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We study L? to L praperties of exp(—tH), where H is the Dirichlet form associated to a
Schrédinger operator or to a Dirichlet semigroup. We use this study to obtain results about
boundary behaviour of functions in suitable Sobolev spaces, and to obtain information of
Brownian paths.

1. Introduction

One of the central themes of Leopoldo Nachbin’s career has been the
interplay of various aspects of abstract analysis with problems in concrete
analysis. In this note, we want to sketch some results involving the
relation of some abstract theory of L* properties of semigroups and some
concrete problems involving Schrodinger operators and Dirichlet
Laplacians; complete details, refinements, etc. will appear elsewhere [8].

Here are three concrete problems we will address:

1.1. Sobolev Estimates up 1o the Boundary

Let 2 be a bounded open region in R” and let H,, denote the Dirichlet
Laplacian on L*(f2,dx) which has compact resolvent. Let E, be its
smallest eigenvalue and ¢, the corresponding eigenfunction, so 4, Is
determined by

Hy, = Egily (¥ =0).
Let W, = Dom(|H,|™) be the usual Sobolev space. It can be proved [8]
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that if ¢ € W, and p>;n and if 32 obeys a weak condition (each
bouqdary point regular in the potential theory sense), then ¢ is a
continttous function on clos £2 vanishing on 2. We want to ask how fast
4 vanishes, where, if necessary, we are willing to take p very large. If 302
is sr.nooth, it is easy to prove that any ¢ € W, with p sufficiently large
vanishes at least linearily in dist(x, a12) = d(x) and ¥y vanishes exactly
that fast (see e.g. [10]). That the situation for general £ is more com-
p_licated is seen by the study of polyhedral regions (see e.g. [12]). The
situation is especially easy to describe if n =2 so 2 is a polygon: If
X, € 342 is a vertex of interior opening angle a and if x— x, along the
bisector of that vertex, then y, vanishes as dist(x, x;)" with m = w/a.
Some thought suggests that the correct rate of vanishing should be
precisely that of i, Thus:

Problem (1.1). For what 2 and p is there an estimate of the form
le (Ol < cll|Hpl ™ol (x)?

Surprisingly, we know of no previous work, for general {2, on this
natural question.

1.2. Conditioned Brownian Paths

Give:n % yER" and 1>0, let P, be the probability measure on
Brownian paths conditioned to begin at x and end at y at time t
Expilicitly, P is a measure on continuous functions b(s), 0=s5=<1 with
b(O‘)= X, b(s)=y; the components of b(s) are jointly Gaussian random
variables with mean m(s)=E, y(B())=(1~-x+1y and covariance
E_, ((b{s)—m, ()b, (1) — m;(u))) = dys(1-1'u) if Oss<su<t (see
e.g. [16], [21]). Let £2 CR" be open and bounded and define

Fo(x, y;8)=P_ . ({b| b(s)E D, for all 5, 0<s<1¢)),

the fraction of paths that stay in £2. F, should 20 to zero as either x or y
approach a2 (and will if 42 has weak regularity; see [16]). Paths that
don’t leave {2 stay ‘away’ from 4f2, so most paths that leave {2 should do
so when s is near 0 or ¢, i.e. we expect that E,y(x, y; t) should go to zero as
Fy(x, x; 6)F,(y, y; ). Thus:

Problem (1.2). Let D,(x; 1) = Fy(x, x; 1)*2. When is it true that for some
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a, >0 and all x, y € 2, we have that
aDy(x; 1)Dq(y; 1)< Fp(x, y; 1)< BDy(x; )Dq(y; 12

We note that the upper bound is easy, since 2wty exp(—(x — yY/28)-
F,(x, y; 1) is the integral kernel of the positive operator exp(—3tH,).

1.3. Ultracontractivity of Schrodinger Sentigroups

Consider a semigroup e *, 1 =0, of selfadjoint operators on LX{X,du)
with X a probability measure space and so that A obeys [le™"¢||, <llell,
for all =0, 1< p <. (Such semigroups arise naturally as follows: Given
H, a selfadjoint operator on L}(Y, dv), so that ™ is positivity preserving
and so that Hy = Ey for some ¢, a strictly positive, normalized vector in
LXY,dv), then one can pick X =Y, du=¢’dv and define
U:LYY,dv)» L Y,du) by Up=y'e. U is unitary and A=
U(H - E)U™" obeys e ™ =1 and e is positively preserving. Such a
semigroup is a contraction on all L” spaces (see e.g. [17]). We will
occasionally write A = H and refer to the H construction).

Given an L’ contractive semigroup, we say that it is hypercontractive if
le ol < cllgll, for some £>0 and supercontractive if le”“ell, = c(tMlell
for all t>0. We introduce here the notion ultracontractive to mean that
e “oll. < c(®lell, for all ¢>0. (We note that there is no point in
replacing <« by some p # 4 in (2, ); all p <= yield a definition equivalent
to supercontractivity.) If H is given of the form discussed parenthetically
above, so that the corresponding e ™ (note the _) is #-contractive, we say
that ¢ " is intrinsically #-contractive.

Problem (1.3). Are any Schrédinger operators, —4 +V, intrinsically
ultracontractive?

Here is some background on this problem. Since their introduction as
tools in constructive quantum field theory (see e.g. {11}, [21]), and
especially after Gross’ paper [13] on logarithmic Sobolev inequalities,
hypercontractive estimates have provoked a large mathematical lit-
erature. In a recent bibliography on the subject, Gross [14] lists 51
papers! Nelson [15] showed that —A4 + ¢x’ is intrinsically hypercontractive
in the initial paper on the subject, and he later showed that it is not
intrinsically supercontractive. Eckmann [9), Rosen [19] and Carmona [4]



208 E.B. Davies, B. Simon | Ultracontractive Semigroups

studied the intrinsic #-contractive properties of general Schrodinger
operators. They show that if V(x) roughly goes to jx)°, then one doesn’t
even have intrinsic hypercontractivity if a <<2 and one has intrinsic
supercontractivity if a > 2. Apparently no one stumMacontractivity
because there was a belief that it couldn’t hold for (—A4 + V). This belief,
which we originally shared, seems to come from the fact that intrinsic
ultracontractivity implies that for any eigenfunction ¢ of H, oy ' is
bounded. This is false for the harmonic oscillator, so it was uncritically
assumed false in general. Indeed, a simple WKB argument shows that, in
one dimension, if V ~ |x|* with @ > 2, then each ¢y ' is bounded. We will
see below that if V-~ |x|* with a>2, then —4+ V is intrinsically
ultracontractive, Indeed, ultracontractivity is the rule: If V{(x)=
|x|*(log(|x| + 2))%, then one has no intrinsic contractivity if a <2, b=0;
intrinsic hypercontractivity but not intrinsic supercontractivity if a =2,
b = 0; intrinsic supercontractivity but not intrinsic ultracontractivity if @ = 2,
0 < b =2 and intrinsic ultracontractivity if a >2, b=0ora=2, b >2.

We should mention that one of us in [6], which was one motivation for
us here, showed that very general one-dimensional Schrédinger operators
on a finite interval with Dirichlet boundary conditions are intrinsically
ultracontractive.

2. Some Abstract Theory

Let X be a locally compact, second countable Hausdorff space with
regular Borel measure, », and let H be a semibounded self-adjoint
operator on L*(X, dv) so that e™™ has a jointly continuous integral kernel
a,(x, y). Suppose also that

{i). a(x,y}>0forall x,y and

(). Tr(e ™)< for all £>0.

Because of (ii), H has purely discrete spectrum {E_}7_, with E,< E, <
E,<-..+, where E;<E, follows from (i} [18, XIIL.12], and normalized
eigenfunctions ¢r,(x) with y{x)> 0 for all x. It is not hard to see that

1) a(x, y)= 2 e " g, (), (y)

r=0
converges uniformiy on compact subsets of X. Define

b(x)=Va,(x, x)
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(not to be confused with the function d(x) = dist(x, 32} appearing in
Problem (1.1)). Two estimates automatically hold

2.2) . Po(x) <™ b(x),
(2.3) a,(x, y) < b(x)b(y),

for (2.2) (which one of us has used extensively elsewhere [22]) is a
consequence of setting x =y in (2.1), and (2.3) is a consequence of the
positivity of the operator e ™.

Theorem (2.1). Under the above conditions, the following are equivalent:

(). e is intrinsically ultracontractive.
(ii). For all 0 <t <w, there exists a ¢, <> with

e ™)) =< ¢ llfl¥olx)

where ||}, is the L*(X, dv} norm.
(iii). For all 0 <<, there exisis a c, such that

(2.4) a,(x, y) < co(x)oly) -
(iv). For all t >0, there exists a ¢} <= such that
b (x) = cllx) .
(v). For all 1>>0, there exists a ¢, <= such that
a,(x, y)= cb,(x)b,(y) .

Before turning to a sketch of the proof, we note two things: First, that
by (2.2), any (and hence all) of (i)-(v) imply

2.3) a,(%, ) = ¢! () ¥) -

Second, the remarkable fact that an upper bound on g, like (2.4) implies a
lower bound like (2.5).

(Sketch of) Proof. (i}¢> (ii). Just involves disentangling the definition of
intrinsic ultracontractivity.
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(i) (iii). The 1ntegral kernel, 4,(x,y), of e T easily seen to be
dfx, y)=e™y(x)" Yoy 'alx, y). Thus (iii} is equivalent to saying that
a, is bounded. By the Dunford-Pettis theorem, this says that (iii) is
equivalent to the assertion that e ¥ is bounded from L' to L™ for all .
Given that e is a contraction on each L?, duality, interpolation and the
semigroup property show that ¢ ™" is bounded from L' to L* for all ¢ if
and only if it is bounded from L* to L™ for all t.

(iii)=> (iv). A triviality.

(iv)=> (ii1). Follows from (2.3).

(iii)=> (v). Given ¢, pick a compact K, so that

26) [ e dv) < (el ! expt=$1E).
XK
Then, using (iii),

ey exp(=31E9) = [ agle y)uly) du(y)

X

<jaﬂ3(x y)‘l’ﬂ(y)dv()’)'l'cmwo(x) I l,b'g(y)zdl’(y)

X\K

Using (2.6)

@7 [ @t ) )= Jte) expl- o).

K

Since K is compact and a,(x, y),(x) ", (y) ! is continuous and non-zero
on all of X x X, it has a strictly positive infimum, v, on K x K Thus, by
the semigroup property and (2.7)

a () [ dniz) dviw)ane 2)ag(z whagm,y)

KxK

=y [ du@) dv(w)ane, n(Dagtm yw)

KxK

% Yolx )l y) exp(—3 ‘En)
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(v)=> (iv). We have that, using (2.2) and (v)

) = €= [ [, Yk y) d(y)
X

= ¢ B f ey exp(—3Eoibol ¥)b,(x)d(y) d(y)

X

=cve%p(x). O

With this theorem, we can reduce the solution of Problems (1.1} and
{1.2) to statements about intrinsic ultracontractivity of Dirichlet semi-

groups.

2.1. Problem (1.2), revisited

Let g, be the integral kernel of e

{21] says that

. Then, the Feynman—Kac formula

Fﬂ(x! y: l') = [(217[)_”2 exP(_(x - y)zlz‘[)l'l a,(x, y) '
Dy(x; )= [(2mt) ™' b(x).
Since (x — y)* is bounded on £2 X £2, we see that F(x, y)/Dpy(x)D,(y) is

bounded above and below if and only if a,(x, y)/b,(x)b,(y) is bounded
above and below. Thus:

Corollary (2.2). For fixed (1}, Problem (1.2) has a positive solution for all t if
and only if exp(—tHy) is intrinsically ultracontractive.

2.2, Problem (1.7), revisited

The estimate

(2.8} leo ()] < clltHg "¢l o(x)

is equivalent (since H), is invertible) to

[t )0 < |l flloolx) -
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Thus, since Je |, decays exponentially for large ¢ and H™™=
¢, J ¥ e dt, we see that

Corollary (2.3). (2.8) holds for all p > a if for 0<<t<1:

(2.9) {(e™a )(x)| < dr™ il (x) -

We remark that if (2.8) holds for some p, then (2.9) holds for all « > p,
so Corollary (2.3) is “almost’ if and only if.

3. General Theory of Ultracontractivity of Dirichlet Forms

In this section, we combine known results of Gross [13] and Rosen [19]
to reduce ultracontractive estimates to a single family of operator in-
equalities. We restate their results carefully, because there seems to be a
tradition in the subject to misstate them. Eckmann [9] and Carmona [4]
both misstate Gross' estimate because they copy this inequality exactly
although they have changed the convention on one of his constants.
Rosen [19] isn’t explicit about his constants; when Carmona tries to be
explicit, he makes two errors! Fortunately, these errors don’t affect the
main conclusions of those papers. For us, the behaviour of the constants is
critical.

In the results below, we will not always state conditions on domains
explicitly; these are discussed in detail in [4], [9], [19].

Gross’ first important idea in [13] is the following:

Theorem (3.1). (Gross [13).) Let n be a probability measure. Let A be an
operator on L*(2,du). Let f, = |ff" sign(f) and suppose that for some
r € (2,) and all p € (2, r), we have that, for all f € Dom(A):

(3.1) f |f17 Togl fl=< c(p) Re(Af, £, + T(P)IAL + A7 logilfll, -
Suppose that

’

() = [,
4

2

M=2jrr(p)%”
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are both finite. Then (Gross® estimate):

(3.3) lle™* 71l <€ I£ls -

Remark (3.2). The proof goes by letting p(s) be defined by s=
79 c(p)p~* dp and differentiating [le™ FI78). See Gross for details.

Remark (3.3). Gross’ y is related to our I' by y =I/c. He defines M
by M = [; y(p(s))ds which can be seen to be equivalent to (3.2) by a
change of variables.

Remark (3.4). Gross only states his result for r<Cee. Using A=
lim,,. |[ﬂ|,,, the proof extends to r = »; the conditions ¢ M < are non-
trivial if r = e,

Remark (3.5). (3.1) is called a logarithmic Sobolev inequality.

In our examples below, one has that (3.1) holds for any p and ¢, i.e.
there is B(p, ¢) with

G1) [ IfPlogifi<c Re(arlfiy)+ B, NflE + 115 og I,

The second result in Gross [13] (quoted in a more explicit form due to
Eckmann [9]) deals with a situation where {2 is an open subset of R” and
where

(4 Af,g)= | V) Valx) du(x),
n

on suitable f, g and with suitable domajn hypotheses. A is called a
Dirichlet form. f H=-4+ V and A = H, then A is a Dirichlet form.

Theorem (3.6}, (Gross [13}, Eckmann [9).) Let A obey (3.4) and suitable
domain hypotheses. Suppose that (3.1} holds for p=2 and all ¢ with
B(2, )= b(c). Then (3.1') holds for all 2< py < where

B(pw )= b2 )
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Remark (3.7). The basic idea is to replace |f| by |f|** in (3.1') for p,=2.
The left-hand side of (3.1') becomes ;p, [ |f|*log |f|™. The first term on
the right using (|l = (VIf|%)VIflGr)’/(ps— 1), becomes (Af, [fl,)
times (3po)/(p,— 1). See [13] for details.

If we note that 2(p — 1)/p varies from 1 to 2 as p varies from 2 to = and
use the fact that without loss we can suppose b(2¢) =< b(c), we have by
combining the last two theorems:

Theorem (3.8). Suppose that A obeys (3.4) and suitable domain conditions
and that (3.1") holds for p =2 with B(2, ¢)= b(c). Given 1, suppose we can
choose c(p)} so that

o

t=!c(p)c%p.

Then |le” f. < e™|Ifll, where

R d
M= j 2b(c(p))—;z-.

Example (3.9). b(c)= Ac™* at least for ¢ small. We take (for ¢ small)
- e(p) = t(log 2)/(log p)* and find M =d, A+ *. This can be used to show
suitable fractional powers of H generate supercontractive semigroups.

Example (3.10). b(c)=exp{c™®) at least for ¢ small. Pick c(p)=
td(a)/(log p)* with > 1. Then M < if aa < 1. Thus, if 4 <1, we have
ultracontractivity. It is interesting that the borderline is related to the
borderline in Trudinger-type estimates; see [3].

Example (3.11). b(c)= A,+ A, log{c™"). Take c(p)= t(log2)/(log py.
Since [5 2dp/p® =1, we have

M=A,+ A log(t™"),
and

lle ™", < b1

This is relevant for Problem (1.1} as we shall see.
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One needs to ask when L? logarithmic Sobolev inequalities hold for

. Dirichlet forms. This is answered by an argument of Rosen [19] (extended

by Carmona {4]}.

Theorem (3.12). (Rosen’s lemma [19].) Let A = H where H=-A+ V on
LYR") or H=-4, with 2 CR". Suppose that one has the operator
inequality

(3.5) — log|l < 36H + g(8).

Then (3.1') holds for p = 2 with
n
B2 c)=g(8)+a,-logd,

for a universal (n-dependent) constant a,,.

Remark (3.13). The proof just makes the constant explicit (and correct) in
Carmona’s version [4] of Rosen’s argument [19]. a, depends on the
constant in the classical Sobolev inequality.

4. Getting our Act Together

The net result of the last section is that ultracontractivity of
Schrodinger and Dirichlet semigroups is reduced to upper bounds on
— log ¢, i.e. lower bounds on g, and lower boundson H=~-4 + V. Itis
remarkable that (as we shall see) rather crude lower bounds on ¢, suffice;
we say remarkable because ultracontractivity says that y,/b, is bounded
above and also away from zero. Thus, for example, for an x* oscillator in
one dimension where one knows that b, ~ cx™' exp(—dx?), a lower bound
Y= ¢, exp(—c,x* %), £ >0, plugged into our machinery bootstraps to a
lower bound by ¢'x™" exp(—dx?).

4.1. Schrodinger Semigroups (Solution of Problems (1.3))

If one looks at the argument of Carmona—Simon [5], one sees that the
following is true:

Lemma (4.1). If V(x)<c,|x|* + ¢, for some ¢, >0, c, real, then
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1/2a+1
=4, exp(—d|x| 1)
for some d,, d, > 0.

Indeed, Lemma (4.1) follows from an almost trivial path space estimate
[8]. Given this lemma and Theorem (3.12), we have

Theorem (4.2). Suppose that for some ¢, ¢;>0, ¢;, ¢, we have that
clxl’ + e, = Vx)<clx[*+e
where ya+1<b. Then H=—A+ V is inirinsically ultracontractive.
Proof. Let « = b/(3a + 1). By Lemma (4.1),
— log i, < cs(V(x)+ 2c ) <38V(x)+ d,d+ Dys' M.

By Example (3.9), and by Theorems (3.8) and (3.12), we obtain ultracon-
tractivity. O

Note that Ja + 1< b and b =< a imply b>>2. More refined estimates [8]
show that if c,x?log(|x]+2)® < V(x)<c,x’[log(lx| +2)] and b>2, then
one has ultracontractivity. More results on the Schridinger case will
appear in [8]. We emphasize that these results are multi-dimensional.

4.2. Dirichlet Semigroups (Problems (1.1) and (1.2))

We will prove ultracontractivity under suitable geometric hypotheses.
Lest the reader think such hypotheses are unnecessary, we mention that
there are examples of regions in R? for which intrinsic ultracontractivity
fails; for one can show that b,;" is unbounded (see [8]).

To verify (2.10), one needs lower bounds on i, i.e. upper bounds on
— log ¥, and lower bounds on Hj, by functions of x. The latter problem is
solved by a recent estimate of Davies [7]. Given {2 and x € {2, and given a
unit vector w € 8", let d(x, ) be defined by:

d(x, w)=inf{jr|| x + re & 2},

and the quasidistance g{x) by
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1 J dw
glxy ) d(xw)’
sT
where de is the normalized invariant measure on S"'. Then
Theorem (4.3). (Davies [7].) For any (2
"(442)_1 <=H,.
Remark (4.4). This is an elementary consequence of the inequality
(f, @) fy=<{f,f) for fE €50, =). Combined with Agmon’s method
[2), this is useful for proving upper bounds on ¢, and critical in the
example mentioned above where ¥ 'd, is unbounded.
To use this, we need
Definition (4.5). We say that {2 obeys an exterior cone condition if and
only if there exists € >0, a >0 so that for each x € 3f2, there is a unit
vector e(x} with
{ylo<|x—y|<ee-(y-x)>aly-x}CR™\{2.
A simple geometric argument shows that if (2 obeys an exterior cone
condition, then g(x) =< ad(x) where a depends on «, ¢ and diam{f2) and

thus

Corollary (4.6). {Davies [7].) If {2 obeys an exterior cone condition, then for a
suitable constant ¢

cd?*<sH,.

To get a lower bound on ¢, it is useful to define special cones as
follows: Let A C S™' be an open set; then given x ER” and ¢, we define

Cx, A, €)= {y|0<]x—y|< e, y—x/ly— x| € A}.
An elementary comparison argument [8] leads to:

Definition (4.7). Let A be an open subset of $”'. We say that 2 obeys an
A-interior cone condition, if and only if there exists an £,2 §>0,2a 8> 0,
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and for each x € £2 with d(x) < 8, a point y(x) € {2 and a rotation R, so
that

x € C(y(x), R,(A), e)C {2,
dist(x — y(x)/|x - y(x)|, " "\R,(A)) > B.

Definition (4.8). Given A C $"7, let A(A) define the lowest eigenvalue of
the Laplace—Beltrami operator on L*(A) with Dirichlet boundary con-
ditions. Define a = a(A)>0 by:

alat+v—2)=A.
Theorem {4.9). [8] Let 2 obey an A-interior cone condition. Then
= cd™™®.

Remark (4.10). If v = 2and A = {(cos 8, sin §)|0 < § < ¢}, then A = (.Y
and a = w/¢, and the bound agrees with the one mentioned in our
discussion of Problem (1.1).

If we combine Corollary (4.6), Theorem (4.9), Theorem (3.12),
Example (3.11), and the inequality — log x < ex™* - tlog & + b for suitable
b, we find:

Theorem (4.11). If 12 obeys an exterior cone condition and an A-interior
cone condition, then e " is intrinsically ultracontractive and

"e—rﬂ'n“m'2 = Ct—ln.f4+n(A)/2] )

Remark (4.12). For cubes, one can use the method of images to compute
exactly the divergence of IIe"'r;"‘ll(,g,'1 and to get a lower bound on |le™"2}, ,
which has the same power behaviour as Theorem (4.11) if one takes A to be
a quadrant. See [8] for a discussion of ‘trumpet’ conditions replacing cone
conditions.

Given the discussion at the end of Section 2, we have solved Problems
(1.1) and (1.2) under suitable cone conditions.

E.B. Davies, B. Simon { Ultracontractive Semigroups 279
Acknowledgments

This work was done while we were both visiting The Australian
National University (E.B.D. at the Research School of Physical Sciences,
and B.S. at the Centre for Mathematical Analysis). We would like to
thank Derek Robinson and Neil Trudinger for their hospitality, and we
would like to thank Derek for his suggestion of the term ‘ultracontrac-
tive'.

References

[1] S. Agmon, Lectures on eiliptic boundary value problems (Van Nostrand, New York.
1965). )

[2] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic
equations: Bounds on eigenfunctions of N-body Schrodinger operators (Princeton
Univ. Press, Princeton. 1982).

[3] M. Aizenman and B. Simon, Brownian motion and Harnack’s inequality for
Schrédinger operators, Comm. Pure Appl. Math. 35 (1982) 209-273.

[4] R. Carmona, Regularity properties of Schrédinger and Dirichlet semigroups, J. Funct.
Anal. 33 (1979) 259--296.

[5] R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in
N-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys.
80 (1981) 59-98.

[6] E.B. Davies, Hypercontractive and related bounds for double well Schrédinger
operators, Quart. J. Math. (2) 34 (1983) 407-421.

[7]1 E.B. Davies, Some norm bounds and quadratic form inequalities for Schridinger
operators II, J. Operator Theory 12 (1984) 177-196.

[8] E.B. Davies and B. Simon. Ultracontractivity and the heat kernel for Schrédinger
aperators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984) 335-395.

[9] J.P. Eckmann, Hypercontractivity for anharmonic oscillators, J. Funct. Anal. 16 (1974)
388-406.

[10] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order
(Springer, Berlin, 1977).

[11] J. Glimm and A. Jaffe, Quantum physics (Springer, Berlin, 1982).

[12] P. Grisvard, Singularities for the problem of limits in polyhedrons, Sem. Goulaouc-
Schwartz 1981/82, Ex. 8.

[13) L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061-1083.

[14] L. Gross, Papers on logarithmic Sobolev inequalities and hypercontractivity, unpub-
lished, Aug. 1982,

[15] E. Nelson, A quartic interaction in two dimensions, In: Mathematical theory of
elementary particles, eds. R. Goodman and 1. Segal (MIT Press, Cambridge. MA,
1966) 69-73.

[16] S. Port and C. Stone, Brownian motion and classical potential theory (Academic
Press, New York, 1978).



280

[17]
[18)
[19]
[20]
[21]

[22]

E.B. Davies, B. Simon | Ultracontractive Semigroups

M. Reed and B, Simon, Methods of modern mathematical physics, II. Fourier
analysis, self-adjointness (Academic Press, New York, 1975).

M. Reed and B. Simon, Methods of modern mathematical physics, IV. Analysis of
operators (Academic Press, New York, 1977).

J. Rosen, Soboiev inequalities for weight spaces and supercontractivity, Trans. Amer.
Math. Soc. 222 (1976) 367-376.

B. Simon, The P(¢), Euclidean (quantum) field theory, Princeton Ser. Physics
(Princeton Univ. Press, Princeton, 1974).

B. Simon, Functional integration and quantum physics (Academic Press, New York,
1979).

B. Simon, Semiclassical analysis of low lying eigenvalues, II. Tunneling, Caltech
preprint.



