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We present, in an expository way, an elementary rigorous proof (patterned after 
an argument of Kirsch-Martinelli) that the Anderson model has Lifschitz tails 
in very great generality. 
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1. I N T R O D U C T I O N  

The Anderson model on Z ~ is defined as follows: Let dp be a probability 
measure on R with compact  support, say a = inf(supp/~), b = sup(supp/~). 
Let V~o(n ) (n C Z v) be independent, identically distributed (iid) random 
variables with distribution dp. Let H 0 be the operator on Z v given by 

(Hou) (n )  = 2vu(n)  - ).~ [u(n + dj) + u(n - 31) 1 
)=1 

(1.1) 

where 6~ is the element of  Z ~ with 1 in the j t h  coordinate and 0 otherwise. 
The Anderson model is the family of  random Hamiltonians 

H~o = Ho + V~o (1.2) 

The integrated density of  states, k (E) ,  has a number of  equivalent definitions 
(see, e.g., Refs. 17 and 1). For  example, let H ~  be the (2L + 1)~ • (2L + 1)v 
matrix obtained by restricting H~o to sites n with Ins[ <<. L.  Let # ( H  i ~< E)  
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lim 
E Tb + 4t) 

denote the number of eigenvalues of H~ smaller than E and let N L =- 
(2L + 1)v be the number of sites ( = # ( H ~  < ~ ) ) .  Then 

k(E) = lim N~ -1 # ( H ~  ~<E) (1.3) 
L --*ct3 

where one can prove that for almost every co, the limit in (1.3) exists for all 
E and is co independent. We will make three assumptions on /z, the 
distribution of V,o(0): 

(1) a r b, i.e., d/z is not a 3 function at a single point; 

(2) d#([a, a + e)) ~ Cel; 

(3) d/.t((b + e, b]) >/Ce t. 

for some C, I. The basic result on Lifschitz tails for the Anderson model is: 

Theorem 1. Let k(E) be the integrated density of states for an 
Anderson model with d/~ obeying hypotheses (1)-(3). Then 

lim ln[--ln k(E) ]/ln(E -- a) = --v/2 
e+a 

ln[- ln(1 -- k(E))]/ln(4v + b - E) = - v / 2  

Roughly speaking, this says that near E = a ,  k(E) looks like 
e x p [ - c ( E -  a) -v/E] and a similar result for 1 - k  near E = 4v + b - E .  It is 
known (see, e.g., Ref. 1) that spec(Ho~ ) = supp(dk) and that (14) spec(Ho, ) = 
[0, 4v] + supp/~, so a and b + 4v are the two edges of the spectrum. Since 
k = 0 if E < a and k = 1 if E > b + 4v, these Lifschitz tails are consistent 
with k(E) being C ~ and suggest that this may be true, at least in many cases 
(there are indications ~22) that when d#(x) = � 8 9  + 6 ( x - b ) ] ,  k(E) 
may not be COO). 

The idea that k ( E ) ~ e x p [ - c ( E - a )  -~/2] near the bottom of the 
spectrum is due to E. M. Lifschitz (s) with a cogent intuition which we will 
describe in a moment. There have been numerous rigorous proofs for 
continuum and discrete models using the method of large deviations of 
Donsker-Varadhan or some other large deviations method (see Pastur, (18~ 
Benderskii and Pastur, (2~ Fukushima, ~5~ Nagai, (is) Fukushimaetal . ,  ~6~ 
Pastur, (19~ Nakao, (~6) Luttinger, (4'9~ and Romerio and Wrezinski. ~21~) These 
proofs are sometimes able to evaluate the constant c in the asymptotics by 
making rather specific assumptions on the process Vo,(x) or Vo,(n) but have 
the disadvantage of being rather involved and applying only to rather 
specialized situations. Recently, Kirsch and Martinelli (t2) gave a proof for 
continuum models which is quite elementary, and has the advantage of being 
very close to Lifschitz's intuition. Our goal here is to describe their proof in 
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the discrete (Z ~) case. In part, we wish to describe some technical aspects 
special to the discrete case where Dirichlet-Neumann bracketing is not so 
commonplace (in fact, we will see it is extremely elementary-- in many ways 
simpler than the continuum analog; see Ref. 23 for a discussion of Dirichlet- 
Neumann bracketing). But our main goal is to advertise the Kirsch-  
Martinelli proof while honoring Lifschitz's memory, and to present it in an 
expository light which may be more accessible to theoretical physicists. We 
will also exploit Temple's inequality in a place that they use an inequality of 
Thirring. Kirsch and Simon ~13) have extended their proof to some other 
situations. We note that (6'1~'21) in particular have previously discussed the 
discrete case. 

As a preliminary, we note that we can suppose that a = 0 (which we do 
henceforth) since H ~ -  a l  is a random Hamiltonian with a shifted to zero. 
Moreover, we need only consider the case E ~ a for the case E ~ b + 4v 
follows from this. This is because the replacement Vo, by -Vo, followed by 
the unitary map u(n)--, ( - 1 )  Inl u(n) (where In I =  Z;=l I nil) takes Ho, into 
4 v -  Ho~ and the Lifschitz tail estimate for 4 v -  Ho~ at the bottom of its 
spectrum is equivalent to the Lifschitz tail estimate for H,o at the top of its 
spectrum. 

Thus, we henceforth suppose that a = 0 and concentrate on k(E) near 
E = 0. Here is Lifschitz's intuition: How can H,o have an eigenvalue below 
E 0 a very small number? Let u be the corresponding eigenvector. Since 
V/> 0 (since a = 0) both (u, H 0 u) and (u, Vu) must be smaller than E 0. For 
(u, Hou ) to be smaller than E 0, u must be spread out at least over a region 
of size R where E 0 = R  -2 which has R ~ =Eo  w2 sites. On most of these 
sites, V must have a very small value so R" independent events of probability 
e -c must occur, i.e., the probability is O(exp(--cE-~/2)). 

The key to proving Theorem 1 will be the use of Dirichlet-Neumann 
bracketing. We discuss this in Section 2. Lower bounds on k(E) (equivalent 
to upper bounds on eigenvalues) are obtained using Dirichlet comparisons in 
Section 3, and upper bounds on k(E) using Neumann comparisons and 
Temple's inequality in Section 4. 

We note that while we have supposed that the process Vo,(n) is iid, the 
proof shows that much less is needed. With the normalization a = 0, it 
suffices that (i)Vow(n) have exponential mixing in the sense that if A c Z ~ 
and PA is the conditional expectation induced by {Vo,(n)[n ~ A}, then for 
convex sets A, B, [[PAPB[[<~Ce -'~dist~A'~) for some a > O ;  (ii)V~,(n)~>O; 
(iii) for a box, B, of side l, small e, large l and any sufficiently small f 
including f =  O, Prob(V,o(n ) > e at a fraction of sites f or less in B) 
CI, ~ exp(-l~D(e, f ) )  in the sense of upper and lower bounds of this form. 
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2. D I R I C H L E T - N E U M A N N  BRACKETING 

A bond in Z ~ will denote a pair of  neighboring sites. Given a 
Hamil tonian of the form (1.2) and a set of  bonds, B, we will want  to define 
two Hamil tonians  H~ ~N and H ~  ;D so that 

H~;N<~H~<~H~ ;D (2.1) 

and so that  if B disconnects Z v into subsets {S~}, then under the direct sum 
decompos i t ion /2(Z~)  = O~ 12(S~), H ~  '# is a direct sum ( #  will denote either 
D or N),  i.e., so that if i , j  are in distinct S~,  then (H~;~)o. = 0. 

Because of the fact that the analog of (2.1) in the continuum case are 
Dirichlet and Neumann  boundary  conditions (see the reviews in Refs. 23 
and 20), we use those names and the letters D, N. However,  as we should 
now like to explain, H D is not what one usualy chooses for a discrete 
Dirichlet Hamil tonian  as discussed, for example, in Ref. 7. To explain what  
we mean,  we set V~o = 0 and try v = 1 with B = [0, 1 ], [l, l + 1 ]. The usual 
Dirichlet Laplacian on { 1 ..... l} is just  the restriction of H 0 to those sites, i.e., 

H~ = 2 ,  1 i 1 ( o)ij ~< = J ~ <  

= - 1 ,  I i - j l =  1, 

= 0 ,  [ i - - j [ > ~ 2  

Eigenfunction of ~ o  obey 

i, j E  {1 ..... l} 

2u(n) - u(n - 1) - u(n + 1) = eu(n) 

at n = 1,..., l if one takes the boundary  conditions 

(2.2) 

with 
H ~  - ( 0 ) i j - 3 ,  i = j = l  or i = j = l  

= 2 ,  2 < ~ i = j ~ l - 1  

= - 1 ,  l i - j [ :  l, i, j E  {1 ..... l} 

= 0 ,  [ i - j l > / 2  

u(O)=u( l+ 1 ) = 0 ,  /9 b.c. (2.3) 

For  example,  the operator  H ~  used in Section 1 to define k(E) h a s / )  b.c. 
The problem w i t h / )  b.c. is that  if we try to decompose Z into { 1,..., l} = 

S o,..., S~ = {la + 1,..., la + l},... (a E Z), then |  D is just H 0 with certain 
off-diagonal elements set equal to zero and H 0 - - |  H0 ~ is neither positive 
nor negative definite and bracketing fails. 

We will, instead, make a choice for a Dirichlet Laplacian on {1,..., l} 
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With this choice, O~ H~/> H 0 as we shall see. We will also see that eigen- 
functions of H~ obey (2.2) at n = 1,..., I with the boundary conditions 

--u(1) = u(0), - -u ( l  + 1) = u(l) ,  D b.c. (2.4) 

so that D b.c. corresponds to choosing the linear interpolation <3) to vanish at 
�89 and I + 1. Some thought will even suggest that if one wishes to consider 
touching regions, this is a more reasonable choice of D b.c. than the usual 
one. Our choice of D b.c. also has the advantage of turning into N b.c. under 
the unitary transformation u(n)--+ ( - 1 ) "  u(n).  

We note that there is a sense in which/5  b.c. dominates H0; namely, if 
we define /70 D on Z to be H0 D on S ~ =  {(/+ 1 ) a +  1 ..... ( l +  1 ) ( a +  1 ) -  1} 
and oo on {( /+ 1)a} then ~ o / >  H0" Of course, one has a density of eigen- 
values 1/l  + 1 at +oo, but since we take l--+ ~ in our proof in Section 3, one 
could use /5  b.c. there, but we find D b.c. much more natural. 

With this purple prose out of the way, we turn to the precise definitions. 
Given a pair of indices m, n ~ Z% we define two operators on/2(ZV): 

(Lm"u)( i )  = O, (Sm"u) ( i )  = O, i 4: m,  n 

= u ( m )  - u (n) ,  = u ( m )  + u(n) ,  i =  m 

= u(n)  --  u (m) ,  = u(n)  + u(m) ,  i = n 

so (u, Lm"u)  = (u (m)  - u(n)) 2 and (u, Sin"u) = (u (m)  + u(n) )  2 and we have 

L m" ~ O, S m" >1 0 (2.5) 

corresponding to the positivity of the matrices 

(_I_1 
If Y~<m,>,... denotes the sum over all pairs obeying ... with each pair 
counted once, then clearly 

H o = ~ L mn 
( m n ) ; [ m - n l =  l 

and we define, given a set of bonds, B: 

H~ 'N = n o  --  ~ L m n =  ~ t mn (2.6) 
(mn)  ; (mn ) el l  

and 

(mn) ; Im- -n l  = 1  
( m , n ) r  

S m" (2.7) Ho~'D = Ho + ~ '  
( m n ) ; ( m n ) e B  

By (2.5) we trivially have the following: 
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Proposition 2.1.  For any set of  bonds, B, we have 

H~,N <~ Ho <~ H~ ,D 

Moreover,  we have the following: 

Proposition 2.2. Suppose that removing the bonds, B, disconnects Z ~ 
into disjoint sets S,~. Then under the decomposi t ion 12(Z ~) = | 12(S,) both 
H~ 'D and H~ 'N are direct sums. 

Proof. Clearly H~ 'N has no matrix elements involving sites in distinct 
S ,  since such matrix elements in H 0 come only from Z mn with ( m n ) E  B. 
For H0 ~m, the same argument  is applicable if one notes that L mn + S mn is a 
diagonal matrix. II 

Now fix L = 1, 2 .... and for a E Z ~, let S(~ ) be the set of  n ~ Z ~ with 
(L) a i L +  1 <<. n i <<. ai(L + 1) so {S,  } is a parti t ion of  Z ~ into disjoint boxes 

with L ~ sites. When no confusion can result, we will drop the superscript 
(L). Let B ( L )  denote the bonds coupling distinct S , .  Then, by the above 
H~ (L)'# is a direct sum of  operators  we denote by H~ '~. We claim the 
following: 

L e m m a  2.3.  u is an eigenfunction of H L'N with eigenvalue e, if and 
only if the extension of u to Z ~ obtained by reflecting successively in hyper- 
planes n i = (a i + �89 obeys Hou = Eu. A similar result holds for H~ 'D if we 
flip signs upon each reflection. 

Proof. 

(Hou)(n) = ~f. [u(n) - u(m)] and (HZ6'~Cu)(n) = )_~ [u(n) -- u(m)] 
] m - n l = l  I m - n l = l  

m ~ S  o 

so the assertion holds if we note that the reflection condition sets 
u(n) - u(m) = 0 if In  - m l = 1 and n E So, m ~ So. Similarly 

(H~'Du)(n) = (Hno'Z~u)(n) + ~ 2u(n) 
I m - n l - 1  

m~S,~ 

Since the reflection plus sign flip sets u(n) - u(m) = 2u(n) if In  - m l = 1 and 
n E S 0, m ~ S o we obtain the final statement in the theorem. II 

Since we can write down all solutions of  Hou = eu in closed form 
(plane waves)  and check the boundary  conditions in L e m m a 2 . 3  by 
straightforward manipulation,  we find the following: 
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Theorem 2.4. (a) The eigenvalues o fH~ 'D are the set of numbers of 
the form 

2 - 2 cos(k, /L) (2.8) 
i=1  

where each k i is one of 1,2 ..... L and all such v-tuples occur once. In 
particular, the lowest eigenvalue is 

e0 L'D = v[2 - 2 cos(n/L)] (2.9) 

(b) The eigenvalues of HLo 'N have the form (2.8) where each ki is one 
of 0, 1 ..... L - - 1  and all such v-tuples occur once. In particular, the two 
lowest eigenvalues (e I is v-fold degenerate) are 

e~'N= O, e}'N= 2 -- 2 cos(n/L) (2.10) 

Now, we can use these objects to bound k(E) by something involving 
eigenvalues of finite matrices. Let H i '  • = H~' # + Vo~, H~' # =  H~' # + Vo~, 
etc. Define 

k~*(E) = Exp(#  of e.v. ofH~'#-~< E)/L ~ (2.1 l) 

where Exp means expectation value (e.v.) over the ensemble of potentials. 
The following is just a discrete analog of an idea used by Kirsch-Martinelli 
in several places (1~ 

T h e o r e m  2.5. For any L, k~(E) <~ k(E) <~ k~(E). 

Remark. The inequalities reverse from H to k since a larger operator 
has fewer eigenvalues less than a fixed E. 

Proof. By general principles (e.g., Ref. 1), k(E) can be computed by 
looking at H~ L' # for a typical co and computing the number of eigenvalues 
smaller than E for it, dividing by (nL) -~, and taking n to oo. By an obvious 
extension of Proposition 2.1, 

HnL ,iv ~ (~ L,N (2.12) Hoe,  o~ 
oti-- 1,2, . . . ,n 

L,N The H,,,,,~ are identically distributed, independent random operators, so as 
n o o o ,  

(nL) -~ ~ (#ofe.v.  of H~'~ <~E)~kN(E) 

by the law of large numbers. By (2.12), we obtain k(E) <~ k~(E). The other 
assertion has a virtually identical proof. II 
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Remark. For general processes V~, there are two "couplings" between 
regions. The one in the operators is removed by the boundary conditions. 
The ones in the process are not present in our case by independence, and are 
not important so long as a law of large numbers holds for local functions of 
the process. 

Following Lifschitz's intuition, we will get upper and lower bounds on 
k(E) as E ~ 0 by using Theorem 2.5 with L = (const)E -1/2. The details 
follow in the next two sections. 

3. DIRICHLET BOUNDARY CONDITIONS: THE LOWER BOUND 

We obtain a lower bound on k(E) by using Dirichlet boundary 
conditions to get upper bounds on eigenvalues. We look at the contribution 
of boxes in which Vo,(n ) is small for all n. Fix E 0 small. Choose L so that 
L = (lEo~hEy)l~2. Actually, since L must be an integer, we choose it to be the 
smallest integer greater than this number so 

L ~ (Eo/27r2v) ~/2 + 1 (3.1) 

Moreover, since 2 - 2 cos x ~< x 2, we have by (2.9) that 

d6'" <~ vzcZ/L z <~ �89 (3.2) 

Now suppose that all Vo,(n), n ~ S~o L) have V(n) <~ �89 o. Then trivially, H~ '~ 
has at least one eigenvalue smaller than E o. Thus, by the definition (2.11) 

k~(Eo) >~ L -~ Prob(V~(n) ~< lEo, all n ~ SLo) 

! p  ~L~ = L -~ Prob(V~(O) K 2~o/ 

L - ' C  L" exp[--lL ~ ln(gol)] 

where we have used hypothesis (2) in the last step. Using the inequality (3.1) 
and the inequality in Theorem 2.5, we see that 

lim ln [ - ln  k(E)]/ln E >/ -v /2  
~J,0 

which proves one half of Theorem 1. 

4. NEUMANN BOUNDARY CONDITIONS: THE UPPER BOUND 

Since d/t, the distribution of V,o(0 ) is not a ~ function (hypothesis 1), we 
can find e 0 > 0 and f0 > 0 so that 

fo = Prob(Vo,(O) >t %) (4. l)  
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The idea of the upper bound on k(E) will be to show not many Neumann 
boxes can have eigenvalues below E 0 if we pick L(Eo)=f lEo 1/2. With this 
choice, we can arrange (since V~> 0) that no more than one eigenvalue in a 
box can be below E 0. The law of large numbers says that typicallyfo Lv sites 
will have V~,(n)>/%. We will show that if at least 1 ~fo L have V~,(0) > e o 
then that box has a ground state larger than E o so kN(E) <~ Prob(fewer than 
~fo L~ sites have Vo,(n )/> %), and by an elementary large deviations estimate 
this will be O(exp(--eL~)). 

To be precise, the two basic inputs of the above argument are the 
following, whose proofs we defer: 

T h e o r e m  4.1. There exists constants L 0 and a 0 so that if L > L 0 and 
if #{n E S~L) I V~(n) >/~} L-~  >>. �89 then 

L,N eo,o ' >/ao L -  2 

Theorem 4.2. Prob(#{n E S oL) I V~o(n ) >~ ~} L - "  < �89 
exp(--�89 ~). 

Accepting this for the moment, we will show the following: 

Proposition 4.3. limElo ln[--ln k(E)]/ln E <~ --v/2. 

Proof. For E o small, let L be the largest integer with 

ao L -z > Eo ' 2 -- 2 cos(n/L) > E o (4.2) 

It is easy to see that as E 0 goes to zero, 

L/aE~ 1/2 ~ 1 (4.3) 

for suitable a 4= 0. Since (4.2), (2.10) and the fact that V>/0  imply that for 
L,N almost every o9, el.o, > E0, we see that 

= Prob(eo:o, ~< Eo)/L v 

on account of the definition (2.11). But, by Theorem 4.1, this probability is 
dominated by the probability estimated in Theorem4.2, and, by that 
theorem, we have 

kN(E) <~ L -~ exp(--�89 ~) 

By (4.3) and Theorem 2.5, the desired lim statement is true. 

We have thus reduced the proof of Theorem 1 to 
Theorems 4.1 and 4.2. We do the large deviations result first: 

! 

the proof of 
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Proof of Theorem 4.2. L e t f ,  o(n ) = 1 (resp. 0) if Vo,(n ) >/~ (resp. <e). 
Then Exp( fo , )=  f0 by (4.1). Define 

F(y) = in Exp(e -y(:"-:~ 

so F ( 0 ) = F ' ( 0 ) = 0 .  Moreover,  F"(y) 2 = (fo,)y - (fo~) 2 where ( .)y = 
Exp(.e-Yf~)/Exp(e-V:~). Since Ifo~ - �89 ~ �89 we see that F"(y) <. �88 and thus 

F(y) <~ ~y2 (4.4) 

1 v Now, Y'neS~oL)f~o(n) < 7fo L if and only if #{n  c S&L'I Vo,(n) >1 e} < 
1 v -~fo L . Thus, for any y > 0: 

P rob(#{n  ~ S~oL) t V~,(n) >/e} L ~ < �89 

~< exp(~L Vy 2 - �89 
1 2 v = exp ( - - s f0L  ) 

if we choose y = 2fo. I 

Remark. The use of F(y) above is typical of  large deviations. Indeed, 
Cramer 's  theorem, the original large deviation result, says that 

1 lim - L  -~ In P rob(#{n  ~ S(oL~[ V~o(n )/> e} L - "  < ~f0) = sup (�89 --F(y))  
L --+of) y 

Our proof  of Theorem 4.1 is modeled after an argument we gave in 
Ref. 24 to prove the Fefferman-Phong theorem in a similar context. It 
exploits Temple's inequality, (25) which we prove for the sake of com- 
pleteness: 

I .emma 4 .4  (Temple's inequality). Let A be a self-adjoint operator 
with eigenvalues E o < E 1 at the bottom of its spectrum. Let (0 ~ D(A) be 
such that @, A~0) < E 1. Then 

Eo>~@,A(o ) -- [E,--Qp, A~o)]-I{(A~o,A~p)--(A~p,~o) 2} (4.5) 

Proof. By the spectral theorem, ( A - E 1 ) ( A  - E 0 ) ~ > 0 .  Thus, 
((o, (A -- E,)(A -- Eo)(O ) >/0 or 

Eo[((o, A(o ) - - E l ]  ~ (A~o, Aq 0 --E~(~o,A(o) 

= [(A(o, A~o) -- (A~o, (0) 2] + [(~o, Ago) -- E1]((o, A(o ) 

Since (~o, A ( o ) -  E 1 < 0, when we divide by it, (4.4) results. | 
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Since (A~o, ~o) 2 > O, we see tha t  

Qp, a(o)  < E *  ~<E 1 ~ E  o >/<~p,A~p> - [E* - (~p,A~o)]-1 [iA~oll 2 (4.6) 

Wi th  this p re l iminary ,  we have the fo l lowing:  

Proof  of  Theorem 4.1.  We will prove  the resul t  with ao = ~fo and  
Lo = e-1/2. The theorem is determinis t ic ,  i.e., we are given a fixed V,o with 

# { n  ~ S~oL) I Vo~(n) >~ e} L -~ = ~, >~ ~fo. Define  W to be the func t ion  

W(n)  = 0, if Vo~(n) < e 

= L  -z ,  if V, , (n)>/e  

Since L > L o, W(n)<~ Vo,(n ), so eo(A ) <~ L,N if A H~ 'u e0,o, = + W. Let ~0 be the 
no rma l i zed  vector,  all of  whose  c o m p o n e n t s  a r e  L -v/2. Thus ,  since 
H~'N~p = 0, we have that  

(~0, A~0) = % - 2  (~0, A 2~0) = ~L-4  

Moreover ,  since 2 --  2 cos ~x ~> 4x 2 if 0 < x < 1, we have that  e~(A) >~ 
elL'N > / 4 L  - 2, so 

el(A ) --  (q~, Atp) > / 3 L  -2  

Thus,  by  (4.5) 

eo(A) >/7L -z  _ ( 3 L - 2 ) - 1  7L -4  = ~TL -2  

Since e~:~ >~ eo(A ) and  7 >/-~fo, we have the requi red  result.  

NOTE A D D E D  IN P R O O F  

The idea of using Dirichlet-Neumann bracketing in analyzing the question of Lifschitz tails 
appears to have appeared first in a paper by A. B. Harris, Phys. Rev. B8, 3661 (1973). A 
discussion closely related to that in this paper appears in a recent preprint of G. A. Mezin- 
cescu of the Institute for Physics and Technology of Materials in Bucharest, Rumania. 
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