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4.1. BOUNDEDNESS OF CONTINUUM EIGENFUNCTIONS AND THEIR
RELATION TO SPECTRAL PROBLEMS

We will describe a set of problema for matrices acting on E(Z)
There are analogouu problems for B (Z ) and for suitable elliptic
operators on | (R) . Let A be a bounded self-adjoint operator
on E (Z) whose matrix elements obey CLH = (5” AS) =(
it [ J|>K o A fundamental result asserts the enstence of a mea=-
sure d,P(E) , & function #(E) taking the values (0,1,...,0°
(infinity allowed) with #(E)>! (dp)-a.e. E and n(F)=0 iz
E< supp p and for each £ , #(F) linearly independent sequen-
ces U, (Esn) 5 d=1,...,n(E) (not necessarily in Kz ) so that
(a) Iu&(E'n)lsC(HJnl) () Z 04y (5 P=E 1y (5 4) 3
(o) Tet ' =L(R; C°;

¥(E) having values in (

dfP) s lees funct:.ons, 3[ ,on B witn

(E)
o (where C —B ) and let ( de-

note sequences in E(Z ) of compact support. Define U taking G,

mto K’ vy (Ug), () = T Uy (5 m) gm). Then U extends to
a unitary map of EQ(Z) °nt° J‘B y (d) U(A(j) E(U%)

These continuum eigenfunction expansions are called BGK expan-
sions in [1] in honor of the work of Berezanskii, Browder, Ga&rding,
Gel'fand and Kac, who developed them in the context of elliptic ope-
rators. See [1,2,3] for proofs. These expansions don't really contain
much more information than the spectral theorem. The most significant
additional informetion concerns the boundedness properties of U ;
see [4,5] for applications.

Actually, the gemeral proofs show that ({+|#]) in part (a)
can be replaced byﬁ(»j - m,;)d' for any d > % « Indeed, one shows
that for any §< ,» one can arrange that for (dp) -a.e. L
Qk')u LE, )E: 0* 1f ene could arrange a set, § , of good £ 's
where qw—:[’, e FRE 13 QEEE with P(R\5)=O , then
on S n u,e;—.E « This leaves open:

QUESTION 1, Is it true that for (d,p)-—a.e. E , each ud(E,-)

is bounded?

There is a celebrated counterexample of Maslov [6] to the bound-
edness in the one dimensional elliptic case. As explained in [1],
lMaslov's analysis is wrong, and it is not clear whether his example

hes bounded u's a.e. We believe the answer to question 1 (and all
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other yes/no questions below) is affirmative, but for what we have
to say below, a weaker result would suffice:

QUESTION 2. Is it at least true that for (dp)-sees E  and

2 ¢
all d : Z ]ud((E,ﬂ,)' is bounded?
Inl<N

AN+1
QUESTION 3. Is it true that
lim 2N+1 > lu (En)l k(4,E)
N-—co U< N
exists? The Lim we will denote by E,(OL,E).

Given & subset M , of {(E,d) *E =R ,d <N} we define

PMPe=-Z | uEnNUg.EXdpE)
{E:(E,)eM)

where a suitable limit in mean may need to be taken., Define

M, ={CE.a): uy(E,") = £
Mo={(E,d): k&, EY =0 vut (E,d) & My}
Ms={(E,d):k (d, E) #0} .

Obviously, P(M,) is the projection onto the point spectrum

ofA .

QUESTION 4. Is it true that P(M,;) is the projection onto the

singular continuous space of A and P(M;) the projection onto the

absolutely continuous spectrum of A 7

Among other things this result would imply that in the Jacobi
case (where the number K of the third sentence in this note is 2%
the singular spectrum is simple.

In hlgher d:x.menslons, one ca.n see situations where A separa-
tes (i.e. B(Z) K(Z) P, (Zg) a.ndA—A1 I+ I®A,)
where A has a,c. spectrum with eigenfunctions decaying in Va di-

mensions but of plane wave form in the remaining Y, ~dimensions.
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One can also imagine a.c. spectrum from combining singular spectrum
for A1 and AQ. In either case k==0 for lots of continuum a.c.
eigenfunctions.

QUESTION 5. Is there a sensible (i.e. not obviously false) ver-

sion of Question 4 in the multidimensional case?

There are examples [7] of cases where A has only point spect-
rum but there is an eigenfunction with &,(d,,E)>O (since it occurs
on a set of f’dmeasure zero, it isn't a counterexample to & posi-
tive answer to Questien 4). Does the second part of Question 4 have
a positive converse?

QUESTION 6, Ig it true that if Ay =Ey has & bounded eigen-

function with k:>0 for a set, G , of E's of positive Lebesgue

measure, then A has some a.c. spectrum on (3} ?

QUESTION 7. What is the proper analog of Question 6 for singular
continuous specirum?
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