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The Scott correction is the second term in a large Z asympt otic expansion 
of the total binding energy of an atom with nuclear charge Z. The atom is 
a complicated system with multi particle correlations among the electrons. 
Nevertheless, the proof of the Scott correction can be reduced t o the study 
of the semi-classical limit of a one-body system where the electron-electron 
interaction is replaced by an averaged self-consistent potential. 

This reduction is more or less well-known to the experts in the field, so 
this paper is unabashecUy pedagogic. However, previous discussions have so 
intertwined the reduction to the classical limit with the control of that limit 
that the simplicity of the reduction has been hidden. 

Basically, we will compare a quantum Hamiltonian, H, with a quasi­
classical Hamiltonian , HQc, with responding energies E and EQc, and ground 
states wand wQc and we will show (modulo a fact about the quasi-classical 
limit) that: 

E:'O (\IlQC , H\IlQc ) = EQc + O(Z5/3) 

EQc :'0 (\II, HQCw) = E + O(Z5/3) 

where E ~ Z7/3 and the Scott correction is O(Z2 ). 
To be precise, the N-electron charge Z atomic Hamiltonian acts on 

L~R3N by 

(1) 

where a point in R3N is written as (x" ... , x N) with Xi E R3 and L~ means 
those flllctions W(Xl 1 '" ,XN) in L2 which are anti symmetric under inter­
changes of coordinates. 

The Hamiltonian H has several simplifications. We ignore electron spin 
which affects the statistics. It can be easily accommodated by changing the 

1 Research partially supported by USNSF under grant number DMS-9 101715. 

S.M.F. 

Asterisque 210** {1992} 295 



B. SIMON 

constants in the discussion belo,v. 1\'1le ignore corrections due to a finite nuclear 
mass. We ignore relativistic corrections. 

and 

What will concern us is the total binding energy 

E(N, Z) == inf(W , Hw) = inf spec(H) 
>I> 

E(Z) == E (N = Z, Z) 

VIe will henceforth take N = Z without further comment. 
To describe the quasi-classical problems, we describe the Thomas-Fermi 

model (invented by Thomas [16] and Fermi [3]). This posits an electron gas 
with density p(x) obeying 

J p(x)dx = Z (2a) 

and energy given by 

J 'I . J 1 J p(x)p(y) 
[TF(p) = d pO 3(x)dx - p(x)lxl- 1 Z + 2 Ix _ YI (2b) 

where d is the universal constant ~ (4: )'/3 defined so that the sum of the 
first N eigenvalues of the Dirichlet Laplacian in a cubic region of volume V 
is asymptotic as 1'1' --> 00 to 

dV(NjV)5 /3 

Thus, the first term is a quasi-classical limit of the kinetic energy term in (1) 
and the other terms are clearly the nuclear attraction and electron-electron 
repulsion. 

According to Lieb-Simon [7,8] , there is a lrnique p, call it pIF, minimizing 

and moreover, 

as Z ----1 00. 

It is fairly easy to determine the Z dependence of TF theory: 

pV(:c) = Z2 pfF(Zl /3X ) 

ETF(Z) = Z7 /3 E TF (1) == Z7/3eTF 

In what follows, a critical role will be played by the TF potential 
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Note that the Euler-Lagrange equations for minimizing £ read 

5 0/3 "3 dp- = <p (4) 

Equation (3) says that E(Z) ~ eTFZ7 / 3 as Z -+ <Xl. There has been 
work on the next two terms in the asympototic series. Scott [11 J looked at 
the situation where the electron repulsion is dropped and the N-body problem 
reduces to a one-body problem (Hydrogen atom), which can be exactly solved. 
He noted the leading correct.ions to the Thomas-Fermi analog for this model 
of order Z2 came from the inner shells where the electron repulsion shouldn't 
matter; so he posited that the 0 (Z2) term was the same for the true atomic 
case. That 

-/3 ') ') 
E(Z) = eTFZ' + eScottZ- + o(Z-) (5) 

was proven recently by Hughes [4J and Siedentop-IVeikard [13J. A recent 
preprint of lvrii-Sigal [5J provides a new proof and extends the result to the 
lnolecular case. 

Fefferman-Seco [2) have announced control of the Z5/3 term, which has 
a contribution due to electron exchange (computed originally by Dirac [1]) 
and one from the higher order classical limit (computed by Schwinger [10]). 
Actually Fefferman-Seco study inf E(Z, N), not E(Z) but they should be the 
same to 0 (Z5/3). N 

These proofs are all over 100 pages and one of our goals here is to hope 
for a proof of the Scott correction on one foot. 

The quasi-classical problem we will relate to H is given by 

The final term in HQc is a mnnbcr (constant), which needs to be there because 
r..pz overCOllnt.s t.he (,llC'rgy of int.eraction . In fact , the constant is exactly ([81), 

By scaling y{F = Z-1/:l y F'(ZI/2;r) so -L'>; - <p~F(t) is unitarily equiva­
lent to Z4/3h~c where 

Thus, hQC is a one-body Hamiltonian with It = Z-I/3 and Z -+ <Xl is 
the It -+ a limi t. Let 

e~C(Z) :0; e~c(Z) :0; ... 

b th ' al f I QC 'th' f t' QC;Z QC;Z Th e e elgenv, ues a lz WI , elgen une 1011 'h ' '72 , , , , , en 

297 



B. SIMON 

z 
EQC(Z) == inf spec(HQC) = Z 4/3 L:>fC(Z) - ~eTFZ7/3 

1=1 

and the one electron density for H Qc is 
z 

p~c(x) = Z L l'7f c ;z(ZI/3 X )1 2 

i=1 

Olli goal is to prove: 

THEOREM. 

where 

with 

The point is that the op Coulomb energy is 

Z7/3~ J oP(x) OP(y) 
2 Jx- yJ 

z 
8P = [~ L J'7;(x)J 2

] - piF (x) 
i = 1 

The leading order for ~ 2:.'7[ is PI by (4), so good control of the classical 

limit should imply that 8P ~ Z - I/3 so one expects that 

~ J 6p(.'t)lip(y) = O (Z5/3) 
2 Jx-yJ 

(7) 

or less (Seco [12] tells us that it is less). T hus, the Scott correction (5) would 
follow from control of EQc, a one-body problem, to O(Z2 rand a proof of (7). 

"Ve now tum to the proof of the Theorem. V,Te will show that 

(8a) 

and 
(8b) 
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To prove (8a), let \]JQC be the ground state of HQC, so 

E(Z) = (ifJ QC
, HifJ QC ) 

= EQC(Z) + (ifJ Q C , (H _ HQc) ifJ QC) 

Now H - HQC has three terms: 

(a) (ifJ QC , 2::;['P~F(.,,;) - Zlx;I- 1] ifJ QC) = - J pTF\~)p:IC(r) d3xd3y since 

(b) 

( ifJ Qc , (2::; W(x;))ifJ QC ) = JW(x)pQC(x)dx for any W . 

( ifJ QC '\' . . _ ,_ ifJ QC ) 1 J pQc(r)pQc(y) d3x d3 y 
' W t<) lXi-xii 2 Ix y ] 

where the exchange energy, Ex(\]J) is defined for any ifJ as : 

where 

is t.he one particle (knsity. For detel'lninantal ifJ one CaJl compute Ex(ifJ) 
cxplici t.iv and scc that 

E." ( ifJ) 2: 0 

uSillg th,' positive ddinitcness of the kernel Ix - yl- '. Thus, tills term is 

J pQc(.I')(JQ(·{y) '\ 3 < d·;l·r/y. - \.r vi 

1'f'( ) TF'( ) 
(e) The cxplicit. term t J" I ~ "YI Y d3 .'U13 y in the definit.ion of HQ C 

P utting these three terms together yiei(ls (8a). 

To prove (8b), let ifJ be t.he true gTOund state of the quantum Hanlilt onian 
and let pQ be its one particle density. Then 

EQC(Z) == (ifJ,HQcifJ) 

=E(Z)+ (ifJ,(HQC - H )ifJ) 
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The calculation of the second term is identical to the one done for 
(\!J QC , (H - HQC)\!JQC), viz 

(\!J (HQc - H)'JI) = Ex('JI) - ~ J (8IP)(x)(8IP)(Y) d3xd3y 
, 2 Ix - yl 

where 

By the positive definiteness of Ix -yl- l, the second term is negative. Now 
we need to pull a rabbit out of our hat, namely, an inequality of Lieb [6J : 

Ex('JI ) :::; c J P'1I(x)4/3d3x 

for any Iji. Thus, by the Schwartz inequality: 

EQc(z) :::; E(Z) + c p(x)(l"x P'13(x)d3x (J )1/2(J )1/2 
Now by defini tion of p: 

J p(x)d3 x = Z 

and by the Lieb-Thirring inequality and the virial theorem: 

J p5/3(x)d3x:::; c(\!J, -~\!J) 

:::; c[-E(Z)J 

:::; dZ7/3 

by an elementary estimate on the quantum binding energy (for example, drop 
the Coulomb repulsion and use Hydrogen eigenvalues) . Thus 

proving (8b) and so the Theorem. o 

We close with several remarks about the proof: 

(1) If one proves that E - EQC = O(Z)513 (i.e., if one proves that 

J (CP)\:) ( ~f)(Y) d3x d3y = O(Z5 /3)) , then the proof shows that 
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so we get. some control on the approach of pQ to pT F 

(2) To use these ideas to go to the z o/3 term, we would need to show that 
the op Coulomb energies are o(ZO/3), control EQc to O(ZS/3) and get control 
of Ex(\Ii) and E;l: ( \liQc ). Control of Ex(\li Q C ) should be possible as Dirac 
clid his calculation . Ex( \Ii ) is a full many-body question. 

(3 ) To prove the Lieb-Simon result on leading order for E(Z), one only 
proves some leading order results on the quasi-classical limit. For energy, this 
can be done via pat.h integrals [14], coherent states [15J or Dirichlet-Neumann 
bracketing [9J. The op Coulomb energy should be accessible via L' bounds 
and local Lq convergence of p. 

1\ 1 like to thank G.M. Graf and L. Seco for useful discussions. 
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