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In these notes, we will survey a part of theory of the operator -a+V. More

extensive surveys can be found in [1,2,3] and in [4].

1. Self-adjointness, properties of eigenfunctions and all that

There is an enormous literature on the basic issue of giving a domain where
-A+V s self-adjoint or essentially self-adjoint. To a large extent, I think one
can single out two results as the most important: (1) The basic perturbation
results of Kato-Rellich which accomodate virtually all cases of physical interest
(2) "Kato's inequality," which, at least amohg positive V, 1is definitive. We
will describe the first result briefly (for background on definition of self-

adjoint, etc., see [5,6,7]; for a discussion of Kato's inequality, see [1,8,9,10]).

Theorem 1.1 (The Kato-Rellich theorem [11,12]) Let A be a self-adjoint operator
on a Hilbert space, H, and let B be symmetric. Suppose that D(B) = D(A) and

for some a <1 and b <o,

IBoll < aflgll + bl (1.1)

for all o ¢ D(A). Then A+B is self-adjoint on D(A) and any core for A 1is
a core for A+B.

For a proof, see [1], pp. 162-163.

To apply this to -A+V, we set A= -p, B=V and study (1.1). In this
form, (1.1) is related to Sobolev estimates. Kato studied when (1.1) held in
terms of Lp-spaces a point of view I long preferred, but I have come around to

prefer a point of view introduced by Stummel [13].

Definition Fix v>4, and O <a<4 and let Sivj be the set

of functions, V¥V, on RY obeying
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sip [ ey Oy ay< o (1.2)
x  fy-xj<

If v<3, wedefine Séf) in terms of (1.2) with [x-y['(v-4+a) replaced by
1 (independently of a).
With these definitions, it is not hard to prove the following pair of results

(see Stummel [13]).

Theorem 1.2 1f V¢ S\, then (1.1) holds on D(-a) where B=V, A=-4 and

a can be taken arbitrarily close to zero.

Theorem 1.3 If ge Séf), v>p and V(x) = g(yx) where % is a linear map of
RY onto RF, then V¢ St(lv).

Thm. 1.2 is proven by noting that for v > 4, the integral of (-A+K2)_2 goes
to }x-y{'(”"4) for Ix-y} small and as ek xyl fop Ix-y} 1large and for v <3,
the kernel is bounded at small distances. As a result, “V(-A+K2)_2V"4 0 as k- =,
Theorem 1.3 follows by noting that [x—y{'(“'4+a) integrated over wv-p variables
(and cutoff at large distances) is bounded by {x-y[-(”"4+&).

The most important special case of Thm. 1.3 is to take  fixed (=3 is the
physical case), w = uN, write a point in RY as x = (x1,...,xN) with Xje RH
and let Tx = X; = xj. Thus picking,for all pairs 1i,j, a function Uij € Sé”)

. = (v)
and letting Vij(x) = Uij(xi’ xj), we see that Vij € SBL . Therefore, the
operator

N
5 2 -1
H=H,+V; H =2 -(2m.) a3 V=2 V.. (1.3)

0 0,573 5 S I

called an N-body Hamiltomiarn obeys

Theorem 1.4 Any N-body Hamiltonian with Uij € Sé“) defines an operator H

self-adjoint on D(-A) and essentially self-adjoint on CE(Rv).

We used H for the operator in (1.3) because there is a closely related
operator, H, on L2(R”'(N_] )) called the operator with center of mass removed.

Here are two ways of understanding this change:
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(1) et R = Z]mixi/ﬁimi and Tet (... be N-1 additional

“2CN-
p-component coordinates (i.e. linear functions of the x's), so that (i) gj is
invariant under xja xj4-a for any a (ii)-xja R,gj is animvertible transfor-

mation. For exampie, one might take

gj = rj- N J=1,...,N-1 (1.4)

Then by writing pel = pe s R“(N']) by the coordinates R,Q,LZ(RQN) decomposes
into Hop @8 = L2{R“) ® LZ(R“(N_l)) (functions of R tensored by functions of ¢).

Under this decomposition

H= HO,cm @1+1 aH (1.5)

where H = —2(§3mi)_1gR and H =

0,cm HO*-V. The precise form of HG depends on

the choice of local coordinates. For example, in the coordinate system (1.4),

N-1
-1 -1
H =—E (Zp‘) A +m EV"V- (1.6)
0 i=1 J QJ N'i<j 17

; _op =1, =141
with by (mN +mj e

(2) ([14,15]) View ﬁﬁ as one half the Laplace Beltrami operator associated
to the metric [dx|” = Zm,(dx;)%. Let X = {x{Zm.x;=0}. Then in the metric,

1 2 S
X = {x;x1=x2=---=xN),ﬂ,m = LZ(XL),ﬁ = L°(X) and HO is just the laplace-

g
Beltrami operator on X in the induced metric.
For later purposes, we introduce some additional notation to describe N-body

systems. A partition of {1,...,N}, i.e. a family C Ck of disjoint subsets

ERREE
of {1,...,N} which exhaust {1,...,N} is called a cluster decorposition. We
write a = {C1,...,Ck}; k = #(a). The family of cluster decompositions is
important because in various aspects of the study of N-body Hamiltonians, one
expects that we want to analyze what happens as [x| + « with Ejmixi = 0. This
happens if the system breaks up into distinct clusters; i.e. we can find numbers
Ris...»R, and a decomposition a so txi_Rj[ stays bounded if i e Cj and so
each FRi_Rj! goes to infinity.

Given a, we pick coordinates g]""’gk involving differences of center of
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8 . : 1 N-1-k .
mass of clusters in a, and "internal coordinates," ¢ ,..., 1 o HUBs Ge=
g

ordinates left invariant by the transformations X: = Xt Rj(i) where j(i) is

that j with X € Cj‘ {Put differently, g1,...,gN_1_k are coordinates for the
plane x2= {x] = m;x; = 0, all j} and CyonensCy for its orthogonal complement,
L. i
'Ie:J
Xa, in X). If we decompose ¥ = ¥ e £ corresponding to functions of ga and
Z
(

£s (i.e. pd=L Xa},ua=L2(Xa)),then we have

V=¥a)+I(a); I(a) = = V..:¥(a) =
(ij)¢a

(where (ij)ca means 1 and j are in the same cluster), and

Z

= Vi'
(ij)=a J

H= H(a) + I(a)

.H(a)=Ha®I+I®Ta

where Ta has no potentials and is exactly the kinetic energy of relative motion

of the clusters. Eigenvalues of Hd  with #(a) > 2 are called thresholds.

[16] contains extensive discussion of properties of eigenfunctions of -a+ V.
Here we state some of the most important results. For many purposes, the natural

class of potentials, V, for this study is XY defined by:

Definition Let v=> 3; Y ¢ K if and only if

Tim sup [ [x—yt_(v_2)§vﬂngdvy= 0
atd x  fx-vl<o

If w=2, ¥¥ 1is defined with {x-y{'[“'g) replaced by ﬂn({x—y{_w) and if

v=1, Ve KY if and only if sup i {V(y)fdvy < e,
X hx-yi<l

Ve KY does not imply that -a+V is essentially self-adjoint on Co, but

O,
one can [16] always define a self-adjoint operator "-A+Y¥" by a method of forms:
This meaning agrees with that obtained by closing the operator on Cg in case the

operator sum is self-adjoint there. The following three results are discussed
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(either proofs or references given) in [16]. If Hu = Fu, then (-a+(V-E))u = 0,
so by changing V, we can look at functions with Hu = 0 and obtain information

on general eigenfunctions.

Theorem 1.5 (Sobolev estimates for H) Let H = -a+V with V = max(-V,0) in
KY and V, = max(V,0) in K?oc‘ Let k > vw/4. Then any function in D([H[k)
is a bounded continuous function.

Theorem 1.6 (Subsolution estimate for H) Let H obey the hypotheses of Thm. 1.5.

Let u obey Hu =0 in distributional sense (u »not necessarily in Lz). Then

fut)f <c [ fuly)}dYy
<1

for a constant C depending only on KY norms of V_.

Theorem 1.7 (Harnack's inequality for H) Llet V ¢ KYOC.

Let 0 be a bounded
open set and K compact in Q. Then, there is a constant C depending only on
K¥ norms of VIQ so that every solution, u, of Hu=0 in Q with u non-

negative on 0, obeys
cu(x) < uly) < Cu(x)

for all x,y.

We will not indicate in detail the proofs of the last two theorems. In many
ways, the key is the study of the Poisson kernel for H, i.e. for a small open
ball, B, about a point x, one can study the map, M% from continuous functions
f on 3B to functions on B defined by Mﬁ(f) = u obeys Hu=0 in distri-
butional sense on B and wu{x) = f{y) as x-y on 3B. It happens that

(M%f)(x) =] P%(x,y)f(y)dw(y). The last two theorems are proven by showing that
aB

P is bounded above and away from zero as x runs through a compact subset of B
and y runs through aB. This is precisely what Aizenman-Simon [17] do. Recently,
Zhao [18] and Brossard [19] have actually proven more subtle estimates showing that
P%(x,y}/Pﬁzo(x,y) is bounded above and below uniformly in x and y (i.e. they

show the boundary behavior of P is essentially V independent).
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2. Bound state problems

"Bound states" 1is the name given to eigenfunctions of eigenvalues in the
discrete spectrum (isolated points of the spectrum of finite multiplicity). There
(H)

(=G(H)\Gd15C(H)) (i1) Let N denote the sum of the dimensions of the eigenspaces

are various aspects of the study of eigenfunctions: (i) Identify T
associated to all points in Tyisc” Is N finite or infinite? (This is the same
as asking if #(Udisc) is finite or infinite.) (iii) If N is finite, can one
obtain effective bounds on it? (iv) When is N = 0?

For two body systems, -A + V with V decaying at =, there is a large
literature on these questions, summarized in [20]. We will single out two results

for special mention, but first we need to find o SS(—fﬁ-v) in this case.

e
Definition Let A be a self-adjoint operator. B is called A-compact if and
only if D(B) > D(A) and B(Aﬂ')_-I is compact.

The methods of the proof of Thm. 1.2 imply easily that

Proposition 2.1 If v<3 and Tim [ [V(y)}%dy =0 or if v>4 and
Pxfae fy-x]<i

1;m | i }y—xf'(v'4+a)ﬁv(y)§2dy =0 for some ¢ >0, then ¥ is -A-compact.
Fxfae  {x-yi<l
We write Szomp for the V's given in Prop. 2.1.

Proposition 2.2 If A is self-adjoint, and if B 1is A-compact and symmetric,

then o __(A+B) = (A).

e58 GESS

Proof A simple theorem of Weyl (see‘[3]) says that E ¢ o __(C) if and only if

ess
there exists a sequence of vectors 9, © D(C) with @, 0 weagkly and

[(C-Edepll » O, [lp,[| » 0. Given E ¢ o, (A), find such a sequence, let y =

2 - . ) "
(E+1)(A%+1) @, - It is not hard to show that rpn—rO weakly, || f’MB-E)wnHaO, i]l[»‘n”—i 1s

Thus, E ¢ UESS{A+B) and we conclude that o___(A) = o___ (A+B). Using (A+B+i)_1=

ess ess
(A1) (148(A+i)"1)7Y, one can show that B s (A+B)-compact. Thus, Oass (AHB)

Jecs(A) by repeating the above argument. |

. . Y} "
Corollary 2.3 If V 1lies in Scomp’ then UESS(-A+V) = [0,=).
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We veturn now to N for -aA + V which we denote by N(V). We want to
single out two results:

Theorem 2.4 (Quasiclassical bounds on N(V)) Let v > 3. There is a universal

constant Cv so for all V¢ LVIZ,

NY) < € PIVOO LY 2V

This theorem is particularly important because the semiclassical approximation
for N(V) 1s to take the volume in phase space where p2 + V(x) is negative and

divide it by (2m)Y (for #=1, so h is 2g). Thus if V(x) < O:

T,
N, (V) = Z:IJVI[V(XJ[V/Zd"’x

(

where ¢ is the volume of the unit sphere in RY. As a result, Thm. 2,3 says
that the quantum N(V) 1is bounded by a multiple of ch(v). There is also a
connection with Soboley estimates (see [21,22]). Thm. 2.1 was proven independently
(with different Cv) by Rosenbljum [23], Cwickel [24] and Lieb [25] (see [21,26]
for expositions of [25,24]) with newer proofsby Li-Yau [27] and Fefferman-

Phong [28]. Theorem 2.4 is in some sense especially accurate for "large" V:
Theorem 2.5 (Quasiclassical 1imit for N(V)). Let vw> 3, Ve ™2 Then

li: N(AV)/ch(AV) =1

Since -A + AV 2 (—h"1A+V)1, the A+« Tlimit is "equivalent" to the
2=+ 0 Timit, which is "why" the semiclassical result is asymptotically correct.
Thm. 2.4 is used to show that Thm. 2.5 need only be proven when V ¢ Cg where
Thm. 2.5 was proven independently by Birman-Borzov [29], Martin [30] and
Tamura [31] (see [3,21] for pedagogic discussions). A multiparticle analog of

Thm. 2.4 can be found in [32].

Now we want to describe some results on bound states for multiparticle

systems. The first basic result describes aeSS(H). We first use the partition
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notation described in Section 1.

Theorem 2.6 (HVZ theorem) Llet H be the Hamiltonian (with C.M. moticn removed)

of an N-body system on LZ(R“(N_]))with two body potential in S%omp' Let

2= inf [min o(H(a))]
al#(a)=2

Then o . (H) = [Z,=).

in order to understand this result, it is useful to know

Theorem 2.7 (Persson's theorem [33]) Let V_e KV, V, ¢ KTOC. Then

inf cess(-&+V): ;iz inf{(m,(—A+V)¢)§¢eC§(Rv);H¢”=1;Supp:pc{xf!x{>R}}

For a proof, see also Agmon [34,35] or Cycon et al. [4]. What Persson's
theorem suggests is that essential spectrum is associated with vectors 1iving near
infinity (this is basically because (Hﬂ')_1 times the characteristic function of
a bounded set is compact). Thus, in the N-body case, essential spectrum is
associated with states near infinity where the system must break up into two or

more subsets. Thus, one should expect

TasslH) = U olH(a))

which is just a restatement of Thm. 2.6.

Thm. 2.6 has two parts in a natural sense: (i) [2,=) < g(H) and
(ii) o(H) n (-=,2Z) 1s discrete. (i) is the "easy" half and (ii) will be what
we concentrate on (see e.g. Garding [36] for the "easy" half). The name HVZ
recognizes contributions of Hunziker [37], van Winter [38] and Zhislin [39].
Zhislin used geometric ideas together with rather extensive machinery, so for
some years the integral eguation proof of van Winter and Zhislin was considered
the more elementary (see e.g. [3] for that proof), but with the work of Enss [40]
and Simon [41], the geometric proof has come into fashion, and it is Sigal's
version of it [42] that we will sketch.

We begin with a basic result on localization called the "IMS localization

formula" due to contributions of Ismigilov, Morgan, Simon and I.M. Sigal, who
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first appreciated its great usefulness.

Proposition 2.8 Let {ja} be a finite family of functions with distributional
gradients in L~ obeying Eji =1. Let H=-aA+VY on L2(R\") have COS as a
form core. Then

H=2Z i M, -2 {wd,) (2.1)

Remark (2.1) is intended in the sense of expectation values with (tg,jaHjacp) =

(jaqg,Hja¢). I the j's are sufficiently smooth, it holds in operator sense.

Proof By a limiting argument, we can suppose the j's are C*. Then
£d,:03,:00] = (3 50,~41] = -z(vja)z. Thus
T2+ w2 = 224, - 2 Des?
a a a
which yields (2.1) given T =1,
Next, we need the existence of a special partition of unity for N-body
system: A Ruelle-Simon partition of wnity of an N-body system is a set of functions
{ja} on X (the CM=0 space) labeled by partitions, a, with #(a}f 2 obeying
(1) 3, is € (i) Z}jaz =1 (i11) if a>1 and [x] > 1, then j_(ax)=j_(x)

(iv) for some C > 0,

[supp 3,0 {xflix]|>1}] < (%J_L)fqta{xﬂlxrxj[ZzCIIXH}

Thus ja lives in the region where particles in different clusters of a are

far from each other as [x|| + . (The norm of x is measured in any convenient way.)
., 7 @ . sz - Ty
Proposition 2.9 Ruelle-Simon partitions of unity exist.

Sketch of proof Let Sa = {x}x] = 1, X; = X for some (ij)c=a}. HMe claim that
ns, =g¢. For if x| =1, x; # x; for some pair 1,J {since Zm.x.=0). Let
2 j b

a = {C1,C2} with CI = {x{x=xi} and C2 = T ]y vy N C1. Then x £ S,. Since the

S, areclosedand 0§, = ¢, it is not hard to find €3, on [x][x]| =1} so

that 22 32 =1 and Ea vanishes in a neighborhood of S - Now let ja(x) =

Ea(x/llxh') if |x| > 1 andcontinued to be smooth near 0. M
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One can actually estimate the constant C; see [41].

Proposition 2.10 Let H be an N-body Hamiltonian of the type described in Thm. 2.6,

and let [ja} be a Ruelle-Simon partition of unity. Then:
(a) (vja)2 is H-compact for any a
(b) I(a)ja is H-compact for any a.

Proof (vja)2 is bounded and goes to zero at = (as [x{_z} so (a) is easy.
If (i3) #a, |x;- xj{ + @ as [x| + =, so it isnot hard to show that Vi3
is H-compact (see e.g. [41]). |

We are now ready for

Proof of Thm. 2.6 [42] (Hard direction) Pick a Ruelle-Simon partition of unity.

Write
2 j H(a)]
#(a)=2 2 _
oy . ;42

W=2j,1(a)d, - Z (vd,)
(H) = (R) by Prop. 2.2. Since H(a) > for all a,
2

W 1is H-compact, so
H-comp 5 g - T

that

ess
we have for any p in L

(2:f) > Z (0 Z0) = Z (gu0)
d

(A)coH)c[Z,=). MW

S0 Opgs

These geometric methods have been extremely useful in studying bound state
problems in N-body systems. Here are some results which we quote without detailed
proofs:

Theorem 2.11 Let v > 3. Let H be the Hamiltonian of an N-body system with
potentials Vij obeying {Vij(x}g < C(1+}x{)_2"€. Suppose that the bottom of the
continuum is two body in the sense that

inf o(H(a)) > inf o(H(a))
#(a)>3 #(a)>2
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Then H has only a finite discrete spectrum.
Theorems ‘of this genre go back to Zhislin and collaborators, see e.g. [43,44].

This result is proven by geometric means in Sigal [42].

Theorem 2.12 For any N,Z let H(N,Z) be the operator on Lg(RsN) (= function

on RN - {x:(x1,...,xN){x1 e R3} antisymmetric in the x.'s) given by
N
HNZ) = Z-ag-—L—+ B —1
i=1 fxig 1#] !xi—xj}

Let E{N,Z) = inf spec H(N,Z). Then, there exists N(Z), so that

E(N+1,Z) = E(N,Z) if N >N(Z)

This result says that a nucleus of charge 7 bonds at most N(Z) electrons
(we will take N(Z) to be the smallest N(Z) obeying the above). Thm. £.12 with Lg
replaced by L2 was proven by Ruskai [45]; Thm. 2.12 was proven by Sigal [42].
Recently, Lieb [46] has found an elegant direct proof that N(Z) < 2Z for all Z.

Using Sigal's method, Lieb et al. [47] have proven that 1im N(Z}/Z = 1.

7
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3. The basic notions of scattering theory

We will introduce here some of the simplest notions in scattering theory; Enss,
in his lectures, will discuss much more involved ideas. See [2] for an extensive
discussion of scattering theory.

Given A,B, we want to find pairs e, so

e_1tAtp - e-]tBL[J 420 as ta+te (3.7}
It turns out that for general B, one shouldn't normally expect that a ¢ exists
for every . For example, if By = 0, one must have ¢ =14 and Ay =0 fTor
the 1imit (3.1) to occur. Thus, we only try to find o for Ve . (B), the

absolutely continuous subspace for B. Note (3.1) is equivalent to

@ = 1im e theTtBy (3.2)

to
This motivates
Definition Given two self-adjoint operators, A,B we say that the wave operators

itA -itB
- Pa.c.(B)

G5(A,B) exist if and only if s-lim e exists.

4T
Notice that if s 1is fixed and we replace t by t-s, the Timit-is the
same. Thus:

e 1A= (a B) = (A,B)e” 5B (3.3)

This implies that B restricted to Ran‘Pa . (B) and A restricted to Ran 5(A,B)
are unitarily equivalent. In particular, Ran °(A,B) < Ran B 5 (A). It is

clearly natural to single out:

Definition Let GF(A,B) exist. We say they are complete if and only if
Ran °(A.B) = Ran P_ _ (A).

If o exist and are complete, then the association (3.1) sets up a one-one
correspondence between ua.c.(A) and “a.c.(B)' Given the fact that (3.1) is

symmetric in A and B, it is not hard to show:

Proposition 4.1 let ﬁF(A,B) exist. Then, they are complete if and only if



189

at(B,A) exist.

Remark Deift-Simon [48] have an N-body analog of Prop. 4.1.
Proposition 4.1 suggests that one look for a condition symmetric in A.B

which implies that ﬁt(A,B) exist. The strongest such result seems to be:

Theorem 4.2 Let A,B be self-adjoint operators with (A+i)“1— (B+1)_] compact
and so that for any interval, A: EA(A)(A—B)EA(B) is trace class (where EA(') is
a spectral projection). Then (F(A,B) exist and are trace class.

Theorems of this genre go back to Kato and Rosenbljum, with later contributions
of note by Kato, Birman, Pearson and Davies. This result follows from an observation
of Davies [49] and a theorem of Birman which appears as Cor. 6.7 in [26].

As far as the abstract theory is concerned, Thm. 4.2 is quite elegant.
However, in the concrete situation of A= -aA+V and Q= -a on LZ(R“), it
breaks down when V decays more slowly than {x{_v while one expects that (F(A,B)
and are complete so long as V only has {x{'1'5 decay. Various methods exist
for proving that this compactness result (existence is easy, see [2], Sect. XI.4
and references therein):

(a) The method of weighted 12 estimates developed by Agmon and Kuroda and
discussed in Section XIII.8 of [3].

(b) The Enss method diScussed in Section XI.17 of [2], and the book of
Perry [50]. -

(c) Combining the Mourre estimates, to be described in the next section, with
the smoothness technigues of Kato and Lavine (see e.g. Perry, Sigal, Simon [51]).

For N-body systems, the notion of completeness requires a more elaborate
definition. Let H® be the Hamiltoni;; describing internal motion for the
clustering a and let P® denote the projection onto the span of the eigenvectors
of H, and Tet P(a) = P®91. One defines for any a

o = Tim ' HeT1tH(@)p(q)
5w
Under suitable hypotheses, it is not hard to show that nj exist (see Thm, XI.35

in [2], but note the arguments there require modification if v=1,2). Ci@ =q is
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a state with e“‘th asymptotic as t + -= to a state with bound clusters in a
moving relatively freely. It is thus reasonable and not hard to prove ([2]1,
Thm. XI.36(b)) that

+ +
Ran Qa 1 Ran Qb a#b
Completeness now reads

L2RUVTVY < gtgan ) (3.4)
a

Notice that if a is the unigue clustering with #(a1)= 1 {so H(a])= H), then

£

CE = P(alj is the projection onto the point spectral subspace H, and that by
1

the intertwining relation
itH+ _ = itH(a)
e Q: (e

Ran Q: (< ﬂa.c.(H) if #(a) > 2. Thus (3.4) implies that H has empty singula?
continuous spectrum.

Thus far, there are fairly general results on three body comp]eteﬁess [52,53,54]
but only very specialized results for N-body, see e.g. [55,56,57,58]. It has been
emphasized to me by I.M. Sigal that the following result which extends an idea of
Deift-Simon [48] should be very useful in a possible inductive proof of complete-
ness:

Proposition 4.3 Let [A(a)]ﬂ(a}>ﬁ be bounded operators with Z A{a) = 1. Suppose
Tarzs a

tMtMEmhmwﬁhﬂﬂgismmhm(ﬁHMOmmmmngmhmafm%Jme:
t Fo e

exist. (iii) ® (H) = ¢. Then H 1is complete.

sing

Proof let 7 e Ran P, (H)}. Then

e—1tHn = A(a)e_1tHn AT e_1tH(a}w§q
a a
where ~ means the difference goes to zero as t 4« Since K s complete,

e—itH(a)tp -1tH(b)

is asymptotically a sum of vectors of the form e P(b)c@.b with

b<a, sowe have completeness for H. B
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4, Mourre estimates

Eric Mourre, in a deep paper [59], singled out certain estimates which he
showed have important spectral consequences, and which he proved for a large class
of two and three body systems. Perry, Sigal, Simon [51] then gave an involved
proof of these estimates for general N-body systems. Subsequently, Froese-Herbst [80]
found a rather simple proof of these PSS results.

Let H be a self-adjoint operator,and A a second self-adjoint operator. We
will not be explicit about all domains referring the reader to [59,51] for explicit
hypotheses. Under such hypotheses, one can define -i[A,H] = B originally on a
suitable core for H and then as an "operator" from D(H) to D'](H) (equal
abstract dual of D(H)) i.e. (H+1’)'1B(Hﬂ')'1 is a bounded operator. We say that
H obeys a Mourre estimate at a point ED’ if there is an open interval A about

E. so that

0

2
E,BE, > af, + E,KE, (4.1)

for a eompact operator K, and some o > 0.

Theorem 4.1 Under suitable domain hypotheses (including a bound on [A,B]), if a
Mourre estimate holds for any Eyp @ I, an open interval, then
(1) H has no singular continuous spectrum in I
(i1) In any compact J < I, there are finiteiy many eéigenvalues of H
and each eigenvalue has finite multiplicity.
(iii) For any compact J<I and §> 0, ngp]u([A{+1)-%-S(H-E'TE)-]([A{+1)"%_SH
<

Eed

The result is essentially due to Mourre [59], although the above include
refinements of [51]. While we will not give the proof in detail, we note the basic
idea behind (i1). Using the unstated domain conditions, one verifies a Virial
theorem: If Hp = Ep, then (w,Byp) = 0. Thus, if th i Enqh with E,~* Eog A

and @, is orthonormal, then, by (4.1)

0> ai]@n[lz + (o, Kep,)
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which is impossible since K is compact and @, 0 weakly.
Mourre [61] (see also [62]) has also proven interesting propagation estimates
when Mourre estimates hold.

When does an estimate 1ike (4.1) hold? Mourre had the idea of taking

A= %(x-p+p-x) (with p = -1y}, the generator of dilations. For two body operators,
H = H0 + v

-i[A.H] = ZHO - xegV = 2H + W
where

W =-xsgV - 2V

If K= EA(H)NEA(H) is compact, and if A = [a,b] with a > 0, then EABEa >

2 .
4 51
EaEA EAKE&’ so a Mourre estimate holds.

s 2 : . ]
Proposition 4.2 If V= VI + V2 with V](H0+1} 1, x-vVl(H0+1} and
(1+iXE)V2(HD+i)_1 all compact, then a Mourre estimate holds for A = ;(x-p+p-x);

H=-A+V and By 3 s

Proof Note first that D(H) = D(H so (Ho+i)E&(H) is bounded. Thus,

0]3

E W.E, 1is obviously compact as is E.V

A Ey A ZEA' As for —1[A,V2], we can write that

as —%}[v_i,xi\lz]JerZ and EA[(Vi)(XﬁVE)]EA is compact. ]

Mourre [59] showed how to do this for three-body systems and then PSS [51]
proved:

Theorem 4.3 If each Vis = V$;)+-V§§), where as operators on L2(RY), V(])(h0+i)-1

x-vV(1)(h0+ij'] and (I+{x[}v(2][h0+f)_] are all compact on (h = -A on RY),

0
then a Mourre result holds for any EO # threshold (and ¢ is twice the distance
from EO to the threshold of next lowest energy).

To conclude (1) and (711) in Thm. 4.1, we also need control on [A,B] which

requires Vij have more decay than in the above theorem (e.g. ['I~1-x2)\i|[2)(hD+1')_1

V(U(ho-ﬂ')_I and xgvvv(])(ho+i)_] compact will do); see e.g. [51]. Froese-
Herbst [60] have a simple proof of Thm. 4.3.
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Froese-Herbst [63] have proven the following theorems using Mourre estimates:

Theorem 4.4 [63] Let v‘ij obey the hypotheses of Theorem 4.3, and suppose that
Hp = Ep, with pe L2, Let [x] denote the nmorm of x 1in X (i.e. (Z)mix?);i
if Emixi= 0). Define

o = sup(ale?*lge 19

Then either a =« or a2 + E 1is a threshold.
By using results [64] which imply « = « is not allowed:

Theorem 4.5 [63] If the Vij obey the hypotheses of Theorem 4.3, and for all

g0

y-vvij(y) < eho + CE

then Hp = Ep has no L2 solutions with E> 0.
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5. An Introduction to the Theory of Stochastic Jacobi Matrices

In this final section, we consider another topic currently of intense interest,
namely Schrddinger operators with random or almost periodic potentials. For
technical simplicity, we will restrict ourselves to v =1 and we will discretize
space, i.e. replace R by Z and -dZ/dx2 by a second difference operator.

See [65] for an extensive bibliography including papers dealing with the continuum
case and with v > 1.

We should take hO to be the finite difference analog of -dz/dxz, namely
(hou)(n) = 5_2[2u(n)- u(nt1)- u{n)]. First of all, we take &§ = 1 for convenience.
Then, we replace h0 by ho- 2 which won't change any spectral properties. Then
we make the unitary transformation u(n) -» (-1)"u(n) which means that instead,
we take

(hou)(n) = uln+t1) + u(n-1) {5.1)

on 32(2). We will study not individual operators but whole classes: Let (Q,p)

be a probability measure space and let T:0Q = (0 be an invertible, measure
preserving ergodic transformation. Let f: Q-+ R be a bounded measurable function.
Given w e 0, define

v, (n) = FT%) (5.2)

and

We ask about properties of hw that hold for a.e. a.

Examples 1. o= X [a,b]l, dp= ® dv(xn} where dv 1is a probability measure

N==wm n=-—-<

on [a,b]. Let (Tx) = x

) ] and T(x) = x

e Then the variables Uw(n) are
precisely independent identically distributed (i.7.d.) random variables with
common density dv. This is conventionally called "random potentials." The case
dv(x) = (b—a)-11(a,b)(x)dx is called the 2nuderson model. .

2. let 0 be the k torus 5(81=‘--33k)5 0<e<1} with its structure

k
as a group (addition of components, mod. 1) and Haar measure I dei. let f be

—
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a continuous function on 0 and let {Te)i = 95+ ay (mod 1) where Gy a0y
are numbers so that 1’“1""’“k are independent over the rationals. Then
Vs(n) = f(“1”+91) is quasiperiodic. A good example is Ve(n) = 3 cos(2man+g)
(now g runs through [0,2n)) called Hoppen's equation or the almost Maihieu equation.
An dinteresting example (see [66,67,68]) which doesn't quite fit into this frame-
wark is Va(n) = ) tan{mgn+e). This is called the Maryland model and has the
feature of being exactly soluble in a certain sense.

It makes sense to study the tot;1ity of the operators {hw} for one has

the following consequence of ergodicity.

Theorem 5.1 ([69]) The following sets are constant for a.e. w (i.e. there is a
set S <0 whose complement has measure zero, so that if w, w' e S all the
objects below are equal for w and w'): c(hw), Ga.c.(hm)’ Dbp(hm) (= closure of
set of eigenvalues), o (hw). Moreover, Udisc(hw) = ¢ and G(hw) has ne

isolated points.

Remark Udisc(hm) = ¢ also in the higher dimensional case:; it is also true in
that case that o(hw) has no isolated points, but this is more subtle (see [70,71]).

Here are some typical results illustrating the subtle spectral properties of

stochastic Jacobi matrices:

Theorem 5.2 Let hw have a random potential (Vm(n) i.i.d)s) with

dv(x) = F(x)dx (supported on [a,b]). Then, for a.e. w,

spec(h ) = [-2,2] + supp(F)

and huJ has a complete set of eigenfunctions.
For proofs see [69,72]. For related continuum results, see [73,74]. For

the study of hy + (1+[n{)'aﬂw(n), see [75,76].
Theorem 5.3 Let {a_ } e £,(0,1,...) and let h{a ) =h, + Za cos{2mn/2™).
SIAEER Sed nd € 1 m = Mo T Sl

Then for a dense G6 in £ h(am) has a nowhere dense spectrum and for a dense

set in 21,a(hh“9) is both nowhere dense and purely absolutely continuous.
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See [77,78,79] for proofs; see [80] for a discussion of nowhere dense a.c.

spectrum.

Theorem 5.4 Pick any 0 <a < 1. Then, there exists almost periodic potentials
Vw(n) so that h0 + Vw(n) = hLU has dense point spectrum and c(hw) has
Hausforff dimension «.

The basic idea is from Craig [81], although his examples are not strictly
almost periodic; those are due to Poschel [82]. See also [83].

Sarnak [B4] first suggested that spectral properties should depend on

Diophantine properties of «:

Theorem 5.5 Let o be an irrational number for which there exist rational

approximations p /q  obeying fa- pn/qn[ < n-q". Let 1> 2. Then

hg + & cos(2man+p)

has purely singular continuous spectrum.
For a proof, see Avron-Simon [85]; important input comes from Aubry-André [86]
and Gordon [87]. The set of « obeying the estimates is a dense G5 in R (of

Lebesgue measure zerg).

Definition A stochastic process Vw(n) is called deterministic if and only if
{Vm(n)]nzp is (a.e.) a measurable function of {Vm(n)]n<ﬂ. For example, a.p.

functions yield deterministic processes; random potentials do not.

Theorem 5.6 If hw is a stochastic Jacobi matrix and hw has some a.c. spectrum
(for a.e. w), then VLIJ is a deterministic process.
This result in the continuum case is due to Kotani [88]; see Simon [89] for

the discrete case.
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