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§l. Overview and Self-Adjojntness 

For the past twen ty years, a set of ideas known as hypercontractivi ty has played a 

continu ing role in analysis with ramifications in quantum field theory, self-adjointness of 

Schrodinge r operators, best constants in classical inequalities and bounds on se migroup kernels. 

A signi ficant role was played by a paper of Raphael Hoegh-Krohn an d one of us 198] which 

codified previous work and coined the term "'hypercontractive." Our goal here is to gi\"e a 

brief historical review and a rathe r complete bibliography. 

In looking at th e history , one must bear in mind that for several papers there \\-ere 

lengthy delays between submission and publication, roughly two years for Simon and Hoegh-

Krohn [981 and Gross [481. 

The theory of hypercontractive semigroups was int roduced in a fundamental paper of 

Nelson [i4J, who also discove red the simplest and most basic example. 

Definition Let (O,/Jo) be a probability measure space. Ho ~ 0 is a self-adjoint operator 

on L2 ( O,J.! ) . \\Ie say that e-
tHo (t~O) is a hvpercont ractjve semigroyp if and only if: 

(a) e-
tHo 

is a contraction on L"( O.J.!o) fo r all t>O. 

General p rinciples (interpolation and duality) imply that e- tHo is then a contraction 

from any LP to itself and bounded from any LP to a"ny L Q(l <p,q<oo) if t is sufficiently large 

(depending on p ,q ). 

Example CNelson(74D Let H ~ , the harmonic oscillator on L 2(R, 

dx). Let 0 0 (1!yl/4 exp ( _ ~x2 ) be the unique positive unit vector with HOo a and 
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consider 

Ho n -1 Hn - l( ..A.. + ?x d) Then e-
tHo 

is h)'percontractive on L2(R. n0
2 dx) . o 0 - 2 - dx1 - dx . 

Nelson applied this result to deduce semiboundedness of certain cutoff quantum field 

Hamiltonians. Glimm [461 made an important observati on: Suppose that e-
tHo 

IS 

hypercontractive. If HoI = 0, zero is a simple eigenvalue and for some m > 0: u(Ho) c {OJ 

-THo 2 4 
U (m, 00), then e is actually a contraction from L to L for T sufficiently la rge. This 

allows one to extend Nelson's example to t he second quantization of any strictly positive 

operator (see [98J). 

Nelson implemented his semiboundedness proof by making extensive use of path 

integrals. An alternative prool of semiboundedness was given by P. Federbush (44} based on 

differentiating the already established hypercontractive inequality lIe-tHfl1p(t) ~ IIfll2 with 

respect to t at t = O. This yielded the first log Sobolev inequalities, provid ing a precurso r to 

the work we will discuss in S2. 

Segal (90,91,92] studied an abstract version of the theory, and in particular showed 

that essential self-adjointness followed f rom the same LP properties that Nelson used. Simon -

Hoegh-Krohn [98] codified and extended this work, and. in particular show that : 

- tHo 2 
Theorem 1; Suppose that e is a hypercontractive semigroup on L (O,jJ). Let V be 

a function on (} (and also the associated multiplication operator). Suppose that e-v E n LP 

p<ox-

and VE LP for some p>2. Then Ho + V is bounded from below and essentially self-adjoint on 

O ( RO) n D(Y) . The same result is true ifY 2: 0 and V E L2. 

At the time of this work, self-adjointness of t he spatially cut off quantum field 

Hamiltonian was important in the construction of infinite volume asymptotics of the dynamics. 

It was first proven for (¢4h field theories by Glimm-Jaffe [47] using different methods and 
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then by Rosen (83] and Segal [91] for general P(¢h theories. Segal used variants of the above 

theo rem. Hoegh-Kroh n [54} applied it to the: exp ( aQ): interaction. 

A second example of some historical significance is in the Simon-Hoegh-Krohn paper 

[98[. Let V2.0 
, 

be in L2 (Rd , e-x dx). Then, by th e above theorem and a small additional 

argument, -A + x2 + Vex) is essent ially self-adjoint on C?,( Rd). This is of interest because 

prio r to this, all such t heorems had required V to be iocally L P with p 2: dj2 if d 2: 4. 

Simon [96] showed how to get r id of the x2 and prove -~ + V essen tially self adjoint on cf' 

if V 2: 0 in L2(R d, e-ax2 dx)'some a>O. Motivated by this, in a celebrated work , Kata {62J, 

using differen t methods, showed that V E L2
10,(Rd) suffices if V?:D. 

It is interesting that the se lf-adjoint ness result is now mainly of histori cal interest. 

Kato's work has replaced any application to Schrodinger operators. And, because of the 

Euclidean re\'olution in quantum field theory, self-adjointness became irrelevant, although the 

LP estimates associated to hypercontractivity are still significant; see Guerra et al. [52,53}. 
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§2 Logarithmic Sobolev Inequalities and hypercontactivity 

Some aspects of these concepts are most easily understood in finite dimensions . Let 

-n/2 1"/ J n dll(x) = (2'1r) exp[ -lix [- 2 dx denote Gauss measure on R . The inequality 

is th e prototype o f logarithmic Sobolev inequalities. If one defines an operator N on L2([Rn, p) 

by (Nf,g) ') = JRll vf(x) . vg(x)dp(x) then (2.1) reads 
L- (p) 

JR n If(xJI2'nlf(xJldp(x) :s «Nf.f)" + Ilf ll2? 'n ll f ll 2 . 
L-(pJ V(PJ L (pJ 

(2.2) 

In P. Federbush's proof [44J of semibouncleclness of HO+V, he Drst diffe rentiated the 

-tH 
hypercontractivity inequality for e 0 at t = O to obtain the inequali ty (2 .2 ) for HO (with Rn 

replaced by an infinite dimensional space and N replaced by HO) ' He then showed that the 

inequality (2 .2 ) was itself sufficient to prove semiboundedness. L. Gross [48] later sho, ... ·ed 

that, conversely, one could recover hypercont.ractivity of e· tN from (2.1) so tllat 

hypercontractivity and logarithmic Sobolev inequalities were actually equivalent for Dirichlet 

form operators (such as N). The techniques in Gross' a rgument for the direct ion "log. 

-tHo 
Sobolev for HO implies bounds on e .. has yielded tremendous advances recently in the 

understanding of heat kernels. This will be discussed in the next section. A direct proof of 

(2.1) with the best constant c = 1 was also given by G ross [48} using a central limit theorem 

argument applied to a logarithmic Soholev-like inequality for an operator on L2 of a two point 

measure space. The "two point inequality" was an outgrow t h of his earlier work [49] on 

hypercontractivity fo r Fermions bu t was also anticipated by Bonami [14J in his work on 

harmonic analysis on finite groups . 
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There are now many proofs of these two types of inequalities fot Gauss measure. Some 

prove hypercont ractivity directly [9, 10, 19, 46 , 74, 75, 76, 77, 91] while others prove the 

logarithmic Soholev inequality directly [2, 5, 13. 43, 48, 84]. The most elementary direct proof 

of hypercontractivity with bes t constants is that of E. Nelson [76] wbile the most elementary 

and simplest direct proof of the logarithmic Soholev inequality with best constants (c = 1) is 

is that of O. Rothalls [84]. 

Both kinds of inequalities were developed in variollS directions in the 1970·s. Inequality 

(2.2) can be interpreted as saying that (N + 1)-1/2 is a bounded operator from L2(1l) to the 

Orlicz space L2 ln L. G. Feissner showed more generally that (N + 1)-k/2 is a bounded 

operator from LP(JJ) to LP ink L. See aha [8}. Furthermore one may ask whether, given a 

measure 1/ on jR" with a reasonable density, its Dirichlet form operator satisfies a logarithmic 

Soholev inequality. There is a procedure by which Dirichlet form operators arise naturally in 

quantum mechanics and quantum field theory; if V is a suitable real valued function on an 

then the operator H := -.6. + V is a self-adjoint operator with a unique lowest eigenvector '" of 

unit norm whi ch may be taken st.rictly positive. If dll(x) = 1,b(x)2dx and >. = inf spectrum H, 

then the unitary operator U : f - !II/; from L2(Rn, dx) to L2(]Rn J dv) converts (H - J.) into 

an operator H := UCR - J.)U - l on L2(Jln, dv) which turns out to be a Dirichlet operator 

for 1/ [40]. Hence, by Gross' theorem, hypercontractivity and the logarithmic Sobolev 

inequali ty are equivalent for iI. Conditions on V which assure that both hold were obtained 

by J . P . Eckman n [40}, R. Carmona [25], J. Rosen [82], J. Hooton [58]. Moreover J. Rosen [82] 

showed that if the density of 1/ decreases very quickly at 00, then for 1 < P < 00, 

lIe-tHUL2 _ LP < 00 for all t > O. This is strictly stronger than hypercontractivity and was 

called supercont ractivity. For a review of studies of H, see B. Simon [94]. An even stronger 

notion , ultracontractivity, will be discussed in §3. 

An application of hyp ercontractive ideas in yet another direction was made hy W. 
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Beckner [10] who used extensions of tbe above-mentioned t.wo point inequality to get the exact 

bounds in the Hausdorff-Young inequality. The study of e- zN , for complex z , from the point of 

view of hypercontracti"'ity has recently been completed in a definitive manner by J. Epperson [41]. 

One may ask whether the Laplace-Beltrami operator on a manifold other than R" generates 

a logarithmic Soholev inequality. This has been addressed in a number of works [32, 33, 34, 35, 87, 89] 

..... ith startlingly complete resuiLs for SO in [1061. Finally we mention that applications of 

logarithmic SoboleY inequalities in infinite dimensions to statistiea] mechanics were made by Holley 

and Stroock [55, 56, 57J. The bibliography contains many more works which touch on hypercontractivity 

or logarit.hrruc Soboley inequalities in one way or another and not described here or below. 
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§3 Ultracontractivity 

It was shown in [28] that if H = 
? 

- d -,) + Von L2(a, b) where V E Ll and - = < a 
dx-

< b < 00, then the semigroup e- tA is bounded from L:!(dv ) to Loo(dv) for all t > O. T hi s 

. 11 d 1 . . d . . 1 t t -tf! h·· d property IS ca e u tracontractlvlty an IS eqUlva en 0 e aVLng a pOlntv.iise bou nde 

integral kernel K(t, x, y) for all t > O. 

A more general investigation of such inequalities from the point of view of logarit hmi c 

Sobolev inequalities was initiated by Davies and Simon in [38]. If ( 0. p) is a measure space 

then there is a very dose relationship between bounds of the form 

(3 .1 ) 

for aU t > 0, and 

+8(,) II f l l~ + II r I I ~ log II r ll2 (3 .2) 

1/2 
for all f EDam ( H ) and all f > O. In particular one has an equivalence between (3.1) and 

(3.2) in the case wh ere 

and 

-N/4 
e(t) = c t (3.3) 

Although theorems of this type are not applicable to the harmonic oscillator, th ey are 

important for some other Schrodinger operators H = - fl. + V on L2(Rn ), For example 

if A > 0 and 
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then e - tH is ultracontractive if and only if). > I, with constants c( t) which diverge as t - 0 

much mo re rapidly than (3.3). The harmonic oscillator therefore stands at the borderline 

between ultracontractive behavior and the absence of any L2 - LP smoothing properties. 

It was subsequently shown by Varopoulos [102] and Fabes and Stroock [42] that less 

singu la r p roblems of this type, for which (3.3) is valid, could be handled by the use of ordinary 

Sobolev inequalities or what were called Nash ineq ualities. \ '\'e re mark that the paper of Nash 

[73] involves "entrop), inequalities" which antedate the in troduction of logarithmic Soholev 

inequalities by a decade. 

The paper {3S] has spawned a substantial literat u re concerning pointwise bounds Oil the 

heat kernels of second order elliptic operato rs in d ive rgence form; see[34] for a comprehensive 

survey. One can easily handle uniformly elliptic operators with measurable coefficients on Rn 

and on regions in Rn subject to Dirichlet or Neumann boundary conditions. The use of 

logarithmic Sobolev inequalities also allows one to obtain pointwise bounds on the heat kernels 

of many singular elliptic operators of second order (32,78]. 

\Vhen one turns to the study of the Laplace- Beltrami operator o n a Riemannian 

manifold, many different techniques can be used to obtain pointwise bounds on the heat kernel 

(34] . Some [26, 71, 36] make little or no use of logarithmic Soholev inequalities , while others 

(32, 33, 35] depend essen tially upon such a use. 

Suppose one has a uniform hound on the heat kernel of the form (3.1), or equivalently 

o ~ K(t, x, y) ~ aCt) < 00. 

By proving a logarithmic Soholev inequality for the non-self-adjoint operator", e- Ht ", - 1, 

wh ere IfJ is a suitable weight, it is often possible to show that 

0::; K(t, x, y) ::; ',it) exp (- d(x, y)2/(4 + 0) tl (3.4 ) 

for any 6 > 0, where d (x, y) is a Riemannian metric constructed di rectly from the operator 
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[30, 33, 35J. See also [31, 42, 21 , 34], and [33] for an analogous result for certain second order 

hypoelliptic operators. By comparison with earlier literature (3, 81] the advantage of (3 .4) is 

that one has obtained the sharp constant 4 in the exponential. 

The possibility of obtaining sharp cor.stants is a recurring feature of the use of 

logarithmic Sobolev inequalities, and demonstrates their deep significance. Many developments 

of th e above applications are being currently investigat ed, and one particularly looks forward 

to the proof of lower bounds on heat kernels which are of comparable accuracy to the upper 

bounds mentioned above. 
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