kind of ergodicity comes from the fact that one
puts equilibrium into the system at infinity by the choice of underlying measure
and that equilibrium “diffuses” into finite regions.

We also note that neither the standard wisdom or the above candidate for
a revised standard wisdom addresses the basic question of why the approach to
equilibrium in the real world is on a time scale so short compared to typical
recurrence times in the system.

Finally, we should say a few words about approach to equilibrium in
quantum systems which is very difficult for many reasons, e. g. in finite volume
the systems tend to have discrete spectrum and thus almost periodic behavior in
time. There has been some interesting study of approach to equilibrium in
infinite quantum lattice systems, but even here much more is unknown than
known. One basic question involves the notion of asymptotic abelianness under
time translation. The notion was originally introduced under space translation
where it is an obvious feature very useful in the abstract study of such systems
(see e. g. Ruelle {22] and Brateili-Robinson [23]). The relevance of these ideas in
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quantum systems is discussed in Chapter 6 of Bratelli-Robinson [23]. Unfor-
tunately, the only examples where it is known there is asymptotic abelianness are
quasi-free states and the closely related one-dimensional X' — ¥ model (on the
even algebra). For simplicity we state the next problem for a definite model, but
any non quasi-free, intrinsically non-abelian multidimensional model would be

interesting.

Problem 2 C (Asymptotic Abelianness for the Quantum Heisenberg Dynamics)
Prove (or disprove) that the multidimensional quantum Heisenberg model has

asymptotically abelian dynamics.

3 Long Time Behavior of Dynamical Systems

Problem 3 (Turbulence and all thar) Develop a comprohensive theory of the long
time behavior of dynamical systems including a theory of the onset of, and of
fully developed turbulence.

This problem is so general as to be verging on the absurd. We include it i_n
part to indicate our strong feeling that this is an area which is not only fashi-
onable but important as well. We state it in this form because it seems the field is
not vet at a level of maturity where one can focus on certain crucial questions;
rather, the first problem is to formulate the really significant questions. For
some recent reviews of some of the more spectacular developments in the area,
sce Feigenbaum [24] or the book of Collet-Eckmann [25].

As for the question of turbulence, there has been considerable progress in
understanding the onset of turbulence (see e. g. Ruelle [26] or Eckmann 2779,
but our understanding of fully developed turbulence is far from fully developed.

The connection between turbulence and the Navier-Stokes equation is
not clear, but there may well be one. In this regard, we should note that the
existence theory for this important equation is not completely satisfactory; see
Foias-Tenam [28] for a review,

4 Transport Theory

At some level, the fundamental difficulty of transport theory is thatitis a
steady state rather than equilibrium problem, so that the powerful formalism of
equilibrium statistical mechanics is unavailable, and one does not have any way
of precisely identifying the steady state and thereby computing things in it

A second difficulty concerns the fact that most transport is a diffusion
phenomena and there is no satisfactory derivation of diffusion from an underly-
ing microscopic dynamics except in some limit in which a physically fixed scale
(like particle sizes) is varied rather than a physically varied scale (like system
sizes).
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To explain this diffusion remark in an example, consider a very crude
model of a linear system with particles moving between a wall at 0, and another
at L. We characterize the fact that we imagine the wall at 0 having temperature
T, and the one at L having temperature T, by saying that upon collision with the
wall, all 0 the particles always come off with velocity ¢, ~ ]/ 7, and upon
collision with the wall at T, with velocity v, ~ YT,. As L varies we imagine
increasing the number of partictes moving back and forth to keep their density
fixed. If we change L and assume the particles are non-interacting, a simple
calculation shows that the rate of energy transport between the two walls is
unchanged although Fourier’s heat law says that it should go as (AT)L™ . If
one, by fiat, imagines that particle interaction causes a diffusion of heat so that
transit times go as L? not L, then the rate of heat transfer has the proper L™!
behavior.

The connection with diffusion links these transport questions with the
material discussed in Section 12.

In the problem below, we would allow a model which brought temperatu-
re in even with as bad a caricature as the above crude model.

Problem 4 A (Fourier’s Heat Law) Find a mechanical model in which a system
of size L has a temperature difference A T between its ends and in which the rate
of heat transfer in the infinite L limit goes as L™!.

There are also serious foundational questions in quantum transport. A
basic formula in condensed matter physics is the Kubo formula for conduction;
sec €. g. [29] for discussion. Not only are the usual derivations suspect, but van
Kampen [30], among others, has seriously questioned its validity on physical
grounds.

Problem 4 B( Kubo Formula) Either justify Kubo’s formula in a quantum model,
or else find an alternate theory of conductivity.

5 Heisenberg Models

Lattice models of statistical mechanics have been fruitful testing grounds
for ideas in the theory of phase transitions. The last 15 years have seen remark-
able progress in the rigorous study of these models, especially the Ising model.
Foreach site  in Z* we imagine a spin &, taking values in §° 7, the unit sphere in
D-dimensions. Given A< Z*, a finite subset, we define

Hi=— Y 6,6, (5.1)
<ay»> e A

the sum being over all nearest neighbor paits in A. Given a parameter ff = inverse
temperatures, we form a probability measure on (S7- )7 by
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S rag=] [lo)e HA duo{e.)/Z4 (5.2a)
Z,=fertm [] diolon) (5.2b)
where dptg (a,) is the usual invariant measure on S~ ' (if D=1, s0 SPl={+1},

dpg(0) =L [8 (6, + 1)+ 3(a, — 1)]. By { />, we mean suitable limits as A appro-
aches Z*. D=1 is called the Ising model, D =2 the plane rotor and D =13 the
classical Heisenberg model. These models are quite different because their
symmetry groups are quite distinct: In D=1 a discrete group, in D=2 an
abelian continuous group and in D=3 a non-abelian continuous group.

Problem 5A { Exponential decay of v =2, D == 3 correlations}. Consider the two
dimensional classical Heisenberg model (v=2, D=3). Prove that for any B,
{g, 6,>, decays exponentially as |e —y| — .

Here is some background on this problem: If lim {6, 0,2+ 0, one

says the model has long range order (LRO), an indicati(lan gf multiple phases (see
Ruelle [22], Griffiths [31], Israel [32], or Simon [33]). For D=1 (Ising), there
is LRO when § is sufficiently large so long as v 2 (Peierls [34]); for D2 2, it is
known there is LRO for § large if v = 3 {Frohlich et al. [35]), but if v= 2, there is
no LRO for any # (Mermin-Wagnet [36]). Dyson [37] gave an intuitive argu-
ment that when v=2, D=2 and f is large, {c, - ¢,),; should only have power
decay; in the *70’s it was realized in the non-rigorous theoretical physics literatu-
re (see e.g. [38]) that due to a renormalization group intuition, one should
expect that there is this power decay when D=2 but not if D23 Recently,
Frohlich-Spencer { 39] have proven that if D = 2, v = 2 there is only power decay
if f# is large. The important open question above concerns whether the situation
is different if D = 3, v = 2. Because of the connection with “infrared freedom™, an
important notion in Q.C.D., this problem has importance in quantum field
theory.

The next problem concerns the structure of the set of “pure phases”
(= extreme points of the set of translation invariant DLR states); we will not
give the precise definition on this notion: Sce Ruelle [22], Israel [32] or Simon
[33]. The symmetry group acts on the set of equilibrium states.

Problem 5B { Pure phase at low temperatures). Prove that at large f and v2 3,
the set of equilibrium states for the D = 3 model forms a single orbit under SO(3)
which is the sphere §%.

This result says that at fixed low temperature, the phases are characteri-
zed by a single unit vector describing, say, the direction of the magnetization,
The analogous result for =1 was proven by Gallavotti-Miracle Sole [40] and
for D = 2 by Frohlich-Pfister [41]. It is likely that a solution of this problem will
either involve developing new correlation inequalities for these types of models,
or else one will understand these phenomena without correlation inequalities.
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Problem 5C (GKS for classical Heisenberg models ). Consider the model with D
=3, arbitrary v. Let £, g be finite products of the form (g, - 0,). s it true that

<fg>A.ﬂ 2 <f>A,ﬂ <g>/l,ﬂ (5.3)

for all 4, B.

Actually, one wants this for more general ferromagnets than nearest
neighbor coupling. (5.3) for D=1 is the famous inequality of Griffiths [42],
Kelly and Sherman [43]. It was extended to D = 2 by Ginibre [44] who obtained
it from 2 generalized set of inequalities (Ginibre's inequalities). Shortly before
his death, Sherman anncunced a proof of Ginibre’s inequality, and therefore
GKS for general D, but his notes seemed to contain an error. In fact, Sylvester
[45] has recently proven that Ginibre’s inequality is false for D 2 3. This leaves
the GKS situation open; it is generally believed they are true. Many other
inequalities and many applications would immediately follow.

The final of our Heisenberg-model problems involves the quantum mo-
del. The phase space ($°~")" is replaced by a Hilbert space € thought of as
€ ®--® C2(1 4| times). ,, is the operator which is.a tensor product of 7, in the
a factor and 1 in the others. Here 1, are the standard Pauli matrices

01 0 —i 1 0
150 o o VY B 0 -1
H, is still given by (5.1) but (5.2) is replaced by

E(fy=Tr(fe *)/Z, (5.4a)
Z,=Tr(e"5"). (5.4b)

Problem 5D ( Phase transition in the quantum Heisenberg mode!). Prove that for
v23 and f large, the quantum Heisenberg model has LRO in the sense that

lim (o,-0,),+0.
o=y — w
A positive solution of this problem was announced by Dyson, Lieb and
Simon [46], but they made an error. For the antiferromagnet, i.e. f< 0 and | §|
very large, Dyson, Lieb and Simon [47] prove that

lim [{g,-0,>|%0.
Ja= gl o
Quite likely, this problem is connected with problem (vi) below.
Here are some other interesting open questions in lattice models: we
suppose some familiarity with terminology (see [22, 31, 32, 33]).
(i) Let J be a non-negative function on Z*. The model given by (5.2) with
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HA= - Z J(C!—‘}') G'a'ﬂ'],
arsd
and D =1 is called the general ferromagnetic Ising model. If J{a} = 0 for all but
finitely many =, one calls the model finite range. One defines

p('ﬂ)=|dl|iin (A7 In Z,(8).

P(#) is convex and so automatically differentiable for all but finitely many §.
One expects that p () is actually C' for these models. Prove it. This is important
because of results of Lebowitz [48].

(ii) The one dimensional Tsing model with J (o) = lx| 2 for & 4 0 is espe-
cially interesting. An argument of Thouless [49] (made partially rigorous by
Simon-8okal [50]) suggests that the magnetization of this model is disconti-
nuous in f. It is known (Frohlich-Spencer [51]) that the magnetization is non-
zero for § large. Prove the magnetization is discontinuous.

(iii) Consider the basic nearest neighbor model with D=1, v 2 3. Define

fVvi=inf {B| lim <&, 0,>+0} and
lor =yl ==
FB(vy=sup {pI{a, 0,0 SC, e "7 for some C,,C,}.

Clearly 'V = '*. Prove they are equal.

(iv) There are interesting questions concerning the existence of equili-
brium states (= DLR states) which are not translation invariant. For D=1, v
=2, Aizenman [52] proved these don’t occur. Dobrushin [53] proved for D=1,
v 2 3, there are such states. Define i, (v), the roughening temperature, to be the
inf over all § for which there exist nontranslation invariant states; van Beijeren
[54] proved that 8,(vyZ B!"(v—1). A basic question is that a “roughening
transition oceurs”, i.e. §,(3) < B(3). There is reason to believe (see Frohlich et
al. {55]) that 8,(v) =BV (v) if v 4. Prove or disprove this.

{v} Do plane rotors have nontranslation invariant states? If they do, the
states will be quite different from those in the Ising case. See [53, 41] for further
discussion.

(v1) Find additional methods for proving phase transitions occur when
there is continuous symmetry {“spontaneously broken continuous symmetry™).
At this peint, all we have are reflection positivity methods (Frohlich, Spencer,
Simon [35]; Fréhlich et al. [567]) which are quite rigid in terms of when they
apply and the “scales of contours™ method of Frohlich-Spencer [39] which
seems to be restricted to D=2.

6 Ferromagnetism

- Mathematicians who have been exposed to the Ising model often delude
themselves that in understanding that, they have undersiood the reason for
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magnetism. While it is true that the lesson of that model, namely that local
interactions can cooperatively produce long range order, is an important aspect
of ferromagnetism, it is not the only one nor the most mysterious one.

The point is that the Ising model postulates an interaction which tends to
make neighboring spins point parallel. These spins which are associated with the
magnetic moments of neighboring atoms produce butk magnets by aligning in
parallel, It is true that magnetic dipoles have direct interactions with each other,
but the magnitude of such interactions is so small that they would set temperatu-
re scales much lower than those associated with real magnets (and they don’t
have the proper ¢, - ¢, form to boot!).

The mysterious aspect of magnetism is what produces the strong effective
spin aligning interaction. There is a standard explanation due to Heisenberg
based on the Pauli principle: Since electron-electron interactions are repulsive,
their spatial wave function wants to be as antisymmetric as possible (tending to
keep them apart), so by the Pauli principle, their spin wave function is as
symmetric as possible, which produces a tendency for parallel spins.

While this picture is quite possibly the correct one, it is far from proven:
Indeed, in one space dimension, it is false! Lieb and Mattis [ 57] have shown that
the total electron spin of the ground state of an even number of electrons in one
dimension is zero!

Problem 6 (Explanation of Ferromagnetism). Verify the Heisenberg picture of
the origin of ferromagnetism (or an alternative) in a realistic quantum system or
in a suitable model.

7 Continuum Phase Transitions

Phase transitions are one of the more striking phenomena in nature.
While there has been considerable rigorous understanding in the case of lattice
systems, there has been virtually none on continyum models—a phase transi-
tion has been proven in only one rather artificial model [58].

To state the problem precisely, we quickly review some basic statistical
mechanics. Because it uses more familiar quantities, we work in the canonical
ensembile; technically, the grand canonical ensemble is often easier to deal with
(see Ruelle [22]). We fix a pair potential, v obeying

(1) (stability) For some C and all x,,..., x, € R

Y ovlxy—x)z-CN

1Zi<jEN

(2)  (temperedness) [o(x)| < C(t+]x)h 777
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Given a finite volume, A4, in R?, a number N and an inverse temperature
B, we define the partition function, Z, and free energy F, by

Fi(f, N)= —InZ,

N
[1 @°pd®x, e~
i=t

z= |

Nop2
Hp, x)= _;Zl 7;_'_ Y olx—x;).

i<j

One can show that if ¢, a value of density, is fixed and if A approaches R* in a
suitable way and N/A — g, then |A|™ " F,(f, N) has a limit, called f (8, ¢). This
function is concave in 8, so the one-sided derivatives exist at all points. A (first
order in ) phase transition corresponds to f failing to be C':

Problem 7 ( Existence of Continuum Phase Transitions). Show that for suitable
choices of v, and for g sufficiently large, f is non-C! at some §.

A reasonable v to think about is a function like the Lenard-Jones poten-
tial (r)=ar~'2 — br® which gets very large and positive for r small but has a
small negative well in which particles can stick.

Alternatively, instead of looking for a phase transition in §, one can pass
to grand canonical ensemble and look for a transition in fugacity where the
density jumps.

8 Rigorous Renormalization Greup

One of the most celebrated developments in theoretical physics during
the past 15 years is surely the “renormalization group theory of critical pheno-
mena” of Fisher, Kadanoff and Wilson (see e. g. [59]). The basic idea of shifting
scales as one approaches a critical point via a nonlinear map of Hamiltonians
and obtaining information from the fixed points of that map is being applied in a
variety of situations, . g. the work of Feigenbaum [24] and parts of the philoso-
phy are often present in work which doesn’t embrace the full machine, €. g. the
spirit of the renormalization group hovers over the recent work of Fréhlich-
Spencer [39].

In some of these analog studies, the nonlinear maps are on well defined
spaces and there has been considerable progress on a rigorous mathematical
analysis, e.g. the work of Collet, Eckmann and Landford [60] on the Feigen-
baum theory. The original Wilson theory is on functions of inifinitely many
variables and it is far from clear how to formulate the maps in a mathematically
precise way (let alone then analyze their fixed point structure); indeed, there are
various no-go theorems [61] to certain obvious ways one might try to make a
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precise formulation. To make the following problem precise, we specialize to
lattice systems:

Problem 8A ( Formulation of the Renormalization Group ). Develop a mathema-
tically precise version of the renormalization transformations for v-dimensional
Ising-type systems.

It may turn out that this problem can be finessed and one can get out
renormalization group type results without a complete formalism. In this re-
gard, see the work of Gawedski-Kupiainen [62].

It is often claimed that the renormalization group “explains” universa-
lity. It seems to me that it does not; rather, it assumes universality! For the kind
of local analysis done in the renormalization group framework doesn’t explain
why the fixed points found seem to have “basins of attraction” which are all (or
al least most) of the space of interactions. Thus:

Problem 8B { Proof of Universality). Show that the critical exponents in the
three dimensional Ising models with nearest neighbor coupling but different
bond strengths in the three directions are independent of the ratios of these bond
strengths.

9 Asymptotic Completeness for Atomic Scattering

We begin with a brief description of multiparticle systems. See [63], ‘

Section XI.5, for more details. Consider #» quantum mechanical particles of
masses m,,. . ., M, moving in v-dimensions. After removing the center of mass
motion, the wave functions live naturally on {(x,,..., x,) € R*|} m,x, =0}

1
= X (isomorphic to R*™~ ). Place the metric d(x, y}=[Y m(x;—y)*JZon X
and let H,, be (— 1) times the Laplace Beltrami operator in this metric. Here is an
equivalent definition: Given any (x,,..., x,) € R™ let R(x)= (L m)™' ¥ mx,
and let m(x)=x—(R, R,..., R). Given f a function on X, let n*(f) be the
function on R™, given by z*(f) (x}=f (n(x)}. Then H, can be defined by

[-X@m)™" A ] m*(N)=n"(Hof)

H, is the kinetic energy of these particles.
Pick functions V; on R*. For the time being, let us suppose that

Vi SCa+{xph~' 9.1

for some e> 0. We write ¥; for the function on X given by ¥;(x; — x;}. On X we
define
H=Hy+} V.

i
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Let a be a partition of {1,..., n}, i.e. a family of 3 (a) disjoint subsets whose
unionisallof {1,..., n}. If i and j are in the same subset of g, we write (i} = a. If
these are in destinct subsets, we write (i) ¢ a. Elements of a are called clusters:
Define

H{a)=Hy + Z v
tijyca
H (a) describes a situation of particles interacting within clusters but not between
cluster. Given a, we can pick coordinates for X in two classes, x” and x,. The x°
describe difference of centers of mass of different clusters and the x, coordinate
differences within a cluster. Corresponding to such a decomposition, L?(X)
= #, @ H#* where ', is functions of the x,. H{a) then decomposes to

H(@)=H QI+I® T

T“ is independent of " and describes the kinetic energy of relative motion of the
clusters. H, describes internal motion of the clusters. Let P, denote the
projection in ¥, onto the point spectrum of H,. Ran F, is the sum of products of
bound states for each cluster. Let P(a) = P, & I. Thus P(a) describes the projec-
tion in L?(X) onto functions which are sums of products of bound states in the
clusters and free motion of their centers of mass.

Theorem 9.1 Suppose v=3 and that (9.1) helds. Then
s— lim e"Me "MW P(a)=02 9.2
—F ot

exist. Moreover, if @+ b, then Ran 27 1 Ran 2. ¢ € Ran Q if and only if
there exists n 5o that

He ¥ @ e " P(g) p|| > D as t — — o0 (%.3)

Remarks 1. See [63; X1.5] for a proof. The result is claimed there for v=1,2
also but the proofis in error; in v = 1,2 one requires some information on decay
of the eigenfunctions of the H,.

2. (9.3)saysthatast — — oo, the interacting state e~*# g looks asympto-
tically like bound clusters moving relatively freely.

3. We have included the case @, where a has one cluster for which QF
= P(a,) = projection onto the bound clusters of H.

Problem 94— 1st Form { Asymptotic Completeness for Short Range N-body
Systems).
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Under the hypotheses v 3, (9.1) proves that
@® Ran € = L2(X)

Asalready remarked, Ran Q] = #, ,, the point spectral subspace for H,
and it can be shown that if @ +¢,, Ran Q) < #,_ the absolutely continuous
space for H. Thus problem 9A is often stated as

Problem 94— -2nd Form
(i) Prove 4, _, the singular continuous space is empty.
(ii) Prove @ Ran Q) =3,
a*ay
The limits in Thm. 9.1 fail to exist in the case where ¥ {x) ~ x| ™" at cc,
There is a modification of the wave operators (9.2) due to Dollard, for which the
limits £2°-* exist. These are described, e.g. in [63], Section X1.9.

Problem 9B ( Asymptotic Completeness for Coulomb Potentials). Under the
hypotheses,

v=3, F;(x)=¢;|x|7!, prove
@ Ran Q>* = L(X).

Of course, one wants to alow sums of Coulomb and short range poten-
tials.

For n=2, these problems were solved over 20 years ago at least if
[¥ (x)] = 0{)x} > %) with the sharpest results due to Agmon-Kuroda and Enss
(see [64] and [65]). For n=3and IV {(x)|=0{lx}~ 2~y and an extra assumption
fno resonances in two body subsystems), Faddeev [66] solved the problem; see
Ginibre-Moulin [67), Themas [68], Howland [69], Kato [70], Yajima [71],
Sigal [72] and Hagedorn-Perry [73] for additional information. The Coulomb
3-body problem was solved by Mercuriev [74] and by Enss [75]. Enss also
treated the general (0(/x|™' )} 3-body problem. Mourre [76] has announced
general 3-body results also. For a suitable class of analytic potentials and a
suitable sense of genericity, Hagedorn [77] (for »=3,4) and Sigal [78] for
general n have solved the problem, but genericity plays a central role.

The “half” of asymptotic completeness that requires X', . is empty was
solved by Balslev-Combes [79] for Coulomb potentials and for a wide class of
short range ¥°s by Perry et al. [807 using ideas of Mourre [81]. The basic open
question concerns completeness without requiring genericity or analyticity.

This important open question has been studied to some extent since 1960,
and very actively for the last ten years. At the risk of jinxing the solution, it seems
to me like a good bet that it will be solved in the next five years and probably
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sconer: Both Enss’ and Mourre's three-body methods appear promising for N-
bodies and Agmon’s long range two-body work [82] may be useful in the N-
body problem.

10 Quantum Potential Theory

Basic to atomic and molecular physics is the binding energy of a quantum
mechanical system of electrons interacting with on¢ or more nuclei. To be
explicit, fix N and consider two classes of operators on L2 (R*¥), with x € R*
written as x={x,,..., xy). For any fixed Z define

;L;r,v(2)=f§‘,1 (”A-“%)+ .g.;,-g 1/]x; — x| (10.1)
and for Z,, k and R,,..., R, € R® we define
Ny 1
H,{,*'(Rl,.--,Rn;Zo’)=l_:Zl—A.-+ lgf;jgNm
72 Z,
1§c§9§k 'Ra—DRﬂ - z:i;; I x; “ORJ

1
1

+ (10.2)

HA 1A,

Note that the 3rd term in (10.2) is a constant depending only on the
parameters R, and not an operator on L2(R3¥), (10.1) is the Hamiltonian of an
atom in the approximation of infinite nuclear mass and (10.2) that of a molecule
in Born-Oppenheimer approximation. We define

E (N; Z)=inf spec(Hy(Z}}
EM(N; R,...., R Zy)=inf spec(HI(R, . .., Ry; Zo)).

The B stands for “Boson” since the operators are taken on L2(IR*¥) and ignore
the Pauli principle. For fermion electrons one should restrict Hy(Z) (and
H®.. ) to H#,  the subset of L2(R>") of all functions f (x,.. . ., xy) antisym-
metric under interchange of the coordinates (actually, because of the fact that
electrons have two spin states, we should take f to be a sum of functions
transforming under permutations as representations with at most two columns
in their Young tableaux). The inf of the spectrum of restricted operators we will
call E without any subscript. These are the physically relevant objects so we do
not give them a subscript F.

The total binding energies are basic physical objects. While several
significant properties are known (see especially Thms. 10.1, 2, 3 below), it is
shocking how little we know about £(N; Z)and EP(¥; R,,.... R,; zy). Thisis
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shown by the first open problem. Define
(AEY(N, Z)=E(N-1,Z)—E(N, Z)

the energy it takes to remove electron N. It is a consequence of the H V' Z theorem
([83], Section XIIL5) that (AE) (N, Z)z 0.

Problem 10A { Monotonicity of the lfonization Energy). Prove that
(AEY(N-1,Z)Z(4E) (N, Z)

for all N, Z.

This is just the fact, almost obvious, that it takes more energy to remove
inner electrons than outer ones. Since in removing electron (¥ — 1) there is one
fewer electron to repel, and since the Pauli principle only makes things better this
should be true. It seems to be remarkably difficult to prove. Indeed, it is false if
one requires it for nuclei with all possible finite masses (rather than our infinite
mass assumption) and one allows for electron spin [84]. The ineqguality to be
proved says that E(N, Z) for Z fixed is convex in N.

A weaker result that would be of interest wounld be to prove: “If
AE(N, Z)=0,then AE(N + 1, Z)=0". This result would be relevant in connec-
tion with the Ruskai-Sigal theorem (Thm. 10.2 below).

To state the next open problem, we need to recall

Theorem 101 (Licb-Simon {85]) lim E(Z, Z)}/Z’" exists.
Z

—
In fact, the limit is given by a “Thomas-Fermi” energy, e;. See Lieb [86]
for further information and insight.

Problem 10B (The Scott Correction). Prove that lim (E(Z, Z)~ e, Z77)/Z?
L=

exists and is the constant found by Scott [87].

If one drops the electron-electron repulsion, one can find the new
E(Z, Z) exactly and compute the 0(Z?) term exactly and see it corresponds to
the fact that Thomas-Fermi fails to get the inner electrons correctly. Since the
electron repulsion shouldn’t matter for the inner electrons, Scott [87] conjec-
tured that the Z? term is the same as for the non-interacting case. Recent
physicists’ arguments which seem difficult to make rigorous for the Scott correc-
tion can be found in Bander [88] and Schwinger [89]. We remark that the
obvious asymptotic series one might conjecture on the basis of the last theorem
and problem, namely

E(Z Z)~a,Z"P va,Z2 +a, Z° +a, Z** + -

is almost surely not correct: There may be a Z*' term but after that there are
almost surely oscillations at the Z*'* level.
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Physically, the quantity E(Z, Z) as a total binding energy is not so
interesting. The ionization energy (AE} (Z, Z) is much more interesting.

Problem 10C ( Asymptotics of Ionization Energy). Find the leading asymptotics

of (4E) (Z, Z) for large Z.
Lieb-Simon [85] suggest that (4 E) (Z, Z) goes to a constant, but even on
an intuitive level, that is not clear, Indeed, it isn’t clear to me whether the leading

power [¢= lim In AE(Z, Z)/In Z} is 0, positive or negative!
Z—
For lhemnext problem, we need to recatl
Theorem 10.2 (Ruskai [90], Sigal [91]). For every Z, there is an N, so that
(4E) (N, Z)=0if N2 N,.
This says that one cannot bind arbitrarily many electrons to a nucleus.

Let N(Z) be the smallest N, for which the above is true, Zhislin [92] (see also
Simon [93]), showed that (AE) (N, Z)> 0 if N2 Z, so N(Z)2 Z and thus

lim N(Z)/Zz1.
Z—on

Moreover, Sigal {91] has proven that

im N(Z)/Z<2 (10.3)

FAnd--l
It is quite reascnable to think this 2 can be replaced by 1.

Problem 10D {Asymptotics of Maximal Ionized Charge]. Prove that
Jim N(Z)/Z=17%)
Sigal's argument (for 10.3) in [91] uses the Pauli principle. In fact, if

Problem 10D has a positive solution, it must use the Pauli principle, since
Benguria-Lieb [94] have proven that if Nz(Z) is defined using £ in place of E,

then lim Np(Z)/Z> 1.
Z=o

For the last formal problem, we need to recall what is the most significant
result known about Coulomb energies, “the stability of matier”.

Theorem 10.3 {Dyson-Lenard [95], Lieb-Thirring [96]). For a universal con-
stant:

EM(N,R,,..., R Z)2 ~CA+ Z{*) [N+K].

*) See Note added inproof.
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o For Z, bounded this was first proven by Dyson-Lenard [95]; Lieb-
Thlr.rmg [96] not only simplified the proof considerable, but found a value of C
within the best possible value by an order and half in magnitude (Dyson-Lenard
[95] had a constant off by many orders). This result is important since it implies
that bulk matter doen’t contract as more particles are added (scc ¢. g, Lieb [86]);
it is the starting point of a proof of the existence of good thermodynamics for
Coulomb systems (Lebowitz-Lieb [97]).

This result depends critically on the Fermi nature of the electrons,
Indeed, define

Ey(k, Nsz)=inf ERN, Ry, .., R 7g).
R

Then Lieb (98] has proven that
—DNSP<E (N, N;1)s —CN*3,

Let E, (k. N, Z,) be the analogous object where now the “protons™ are given a
finite mass and so ~both “electrons” and “protons” (viewed as bosons) are treated
quantum mechanically. Then, Dyson [99] has proven that for a suitable C> 0:

E (N N;1)s —CN5
The best lower bound known is
E (N, N; 1)z — DN%3,

F}”roblem I0E (Rate of Collapse of Bose Matter). Find suitable C|, C,, and a s0
that

~C N2 E (N, N; ) s — G, N

) One suspects that & =7/5. Since electrons in nature are not bosons, one

might think that this problem is of purely mathematical interest. In fact, since
pyson’s trial function is of BCS type, a real understanding of this problem could
improve our understanding of superconductivity.
‘ The reader can consult Lieb's Lausanne lecture [100] for a list of other
interesting open Coulomb problems. In connection with the Lieb-Thirring proof
of Thm. 10.3, we should mention the open question of finding the best constant
in the Cwickel-Lieb-Rosenbljum bound: See Simon [101], pgs. %6—97 and
Glaser-Martin [102] for further discussion of this and related problems.

11 Existence of Crystals

It is an observed fact of nature that most materials occur in a crystalline
state at low temperatures. Yet there is no proof or even a very convincing
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argument to show that even at zero temperatures ensembles of quantum me-
chanical atoms want to form crystals. Clearly to avoid boundary effects, one
must take an infinite system; any finite system will not be a strictly crystaltine
form. Moreover, as a first problem, one should imagine infinite nuclear masses.

Thus, we should fix an integer, z, (2 nuclear charge), and take N =kz,
and consider the function E®(N; R,.. .., R,; z,). We denote by [RW}®, a
minimizing configuration for this function (it is not automatic, indeed, not
proven that such a minimum exists, i.e. that the minimum isn’t taken for some
IR, — Rj|=0; presumably, for suitable z,, such a minimum does exist).

Of course, the minimizing configurations is not unique; it is invariant
under a commeon Euclidean motion of the nuclei or under permutation of indices
and there could be additional non-uniqueness. For this reason, we are careful to
deal with “a choice™ below.

Here is one possible statement which would show at zero. temperature
atoms with atomic number z, form a crystal. There is a choice of minimizing
configurations R, so that (i) R% converges to some R{™ as k — o for each
fixed j. (ii) For any Ry, there is a J so that [RY| 2 Ry if j> J. (iii) The R igina
lattice, i ¢. a subset of R* left invariant by a subgroup of translations isomorphic
to Z*. Condition (ii} is included to prevent one nucleus from “getting lost” in the
limit due to mislabeling.

Problem 11 {Existence of Crystals). Prove the above statement or another
suitable version of the existence of crystals for some 2.

We note that the classical analog of this result is unknown. There is,
however, an inleresting series of papers on this classical question by Radin [103]

and a paper of Duneau-Katz [104].
Of course, if one sofves Problem 11, the next thing is to worry about finite

but low temperature, then melting, then. ..

12 Random and Almost Periodic Potentials

In this section we want ta discuss —d + V on L2(R*) and its discrete
analog

{(hwy (=Y uln+)+Vin) u(m))
18i=1
on [2(Z") where F is either a stochastic progess with strong mixing properties
(“random potentials”) or an almost periodic function. This is an area of conside-
rable current interest to me, and so 1 may be accused of lacking perspective in
including the five problems listed here. It seems to me that the first problem
below is very significant from any viewpoint; perhaps (but 1 think not} the
second, third and fourth are too specialized; the fifth is included so the reader
can help me win a bet.
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To be precise about random potentials, one can consider a particular
model known as the Anderson model. Choose the ¥ (n) to be independent,
identically distributed random variable with distribution uniformlyin (— 1, 1) (4
is a number known as the coupling constant). The following results are proven:
In any dimension, v, the spectrum ¢ (k) is almost surely [—2v—- 1, 2v+ 1] (e. g
Kunz-Souillard {105]) and if v =1, almost surely 4 has only dense pure point
spectrum (“localized states™) (see [105] and Delyon et al. [ 106]; also Goldshade
et al. [107] for the case of —d?/dx? + V(x) with suitable random V). In the
physics literature the belief is that the same result holds if v =2 (although until
roughly 5 years ago this was not the belief) but when v = 3 it is believed that one
has only dense point spectrum when A= 4, > 0, but for 1< 1, there is a region
[ —a{4), a(A)] of absolutely continuous spectrum (“extended states™) with dense
point spectrum in + [a(4), 2v + A]. Frohlich and Spencer [108] have recently
obtained some results in the region where there is supposed to be localized states
and they will probably succeed in proving dense point spectrum soon when
either A is large or |e| is near 2v+ 4. This leaves the region of extended states.

Problem 12A [ Existence of Extended States in the Anderson Model). Prove that
in v = 3, for 4 small, there is a region with absolutely continvous spectrum, and
determine whether this is false when v=2.

We mention here the interesting results of Kunz-Souillard on extended
states in the Andersen model on a Bethe lattice (which in some sense has v = oc)
of which so far only an announcement exists [109].

At first sight, one might think that since the 41~ 0 operator has a.c.
spectrum, extended states shouldn’t be so hard since one just has to find a simple
perturbation argument. That this is not the case is shown by the expectation that
when A % 0 the a. c. spectrum should be associated with diffusive motion; expli-
citly, when A=0, (8,, (" Ne ") §,) ~0(12) where &, is the clement of
1*(Z") which is 1 at § and 0 elsewhere and (Nu) () = /iu(#) while we expect that:

Problem I2B ( Diffusive Bound on *Transport” in Random Potentials). For the
Anderson model (and more general random potentials) prove that

Exp(8,, (¢"" Ne= "2 5,) Zc(1 +¢])

This result is clearly connected with our discussion in Section 4. We note
that it is easy to prove the analogous bound if ¢¢ is c7?; indeed, that is true for
any bounded ¥ (see e.g. Radin-Simon [110]) and that when there are extended
states, it is believed that expectations grow as D, ¢ for 1 large.

There is one last aspect of the Anderson model we want to mention. A
basic object is the integrated density of states (e. g. [111]), & (E). In the Anderson
model, there are two places we might worry about lack of smoothness in & ; at the
edges of the spectrum where & is certainly non-analytic and at the mobility edge
{indicated as +a{2) above). Al the edges, a result known as Lifschitz tails (see
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e.g. [112]) suggests k is C* so the following problem is really about the mobility
edge:

Problem 12C (Smoothnessof k { E) Through the Mobility Edge in the Anderson
Model).
Is k(E)) a C* function of E in the Anderson model at all couplings?

Of course, there are a myriad of other questions about the mobility edge
with more physics (e. g. behavior of the diffusion constant}; we list the above as
the simplest one.

Our last pair of problems involves the case of almost periodic potentials.
The simplest example in many ways is the almost Mathieu equation on 12(Z)

(he) (M =uln+ D +uln—1)+ 2 cos 2nan +6) u(n) (12.1)

where A, 8 and o are parameters. It is an idea of Sarnak [113] that the spectral
properties should depend on Diophantine properties of «: if

P —k
x—=|=Cq
q

for some  and k, we call  a Roth number and if there ts an infinite sequence g;
with

o

— Bl <exp(—kgy),
Ik
we call o a Liouville number. (The Roth numbers have full Lebesgue measure
while the Liouville numbers are a dense ;') Here is the belief about the
spectrum of (12.1) (see e.g. [114]): )
(a) If z is a Liouville pumber and 4 +0, then for a.e. #, the spectrum is
purely singular continuous.
(b) If & is a Roth number and |2| < 2, the spectrum is purely absolutely
continuous for a.e, 8.
(¢) If « is a Roth number and || > 2, the spectrum is purely dense pure
oint.
P (d) If « isa Roth number and |4| = 2, o (%) has Lebesgue measure zero and
the spectrum is purely singular continuous.
All that has been proven about this model is: (i) (a) is true if jA| > 2 [111]
(ii) In case (a), there is at least no point spectrum [115, 111] (iii) When « is Roth
there is at least some a.c. spectrum when |A] is very small and some point
spectrum when |&| is very large [116] (iv) If 4> 2, there is at least no a.c.
spectrum [111].

Problem 12D { Analysis of the Almost Mathiew Equation). Verify the picture
(a)—(d) above.
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Our final prob]em is the only one involving the continuum case — 4 + V.
As noted above, it is known that for A large and « suitable, (12.1) has some point
spectrum. Here is a continuous analog of that:

Problem I2E (Point Spectrum in a Continuum Almost Periodic Model). Show
that for a, A, u suitable

dl‘
_W+ Acos(2rxy+pcos(2rax+ ) (12.2)

has some point spectrum for a_e. 8.

I pick this problem among all possible continuum problems because two
excellent mathematicians have bet me that (12.2) has no point spectrum. I don’t
give their names to sparc them public embarrassment (not caused by their
choosing to disagree with me, but by the fact that, in this case, they are wrong!).

13 Self-Avoiding Random Walks

We want to first describe a mathematical problem which is easy to
describe, and then we will briefly explain why it is included in a list of problems
in mathematical physics. Consider the lattice Z? of integral points in d-dimen-
sions, {We abandon our usual v here because in this subject v is usually used for
the object in (13.1)). A self-avoiding walk (SAW) of length n is a sequence of #
+1 distinet points R(0),..., R(n) € Z* so that R(0)=0 and |R(i+ 1) — R{(i)|
= 1. This differs from ordinary random walks in the requirement that the R’s be
:iigti]ncczit (hence self-avoiding). Let k () denote the number of SAW of length n,
apele

IR®(P=0,...,ni=1,..., kin)}
and we define the mean displacement by:

Din)=(R™(?F =[k(n) ' ¥ RO (P T,

One expects that {more or less) D(n) ~ Cr® as n~ 0. Essentially nothing is
known about v which we might define by

v=lim n~'in D(n) (13.1)

(it is not known that the limit exists). Intuitively, the self-avoiding property
should force the path to grow faster than in ordinary random walks where v =1
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so one certainly expects that

4 (13.2)

¥

1\%

but even this is unknown. Indeed, a few moment reflection on “trapping in cul de
sacs” will indicate the problems. A proof of (13.2) would be very interesting and
probably represent real progress.

This subject is reviewed in [117, 118].

Computer calculations suggest that if d=2,v=3/4,ifd=3,v > 59(some
prefer v = 3/5 and dor’t believe .59), andifd=4,v=1/2. That vseems to be 1/2if
d'z 4 is believed connected with the fact that Brownian motion is non-selfinter-
secting if 4= 5 and has only “logarithmic” selfintersections if d=4 (see e.g.
[101] and reference therein).

Problem 13 {Critical Exponents for self-Avoiding Walks). Prove thatv=1/1 for
d=4and v>1/2 ford<3.

So much for the simple statement of this problem. Why is this problem
here? There are many reasons:

(1) visinmany ways the most elementary example of a critical exponent and
problem 13 is an expression of the fact that in high dimension these exponents
are supposed to agree with mean field theory, which in this case is the Gaussian
value v = 1/2. Critical exponents are important in the theory of phase transitions
so this section is related to Section B; indeed, there is an analog of universality; v
is supposed to be dependent only on dimension of the lattice and not on its exact
form (e. g. in 3-dimensions, the SAW on the cubic lattice and the face centered
lattice are believed to be the same).

(2)  The SAW model s related to elementary models of polymers; indeed,

much of the work on SAW has been done by polymer people and both review
articles mentioned above appear in Advances in Chemical Physics.

(3} There is supposed to be connection between SAW and the Ising model.

Actually, it seems to me that this is at 2 deep level only through Fisher's bounds
{119] and, in particular, the real relevance to the Ising model is only the analogy.
{4)  Symanzik [120] had a vision of ¢* field theories which have been a fertile
source of intuition and which relates @* field theories to SAW. Indeed, Brydges
et al. [121] have made use of a random walk expansion of o* theories which
relates them to random walks in which self-intersections are not forbidden but
are suppressed relative to SAW’s. If one writes out the formalism for n-compo-
nent ¢* and then formally sets n to 0, SAW's result! (This is a remark of de
Gennes [122]). Progress on understanding SAW could help us understand
quantum field theory.

See Westwater [123] for additional information on this and related
problems.
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14 Quantum Field Theory

A list of problems like this one written 10 or even 30 years ago would
surely have included the mathematically consistent construction of quantum
electrodynamics (QED). We will see what happened to that problem below, but
it is clear that quantum field theory remains a basic element of fundamental
physics and a continual source of inspiration to mathematicians,

The most spectacular development in theoretical physics of the past 10
years has been the formulation of a generally accepted model of strong interac-
tion physics, a model of quarks interacting through a non-abelian Yang-Mills
gauge fields (whose quanta are called gluons). This model is normally called
quantum chromodynamics (QCD). As with most quantum field theories, the
theory is written down by physicists by giving a formal Lagrangian and there are
numerous infinities only eliminated formally; that is, one is quite far from a
mathematically precise set of objects.

Problem 144 {Construct QCD ). Give a precise mathematical construction of
quantum chromodynamics.

For a discussion of the model formally (actual class of models depending
on the number of quarks and of various groups), see e.g. [124].

The past 15 years have seen the development of the first mathematically
consistent quantum field theories in two and three space-time dimensions. This
area, known as constructive quantum field theory, is nicely summarized in the
book of Glimm and Jaffe [125]; see Seiler [126] for a discussion of mathemati-
cal aspects of Yang-Mills field theories. All the models constructed lie in a class
known as “super renormalizable”™ since their infinities are rather mild. There is
another class of formal field theories known as “renormalizable”, of which QCD
is the most interesting but also one of the more complex technically. It is possible
to imagine someone constructing a renormalizable theory but being unable to
handle QCD because of some of the difficulties intrinsic to Yang-Mills fields or
to fermions. Thus, the following is interesting:

Problem 14B ( Renormalizable QFT ). Construct any non-trivial renormalizable
but not superrenormalizable quantum field theory.

With regard to QED, for many years this was believed to be the funda-
mental theory of electrons and photons. The impressive agreement between
experiment and QED was used as an argument that the formal theory had an
underlying mathematically consistent formulation. This is no longer believed to
be the case, at least among an overwhelming majority of the theoretical high
energy physics community. Rather, it is believed that QED by itself is not
consistent; rather, there is a consistent (non-abelian gauge) unified theory of
weak and electromagnetic interactions, but the differences of the perturbation
series of this consistent theory and QED are very small at low cnergies, explain-
ing the agreement with experiment. This should be taken as a warning to those
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who argue that a theory that seems to agree with nature must he mathematically
consistent and it is pointless to prove such an “obvious™ fact. In any event, this
leads to:

Problems 14C (Inconsistency of QED). Prove that QED is not a consistent
theory.

Alan Sokal has dubbed the discipline of proving certain field theoties are
not consistent “destructive field theory™. There are some results in this new area.
Frohlich [127] (using ideas from Brydges et al. [121]) and Aizenman [128F have
shown that there is no non-trivial limit of lattice cutoff ¢* theories in space time
dimension 4> 4, if one only renormalizes with mass and coupling constant
renormalization. This is not a verification of the phenomena responsible for the
putative inconsistency of QED, where it is believed perturbation theory is
misleading because of lack of infrated stability. For @2, 4> 4, formal perturba-
tion theory suggests that renormalization of higher degree than four will be
required. Thus an analogous result for d =4 where the heuristics for QED are
also valid, would be especially interesting. Frohlich and Aizenman have results
in d'=4 but they suffer from various loopholes, e. g. at this point & 2 with finite
field strength renormalization has not been ruled out. There is also a loophole
suggested by Gallavotti-Rivasseau [129] which, while an intriguing possibility,
is probably not going to save ¢}. This leads us to propose:

Pr:oblem 14D (Inconsistency of ¢ ). Prove that a non-trivial ¢} theory does not
exist.

15 Cosmic Censorship

The reader who has tired at the length of this article may well wish that
the title of this section had been applied sooner.

Classical general relativity is a discipline whose death has been prematu-
rely claimed by too many theoretical physicists, It remains healthy and vigorous,
in part because of input from astrophysics (such as the identification of probable
black holes and the identification of an effect of gravitational radiation) and, in
part, due to a frequent injection: of fertile mathematical ideas (such as those of
Hawking and Penrose and, more recently, of Schoen-Yau and Witten). By any
reasonable definition of the term, it is clear that much of classical general
relativity is “mathematical physics”. It is unfortunate that a horizon seems to
separate general relativists and other mathematical physicists. I am not alone
among mathematical physicists in knowing less about the subject than I should,
I have included a problem from general relativity here to express my belief in the
unity of mathematical physics, but I must confess a feeling of “1 hope I got it
right”. In any event, the reader should consult various articles of Penrose {130]
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for more information, and his article [131] for additional problems in general
relativity.

Problem 15 (Cosmic Censorship). Formulate and then prove or disprove a
suitable form of cosmic censorship.

Very roughly speaking, cosmic censorship says that for Einstein’s equa-
tions coupled to matter obeying “realistic” evolution equations (such as
Maxwell’s equations or suitable Yang-Mills equations), “naked singularities”
do not “generically” occur, It would be interesting to prove the result even for
vacuum solutions of the Einstein’s equations (i.e. those with no matter).

Cosmic censorship deals with the deep and thorny issue of singularities in
general relativity. The first “singularity” in general relativity was the Schwarz-
schild singularity: If the Schwarzschild solution (the field of a static, spherically
symmetric source) is continued, in the absence of matter, to a distance (which,
for usual bodies, is far within the matter producing the field) called the Schwarz-
schild radius, there appears to be a singularity. We say “appears” because it was
realized later (by Eddington, Lemaitre and Synge) that the singularity was not
one of the geometry but rather of the coordinate system used: e, g., in another
coordinate system found by Kruskal, one can continue past the Schwarzschild
radius until a true singularity appears, We say “true singularity” because a
suitable curvature scalar, a coordinate independent object, diverges there.

While the Schwarzschild “singularity” is not a singularity of the geo-
metry, it has important geometric and physical significance: It is a horizon in
that no light rays from inside it can pass out to infinity. In this way, it prevents us
from “seeing” the true singularity which would presumably be the ultimate
psychedelic experience.

Itis not easy to get explicit solutions of the Einstein equations because of
the many components and variables, and for that reason, most known solutions
have very high symmetry. For a while, there wasa belief that the true singularity
in the Schwarzschild solution (which can arise in finite “time™ from non-singular
Cauchy data if matter collapses to a point) might be an artifact of the symmetry,
and that most solutions very near to Cauchy data Jeading toa singularity might
well be free of singularities. A basic discovery of Penrose and Hawking [132]
was that this was not the case but that solutions near one with a Schwarzschild-
solution-type (true) singularity have some type of singularity. This stability
result for black holes is very significant, given the apparent occurence of black
holes in the cosmos.

The Hawking-Penrose theorem says we must learn to live with singulari-
ties or else rely on some quantum effect to save us. Upon some reflection, a
singularity like that in the Schwarzschild solution is not so difficult to live with
because it doesn't live next door, i.e. we don't see it. A “naked singularity” is,
roughly speaking, one with the property that light rays form points arbitrarily
near it can escape to infinity. These are much more disturbing from a physical
point of view. One cannot conjecture that naked singularities never occut, since
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one does in a solution called the Taub-NUT solution, which Misner [133] has
dubbed a “counterexample to almost anything”. However, this solution has a
high symmetry and one can conjecture that naked singularities tend to become
clotheld by honzqns under most small perturbations. This is the content of
Cosmic Censorship. Given the history of the Hawking-Penrose theorem, one
might wgl] suspect that the idea that naked singularities are associated !with
symimetries is wrong ; however, recent results of Isenberg-Monereif [134] tend to
support the notion that naked singularitics imply symmetry.

~ Thereare qther examples of naked singularities among the Weyl axisym-
metric class.‘To eliminate such examples, it may be necessary to make some kind
of hypothesis of initial conditions which are non-singular and “realistic”,

Note added in proof

.Pr_oble.rn 10D has been solved by E. Lieb, 1. Sigal, B. Simon and
W. Thirring (in prep.), who prove that %ﬂN(Z)/’Z = 1 but no effective control

0:; qthe rate of convergence is obtained. Can one prove that N(Z)— Z is bound-
ea’
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