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In these notes, we will survey a part of theory of the operator - £\ + V. More 

extensive surveys can be found in [1,2,3] and in [4J . 

1. Self-adjo i ntness, properties of eigenfunctions and all that 

There is an enormous literature on the bas ic i ssue of givin~ a domain_ where 

- ll+ V is self-adjoint or essentially self-adjoint. To a l arge extent, I think one 

can single out two results as the most important : (1) The basic perturbation 

results of Kato- Rellich which accomodate virtually all cases of physical in terest 

(2) IIKato's inequality," which, at least among positive V, is definitive . \~e 

wi l l descri be the first result briefl y (for background on definition of self-

adjoint, etc ., see [5,6. 7]; for a di scussion of Kato's inequality. see [1 ,8,9,1 0]). 

Theorem 1.1 (The Kato-Rellich theorem [11,12 ] ) Let A be a self-adjo int operator 

on a Hi l bert space, ~, and let B be symmetric . Suppose that D(B) ~ D(A) and 

for some a < 1 and b < w , 

II IkpIi :0 a 111<;>11 + bllrpll (1. 1) 

for all q> € D(A). Then A+ B is self-adjoint on D(A) and any core for A is 

a core for A+ B. 

For a proof, see [1], pp. 162-163 . 

To apply this to - A+ V, we set A = - /:::., B = V and study (1.1) . In thi s 

form, (1 .1) is related to Sobolev estimates . Kato studied when (1 .1) held in 

terms of LP-spaces a pO i nt of view I long preferred , but I have come around to 

prefer a poin t of viel·' introduced by Stummel [13] . 

Definit ion Fix \):::4, and 0<0.<4 and let 

of functions , V, on R\) obeying 

* Research partially supported by USNSF grant MCS-8l - 20833 

be the set 
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(1 .2) 

If v ~ 3. we define in te r ms of (1.2) with replaced by 

(independently of a). 

With these definitions, it ;s not hard to prove the following pair of results 

(see Stummel [13J). 

Theorem 1.2 If V € S(v) 
a ' 

then (1 .1 ) holds on D( - A) where B= V, A= -n and 

a can be taken arbitrarilY close to zero. 

Theorem 1. 3 If g € and Vex) g(TTX) where n is a linear map of 

R v onto RIJ., then 

Thm. 1.2 ;s proven by noting that for v ~ 4, the integral of ( _~+K2) - 2 goes 

t o IX_y/ - (v- 4) for !x-y! small and as e-"/x-y/ fo r /x-y! large and for v < 3, 

the kernel is bounded at sma ll distances . As a result, II V( _A+K2) -2V II ~ 0 as K ~ m . 

Theorem 1 .3 follows by noting that tx-yr(v-4+0.) integrated over \,1 - ~ variables 

(and cutoff at large distances) is bounded by !x _y! - (~ -4 'a). 

The most important special case of Thm . 1.3 ;s to take IJ. fixed (~=3 is the 

physical case), v = IJ.N. write a point in R\.I as X . E: RIl­
J 

and let Tx = xi - xj . Thus picking,for all pairs i, j , a funct ion uij e S~I-L) 

and letting Vi j(X) = uij(xi - xj }, we see that Vij € S~V) . Therefore, the 

operator 
"N - 1 
HO =6 - (2m . ) n·; 

j=l J J 

called an N- boay Hamiltonian obeys 

V = 6 V . . 
i<i lJ 

(1.3) 

Theorem 1. 4 Any N-body Hamiltonian with uij € s~~ ) defines an operator H 

self-adjoint on D(-A) and essentially self- adjo i nt on CO(RV) . 

* * * 

We used H for the operator in (1. 3) because there ; s a closely related 

operator, H, on l2(R~(N-l») called the operato~ with center of mass removed. 

Here are two ways of understanding this change: 
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(l)Let R=L;mix/L;mi and let 'l"""N- l be N-l additional 

~-component coordinates (i.e. linear functions of the XiS) , so that (i) 'j is 

invariant under xj-txj+a for any a ( ii ) xj ..... R,Cj is anilliertible transfor ­

mation. For example, one might take 

'j=rj - r N j=l, ... ,N-l (1.4 ) 

Then by writing R.N = R" x R.(N- l) by the coordinates R",L2(R"N) decomposes 

into ~cm 0 ~ 2 L2(R") 0 L2(R.(N-l)) (f unct ions of R tensored by functions of C). 

Under this decomposition 

H=HO 01+10H ,cm (1 .5 ) 

) - 1 
where HO = - 2(L;m. ~R ,em 1 

and The precise form of HO depends on 

the choice -of local coordinates. For example, in tne coordinate system (1 .4). 

N- 1 -1 
HO = - L; (2 •. ) ~ 

j=l J 'j 
(1 .6) 

_ ( - 1 - 1)-1 with ~j - IDN +mj . 

(2) ([14,15J) View HO as one half the Laplace Beltrami operator associated 

to the metric IIdx l12 = L; mi (dxi )2. Let X = {xtL;mixi = OJ. Then in the metric, 

XL = (xlx1=x2= ••• =xN),llcm = L2(XL),~ = L2(X) and HO is just the Laplace­

Beltrami operator on X in the induced metric . 

For later purposes, \ole introduce some additional notation to describe N-body 

systems . A partition of [l, ... ,N}, i.e. a family C"""Ck of disjoint subsets 

of {l, ... ,N) which exhaust [l, ... ,N} is called a cluster decomposition. \~e 

write a = {Cl •. .. 'Ck}; k.2 #(a) . The family of cluster decompositions is 

important because in var i ous aspects of the study of N-body Hamiltonians, one 

expects that we want to analyze what happens as rxr .... 0".> I·lith ~mixi = 0 . This 

happens if the system breaks up into distinct clusters; i.e. I'le can find numbers 

R" ...• Rk and a decomposition a so [xi - Rjt stays bounded if ; e Cj and so 

each fRi - Rjf goes to infinity. 

Given a, \'ie pick coordinates Cl , ... ,Ck i nvolving differences of center of 
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f 1 t · d ". t 1 d· t ,,1 N-l - k mass 0 c us ers 1n a, an 1n erna coor lna es, {: •. . .• , • i.e. co-

ordinates left invariant by the transformations xi -+ x;+ Rj(i) where j(i) ;s 

( d · 1 1 N-l-k d· f Put lfferent y, {: '" 0" are coor lnates or the that j with xi € Cj . 

plane X
a = [x! Z m.x. = 

. e l l 
1£ j 

0, all j] and '1"",Ck for its orthogonal complement, 

X
a

, in X), If we decompose ~::o Jia 0lJ
a 

corresponding to functions of ,a and 

'a (i . e. ·i=L2(Xa).lfa= L2(Xa)),then we have 

v = V(a)+ I(a); I(a) = Z V .. ;V(a) = Z V . . 
(;j);ta lJ (;j)ca lJ 

(where (ij)ca means i and j are in the same cluster ) , and 

H" H(a) + I(a) 

.H(a) = Ha 0 I + I 0 T 
a 

where Ta has no potentials and is exactly the kinetic energy of re l ative motion 

of the clusters. Eigenvalues of Ha with #(a) > 2 are called threshoLds . 

* * * 

[16] cantai,ns extensive discussion of properties of eigenfunctions of - ll+ V. 

Here we ~tate some of the most important results. For many purposes, the natural 

class of potentials, V, for this study is KV defined by; 

Definition Let v ~ 3; V € KV if and only if 

1 im sup 
u.J.-O x 

If v= 2, KV ;s defined with /x_yr(v-2) replaced by tnqx-yt - 1) and if 

if and only if sup 
x 

V € KV does not imply that -t.+ V is essentially self-adjoint on C~, but 

one can [16J always define a self-adjoint operator "_t.+ V" by a method of forms; 

This meaning agrees with that obtained by closing the operator on c~ in case the 

operator sum is self-adjoint there. The following three results are discussed 
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(either proofs or references given) in [16J . If Hu = Eu, then ( -~+(V - E))u = 0, 

so by changing Vs we can look at funct i ons with Hu = 0 and obtain i nformation 

on general eigenfunctions. 

Theorem 1.5 (Sobolev estimates for H) Let H = -~+ V with V = max(- V,O) in 

KV and V+ = max(V,O) in Let k> v/4 . Then any function in D(fHfk) 

is a bounded continuous function. 

Theorem 1.6 (Subsolution estimate for H) Let H obey the hypotheses of Thm. 1.5. 

Let u obey Hu = 0 i n distri butional sense (u not necessarily in l2). Then 

for a constant C dependi ng onl y on KV norms of V 

Theorem 1.7 (Harnackls inequality for H) Let V E KYoc' Let n be a bounded 

open set and K compact in O. Then. there is a constant C depending only on 

KV norms of VIa so that every solution. u, of Hu = a in n with u non­

negative on n, obeys 

C- lu(x) ~ u(y) ~ Cu(x) 

for all x,y . 

We will not indicate in detail the proofs of the last two theorems. In many 

ways, the key ;s the study of the Poisson kernel for H, ; . e, for a small open 

ball, S, about a poi nt x, one can study the map. MS 
V from continuous functions 

f on as to functi ons on S defi ned by M~(f) = u obeys Hu = 0 in di stri -

but ional sense on Band u(x) ..... f {y) as x ..... y on oB . It happens that 

(M~f)(X) = f P~(X.Y)f(Y)dw(Y ) . The last two theorems are proven by showing that 
as 

P is bounded above and away from zero as x runs through a compact subset of B 

and y runs t hrough 08 . This is precisely what Aizenman-Simon [17J do. Recently. 

Zhao [18] and Brossard [19] have actual l y proven more subtle estimates showing that 

S S PV(x ,y)/PV=O(x ,y) is bounded above and below uniformly in x and y (i .e . they 

show the boundary behavior of P i s essentially V independent). 
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2. Bound state problems 

IIBound states" is the name given to eigenfunctions of · eigenvalues i n the 

discrete spectrum (isolated points of the spectrum of finite multiplicity). There 

are various aspects of the study of eigenfunctions : (i) Identify 0ess(H) 

(=a(H)\adisc(H)) (ii) Let N denote the sum of the dimensions of the eigenspaces 

associated to all points in 0disc ' Is N finite or inf inite? (This is the same 

as asking if #(adisc) is finite or infinite.) (iii) If N ;s finite, can one 

obtain effective bounds on it? (iv) When;s N = 07 

For two body systems, -~ + V with V decaying at =, there;s a large 

literature on these questions, 5ununarized in [20] . We \-,ill single out two results 

for special mention, but first we need to find a (-fi+V) in this case . 
ess 

Definition Let A be a self-adjoint operator . B is called A- compact if and 

only if O(B) => O(A) and B(A+ir
l 

is compact . 

The methods of the proof of Thm. 1.2 imply easily that ' 

Proposition 2.1 If v ~ 3 and lim 
rx!-

o or if v ~ 4 and 

1 im 
rxf-

for some u > 0, then V is -6-compact . 

We write S" camp for the V' s given in Prop . 2.1. 

Proposition 2 . 2 If A is self-adjoint, and if B is A-compact and symmetric, 

then aess (A+B) = aess(A) . 

Proof A simpl e theorem of I~eyl (see [3]) says that E £ 0ess(C) if and only if 

there exists a sequence of vectors ~n ~ D(C) with ~n ~ 0 weakly and 

II(C-E)'Pn ll ~ 0, 1ICf'n 11 ~ O. Given E E aess(A), find such a sequence, let ~n = 

(E2+1)(i+l)-1'P
n ' It is not hard to showthat ~n~Oweakly, IIrA+B-E)1»nll~O, lI~nll~l . 

Thus, E E aess(A+B) and we conclude that aess(A) c 0ess(A+B). Using (A+B+i) -l = 

(A+i)- l (l+B(A+i) -l )- l, one can sho", that B is (A+B) - compact. Thus, 0ess(A+B) c 

O"ess(A} by repeating the above argument . • 

Corollary 2 . 3 I f V lies in S" comp' [O,~) . 
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We return now to N for -6 + V which we denote by N(V). We want to 

single out two results : 

Theorem 2.4 '(Quasi classical bounds on N(V)) Let v ~ 3. There is a universal 

constant C so for all V e Lv/2, 
v 

This theorem is particularly important because the semiclassical approximation 

for N(V) is to take the volume in phase space where p2 + Vex) i s negati ve and 

divide it by (2rr)v (for . =1, so h is 2rr). Thus if V(x) < 0: 

where ~ ;s the volume of the unit sphere in RV . As a result, Thm. 2.3 says 
v 

that the quantum N(V) i s bounded by a mult iple of Nct(V) . There i s also a 

connection with Sobol ev estimates (see [21,22J) . Thm. 2.1 was proven independently 

(with different C ) by Rosenbljum [23J, CWickel [24J and lieb [25J (see [21,26J 
v 

for expositions of [25,24 J) with newer prooiS by li - Yau [27] and Fefferma n-

Phong [28J . Theorem 2.4 is in some sense especially accurate for "large" V: 

Theorem 2.5 (Quasiclassical limit for N(V)) . Let v ~ 3, V c Lv/2. Then 

1 im N(l.V)/Nc/l.V) = 1 
A-

Since -6. + "AV = ( - A-'lI.+Vh .. the A ..... CD limit is. "equivalent" to the 

It ... 0 limit, which is "\'Ihy" the semi cla ssical result is asymptotically correct. 

Thm . 2 .4 is used to s how that Thm. 2 . 5 need only be proven when V € C~ where 

Thm . 2.5 was proven independently by Birman- Borzov [29J, I·lartin [30J and 

Tamura [31J (see [3,21J for pedagogic discussions) . A multiparticle ana l og of 

Thm. 2.4 can be found in [32]. 

* * * 

Now \oJe want to describe some results on bound states for multiparticl e 

systems. The first basic result describes aess(H). We first use the partition 
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notation described in Section 1. 

Theorem 2.6 (HVZ theorem) Let H be the Hamiltonian (with c.r~. motion removed) 

of an N-body system on L2(R"(N-l))with two body potential in S" Let camp 

L> inf [min o(H (a))] 
a [# (a),,2 

In order to understand this resul t, it is useful to know 

Theorem 2.7 (Persson's theorem [33J) let V € KV
, V+ £ K~oc' Then 

For a proof, see also Agmon [34,35] or Cyeon et a1. [4] . What Persson's 

theorem suggests ;s that essential spectrum is associated with vectors liv ing near 

infinity (this ;s basically because (H+i) - l times the characteristic function of 

a bounded set is compac t) . Thus, ;n the N-body case, essential spectrum is 

associated with states near infi nity where the system must break up into b/o or 

mo re subsets . Thus, one should expect 

which is just a restatement of Thm. 2.6. 

Thm. 2 . 6 has two parts in a natural sense: (i) [L;,~) c ~(H) and 

(ii) ~(H) n (-~,L;) is discrete. (i) is the "easy" half and (ii) \·li ll be what 

we concentrate on (see e.g. Garding [36] for the "easi' half). The name HVZ 

recognizes contributions of Hunziker [37], van \~inter [38] and Zhislin [39]. 

Zhislin used geometric ideas together l'lith rather extensive machinery, so for 

some years the integral equation proof of van Winter and Zhislin was considered 

the more elementary (see e . g. [3] for that proof), but with the work of Enss [40] 

and Simon [41] , the geometric proof has come into fashion. and it is Sigal IS 

version of it [42] that we will sketch. 

\~e begin with a basic result on localization called the "IMS localization 

formula" due to contributions of Ismigilov. Morgan, Simon and I .t~. Sigal, 11ho 
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first appreciated its great usefulness. 

Proposition 2.8 Let {ja} be a 

gradients in L~ obeying ~j! 

form core. Then 

finite family of functions with distributional 

1. Let H = -~ + V on L2(Rv) have Co as a 

(2 . 1 ) 

Remark (2. 1) is intended in the sense of expectation values with (~,jaHja~) = 

(ja~,Hja~)' If the j's are sufficiently smooth, it hol ds in operator sense. 

Proof By a limiting argument, we can suppose the j's are C~. Then 

[ja,[ja,Hll = [ja,[ja, -6]J = - 2(~ja)2 . Thus 

which yields (2 .1) given L; / = 1. • 
a 

Next, \'Ie need the existence of a special partition of unity for N- body 

system: A Ruelle-Simon partition of ~nity of an N-body system is a set of functions 

[ja} on X (theC.~=Ospace) 

(i) ja is C
W 

(ii)L;j; = 1 

labeled by partitions, 

(iii) if 1> 1 and 

a, wi th #(a) = 2 obeyi ng 

(iv) for some C > 0, 

[supp j n[xll lx[[>l}]c u [xtllx,.-x. I[ "C[[x[[} 
a (ij)¢:a · J 

Thus ja lives in the region where particles in different clusters of a are 

far from each other as II xll ... 00, (The norm of x i.s measured in any convenient way.) 

• Proposition 2 . 9 Ruelle-Simon partitions of unity exist, 

Sketch of proof Let Sa = (x!ilx[1 = 1, xi=Xj for some (ij)ca) . He cla i m that 

~ Sa = ~ . For if Ilx[1 = 1, xi t Xj for some pair i,j (since L;mixi = 0) . Let 

a = (C1 ,C2) with C1 = [x t x=xi} and C2 = [1, . . . ,N}\C1 . Then x t Sa . Since the 

Sa are closed and ~\ = ep, it is not hard to find C""'''1 J a 
on [xt llx[[ = 1} so 

that L; .,2 
~ 

ja(x) . J a = 1 and ja vanishes in a neighborhood of Sa · Now let 

3'a( x/ llx ll ) if I[x l[ " 1 and continued to be smooth near O. • 
• 
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One can actually estimate the constant C; see [41]. 

Proposition 2.10 Let H be an N- body Hamiltonian of the type described i n Thm. 2 .6, 

and l et [ja} be a Ruelle-Si mo n partition of unity. Then : 

(a) (vj a)2 i s H- compact for any a 

(b) J(a)ja is H- compact for any a. 

Proof (Vja)2 is bounded and goes to zero at ~ (as tx[ - 2) so (a) is easy . 

If (ij) ¢ a, tXi - Xjt .. ~ as txt .. =, so it i s not hard to show that Vijja 

is H-compact (see e. g. [41]) . • 

We are now ready for 

Proof of Thm . 2. 6 [42] (Hard direction) Pick a Rue lle-Simon partition of unity. 

\..Jrite 

H ~ H+ I~, H ~ ~ jaH(a)ja 
#(a )~2 

H i s H- compac t, so "ess(H) ~ 0ess(H ) by Prop . 2.2 . Since H(a) ~~ f or all a, 

we have for any cp in l 2 that 

so " ess(H) c a(H) co [~ ,~) . • 

* * * 

These geometric methods have been extremel y useful in studying bound state 

probl ems in N- body systems . Here are some results which we quote Y/ithout detailed 

proofs: 

Theorem 2 .11 Let v:: 3 . Let H be the Hamil toni an of an N-body sys tem with 

potentials Vi j obeying [Vij(x ) ! 5 C(1+!x!) - 2- s . Suppose that the bottom of the 

cont inuum is two body ;n the sense that 

i nf cr(H(a)) > 
#(a) ,,3 

inf cr(H(a)) 
#(a) ~2 
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Then H has only a finite -d iscrete spectrum . 

Theorems 'o f this genre go back to Zhislin and collaborators, see e.g . [43.44J . 

This result ;s proven by geometric means in Sigal [42] . 

Theorem 2.12 For any N, Z 1 et 

3 
[x~(xl , . . . ,xN)!x i • R} on R3N ~ 

H(N,Z) 

H(N,Z) he the operator on 

antisymmetric in the xi's) given by 

Let E(N,Z) _ inf spec H(N,Z). Then, there exists N(Z), so that 

E(N+l ,Z) ~ E(N,Z) if N ".N(Z) 

(2 function 

This result says that a nucleus of charge Z bonds at most N(Z) electrons 

(we will take N(Z) to be the small est N(Z) obeying the above) . 

replaced by L2 was proven by Ruskai [45J; Thm . 2 . 12 was proven by Sigal [42J . 

Recently, Lieb [46J has found an el egant direct proof that N(Z) ~ 2Z for all Z. 

Using Sigal ' s method, Lieb et a1. [47] have proven that lim N(Z)/Z ~ 1. 
Z-

• 

• 
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3. The bas ic notions of scattering theory 

\~e will introduce here some of the simplest not i ons in scattering theory; Enss, 

in his lectures , will discuss much more invo lved i deas. See [2 ] for an exten sive 

discussion of scatteri ng theory . 

Given A,B, we want to find pa i rs ~.$ so 

(3.1) 

It turns out that for general B, one shouldn't normall y expect that a ~ exists 

for every W. For exampl e~ if Bw = 0, one must have ~ = ~ and A~ = 0 f or 

the l imit (3.1) to occur. Thus, we only try to find ~ for ~ € ~a . c . (B) , the 

absolutely continuous subspace for B. Note (3 .1 ) is equ i va l ent to 

Thi s moti vates 

~ = lim eitAe- itB~ 
t_ 

(3 . 2) 

Definition Given two self-adjoint operators, A,S we say that the wave operators 

r.F(A ,B ) exist if and only if s-lim ei tAe- itBp (B) exists. 
t .... =F= a . c . 

Notice that if s i s fixed and we replace t by t - s , the limit i s the 

same . Thus : 

e- iSAr.r(A,B) = r.F(A,B)e- isB (3 . 3) 

Thi s implies that B restr i cted to Ran P (B) and A res t ricted to Ran r.F(A, B) a.c. 

are unitarily equivalent. In particular, Ran r.F(A ,B) c Ran P (A) . a.c. It is 

cl early natural to Single out: 

Definition Let or(A.B) ex ist. We say they are complete if and only if 

Ran r.F(A,B) = Ran P (A) . a . c. 
If or exist and are complete, then the associ at i on (3 .1) sets up a one-one 

correspondence between ~ (A) and ~ (B) . Given the fact that (3 .1 ) i s a .c. a .c . 

symmetric in A and B. it is not hard to show: 

Proposition 4.1 Let d"(A ,B ) exist. Then, they are compl ete if and only i f 
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d'(B ,A) exist . 

Remark Oeift-Simon [48 ] have an N- body analog of Prop. 4 .1. 

Proposition 4.1 suggests that one look for a condition symmetric in A,B 

which impl ies that r.r(A,B) exist. The strongest such result seems to be : 

Theoren 4 .2 Let A,B be self-adjoint operators with (A+i )-1 _ (B+i )-1 compact 

and so that for any interval, 6: E6 (A)(A-B)E6(B) i s trace class (where E6 (.) 

a spectral projection) . Then d'(A ,B) exist and are trace class. 

is 

Theorems of this genre go back to Kato and Rosenbljum. with l ater contributions 

of note by Kato, Birman, Pearson and Davies. Thi s result follows from an observati on 

of Davies [49J and a theorem of Bi rman which appears as Cor. 6.7 in [26] . 

As far as the abstract theory is concerned. Thm. 4.2 i s quite elegant . 

However, in the concrete s i tuation of A = - t:.+ V and n = -6 on L2(Rv). it 

breaks down when V decays more slowly than txt-V while one expects that d'(A,B) 

and are complete so long as V only has txt-1 -E decay . Various methods exist 

for proving that this compactness result (existence ;s easy ~ see [2], Sect . XI.4 

and references therein): 

(a) The method of weighted L2 esti mates developed by Agmon and Kuroda and 

di scussed in Section XIII .S of [3J . 

(b) The Enss method di~cussed in Section XI.17 'of [2 J, and the book of 

Perry [50J. 

(c) Combining the Mourre estimates, to be described in the next section, with 

the smoothness techniques of Kato and Lavine (see e .g. Perry. Si ga l, Si mon [51]). 

For N-body systems; the notion of compl eteness requ i res a more elaborate 
• definiti on. Let Ha be the Hami ltonian describing internal motion for the 

clustering a and let pa denote the projection onto the span of the eigenvectors 

of Ha, and let Pea) = pa®1. 

rC= a 

One defines for any a 

lim eitHe-itH(a)p(a) 
t->'f oo 

Under suitabl e hypotheses, it is not hard to show that 0; exi st (see Thm. XI .35 

in [2], but note the arguments there require mod i f i cation if v= l,2). ~~ = ~ is 
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a state I'lith -itH e ~ asymptotic as t ~ -~ to a state with bound clusters in a 

moving relatively freely. It is thus reasonable and not hard to prove ([2 ] , 

Thm . XI .36 (b)) that 

a of b 

Completeness now reads 

(3 .4 ) 

Notice that if a
1 

;s the unique clustering with #(a,)=1 (so H{a1)=H), then 

0: = P(a,) is the projection onto the point spectral subspace H, and that by 
1 

the intertl-lining relation 

Ran a" C M (H) if #(a) > 2. Thus (3 .4) implies that H has empty singular a a .c. 

continuous spectrum. 

Thus far, there are fairly general· results on three body completeness [52,53,54J 

but only very specialized results for N-body, see e . g. [55,56,57,58] . It has been 

emphasized to me by I.~1. Sigal that the fo llDl'iing result \'Ihich extends an idea of 

Deift-S imon [48J should be very useful in a possible inductive proof of complete-

ness: 

Proposition 4 .3 Let [A(a)l~() 2 be bounded operators with 1:; A(a) = 1. Suppose 
;r a :: a 

that (i) Each Ha with #(a»2 is complete (i i ) The operators limeitH(a)A(<ie-itHp (il) = I·t 
- t-+=F<x> a.c. a 

exist. (iii) Hsi ng(H) = $ . Then H is complete. 

Proof Let '1 0 Ran P (H). Then a . c . 

e -itH =" A( )e - itH ~"e - itH(a\r" 11 L.J a T.j L.J all 
a a 

where --' means the difference goes to zero as t -+=f""'. Since Ha is complete, 

e-itH(a)tp is. asymptotically a sum of vectors of the form e-itH(b)p(b)'Pt, with 

b ~ a. 50 we have campl etene5S for H. • 
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4. ~burre estimates 

Er i c Mourre, in a deep paper [59J . singled out certain estimates which he 

showed have important spectral consequences, and which he proved for a large cl ass 

of two and three body systems . Perry, Siqal, Simon [51] then gave an i nvolved 

proof of these estimates for general N- body systems . Subsequently . Froese-Herbst [80] 

found a rather s i mpl e proof of these PSS resul ts . 

let H be a self-adjoint operator, and A a second self-adjoint operator . We 

I-lill not be explicit about all domains referring the reader to [ 59,51J for expl i cit 

hypotheses. Under such hypotheses , one can define - i[A,H] = B originally on a 

suitable core for H and then as an Ilopera tor" from D(H) to 0- 1 (H) (equal 

abstract dual of D(H)) i.e . (H+irlB(H+ir l is a bounded operator . We say that 

H obeys a 1./al.A.1'l'e estimate at a point EO' if there ; s an open i nterval 11 a bout 

Eo so that 

(4 .1) 

for a compact operator K. and some a> O. 

Theorem 4 .1 Under su i t able domain hypotheses (inc luding a bound on [A,B ] ), i f a 

Mourre estimate holds for any EO § I, an open interval) then 

(i) H has no singular continuous spectrum ;n 

(ii) In any compact J c J , there are finitely many eigenvalues of H 

and each eigenvalue has finite mult i pli city. 

< ~ . 

(iii) For any compact JcI and 6> 0 , sup II ([ Al+l) - '>- 6 (H- E- ie) -1 ([A[+l r"- &II 
~<l 

EoJ 

The result ;s es sent iall y due to Mourre [59], although the above include 

refinements of [51]. While we will not give the proof ;n detail. we note the basic 

i dea behind {ii} . Us ing the unstated domain condHion s, one verifies a Vi rial 

theorem: If Hcp = Ecp, then (cp , Bcp) = O. Thus, if HCPn = En'l'n "ith En-> EOe 6 

and CPn is orthonormal, then, by (4 .1 ) 
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which is impossible since K is compact and . l't1n --+ a "'/eakly . 

Mourre [61] (see also [62]) has also proven interesting propagation estimates 

when Mourre estimates hold . 

When does an estimate like (4 . 1) hold? Mourre had the idea of taking 

1 A = 2(x ·P+p o x) (with p = - iv), the generator of dilations . Fo r two body operators , 

H = HO + V 

-i [A,H] 2HO - x·oV 2H + I, 

where 

H =-x'oV - 2V 

If K = El; (H)I,Et, (H) is compact, and if l; = [a ,b] with a > 0, then El;BEl; '" 

2aE~ + E~KE~. so a Mourre estimate holds . 

Proposition 4.2 If V = V1 + V2 with 

(1+!X!)V2(HO+i) - 1 all compact , then a 

H = -6 + V and EO> O. 

- 1 ()-l Vl (HO+i) ,x'vVl HO+i and 

Mourre estimate holds for A = j(xop+p.x) ; 

Proof Note first that D(H) = D(HO), so (H O+i)E
6

(H) is bounded. Thus, 

as - y [Oi'x i V2] +vV2 and Ei(v i )(xi V2) ] E
6 

is compact . • 
Mourre [59] showed how to do thi sfor three-body systems and then PSS [51] 

proved: 

Theorem 4 . 3 If each 
_ (1) (2) 2 v (1) - 1 

Vi j - Vij + Vij ' where as operators on L (R ), V (hO+i), 

(1+tx[lv(2)(ho+irl are all compact on (h
O

= - t, on RV ), 

then a Mourre result holds for any EO i threshold (and a is twice the distance 

from EO to the threshold of next lowest energy), 

To conclude (i) and (iii) in Thm. 4 .1, we also need control on [A,B] which 

requ i res Vij have more decay than in the above theorem (e,g . (1+i)v(2)(h
O
+i) - 1 

v(l)(ho+ir l and iwV(l)(hO+i) - l compact will do); see e.g. [51]. Froese ­

Herbst [60] have a simple proof of Thm . 4 . 3. 
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Froese-Herbst [63] have proven the following theorems using Mourre estimates: 

Theorem 4.4 [63] let Vij obey the hypotheses of Theorem 4.3, and suppose that 

Il:p = E,p, with <p < l2 let t xt denote the norm of x in X (i.e . (I;m .i)" 
1 1 

if I;mixi = O). Define 
a[xl 2 a=sup(a[e <pel ) 

Then either a = = or a2 + E is a threshold . 

By using results [64] which imply a = 00 is not allowed: 

Theorem 4.5 [63] If the Vij obey the hypotheses of Theorem 4.3, and for all 

c> 0 

then ",, = E,p has no l2 solutionswith E>O . 
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5. An Introduction to the Theory of Stochastic Jacobi Matrices 

In this final section, we consider another topic cur rentl y of i ntense interest, 

namely Schrodinger operators with random or almost periodic potentials . For 

technical simplicity, we will restrict ourselves to \i = and \·/e \oJi11 discretize 

space, i . e . replace R by Z and _d 2/dx2 by a second difference operator. 

See [65J for an extensi ve bi bl i ography inc1 ud; ng papers deal i ng \'I; th the conti nuum 

case and with v > 1 . 

~/e should take hO to be the finite difference analog of _d 2/dx 2• namely 

(hau) (0) 0 5-
2[2u(n) - u(n+1) - u(nll . First of all, 1·1e take 5 for convenience. 

Then, Ide replace hO by hO- 2 \'Ihich won't change any spectral properties. Then 

we make the unitary transformation u(n) --t (_l)nu(n) which means that instead, 

we take 

(hOu)(n) 0 u(n+1)+ u(n - 1) (5 .1) 

on t
2

(Z). We l'iill study not individual operators butl'lhole classes : Let ((J,~) 

be a probability measure space and let T : 0 ~ 0 be an invertible, measure 

preserving ergodic transfonmation. Let f: 0 ~ R be a bounded measurable function . 

Given W E O. define 

V (n) f(T"w) 
w 

(5 . 2) 

and 

h 0 hO + V (5 . 3) 
w w 

I·ie ask about proper t ies of hw that hold for a . e. UJ . 

Examples 1. 0 = X [a,b], dl1 = 02) dv(xn ) \'Ihere dv is a probability measure 
n"'-= n=-co 

on [a,bl. Let (Tx)n 0 xn+1 and f(x) '" xo . Then the variabl es V (n) are 
w 

precisely independent identically distributed (i . i .d.) random variables I'lith 

common density dv . This is conventionally called "random potentials . " The case 

( -1 
dv(x) 0 b- a) L(a,b)(x)dx is called t he Anderson modeZ. 

2 . Let 0 be t he k torus ((81 , . .. , 8k); a ~ e < 1} with its structure 
k 

as a group (addition of components, mod . 1) and Haar measure TI dS .. Let f be 
1 ' 
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a continuous function on n and let (Te); '" 8i +ui (mod 1) where O" • • • • ,ak 

are numbers so that 1 .a." " "uk are independent over the rationals . Then 

V (n) = f(a .n+e·) is quasiperiodic. A good example is Ve(n) = A cos(2rran+e) 
ell 

(now 8 runs through [0, 2u)) ca 11 ed Happel"'s equation or the almost Mathieu equation. 

An interesting example (see [66,67,68J) which doesn't quite fit into this frame ­

~'1ork is Ve(n) = A tan(TTCtn+s) . This is called the M02'yland modeZ and has the 

feature of being exactly soluble in a certain sense . 

It makes sense to study the totality of the operators (h ) UJ for one has 

the following consequence of ergodicity . 

Theorem 5.1 ([69J) The following sets are constant for a.e. w (i.e . there is a 

set Sen whose complement has measure zero, so that if w, w' e S all the 

objects below are equal for UJ and UJ') : cr(h ), a (h), a (h) (= closure of 
ill a . c. w pp w 

set of eigenvalues), 0s.c . (hw)' Moreover, adisc(hw) ~ ¢ and a(hw) has no 

isolated points . 

Remark ad ' (h) ~ $ also in the higher dimensional case; it is also true in 
--- lSC w 

that case that cr(h) has no isolated points, but this is more subtle (see [70,71]) . UJ 
Here are some typical results illustrating the subtle spectral properties of 

stochastic Jacobi matrices : 

Theorem 5.2 Let h have a random potential (V (n) ; . i .d.'s) \·lith w UJ 
dv(x) = F(x)dx (supported on [a,b]) . Then, for a . e. w, 

spec(h ) = [-2,2] + supp(F) 
w 

and h has a complete set of eigenfunctions . 
w 

For proofs see [69,72] , For related continuum results, see [73,74] . For 

the study of "0 + (l+[n[l - aVUJ(n), see [75,76 ] . 

Theorem 5.3 Let (an) 011(0,1, ,,. ) and let h(a) = hO + Z:a cos(2rrn/2m) . 
m m~O m 

Then for a dense Go ;n i l , h(am) has a nowhere dense spectrum and for a dense 

set fn il'a(h(a
m

)) ;s both nowhere dense and purely absolutely continuous . 
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See [77,78,79J for proofs; see [80] for a discussion of nowhere dense a.c. 

spectrum. 

Theorem 5.4 Pick any a < a < 1. Then, there exists almost periodic potentials 

Vw(n) so that hO + Vw(n) = hw has dense point spectrum and cr(hw) has 

Hausforff dimension a . 

The basic i dea i s from Craig [81], although his examples are not strictly 

almost periodic; those are due to Poschel [821 . See also [83J. 

Sarnak [84J first suggested that spectral properties should depend on 

Diophantine properties of a : 

Theorem 5.5 Let a be an irrational number for which there exist rationa l 

approximations Pn/qn obeying Le t A > 2. Then 

hO + A cos(2nan+s) 

has purely sJingular continuous spectrum. 

For a proof, see Avron-Simon [85J; important input comes from Aubry-Andre [86] 

and Gordon [87]. The set of a obeying the estimates i s a dense Go i n R (of 

Lebesgue measure zero) . 

Definition A stochastic process V (n) is called deterministic if and only if 
w 

[Vw(n)l~o is (a .e. ) a measurable f unction of [Vw(n)ln<O . For example, a.p. 

functions yield deterministi c processes; random potentia l s do not. 

Theorem 5.6 If h ;s a stochastic Jacobi matrix and h has some a.c. spectrum 
w w 

(for a.e. w), then V i s a deterministic process . 
w 

This result in the continuum case ;s due to Kotani [88]; see Simon [89J for 

the discrete case. 
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