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1. The Density of States, the Lyaponov Expcnent and Their Relation

In this paper, we will discuss stochastic Jacobi matrices which
are coperators on 32(2”). Indicate elements of thls Hilbert space by
uin) with nez®. The free {kinetic} energy operator is glven by:

(1) (Hyu)(n) = z u{n+j)
13b=1

and we will consider operators, H = H°+Vu , where w is a label in a

probabllity measure space. The potential, V, is a family of random
variables forming an ergedic process. To be explicit, we let (n0,u) be a
probabllity measure space with a family, T1 ,...,T» of commuting,
measure preserving transformations which generate an ergodic action.
Pick £, a measurable function on 0, and define

nl n”
{2) VJn) = ﬂTl-nT”m

For simplicity, we will normally suppose that f is bounded, although
many results only require the minimal regularity property
{3) fent|go[+130000) < =
We will occasionally discuss unbounded f's, in which case we will
freely use those results which hold in the more general setting.

Two special subclasses of stochastic Jacobl matrices have
recejved especlal attention: The situation where ¥V is an almost

periodic functicn and 0 is just the hull of V (see, for example, the
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appendix of Avron-Simon [1]) for background on almost periodic
functione), and the situation where v is a family of independsnt,
identically distributed random variables, a satup known as the Anderson

model. We will let drx denote the probability density of V in this

case,

Thease families of operators have received considerable attention
in the theoretical physics literature. The Anderson model is supposed
to be a caricature of the effect of impurities on electron motion in

solids, and of electron motiocn in amorphous materials, like glass. The

almost periodic models may describe certain alloys and the recently

diacoversd quasicrystals. The mathematical physics literature has

discussed both these models and their continuum analogs where 12(2’) is

replaced by thm”) and H becomes a differential operator. We will
occasionally mention results that are not known to extend to the

continuum case, but in the interests of simplicity, we will restrict

our discussion to the discrete Jacobl matrix cases. This way, one can

avoid getting bogged down 1n technical subtleties; indeed, these

technical problems can often be nontrivial, so that much more is known

currently about the discrete case than about the continuum case.

The deepest and most interesting featurs of these models concerns

the spectral properties of the operators. There are recent reviews of

these things in the bhook of Cycon et al. [14), and the lescture notes of

Carmona (8] and Spencer [43]. The denslity of states, which we discuss

here, is a less interesting abject, hut one which has evoked a
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congsiderable literature because it is a basic object of some use in the
deeper analysis, and simply related to directly measurable quantities
in physical systems.

Let Hu,L denote the restriction of H, thought of as an infinite
matrix, to i |

ndices with 11],...,|1”| < L. Thus H is a matrix of
»

dimension (2L+1)". The {ntegrated density of statey (ides) 1s defined
by

(4} k{E) = lim{2L+1) “#(of e.v. of H s E)

o~ w,L
That the limit exists is a result going back to Benderskii-Pastur {6].

There have been numercus refinements of this existence theorem which is
esssntially a consequence of the ergodic theorem. The following result
is proven in Avron-Simon [1]. It discusses the "typical spectrum" using
another consequence of the ergodic theorem, namely, that there is a
subset, W, of 0 of full measure and a subset, X, of R so that the
spactrum of Hu is I whenever w ¢ W. The definition (4) is not so
convenient as an initial definition since the ergodic theorem allows a
set Of measure zero where the limit fails to exist, and because tha set
of E is uncountable, this can cause problems. This explaing why we deal
with vague convergence: The separability of the continuous functions
allows one to deal with one set of full measure. One thus dafines a
measure dkm,L to be the point measure giving weight (2L+1]-” to each
elgenvalue of Hu.L' Degenerate eigenvalues are given multiple weight,
so that dkw’n is a probability measure. We will also define X, to he

the projection onto those vectors in 12 supported in the region where
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of these proofs is to relate the ejigenvalues of H (or more properly, 2. continuity of k

the restrictions to [0,L-1] and [1,L1} to the vanishing of matrix In this section, we will discuss the idea beyond the very
, simplest proof of the following fundamental result:
elements of T(E), to note that these matrix glements are monic
Theorem 2.1 The ida, k(E), is continuous for any stochastic Jacobi
polynomials in E, and so write them in terms of eigenvalues. [2]
natrix.
handles real E using the theory of Hllbert transforms, while [12] uses
This result was proven in the one-dimensional case by Pastur
subharmonic functions. There is a second approach to the Thouless
(34]. The higher dimensional result was proven by Craig-Simon [13], who
formula using Weyl m-functions: See Johnson-Moser [20}, Kotani [23]) and
proved a stronger result which we will discuss in the next section. An
Simon [36].
elementary proof in the higher dimensional case was subsequently found
one should emphasize that k{E) is a bad indication of the
by Delyon-Souillard [16].
spectral properties of H. hs we will see in Section 7, there exist tweo
The key idea in both the Pastur and pelyon-Souillard proofs is to
distinct families of stochastic Jacobi matrices which have identical
exploit formula {6). To prove that k is continuous, one needs only show
ide's, but so that one family has pure point spectrum with probabllity
that
| one, and the other has singular continuous spectrum with probability
{10) 120+1) " TE(x P g, (B )+ O
one. The ids does determine the absoclutely continuocus spectrum because w
In the one-di 1 .
of the Thouless formula and the following theorem of Kotand [23]: ne mensional case, this ls trivial since PlB)
two-dimensional. In the higher dimensional case, Delyon-Soulllard make

tﬁw) is at most

Theorem 1.3 For any one-dimensional stochastic Jacobli matrix, the set
use of the fact that, for projectlons P and Q
of real E for which the Lyaponov sexponent vanishes is the essential
{11) Tr{PQ) < dim Q[Ran P]
support of the absglutely continuous spectrum for a typical H.
a0 that one needs 1 that th tricti h
Even here, the determination from k(E) is a global one, and ® only show a e restriction of the set of
lz-eigenfunctions to & finite box forms a space whose dimension grows
doesn't really have much to do with the density of states. If the
at a rate amall compared to the volume of the box. In fact,
conjecture that the higher dimensiocnal Lloyd model has scome extended
Delyon-Souillard obtain a bound which only grows as the surface area of
states is correct, then in higher dimensions, one would know that the
the box.
absolutely continuous spectrum is not determined by the lds.
It is an annoying and unfortunate fact that there is still no

proof of continuity of the ids in the continuum case except in

e : : C e b
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one-dimension, where the Pastur argument goes through. This is the most
important open gquestion in the study of the ids for gstochastic

SChradinger operators.

3. Log-Holder Continuity of k

Craig-Simon [13] proved the following extension of Theorem 2.1:

Theorem 3.1 The ids, k(E}, is log—Halder continuous for any stochastic
Jacobi matrix.

A functieon, f, is called log—HBlder continuous if and only if
there is a constant, C, so that

|ei-ten| = ctenfemy|™H 7

for all x,y with |x—y| = %.

This theorem depends on the following elementary lemma:
f.emma 3.2 Let dg be a measure of compact support with distribution
function q. If

Innlx—yldQIY) =0

then gq is log—Hslder continuous.

The idea 1s that cone cannot lose lng—Halder continuity at a poinf
E' without dq being so concentrated that the integral diverges to —= at
B', Given the lemma, the Thouless fornula immediately implies Theorem
3.1 in the one-dimensional case; this was already noted in [12]. This
is because thes Lyaponov exponent, as a limit of positive guantities
{the matrix T has determinant 1, and thus norm at least 1)} ls positive.
The general case is proven by showing that the integral is positive

also in the multi-dimensional case, for the integral can be shown to be
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the limit of the average of the non-negative Lyaponov exponents for
strips.

There is a sense in which Theorem 2.1 is essentially optimal, for
given ¢, Cralg [11] has constructed examples of almost perilodic
functions (actually, only in a weak sense; see Poschel [35] for
strictly almost periodic examples) for which there are points, E, with

U |kigss)-k(E)|/0en 571 E =

5|0
Moreover, we will see that there exist random potentials which yleld a

k which is not Holder continucus of any prescribed strictly positive

order.

4. The One-Dimensional Anderson Model: Positive Results

To go beyond Thecrem 3.1 and find smoothness properties of k, cone

pust be prepared to make some special hypotheses, as the discussion at
the end of the last section makes clear, It is clear that one should
not leok for much smoothness in the case of almost periodic potentials,
for it is a general phenomenon (see the discussiocn in section 9) that
the spectra of such operators tend to be Cantor sets, that 1s, closed,
nowhere dense sets. The corresponding k canhot be Cl because its
derivative is zero on the complement of the spectrum, which 1s dense.
It is therefore natural to look at the Anderson meodel. In general,
LePage [25,26] has proven the following result:

Theorem 4.1 The density of states, k(E), assoclated to any
one-dimensional Anderson model, is Holder continuous of some strictly

positive order.

e
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In the next section, we will mention examples of Anderson models
whose ids fails to be Holder continuous of any given prescribed order.
Thus, one must make some additional assumptions on the input measure,
dg, in order to be certain that k has greater regularity properties.
@iven that the X assoclated to V = 0 is not c1 but has a divergent
first derivative at E = 2 and -2, one might najvely expect that k
cannot be too smooth but, in fact, the randomness is smoothing. Not
only is k c” if dc is C“. but under some minimal regularity assumptions
on dg, k is already ¢®. This phenomencn was first proven to occur by
Simon-Taylor [41], whose results applied to the case originally studied

by Anderson, where

de(x) = El-

-a x[a,b](x}dx

Subsequently, Campinino-Klein [7] and March-Snitzman [30] proved
results which complement and/or extend the results of [41]. The
following is proven by Campinino-Klein:

Theorem 4.2 Consider the one-dimensional Anderson model with input
distribution dx. Suppose that d« has moments of all orders, and 1ts

ipxdxlx) obeys

Fourier transform m(p) = Ie_
[mee1] = cta+]p]r™®
for some C,a > 0. Then the ids, k(E}, is C.
The smoothness of k associated to random operators viz-a-viz the
singularities of the free case f{s illuminated by the fact that the

singularities in the free case are at the edge of the spectrum, where

the random case has the Lifschitz tail behavior to be discussed 1n
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Section 8.

5. The One-Dimensional Anderson Model: Negative Results

There is an Anderson-type model of especial interest in providing

counterexamples for regularity results that one might conjecture. This
is what might be called the Eernculli~Anderson model, where the input
wmeasure, dx, is a pure point measure with two polnt support, i.e.

de = saa + (I-O)Bb
We will call this the Bernoulli-Anderson model with parameters a,b,#d.
Halperin [19] studied a closely related continuum model and showed
nonregularity of k. His argument can easily be made rigorous, and this
was done by Simon-Taylor. The result is:
Theorem 5.1 The Bernoulli-Anderson model with parameters a,b,6 has a
k(E} which is not Holder continuous of any order greater than

g, = 2|109(1-9)[/Arc cosh{l + %Ia-bl]

" Note that o, goes to zZerc as |a—b| -+ », Or as # l 0, showing that

one cannot improve on Theorem 4.1 without making a restriction on dx,
which will eliminate the Bernoulli-Anderson model. The idea behind the
proof is guite simple. One finds certain energies about which the
finite volume eigenvalues are clumped. These are eigenvalues for the
operator obtained by surrounding a finite array of a's and b's by a sea
of b's. Since the corresponding eigenfunctions decay exponentially, one
can show that the system in an enormous box will have one eigenvalue
exponentially near the infinite volume eigenvalue for each large

sub-box of the big bcx containing the finite array surrounded by b's.
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The Bernoulli-Anderson model has evoked considerable interest in
the physics and chemical physics literature. This is partly because it
rodels a binary alloy and partly because, before the advent of high
speed computers, it was about the only model where one could reasonably
compute the ids numerically. There are a number of features of the ids
of the model which are hinted at by numerical and theoretical studies,
but not yet rigorously proven:

{1} It is likely that, for suitable values of the parameters, the
Barhoulli-aAnderson model has an ids, k, for which dk has a singular
continuous component; see Simon-Taylor [41].

(2} Luck-Nieuwenhuizen [29]) have an analysis of the structure of
k(E) at the energies described above (eigenvalues for the operator
obtained by surrounding a finite ar;av of a's and b's by a sea of b’'s),
which suggests, but does not rigorously prove, the precise nature of
the singularities at these energles.

{3} There are certain "special energies" at which the density of

states is supposed to vanish; see Endrullis and Englisch {171.

6. The Higher Dimenaional Case

Much less 1s known about the Anderson model in dimension greater

than one. All indications are that the ids gets better behaved as
dimension increases, so it is not an unreasonable conjecture that, for
any Anderson model in dimension greater than one, the ids is C_.
Unfortunately, all the results proven thus far have involved showing

that dk is about as well behaved as the input measure dz, and there are
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no ¢* results for cases where ds has compact support. Cne of the nicest
results is the following one proven by Wegner (45]:

Theorem 6.1 Let k be the ids of an Anderson model whose input measure,
dx, is absolutely continuous with bounded Radon-Nikodym derivative.
Then k is Lipschitz continuous.

In addition to the ideas of Wegner, there is an alternate proof
using ideas of Simon-Wolff [42] on averages of the spectral measures
under rank one perturbations.

There is also a result of Constantinescu, Frohlich and Spencer
[10]} which says that if ds 1s absolutely continuous with a
Radon-Nikodym derivative which is analytic in a sufficiently wide
strip, then k is real analytic either in the region where lEI is large

or for large coupling constant.

7. Cauchy Models

There is one class of stochastic Jacobl matrices which is useful

because one can compute the ids precisely. These are models where V has
a Cauchy distribution with restrictions to be made precise on the
correlations betwesn V's at distinct sites. The first model of thia
type for which the ids was computed is the Anderson model with a Cauchy

density for dz, 1.e.

dax

2 .2

de{x) = %
X7 +h

This model is known as the Lloyd model [28]. Much more recently,

Grempel et al. [18) computed the ids in the almost periodic potential

with
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(12) vin) = X tan{xan+a}
a model which has come to be called the Maryland model, after the place
where Grempel et al. worked. They found the remarkable fact that the
ids was the same in the two models for the same value of ), and in
particular, the ids in the Maryland model is independent of the
frequency a so long as 1t is irrational. Motivated by this discovery,
Simon [37] proved the following:
Theorem 7.1 Let k be the ids for a stochastic Jacobi matrix whose
potential has the form:

Vi{n) =
]

where "j "j,n .6 are random variables with the two restrictions that ¢

-4 +8)

tan{s
'R

1My

h )

iz uniformly distributed and aj = 0, Zuj = ). Then

1
224 {E-E")

= —x- E 1
k(e) = [2 5 Kg(E')4E

where kO(E) 1g the 1ds for the free model 1pn the corresponding

dimension.

The Lloyd model corresponds to the case where J = 1 and the Jj
are uniformly and identically distributed, 1ndependent‘rnndom
variables.

Simon [38] has proven that there are some values of « for which
the Hamiltonian corresponding to (12) has point spectrum, and other
values for which the Hamiltonian has singular continuous spectrum.
Since the ids in the two cases are the same, one sees that the ids

cannot distinguish between point and singular continuous spectrum.
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8, Lifschitz Tails

It is not hard to show that {see Kunz-Souillard [24]) the
spectrum of a typical H for the y-dimensional Anderson model is gliven
by
(13) spec(H) = spec(Ho) + supp(d;)
Suppose that supp(ds) = [a,b] so that a - 2» is the bofton of the
spectrum of H and thus, by Theorem 1.1, K{(E} = 0 for E < a - 2». In
cases where k is smooth, 1t must geo to zero as E approaches a - 2y from
above faster than any polynomial. The rate at which it goes to zero was
tirst determined by E.M. Lifschitz [27], so that this region is known
as the Lifschitz tail. The leading behavior is given by the formula

»/2

{14} K(E}) ~ expl-(EB-a-2¥) ]

Lifschitz provided a simple intuition about why this formula holds: For
a state to have energy only ¢ above the minimum value, both its kinetic
and potential energies must be small., Since the kinetic energy of a

state of extent L is of order Lﬁz, we mast have that

~-%

For the potentizl energy to be of order ¢, most of the sites in this
box must have a potential value very close to the minimum value a, and
this will have a small probability of order exp(-S} where S is the
nusber of sites in the box, i.e. 8 ~ L' = V2,

The earliest proofs of Lifschitz's result tended to use rather
sophisticated arguments from the theory of large deviations. More

recently, proofs have been given closer to the spirit of Lifschitz's

original arguments; thess proofs exploit Dirichlet—Neumann bracketing:

fn vt erats s T 1 - e e R R T
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see, for ex —Ma e
example, Kirsch-Martinelli 21], Simon [3%] and Mezincescu

{3 1]. ‘ 14} is pProven in the sense that
{ ) . =
14 lim £n(E~a-2y)] £n[¢nk(E -v/2

und
nder the requirement that (a,a+3) doesn't vanish faster than

polynomially as s}o.

These Lifschitz tails which occur at the cuter edges Of‘ the
1 h g
spectrum are occasionally called external Lifschitz talls . There has
also bee st o t situat whe 2h } d = I a,b c,d] with ¢
been udy t the i lon where s pp(dx) BV 1

b > 4.

v _In that case, there is a gap in the apectrum of H, and one
exXpects that the approach of k{(E} to its value {in the gap as E
appr

pproaches the gap from within the spectrun has Lifschitz behavior

These “internal Lifschitz tails" have been proven to occur b
Y

Mezincescu [32], and subseguently by Simon [40]

Thi !

s isn't the end of the story concerning Lifschitz tails: For
a

random plus periodic potentiails, Kirsch~Simon [22] have proven that
there are external Lifschitz tails,

but no proof of internal Lifschitz

tails has been found.
9. Gap Labeling

There is a final aspect of the density of states special toc the

al
most perilodic case that we should mention, especially since it

suggests that "normally" the ids will not be cl in these cases, Th
. e

r
frequency moduie of an almost periodic function on Z is detined as

follows: Any almost periodic function has an average:
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1
Avif) = lim s—= z fin)
Lo 20FD nyar
The frequency module of an almost periodic function is the additive

subgroup of R generated by 1 and those freguencies, «, for which

Av(e_z"i“nf) # 0. There is a more elegant and illuminating definition

which is also longer: it is discussed, for example, in [1). In the

continuum case, the 1 is not included; it is a reflection of the

periodicity of the lattice. There are definitions around which differ

by factors of n,2x, and 2 from the one we give here, and the fact that

the gap labeling thecrem we give and the one in Johnson-Moser ([20]

differ by a factor of 2 is resolved by differing definitions of the
frequency module. Qur definition is such that, if £ is a periodic
function of period L, its fregquency module is {n/L neZ}.

If £ is quasiperiocdic, i.e. if

f(n) = F{Zra n....,2xuyn)

1

for a continuous function, F, on the y-dimensional torus, then the

v
frequency module is always contained in the set {( I njaj njcz;no=1}
j=0

and will equal that set if F has enough non-zero Fourier coefficients.

f is guasiperiodic if and only if its freguency module is finitely

generated, and it is limit periodic [(i.e. a uniform limit of periecdic

functions) if and only if its freguency module has the property that

any two elements in it have a common divisor in 1it.

The basic gap labeling theorem is:

Theorem 9.1 Let H be an almost pericdic one-dimensional Jacobi matrix.

Then the value of the ids in any gap in the spectrum of H lies in the

BT R
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freguency maodule.

0f course, the value also always lies in [0,1]. This phenomenon
was first found by Claro and Wannier [44], and first rigorously proven
in continuum models by Johnson-Moser [20], and then for discrete models
by Bellissard, Lima and Testard [4]. Johnson-Moser use a homotopy
argument which was carried over to the discrete case by
Delyon-Souillard {15). Bellissard, Lima and Testard use some C*-algebra
techniques, and their argument has been extended to the higher
dimensional case by them ([3].

The relevance of the gap labeling theorem to regularity of the
ids comes from the following meta-theorem:

Meta-theorem 9.2 A "generic” almost perilodic one-dimensional Jacobi

matrix has gaps in its spectrum where the ids takes each possible
allowed value (i.e. all numbers in the frequency module which lie in
{0,1)).

Thie result has been proven in the limit periodic case {9.33,1]
and (in a weakensad form) for the case where V{(n) = )\ cos{2xan+@) [5]
for suitable notions of generic. If the almost perlodic function is not
strictly periodic, then the frequency module iz dense in R. Gaps 1n the
spectrum are open sets on which k is constant, so on which k has a zero
derlvative. If every allowed value occurs in a gap, then the spectrum
is a Cantor set (nowhare dense, but not necessarily of zerc measure),
and k is a Cantor function, which means it cannot he 01 in the

neighborhood of any point of the spectrum.
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