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§1. Overview and Self-Adjointness

For the past twenty years, a set of ideas known as hypercontractivity has played a
continuing role in analysis with ramifications in quantum field theory, self-adjointness of
Schrédinger operators, best constants in classical inequalities and bounds on semigroup kernels.
A significant role was played by a paper of Raphael Hoegh-Krohn and one of us [98] which
codified previous work and coined the term “hypercontractive.”™ Our goal here is to give a

brief historical review and a rather complete bibliography.

In looking at the history, one must bear in mind that for several papers there were
lengthy delays between submission and publication, roughly two years for Simon and Hoegh-

Krohn [98] and Gross [48].

The theory of hypercontractive semigroups was introduced in a fundamental paper of

Nelson [74], who also discovered the simplest and most basic example.

Definition Let (§2,49) be a probability measure space. Hg > 0 is a self-adjoint operator

-tH : o
on L2( Q,u). We say thate © (t>0) is a hvpercontractive semigroup if and only if:

(a) ¢ ™9 is a contraction on L23(Q,pu,) for all t>0.

H

(b) Forsome T, e.T ® is a bounded map from L*(Q,u,) to L* (pp)-

o + ¥ ¢ i -tHgy . »
General principles (interpolation and duality) imply that e ° is then a contraction
from any L” to itself and bounded from any L° to any Lq(l<p,q<oo) if t is sufficiently large

(depending on p,q).

2
Example (Nelson[74]) Let H = —%:—2 + %xz — ..l, , the harmonic oscillator on LZ(R.
x 2
1/4

dx). Let Q4 = (7) exp (— %xz ) be the unique positive unit vector with HQy = 0 and
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consider

-tH
Hy = Qg+ HOQ = (_d_(sz + QX‘%(). Then e © is hypercontractive on L2(R, 242 dx).

1
]

Nelson applied this result to deduce semiboundedness of certain cutoff quantum field

" 5 " . g -tH
Hamiltonians. Glimm [46] made an important observation: Suppose that e © i
hypercontractive. If Hyl = 0, zero is a simple eigenvalue and for some m > 0: ¢(H,) c {0}
“THy . ; 2 4 : :
U [m, oo}, thene is actually a contraction from L* to L” for T sufficiently large. This
allows one to extend Nelson’s example to the second quantization of any strictly positive

operator (see [98]).

Nelson implemented his semiboundedness proof by making extensive use of path
integrals. An alternative prooi of semiboundedness was given by P. Federbush [44] based on
differentiating the already established hypercontractive inequality He'tHpr(t) < |lflly with
respect to t at t = 0. This yielded the first log Sobolev inequalities, providing a precursor to

the work we will discuss in §2.

Segal [90,91,92] studied an abstract version of the theory, and in particular showed
that essential self-adjointness followed from the same L® properties that Nelson used. Simon -

Hoegh-Krohn [98] codified and extended this work, and, in particular show that :

-tH
Theorem 1: Suppose that e © is a hypercontractive semigroup on LQ(Q,,J.:). Let V be
a function on £ (and also the associated multiplication operator). Suppose that Ve é"! b
p<oc

and Ve LP for some p>2. Then Hy + V is bounded from below and essentially self-adjoint on

D(Hg) N D(V). The same result is true if V. > 0 and V € P

At the time of this work, self-adjointness of the spatially cut off quantum field
Hamiltonian was important in the construction of infinite volume asymptotics of the dynamics.

It was first proven for (¢4)2 field theories by Glimm-Jaffe [47] using different methods and
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then by Rosen [83] and Segal [91] for general P(¢), theories. Segal used variants of the above

theorem. Hoegh-Krohn [54] applied it to the :exp (ag) : interaction.

A second example of some historical significance is in the Simon-Hoegh-Krohn paper
[98]. Let V>0 be in L3(RY, e"‘zdx). Then, by the above theorem and a small additional
argument, —A + x2 + V(x) is essentially self-adjoint on CS2(RY). This is of interest because
prior to this, all such theorems had required V to be locally L? with p>d/2 if d > 4.
Simon [96] showed how to get rid of the x? and prove —A + V essentially self adjoint on C3°
if V. > 0in L%RY, e‘a"zdx)rsome a>0. Motivated by this, in a celebrated work, Kato [62],

using different methods, showed that V € Lgloc(Rd) suffices if V>0.

It is interesting that the self-adjointness result is now mainly of historical interest.
Kato’s work has replaced any application to Schrodinger operators. And, because of the
Euclidean revolution in quantum field theory, self-adjointness became irrelevant, although the

LP estimates associated to hypercontractivity are still significant; see Guerra et al. [52,33].
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§2 Logarithmic Sobolev Inegualities and hypercontactivity

Some aspects of these concepts are most easily understood in finite dimensions. Let

-n/2
du(x) = (2x) B exp[ —”Xﬂ‘z/?]dx denote Gauss measure on R®. The inequality

9 —_— & %
[ HEOPERICOIaH0) < ¢ [ 19EPapt0 + 1P 5 onil 5

—
12
—

—

is the prototype of logarithmic Sobolev inequalities. If one defines an operator N on LQ(FFEH. )

by (Nf,g}Lg('u) 25 ]R“ Vi(x) - VE(x)dp(x) then (2.1) reads

jgn P enliCldnx) < e(NER) 5+ eI o eallf (2.2)

() (0 L%y

In P. Federbush’s proof [44] of semiboundedness of Hg+V, he first differentiated the

-tH

hypercontractivity inequality for e 0

at t=0 to obtain the inequality (2.2) for Hy (with RrR™
replaced by an infinite dimensional space and N replaced by HG)' He then showed that the
inequality (2.2) was itsell sufficient to prove semiboundedness. L. Gross [48] later showed
that, conversely, one could recover hypercontractivity of N from (2.1) so that
hypercontractivity and logarithmic Sobolev inequalities were actually equivalent for Dirichlet
form operators (such as N). The techniques in Gross’ argument for the direction “log.
Sobolev for Hy, implies bounds on e-tHO ” has yielded tremendous advances recently in the
understanding of heat kernels. This will be discussed in the next section. A direct proof of
(2.1) with the best constant ¢ = 1 was also given by Gross [48] using a central limit theorem
argument applied to a logarithmic Sobolev-like inequality for an operator on L2 of a two point
measure space. The “two point inequality ” was an outgrowth of his earlier work [49] on

hypercontractivity for Fermions but was also anticipated by Bonami [14] in his work on

harmonic analysis on finite groups.
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There are now many proofs of these two types of inequalities for Gauss measure. Some
prove hypercontractivity directly [9, 10, 19, 46, 74, 75, 76, 77, 91] while others prove the
logarithmic Sobolev inequality directly [2, 5, 13, 43, 48, 84]. The most elementary direct proof
of hypercontractivity with best constants is that of E. Nelson [76] while the most elementary
and simplest direct proof of the logarithmic Sobolev inequality with best constants (¢ = 1) is

is that of O. Rothaus [84].

Both kinds of inequalities were developed in various directions in the 1970’s. Inequality
(2.2) can be interpreted as saying that (N + 1)-112 is a bounded operator from Lg(,u) to the
Orlicz space L2¢nL. G. Feissner showed more generally that (N + 1)'“2 is a bounded
operator from LP(u) to P inF L. See alkso [8]. Furthermore one may ask whether, given a
measure ¥ on R"™ with a reasonable density, its Dirichlet form operator satisfies a logarithmic
Sobolev inequality, There is a procedure by which Dirichlet form operators arise naturally in
quantum mechanics and quantum field theory; if V is a suitable real valued function on BT
then the operator H == —A + V is a self-adjoint operator with a unique lowest eigenvector ¢ of
unit norm which may be taken strictly positive. If dv(z) = ¢(z)2dz and A = inf spectrum H,
then the unitary operator U : f — f/4 from LZ(R", dz) to L2(R", dv) converts (H — ) into
an operator H = U(H — A)U~! on L%(B", dv) which turns out to be 2 Dirichlet operator
for v [40]. Hence, by Gross’ theorem, hypercontractivity and the logarithmic Sobolev
inequality are equivalent for H. Conditions on V which assure that both hold were obtained
by J. P. Eckmann [40], R. Carmona [25], J. Rosen [82]7, J. Hooton [58]. Moreover J. Rosen [82]
showed that if the density of v decreases very quickly at oo, then for 1 < p < oo,
||e_tﬁHLz e < o for all £ > 0. This is strictly stronger than hypercontractivity and was
called supercontractivity. For a review of studies of H, see B. Simon [94]. An even stronger

notion, ultracontractivity, will be discussed in §3.

An application of hypercontractive ideas in yet another direction was made by W.
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Beckner [10] who used extensions of the above-mentioned two point inequality to get the exact
bounds in the Hausdorff-Young inequality. The study of e""N1 for complex z, from the point of
view of hypercontractivity has recently been completed in a definitive manner by J. Epperson [41].
One may ask whether the Laplace-Beltrami operator on a ;na.n.ifo[d other than RE™ generates
a logarithmic Sobolev inequality. This has been addressed in a number of works [32, 33, 34, 35, 87, 89]
with startlingly complete results for S™ in [106]. Finally we mention that applications of
logarithmic Sobolev inequalities in infinite dimensions to statistical mechanics were made by Holley
and Stroock [55, 56, 57). The bibliography contains many more works which touch on hypercontractivity

or logarithmic Sobolev inequalities in one way or another and not deseribed here or below.
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§3 Ultracontractivity

2
It was shown in [28] that if H = — 95 + V on L2(a, b) where V € Ll and — o < a
dx=

< b < oo, then the semigroup e_“}:I is bounded from Lz(du} to L™=(dw) for all t > 0. This
property is called ultracontractivity and is equivalent to e—”:l having a pointwise bounded
integral kernel K(t, x, y) forall t > 0.

A more general investigation of such inequalities from the point of view of logarithmic
Sobolev inequalities was initiated by Davies and Simon in [38]. If (Q, p) is 2 measure space

then there is a very close relationship between bounds of the form

™™l 5 oo Sc(t) <00 (3.1)
for all t > 0, and

[Pt s e uep3
Q
9 p) 1
FHONENG+ 1113108 1Tl (3:2)

1/2
for all f € Dom (H / ) and all € > 0. In particular one has an equivalence between (3.1) and

(3.2) in the case where

c(t) = ctmN/é (3.3)
and
Ble) =2a — %‘T In ¢
Although theorems of this type are not applicable to the harmonic oscillator, they are
important for some other Schrodinger operators H = — A + V on Lg(ﬂn), For example
ifA >0 and

V(x) = (2 + [x/%)?
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then e—"‘H is nltracontractive if and only if A > 1, with constants c(t) which diverge as t — @
much more rapidly than (3.3). The harmonic oscillator therefore stands at the borderline

between ultracontractive behavior and the absence of any L2 — LP smoothing properties.
Y g prop

It was subsequently shown by Varopoulos [102] and Fabes and Sqtroock [42] that less
singular problems of this type, for which (3.3) is valid, could be handled by the use of ordinary
Sobolev inequalities or what were called Nash inequalities. We remark that the paper of Nash
[73] involves “entropy inequalities” which antedate the introeduction of logarithmic Sobolev

inequalities by a decade.

The paper [38] has spawned a substantial literature concerning pointwise bounds on the
heat kernels of second order elliptic operators in divergence form; see[34] for a comprehensive
survey. One can easily handle uniformly elliptic operators with measurable coefficients on R"
and on regions in R" subject to Dirichlet or Neumann boundary conditions. The use of
logarithmic Sobolev inequalities also allows one to obtain pointwise bounds on the heat kernels

of many singular elliptic operators of second order [32,78].

When one turns to the study of the Laplace-Beltrami operator on a Riemannian
manifold, many different techniques can be used to obtain pointwise bounds on the heat kernel
[34). Some [26, 71, 36] make little or no use of logarithmic Sobolev inequalities, while others

[32, 33, 35] depend essentially upon such a use.

Suppose one has a uniform bound on the heat kernel of the form (3.1), or equivalently
0 < K(t, x, y) < a(t) < co.
By proving a logarithmic Sobolev inequality for the non-self-adjoint operator ¢ e Ht t,o_l,
where ¢ is a suitable weight, it is often possible to show that

0 < K(t, x, ) < cg(t) exp [—d(x, y)?/(4 + 6) t] (3.4)

for any § > 0, where d(x, y) is 2 Riemannian metric constructed directly from the operator
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[30, 33, 35]. See also [31, 42, 21, 34], and [33] for an analogous result for certain second order
hypoelliptic operators. By comparison with earlier literature [3, 81] the advantage of (3.4) is

that one has obtained the sharp constant 4 in the exponential.

The possibility of obtaining sharp constants is a recurring feature of the use of
logarithmic Sobolev inequalities, and demonstrates their deep significance. Many developments
of the above applications are being currently investigated, and one particularly looks forward
to the proof of lower bounds on heat kernels which are of comparable accuracy to the upper

bounds mentioned above.
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