


Ceantre de Recherches Mathématigues
CRM Proceedings and Lecture Notes
Volume 8, 1993

Spectral Analysis of Rank One
Perturbations and Applications

Barry Simon

AngrracT. A review of the general theory of selfeadjeint operators of the
form A - 0B where B is rank one ls presented. Applications include proofy of
localization for Schrddinger operators, results on (nverse spectral theory, andg
examples of operators with singular coptinuons spectyum,

1. Introduction, Borel Transforms,
the Krein Spectral Shift, and All That

Introduction. Owr goal here is to review the speetral theory (with applica-
tiong) of rank one perturbations of positive self-adjoint operators on a separable
complex Hilbert space, H:

(1.1} ' A =A+aB B={p o

The cynic might feel that T have Bnally sunk to my proper level, 1 started with
quarnturn field theory, analysis in infinitely many variables. That was too hard so [
swiched to the N-body Schrédinger equation; but that was too hard so I switched
to one-body, then one-dimensional, then discrete one-dimensional. Finally to rank
one perturbations—maybe something so easy that I can say something usefull Alas,
we'l see even this is hard and exceedingly rich.

I'should warn vou that (1.1) is somewhat more general than you might think.
First, I'll bet you thought that ¢ was a unit vector. It need not be. Big deal, you
think—normalize ¢ and renormalize . But ¢ need not be s normalizable vector.
We'll consider B’s which are rank one but only form bounded perturbations of 4.
In one fell swoop, we've absorbed the theory of variation of boundary conditions
for Sturm-Lioaville problems on a halfline!

Moreover, ag Il discuss in §1.5, o may be infinite.

In some ways, my recent relationship with rank one perturbations reminds me of
my relationship with trace ideals fifteen years ago. Then it turned out three distinet
problems: Yukaws field theories, scattering theory, and semi-classical bounds on the
number of bound states led me to gimilar mathematices, viz estimates on the trace
ideal properties of certain pseudo-differential operators.
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This past year, Yiree distinet research projecls:

1. my work, in part with del Rio, Jiiomirskayn, and Makarov, on singular
FPRCET;
my trving to undesstand the work of Alzenman sad Melchanov;
my work with Gesziesy on trace formanlas
all fed 1{) rapk one perturbation: and enriched my own knowledge of the subject.
1=3 are the themes of Sections 2-4 of these noles.

T thiz seciion 71 discuss the general theory i 2 new systematic way; many of

the ideas were developed in discussions with Fritz Gesatesy, to whom I am grateful
A key role will be played by

v

{}2} f\'{ {.Yc‘ Ay — 2} el
In terms of & suitable speciral measure dog

. IR
£1.3) ;wﬂmfji%

so we'll begin will an exhaustive study of the Borel transform of a measure and its
velation to the measure in §1.3. That section and §1.2 are the lechnical core behind
most of what follows.

1.1, Bors] Trapsforms of Measures. Throughoud, we et dis be o {positive)
measure on [e, o0) for some @ > —oo with

(1.4]

ReManks. I We'll suppose that supp(p) 8 bounded from below and the
operator A In [1.1} Is positive. Much of our iheory works without those restrictions
bl the detzils are o Hitle simpler with them and they hold in the applications I
wank 0 make, so Pve made them.

2. For some resulis when one only knows thes [ dpid)/(1+ 0% < oo, see
Aronszajn-Donoghue 41

When (1.4} holds, we can define for z £ £% {—o0,all

i”,i }\1
A=

(1.5) Fe) =

the Borel fransform of p {also called the Stielijes transform or the Borel-Btielijes
teansform). The kev lssues concern boundmy values of Fas z = 24+ 4c [ 2 €
suppidi. We begin with the simple stuff away from supp(dge).

TugoneM 1.7
3} F 45 pos
(8] by F .
%) By F{-rilv) = [ did A} where [dp =

- /a‘.;;_.{/\}_

= { f d.;_:.{,\}_}"'z where [ die = oo is allowed with

) F s an anelylic function on T3 {a, o).
¢ on {-ooa) and Im F > 0 if Ime >

o s ellowed. Simifarly,

G THAL ANALY GF RANK ONE

Paoor. (13 and (i} are elementary, {3} uses:

L6 I B :r%f:_i’ﬁ‘:xf— 2
(16) Fla i) s [ i

ui

{iii} and {iv) Inllow from the monotone convergence theoren:,
more ivoived arpument if |21 - o with |argl—2)t < ¢ wi
nol hard to see ihat [—z3F{z) — {dis

FPERTURBATIONGS AR APPLICAT

Aciuaily, by a sHghtly
he =t and small,

it 18

It JI gy < o0, aosimilar use of t\he monctons convergence theerem shows that

/ ITIEY

and {iv) follows, I { i = o, we use the fact that ej JaF{z }
with Re z < & Thas, writing

we see that (17FY w0 0 by (1 FY = «F JF? implving {v). D3
Next we talk about boundary walues of F. The funciion

ot - [

(@ = y)®

which is defined for £ € {~o20, 00} and takes values in {0, o0] {nole oo is allowed],
role.

wili play an lmporiant

TupomniM 1.2, () Gla) < oo fmpkcc o

i
R
o

RN
; z?
!
S

(i) 112, 27] {z | Glz) =

:} is o dense G in suppldi).

{uy H {17} holds, and, 0 particuder if (X)) < oo, then im0 Fiz+

and s real
(v Yoo & im Fle -+ dey — Gla)

(vi If Gz} < oo, then g piie) | Fiz +de) — Fla+ ) = Giad.

Riesail. A Gy is a conntable intersection of apan sets.
Proor. {3} s nmediste if one notes that

H E
i i

zinee

Hizg—yi> L
{iiy By the lemma below, if

f iy g —

So, by scaling, If piia, by > 0, theve Is an 2 & Io, b with § du(pd/io
follows that i agp € hupp\d@), then there exists a, — oy with | dpfr);

G, 103 = L ihere ks an ze € [0, 1] wish

i) arisis
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: 'T) fX‘z is denge in suppldpl. s a Gs becanse ¥ we define
P dad ), then &, s contimuous and

QUW $L{E) = om)

-yl daly i~ dialy}

;1rrz Ins? [E T

-y ) = 0
&

if £1.7} holds. (1.7} alsoe implies

_'-_::_s_a b i) = /\if - '” dl‘é{y-)

by the dominated convergence theorem.
{iv) follows from (1.6} and the mopetone sonvergones thearnm.
VY Gl = oo, then, by the proof of {1

(f. I )
Pl )= [ 94

i

i) 3‘”"{:;&“ :

H1 > 1. Then, there opists 3 € 1.1

Proor., Define [, wductively ag follows. Lot [; beone of {001/
sl 172 Now spbdivide 1) in im,f and chioose [ 1o be ope of 4 hose hatves with
sl = 174 By induction

fi o8 5 allclosed, pif,yz27™ i 2T

By compaciness, ¥, = {an} for some oy, Obviously

ol dplay 2 (27T =

But if (Niz —zei~ e < o0, {, iz -~ Pduizy DO by monolons eunvergens,
I fprd ) e 2 g

S owe ISt have j fi

BPERCTIRAL ANALYEIE OF RANK ONE PERTURBATIONS AND APPLICATIONS

Thaeores L4, lmgp Fla 4 19} exesis and 45 finite for oo 2.
Proor. This is a standard harmonic analysis l& on non-tansential bognd-
ary values of snalylic maps, see 31 so we'll only sketel the detalld, Lel g{2) =
1 i1i{z 4 1), the Factional linesr map of the upper half plane to the usit disc.
Thug F = go F
vatues by a standard maximal Rnclion argumer

o

g% s map of the unit dise to itself. Such maps have boundary
soe Katzuelson (311 By the same
e¥) = —11 has messure zoro, 50
30 F s fnfte ae. 3

arputnent 28 in the pext theorems, {6} lim,s Ft
Hragis Fiz 4+ 8] = oo on s set of measure § and

TreorEM 1.5, Let IV, Fy be the Borel irongforms of fwo {positive) measures
{ome may be zere) end fie o £ £, Then

1~(|r\(ffw ‘?“)“A’Yﬂf {E}_(?’}E){}

oaly i o s B and Fy = Fyl
Proor. Let g be defined as in the proof of Theorem 1.4 and let

o

B et {gifaee”

bl a boupded analyiic mn( tion on the disc and the theovem asserls ihat under
R0 el 11‘{{ %} = 1] has Lobesgue measure zerg. This s a standard
theorem; ser Kalmelson i3z

Lt dites Gibee: Gpagy be the abselutely continnous, singitar contipuous and pure
point parts of o messure di. Leb ditsing = dige -+ G-

Fhe rmain theoremn on Borel fransforms is

7

TupcsEsM 1.8, Lel Fiz) be the Borel transform of 2 meesure dp oheying {1.4),
Then

4y 77 M PLE & de) dFF — dp weakly in the sense that

(1.8} /-?r”f{ﬁ‘} I FE 4 ey dFE v /f{}ffji du{ B
Jor afl confinuews funciions, £, of compact support,
(1) phoin 06 supporied oo (& Himgo InFUE + 88 = oo},
Vo pliEY = lmy e I POEG 4 ded, Moreover, for eny By € B

lirr% cRe FiE, 4 0} = 0.

vl dpdE =5 im FUE w i dE.

Proor. () Ik a well-khown catenlstion that for £, continmous of compact
suppork:
{U s FLET)

This and the dominaied convergence LheoTom easily imply the result

{11} We will prove the weaker fach that jua,, s supported on {E | Hm oo FUE -
127" = ool The stronger fsel (theoram of de Vallde Poussin can be found in
Saks ?4{}} bt for most applications, this wesker fact suffices. Since the stronger
resnli iz true and move elegant, we'll use it For the theovem of Aromszain on
mutual singlarity {Theorem 2.2{iv}), one does need the stronger facl.

We will prove ihat for any o

-l

i!' i zmisn FLE 42 ”j = A,
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bag pune-messure § from which the result follows.

Notlce thag

Sofor fived 2 2 A,
sup 2% {lz - 270 4 277 < 2a

e

and 5o, since suy 2% < e7f 5 7 Sy some 1

sUpe Culle — e x 24} < 4a
" I
< Ba

B}_; opdariby of meabuz(‘ 2, for poy e, we can find a closed ses
(x) £ an d Oz < g \‘w;{: write O = 5
I3 '1 T

and open £

H s
L_} E._szzs.

< N .ixfa,,.d v B

ECH

T AR

{oidi g o8

H’SLM{A(J = _ﬁﬂ.‘éalsgi(’ s
Since ¢ it arbitrary, ;Lm-,&{z-ia) =} s was Lo be proven.

Pt dhsing B Y O < e + Bael

while

by the dominated convergence theorem since ad/

fivy Write dig,.(E) = MET4E and let Folz } he tzf*o lm;el imzzsf(nm of fi;,fm
By the Lebesgue theorem on the dmn(xmew of the Integral {that says if & € L,
for ae 2 Bz} = lmg {26} -1 Zz,utg; dy; see Katznelson 131, one sees thed
Veln P B+ &) = A E) forae £ By Fatou’s lumma, for £ = 0 and continuous:

7t /[Im F{E + 03

it / T F{E + i) f(EydE

/ FUBY didd B

Al ANALYSHE OF BANK ONE PERTUTRBATIONG AND APPLICATHING 183

This 7 IngE—L # 2 < dpoand 50 for ae B

]

Im FLE ) S hiE) =

I FooLE 5 30 :_< = 11‘1 FULE + 0}

)

stnce dy 2 du,, implies Im F » kn .. Thus

R{EY = ~Im FUE 5 i

as was to be woven, 5

1.2, Rank One Perturbations: The Sei-Up and Basic ¥ormmlas, Led
A = 0 be & possibly ushounded self-adjoing operator on a Hitbert space M. (e
the seale of spaces H.1AY sssoviated o A as follows, For ¢ 24, P Al s

defi

JH AR with the novm
L83
in which H, is easily seen 0 be vomplete. For s < 0, take H with the norm

. and Mo, are duals in such a
{1, 80

;Zi

boand complete it In a naforal way,
}{ is associated to the funcéional on '}-iu wiven by £
) i, and M, O He s> E

{4+ i= 7 i an isometry from B, to Mo so for s > 8, i A s 2 boundod
subset of B, Ea{A), the speciral projection of A, maps H..o te FH, sinee {4+
s bownded, Tn partioular, we can define a spectra] measure

glven by |
WY L( ot Q

A} = (o, Eali¥e)

it is sasy to see that

(3103

and, in particutar, the spectral measures of ¢ € F. LAY have Borel transforms.
Now et @ g H. {4} and leb b be the q’sa,(lmzw f(nm on Hi1{4) given by

by

iz positive but H o € H E
See 190, 38) for a disonssion Gf forms x}.}!d thaiy wmxu“bat ion theory.
PrOPOstTioN LT, For ang . b 15 o form bownded perfurbetion of A with

relotive bound zevo. .

PROOF, Qiven 7 fod @, € M.a{4) 50

‘Then

S 2 and g, = - & H

k.

S0, for any 5 € M2

as wag to be proven. L}



Pig HARRY BIMON

The perturbation theory of forms 130, 38] thus mplics that for any o € B,
+ ol ig the quadratic form of a self-adjoint operator A, wilh Hu(A4L) = H (4
if lef < 1. We will write

e

(1333 Ap = A+ ol = A v ale e

although there is no operalor B or vector @ in the usual sense i ¢ € H. We will
oteasionally write ? which may be infinite If ¢ .

Hince Hog{Ay) = Ho (A and so (A, — 240w 2 Mo
The strong resolvent formuls holds, vig

L
3
mh

A= M A o M

i

S

(1.12) (Ap =2y — A= 2171 =~y {( Ap =5 o, MA - 2

Don't blink now hecause in just about ong page we're golng to present four of
the five eritical formulas in the subject {the fifth i (1.17) below).
Define

g:){;‘.} = {\.7( (Ar_x - 2'}_ "/’ﬁ =

where dyg, = d;r is the spectral meassure for ¢ whic iz bas a Borel fransform by
(1.1 and M. 1(,; = Hoa{AL We deline Fila) = Foalz)
Taking mattix olements of {112 with o on both sides, we geb Fo{2) ~ Plzi =
e F {21 F2), or solving for B, we got th(-: Aumbm.}n—hrem frsrms la.
. Fi

i\l-l‘)} F(.};\zll i ) G:I'I‘{:ZV

the first critical formule. Applying (112} to p and using {1,153} to see that ] ~of, =
+aF(2)] 1, we get the second koy formula:

(1.143 (An — 2 o (12 el 1A~ 27y

(1.34; (Ae -2 e = {l+a l~}) £ ZioE

Plugging this into (1.12) we get the third key fortmiia:

{1.13) (A, - z)“'] = (A4 gyt — ’( A—

4 (a} =
Notice that (1.4 s for g, z Sxed, (0 {4s ~ 2Y el = afle 3 b, the key to

the Aizenman-Molchanov theory,
For the final formaula, {1.12) says that
trace class, and by (115} we have

T,

TeHA -2 - (e - 2))

Notice that {2, {4 - 2)~%g) = 4F fz) fdz. Thus, we have what UH call the trace
formuda, the key o our discussion of the Kredn spectraf shi 114 below:

. g . : i

(1,16} Tf{d 27— (4, — 2} e — lr{§ e {23}

da

where we take the ranch of the log which s positive for 7 real and very negative
{recall by Theorem 1Y, that even for oo < 8, 14 B2} > 0 for 2 real and very
negatived,

1.3. The Integral Formula. The critical last formala of the zeneral theory

.
o

-3

ARATIONG AND APPLICATIONE

SPECTIAL ANALYSIE OF §
Turohrey 1.8

(147

in the sense that of £ iz te L{R, dE), then f € LB dpen) for aue a, f FUEY duae (1)
HE, do) end

71,181 / L / FUE) dpad. :r‘}

i 1%001?\ ?v an cl(‘mvn:a; lrrrun'mr{ i suffices o prove this result for f{U =
(B -2yt = 23t for sny x £ ©A\R {use avalyticity in z and then Sione-
Weiersirass appz eximation). By closing the contour in the upper half plane

der w“/f{f;ﬂf

e Y dE 03 if bz <4
/ s Syl = { i Wimz > ik

On the other hand, by {1.18]

/ FAEY i, () =

Now, f £Imz > 0, then £ Im F{z) > Gso dJw F{zyt i Thug, Ao} has either
$wo pcﬂm in the lower haif plane i im 2 < or one in each half plane if T > O
The same contour inbegral as for I {hut now for al) implies that

o . == i} i .EITl < E]
/ dox iy {‘7"}{ =% Himz>b

g

se 118 1 proven for (). O S ‘ \
The above imphes & regularity result for the density of states In n-dimensional

5 i e o TERNN s

Incobi matrices {see Theorem 1.18 below) due to Wegner | 48], Wegner proved 13;
resuit by fracking elgenvalues in finite-dimensional approximations, bhut his under-
lying result e similar i {1.17) so this &8 sometimes calied & Wegner estimate. The

Hussinn Lterature, however, has sinilar results rauch earlier in the case of bunndary

condition dependence; see Javrjen [28]

1.4. The Krein Speetral Shift. In thig section, we make a proesentation of
the Krein spectral shift [33] due to Gesztesy aned me. By the general theory of
Borel transforms, F{z] has a boundary value FLA -+ €0} ?or ae A B Moreover,
by Theorem 1.5, H o is fieed, FiA+ i # et for se o T i'ms WE £AN deﬁnle
Ar g(l S F{A+ 7{!} for ae. A ’1311‘1{‘(‘ Da F{a+ = 0, if{ =0 {resp o < 0, this

srg Hes In ), «] {resp i~ UL T S aF A #0) & {00t that sets Lhe argument

o ;agn Of_Ju. ) ) .
Dermpvion. The Krein spectral shift, £,(A), iz defined by

£ (A) = 1 Arp{t + o F{2 -+ )}

\

Derrmmion. i(a] = min{inf spec A). infspeciAal)
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THeoREM 1.9, (30 < 26,0 <1 if do > Oy £,02) = 8 ¢f A < ile).
i
\111

[

Bt

i
tont}

Te((A - 14, - 2) //\—4} RIFRPNTS)

"z e TN lHad, ook

1< oo, then &, £ B and

Proor. {4} The firgt part follows from the diseussion above. If g > 0, i) =
inl specld] and F{A -0 = 0 for A < e so £,00) = D 10 o < &, i{a) s either
ini spec{d) or the unique A < #() with L4 aff{A} =0 B 1%}193 way, since F{A) is
monotone increasing on (o0, H{{ ), below {n}, we have that 3

i} Let Halz) = (1 + af(2)) on [—oc i)} Prlﬁi\"i('aiiv (‘ontinuf’{i o 624
oy, ool Consider & conlour, CF, which goos from na) _}IN above the resl axis to
R, then directly up to K 4-4A, then on a civele of radiue B8 to B - iR, then up to
Just above the real axis, then along the botiom of Lhe real axis to o). Consider
for zp € {00,300}

By Cauchy's formuls, onee B2 >
left side of {3.19) by {316}

Bince [Tm H,l < #, and the real parts of the contour from R to B+ 4R and
from R o B — iR cancel, and since F{2) - O ag 5 o0 with FArg 2l = 772, the
infinite part of the contowr contributes G as B - oo, Since {Im A0 < 7, dominated
convergenes lots us take the contour 1o the real axis and [79.1= Iminfl + af(z}} =
Argl{l 4+ @bz} Thus, we get the right side of {119}

{H1) By Theorem 1.1{#) and {iv) and the fact that [ duglz) = el
that

is just @, /dz, which is the

L WA B

d .
Him %o H (o = o
BmroBE R N .

s, by {ii)

The f{a’;mul& we waz'z{: is:

(.21 Te{f(A) - FAL)) = - / FL)ente) d.

Formally this bolds for any ressonable f since it holds for f{z) = {x - 23"} and
those [ s are “dense” in reasonable £ One issue i3 that we don't even know thai

FAy— fLAL) is trace dasst Our hypotheses on § aren’t optimal but include the
eritleal e:wuxlpkz fiz “ {owtofl near —oc).

1 OF RANK ONE PERTURBATIONS AND APPLICATIONS 134

APRECTRAL ANALY

TrEOREM 1.10. Let § be o CF an B with (1+§)?f9 & L2(0,00) forj = 1.2
Then for any &, FLAY — f{A.) s irace class and (3 '?lj holds.

PRroOE. We only sketch the detalls supposing w. Yog that o > Dand 4 =
{otherwise, reverse the roles and/or add a consglant to A) And we wrile H = A,,
for nog.ai.xonal simpiiciiy. o

1. BY— A47% iz vank 1 and 50 frace class, It f(niewk that [3-2e8 _ grigsd

is trpee clase willi drace norm bounded by ol + isl) sinee

E—Zﬁ.isﬁ _ _4w2ﬁr'.é:r1. —

A e (13_1 - A“] }eisn’l‘q -'-1‘

D'.l

15 follows by step 1 thai f{2) — fLA) s trage elas

3. From {1.19) one deduces {1.21} for flz) = S by wriling

flay = 1:11 I - drsiny T

for one can use anabyiicity to get (1.21) for flo} = {x - 277 and then for this

special f. ‘ ) )
4. (121} for general [ follows from the formula in step 2 and the equality

proven in step 3. L _ )

fEmanK, This does nob capture all f for which {1.21} helds. For example,

Fimd s (o 1278 with 8 < 8 < 1 does net obey the hypotheses, bul using
ERRY A : B : - ¥ by

w

""3(

and {4421
such f.

PROPOSTFION Supmase that (o, by i an inferval disjeint from spec{A) U
Propostrion 1.11. Sup fa b}
spec(dg i Then

() £.ix) i constant on {a. b

(i} Js vnlue is gither & or 1.

glil} P bt = P e oy LAY A8 frace class and e frace is the common velur

of & én {a, b} . _

Pagor. i) Lot e OF e by Then, flA] = f{A) =i s0 ff (Vo (aide =0
by Theorem 1140, Iiim the distributions derivative dé, /de = on {a. b} 5o £ 15
constant there,

(31) Tet f be s function in O f

. : Eopry,

.,’rfA} =T .7\, a; —1) J”A.a—,: = } - (A‘.’?_}.' amel - ,_Ij—l‘pf{i"}gr!i.:’r} =T f(,, f (
= =Ly lwe) [ C P da e 5“{.;.:[,.)_1 the commen value of &,(2) in {a.b).

- . - - : v L
(R) which i 1 on {{{a).a}, 0 on {hog]. Then

)
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{1} 1t is & general fact about the trace of a difference of projections 3'}13!' i trace
class, that it is an integer (16, 5L Sinee § < E,lf'm < 1, it must be B or 1. {There
i a simple atbumem‘ Smw [a bi rapeg] %) = @, F{x+ 8} is real and wnrun!ens
on {a, by I Flre + 00} =~ amyrwhere on {g, b? then IQ{M = Fizifl £
has a pole at g and so xo s an eigovvalue of 4, Sinee {g, 6 Nspec! x(i‘-:,_} e ZE_ this
CATAGE happen that is, 1+ aF{e -+ 0} has no zeros gnd o 1t argument is constang
at efther S or 1.7 O3

Runank. Because of (i}, &.{7} Is called a spectral shifs

There i an Interesting extension of FTheorem 1.8, an abstraction of a result of
Javrian (28]

THEOREM 1,12, Lei 5 < v, Then

-
{1.23) ] (el 127} dex = (£,(5) — £4053) dE.

Rumane, Hesf 0, o Argll o)~ Arg{l — ae} = % 50 e f€n (BT —
23w 1 oand {123} implies (117}
Pagor, By (1.13), f Imz £ &

[/

drea BT !
Sialls f o o / il
e

dz

_ i 111 4 v F{z} x‘; e ]n{i + GF{x }}E'

[ E(B) - 4(B)
T E- 2

¢z

proving {1.23} smeaved with {F — 2% Such functions have linear combinations
which are dense ih a big enough space 0 imply {323} as an equality of measures. 5
Sinee g, obors D IA0M 11! < oo, with beuads uniform n g on come

pacts, this result rmplies & dmilar estimate for £, Here's ancther proof:

TuEorEM 1130 {0 I o < oo, then

(1.24) [iemic
i
I
{1.25) / EARME 2] dE = Infi + aP{2}),

i) FIEAE)dE = o0 i and only if ¢ ¢ H.
Froos. {3} 3:}<,eg3‘atin 2

?HU +oF{a}) = /éa{_y}{y - g3 H dy.

d,,
From —w fo —x for & < w real, we get
{1 af —-r}} = In{l+ aFi{-w)] = /‘f&LU) - L :_“L\}é .
Uy

TRAL ANALYELS OF RAMNK ONE P BATHOND AND APPLE TN i2i

Az w — o, Flew] — @ g0 lofl + eF{~w)l - 0 while {w - 2)/ly+w) = {I+
- -1, ) ; o .
{p--2lffw — 2] " ks monctone increasing in w so {1.24) i preven aml {1.258) s
proven for z = —x, ¢ real. By analytic continuation, it holds for afl a,],.-::e)_
{1 By {125} and the monotone cotvergence theorer

/;’5&{5)&“:‘1’1’?: {sam o Jim /fi

g X lzm xlofl & aF{-x})

BB

by Theorems 1.1{1v}. 12
BEmarx. s not hard to show thet j s ) de < o if and only if ¢ €
Hopo{AY and in that case

s

/ a e {ad de = 11 A LRI Ly 1\ Hn+ 1l

Appendix to §1.4, The Krein Spectral Shift for Trace Class Pertur-
bations. Let 0 — 4 = (2, -} be vank one with df < o0 and € > A Then for
nice f, we have

(1.262) )~ 1A = [ Fteatn) s
where

(1,960} / e i) di = THC ~ 4)

and

[1.96¢) p = THIC - Al

WO~ 4 is finlle rank, we can diagonalize 3 and get 1 as 2 sum of rank one
perturbations and {1.26) continue $o hold. By (1.26c), £ has a Hmit in L7 sonm s
- A approsches a general trace slass of operator. This proves

Tozorpy 114 {KaEN's SpeCTRAL SHIFT FormulA). If A is sslfadioisl
and bounded below, B is frace class, and O A B, then there exists an L
Funciion, £ a{e), on B vendshing Jor £ near —00 so thal {1.26) kold

REMARK. £ is no longer glven as Arg{l + aF{z}] with #{z} s simple s in
the rank one case. However, in the rank one case
= LT (O — AYd - 2y )
=det{l = (0 — AHA -2}
= det{{C — 2)A — EYMS

?r £} 4+ eef

ive properties. The result is 133

i

and the argument of this bas the correct add

Eor 4 {AY = Hmargidet{1 4 (O - AMA — X — g}

where det s a Fredholm determinant {see 421}
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1.5, Infinite Coupling. In the rank one setiing we have besn deseribing.
let P be the projeciion onto the spaee spanned by ¢ if foll < ov and P = 0 1f
feol] = oo,

Look at the formubs (2.38) for {4, - 2375 It clearly shows the first part of

THEOREM 1.15. {1) As o — &oo, {4, ~ 2] 7Y converges in norm & g il we

call {4, — 2177 given by

{1.27) { A

A -2 - Py A - ) e YA - e

3 I el = oo, then there 18 ¢ selfadioind sperator A, on M whose resolient

i { A — ) ff“p 3, then there is a ';f/{f-mj}-{}gqr ’?f}t""""‘{,rf(}?’, 5‘1 e 01 {1 - -P:'H

s gt {An 28 i = {;4 {1 Pyp (We'll cal A as just Ay with the

undersiending rr’mf (A, {= o FH end wel writs HiAL) = (1 - PYH.
i1} Hay(Ase) b oand

fora e Ho o {AL)
Proop. We have proven {1} 16 prove {51, {#1), one vses the following shone-
tone convergence theorem for forms {36, 41)
Let € be a family of rm:!—nerr?twe sfsrfvariioini' (xperatf}m with H, {Chirt §
Moo () sl (1, s ) ]
e :x}

Let on be the quadratic form on H, {Cx) given by co.f
Then, there is a setfadioint operator T on Ho (O so that {0 - 217 s
extended to Hy (U 1 bx sefting it equal Lo zere them, then (O — 217! converges
stromgly to {(h, "}

This vields {01}, {iil] if one notes that

o0,

supfi.

= anp, (¥

supder, A @) < o0 s {gh ) = L

kg
Singe £,0x} s mopotone in o, and bounded by 1. it has & Bmiz £,{z}. In fact

{1.28) foclt) = Arg{Flz + 07}, 0g¢

sinoe

I n ddd]t;ﬂrl_

{1.29a)
TRy : F{z}
TelA =) = (Ax ~ 2)7) = fimy i)
{1.290) P ha S
iz

se by mimicking the argumenis in the o < oo case,

SPECTRAL ANALYSIS OF RANK ONE PERTURBATIONG AND sPPLICATIONS HEK]

for the f's in Theorem 1.10. One place that &, and L. differ though is {compare

with (1.24}}

PRrROPOSITION 1.18 {{25i].

= 00

Proop, By monotone convergence.

P

/{3. +opyle dnlde = T ]{'1 bl L) de

i

fim {1 af{-1}} =00 I
o e N

1 for

If 4 iz bounded, it is easy to see why the integral diverges: Lo
x> A st the m{mm% diverges logarithinieally exactly as Ino. This i

TuporeM 1.

¢ o
wmw&'l?E/ —
dz Sy 2 ;

.»-N
-
L
[

—t

singe for = < 0, hoth sides ave just (—2)77. {132} is & divect caleulation hot can
alsn be regarded as (1.31] for the case Fiz) = -1/2.
By (13131320

v;-)é- In{{~2}Fiz

Hielt) — D as z - —oo slong the real axis.

By Theorem 1.1v) In{{—z1F{z};
The same menotone convergence theorem argmnent that we wsed i the proof of
Theorern 1.13(1) and the fach that T~ £,{z) 2 0 implies that {1+ Bl - L} i
in £ and that {130} holds,  ©2
Tn §4.1, we will extend this idea to seme cases where i

How can one geb 2 handle on a spectrel measure for 4.7 »&r flvat sight, it

seemmy a hard joby since

Hm -
Fron T &£

0 depfat = 0 weakly. The key is to renormalize! Define

d{)g{i) = 3*‘""1' )(!,{.{“,\ )

One can prove the following
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Trzongs 118 (1251 ) Therm awists o measure dow {ehich is non-zem
_{-'her‘f‘ s an eigenvector af A) a0 thet

araef

{1,338 tim / fiatdpoia) = @) oo {xd
e .

Sor any £ € CF°{HL

-11‘l Fhere eaxiste o voctor 1 € Hoo{AL) so that dpa. 95 the spectral meosur

s cyefte for A, then s ff;(*'ac for A

1Y {133} holds for Fla) = (2 F put it only holds for Fla) ={n— 22§

= oxy erplicitly,

(v} dow. s the boundary velue of - F{z)7° in the sense that for £ CFF{R)

™

o s s N R
f}iz} dpacie) = lim j Flaymi—Fla + 47 Hda,

We refer the reader to [25] for a complete proof bul will make a series of remarks
that luminate the result and parily prove it

ReEsaris, 1. Notice that o is only steled to be in Hoo{Ad. b not W (AL
Indeed, the differentiaf equaiion case of the next section when Vo= (15 one where
dicin) ~ et dy and n @ Mo {4} Indeed 125, for eny 9 < 2, there age
examples where [ do.{a}/(1 W= o,

200 A i hounded, 1 = {E P A, Otherwise, one has that 5 oleys

H

(A = )y = (1= PYFL2Y A - 2)

{with the convention that P = S
3, .
/ dpe ey d Pel Fiiz}
—zF T dz 14 aFiz) {1+ G;Jf_'-‘-iz}_}g

- . dpele i

£1.34) N [ ‘ } =

) Creea 0 { &= Z FE

20 ihe 2 term in s related to Theorermn 1.1 Lx\

tice that the i*gi:i side of (134) s {d/de}{—1/F} This is the key to

in t:he d i"? remzai eqmmrm case. i‘or 8 < O,?r;. we ean deh!‘e‘ o e
rims Fom -0 L0 o0 a3 # rens fom O to w Leb

dpalz] = do. e

BATIONG AND APPLEIATIONS 1%

SPECTTRAL ANALYEIR OF HANK O

Ther, dig has & limit as &~ 0.7 which is just what we called don (5} Moreover,
we clabm thag

/ (dpei )} d6 = dl
[

W R
f . f.-‘;;zax/ (1 4+ a7 sl )
0 F e 1

1.6. Boundary Condition Variation of QDEs. For applications to Schré-
dinger operators, there are two main categories of the general theory; varistion of
potential in the discrete {Jacobi) case, which we'll discuss in the next section, and
the sublect of this section, variation of boundary condition.

We begin with 2 lightning review of the standard Wey! m-function approach
{zec (481 and then rephrase the sei-up into the contoxt of these lectures. We w
consider a Schridinger aperator on {8, o0} {and later on {~oc, 20}} of the form

for

£1.36) How = —u"{ay+ ¥Viztuin

where, for simplicity, we suppose that Vie! is bounded from below but continusus.
This makes H limit point at infinity so we only need 2 boundary condition at zero,
which is where the parameter # enters. The boundary condition &t s

{147 wiltoos# + ' {0 sing = 0 ddan

4

so that § = 0 s the Dirichlet boundary condition and ¢ = /2 is the Nemwmann
boundery condition,
Explicitly, Hg defines a self-adioint operator with damain

u,_ u' are locally abmluieiy contingons
| functions, « obeys (13T} end Hpu g £2

L Hgl = {t{ ¢ EA020)

We will often be interested i solutions of the differential equation

(1.38] g V=
and will consider the Wronskian W, g} of two functions

Wifigitey = flalg'les - flagler

As usual, if £, g solve {138} oo the same 2, then W{F, g){x) is independent of &,

Given 8, three solutions of {1.38) will concern us: ¢ which obeys the boundary
condition {137} » defined with a “dual” boundary condi tign, and ¥, for Imz 2 0,
the solution which i £° aear & = oo, Explielily, ¢, 7 are defined by boundary
values at o=

Galz, 0 = — sinid} dhlz. 0% = cosidl)
b ginid)

iz, 0} = cosd

{1.39] Wiing, dnilz) = 1.
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The third solntion ¥ is defined with mixed boundary condifions; it s in
L2{10,501), which determines it up to » multipleative constant, and it Is nor-
malized by

o (U oos o gl {0 siné = 1

{1.40) Wit 0. dhg) -

Since &, » are independent solutions of {1.38), we have ¥ = an + bg. By { 1.38%
{1.40), ¢ = 1. We therefore define the Weyl m-function, my splz, by

i

or squivalentiy:

= gl ) + mel{2)deiz 2}

Alal

L4kh) malzh = Wing, 1, o)
or

R
{1.41c) - lim ke B

B gl ff‘
The st {(which follews fram 1w — 1 at infinity) 3 the gsual definition in the
fmit point case becanse it is what Weyl used, although the first two are more usefil,
¥ can be seen that
{1.42) Tz > B Dnyng(z) > O
We won't prove bhis now, since it wifl follew from the general theory of Borel
transforms once we have seb up the connection. The spectral measure dop is defined

By

1
i

dpsiz) = i - ‘Iifl migis 44

For # # {1, as we'll see
. " el
{1.43}) mplz) = cot{f} + / %{ﬁ’

Fhe Creex’s function, Galz, 2’ 2] i the integral kernel of {Hy — 2} iothat s

{{Hy - %) == /G@{_z.:, 2 2ulay dat

Because of the nopmalizaiion {140}, one bas
Golr, 'z} = dpin 2ot sl )
where . = minfz, 2} 7. = maxiz, @'} In particular, by {1.41a}
(1.44) .. Gall, 2} o= b sln® (- cot 8 4 mg{z) )
As a fnal general formula, we note thet Wronskian gynmastios fwe'll get U

other ways below} shows that

{1.452) ] =

In: particular,

{1450 Maiz) =

EPECTRAL ANALYEHS OF RANK ONE PERTURBATIONS AND APPLICATIONS 127

W want fo show how to think of this in terws of rank one pertnrbaiions. Lot
w € DY be realwalued. Then, integrating by paris

{1.46)

= v, ) — cotf flui0)’
because of the houndary condition.
Let A be the § = 772 Neumany boundary condition operator. A simple Sobolew
estimate shows that for any « € Ho;{A) s continuous in x and

D < el A 4 L,
that jg, &( he Dirae delta function, les in M {41 We can form
2 s IATEY

Ay = A abizh

{3.46) soys that He = A4 0. Moreover,
Fol 3} = {A {A:}: o ,_,) u\j

is extactiy Gol0,0;2). Since (7 s related to m by {1.44], equation {1.45} is just the

relation F lr} = F{z}/{1 + aF{z3]
In addition, because of {1 fi»l) and {1.43], we have

(f-;?s L E} == 311}\? é d}i ot () {,2‘—“:}‘

thai is, fhe spectral messure dp i precisely the measure we called dpg in the
last section. The Divichlet speciral measure, dfo, is an example of o da,, with
Fdp, LBV IEN+ 1] = co. {1.45h) is jush Theoremn 1.18{kv) The vecior 7 of §1.5 is
just &, see 125]
The polpi of this section I8 the specizal anaivaiz of rank one perfurbations in
the next section witl apply te houndsry condition variation directly {rather than
by anatopyl.

.7, Jacobi Matrices. Jocobl mairices are operators on £{Z%) wihich are
disorete analogs of Sehrfidinger operators. We write w € £{E") as a function on
. Given a lunction, V', on @, we define the associnted Jacobl matrix, A, by

i1.4Ta) {hui{nd = z win + §) + Vinjulnd

lii=1

which we write as
{1.47h} hehy + V.
Let 6, be the vector In 7 which Is ghven by
uin] ém’

Let P be the projection on &y ¢ {8, )8 Thx ¥V oand let A be the Jacohl matrix
associated to V- £V (0}). Then

|- | + EJ{G}I)
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ard variations of ¥V are precisely rank one perfarbations.

As an application of this idea, et V..(n) be a randoem process where the V. (n}
are independent, identically distributed random variables with distribution plo) de
ave @ ois bounded. There iz a fandamental guality miled the integrated density

of states. £{A), which ig given by the following: Let r)',u be the spectral measire
for he + ¥, with vector &, Then

(148 RA} = Bl {000, A2,

This is not the basic definition It & derived formula for k (3ee, ez, {8, B}, We
clalm

Prpored 1,18 {WEONER'S ESTIMATE (48]
A~ RINY S aid - X

where ¢ = sup, pie).
Proor. The ros

i iy equivalent o saying that dk s absolutely continuons

with respect to dd with di = g(ATdA with ligle € ¢ Fix {ri..fn;;n o Then, fry
Theorom 1.8
[[{z‘;u {AYip(#{0}; du(Dd /dﬂ'“ (Y du{0} = odl

Aver,

i N {17 Foit o
ging over {1 wir)} e We gel

AL T I 9]

|

which is exactly what we wani.

2. Bpectral Theory of Rank One Perturbasions

Introduction. We begin owr analysls with the study of ihe absolutely con-

vinuous specirum, obisining a result that alss follows from the trace class theory
of scatiering, but withoul wave operators. We next discuss the fundamental work
of Aronszajn [3] and Donoghue 4], which identifies spectral information for 4,
in terms of Flzh Next, we discuss the Simon-Wolff [47] work on locallzation and
apply # o one-dimensional random Jacobt matrices. 3 inally, we disouss recent
resilis of Gordon |27] and del Ris o1 ol {12] on singular spectrin.
Heneeforth, we asswme that @ 48 o cyclic vector Jor &, that i, {{A ~ 2}
z € £} 45 a tofel 2el for M. In general, if Hy Is the closed Hiib‘ypd((’ p,vnerczi:\d bx
these vectors, then M is an invariant space for each A, and A, = 4 on Hi. Thus,
the extension from the cyclic to general case v trivial, We make f'hf-‘ assumpilon to
be able to focus on the real issues snd not have 1o stale the theorems in convolused
forms to give the general case.

2.1. Invariance of the Absolutely Continuous Spectrum. Let flx)ds
and g{r}de be iwo absolulely continuous {positivel measures on B, Recall these
measures are equivalent if and ondy H {0} f{) £ 0} and {2 | glz) # 0} HETER UD 10
seiz of Lebesgue measure wero. Morcover, if A s iilxiif,i{};}{‘lel(:i} by xoon LY(E, fda)
and € I mulidplication by z on 12{R.04d f #), then A and € are unitarily eqguiw mﬁmt
if and cnly if fdr and gdo sre equivalent, With these preliminarios

TRAL ANALYSIE OF Rani OME PERTURBATIONS AND APPLICATIONE 13

THEOREM 2.1, For ol o # 8, {AJee and (Aglee, the absolutely continuons
parde of A, and Ag are undlarily cpmvolent.

PrOOE. Since A, = 4yl ~ File, ke, woe can suppose for § = U wlog
By the above discussion and Theorers 1L68{Iv}, i soffices to show that 5 = [E
P+ # 0 and So = {E | F ﬂ{E + 3(1‘ 3} agree up fo sets of mensure
were. By the Aronszain-Krein formala F, = which implies that

firar

It foliows that 5 and $2 agree up to the sets where F{E -+ 10} fails to exist, the set
whete FIE + i) = oo, and the set where F{E i) w= —o~!. These sets all have
measure zero, 50 8 and S egree up o sots of messure zero,

HEmapxs, 1. The result extends to the non-oyclic case and 20 extends Lo the
finite rank case. I should be possible fo accommodate the trace class case, This is
an area under presend study.

2. Bince {Ag + 1378 - {Ap + 177 is rank one In the usual senge, we can apply
the theorem to {d. ~ 1V and {4y + L) and 0, by 5 speciral mapping theorem,
aniend fhe result fo allow o = oo, One can alse gel o = o by ushig dos. ang
Tmi{—1/F} o Im F/|FE

2.2, The Arpnszajn-Donoghue Theory. Recall that

The fuliowing basic theorem was proven by Aronszajn [3] for boundary condi
tion dependence of specirum for Sturm-Liouville operators and then extended io
{bounded) rank one perturbations by Donoghue [14].

THEoREM 2.2, For o £ 0 (o = inflnily ellowed with oo™ ! = 0), define

o + i)} T G = 0o}
P, = zG\ = gy T ) < 00}

4 {1} # B3,

(i pplz) = Z P

EaEFL

{dpsclpein) = Z NJ . o= oo

w2 F0,

is supported on L, {di, e 18 supporied on S,

fvy Foro b @0 {dpes hane are mutuelly singular,
REManK. We say thel & set § “supports” 2 meagure dy i 0{R
Proor, {4} & teivial and (v} follows from {1}, gives 1) and 3

Spports {dpy, e I8 proven in the Jast section.

{18} fdpe e

=1,
That L
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By Theorem L8{Iv], {diey Juin, Is supported by {E |l s (FoflE + i)l = ool
But

says that (FL 8 e}l — oo i and only if FLE 448} —
'{ii (i1} thus fellow by Thewem 1605 and the claim that when FLE 536} -
-1io *m“en if GLEY = oo}

Falz] =

{2.20} lim e Im K {E 4 de) = 3/ lnG (B B a< o)
§10F

Foy o1, =1 e T .

{2.2h} m;x € Em(-—-} B+ rs‘\ = L/ G fov = ool

I G{EY < oo, {22} follows from Theorem 1.2{v} which implies that F{E + 4} =
~1f+ ze(;\z s o\s dm? the formula for F,. M G{E) = oo and e = oo, Theo
rem 1.2{Iv} implies ¢ " F {2 +4e)l -+ oo so le/F{n + ie)i = 0 proving {2.2b; i that
case, If G(L) = oo and § < o < oo, by Theorem 1.2(0v] again, = im{i ¢ aF) — o
o el -+ aF — 0 Thus, sinee F— —3/o, elF7L 4 aFF - oo .

This theorom has interesting consequences for one-dimensional Schradinger op-
erajors and Jacebl matrices:

THROREM 2.3, Lel A b ¢ Schwddinger operater on 0,00} with Newnann
boundary conditions of © = { as m 516, Then GIE) < oo i and only o doth
af the follewing hold:
{1y E is not an cigeny aﬁz? of A
Y (138 {with B = 2} has a soluton which 4¢ L7 at 00,
Proar. Since GIE) fnite implies that FLE + 0} exists and is resl and finite,
Themwn 2.2 implies that G HEY < oo if and only if £ s an dgenvalue of A -+ a6 for

—

some ¢ # 0 in B U {oel, Bug this is equivsdent 2o {3}, {1, 3

TrEOREM 2.4, Let 4 be a Jacobi matriz on {8) and ¢ = &3 0 §1.7. Then
GUEY < oo if and only ¥
{i} I is not an cigenudue of A,
11y One of the following holds:
{a} The equation

2.3 wr + 1)+ uin - 11+ Vinluin) = Euln

e

has an & solution on {8, oo} with w{(} = (;

(b)Y {2.3}) has s £2 selution on {—o0, (0} with wl() = 0
{e] (2.3} has £° solutions ug on both (0,00 and {—o0, 1) with both 4, ()

# 0 and u {0 £,

Restagis, 1. To say o s a solution on (0,00) moesns w kg defived on [0, oo}
bait {2.3} holds oy n =1,

2. In particular, if (2.3} has € solutions on both {0,090} and {—o0,0), then
either £ i an elgonvalue of A or G < oo,

Proor. {a}, {0} of (] hold if and only ¥ B & an sigenvalse of A, {¢) holds
if and only if # is a0 elgenvalue of some A, with (o < so. Given these, the proof
iz the same as for the last two theorems, I3

2
3

2.3. The Simon-Wolff Criterion. The following is uzeful in discussing io-
calfzation for rendom Jacobl matrices:

ITRAL ANALYSIZ OF RANKN ONE PERATURBATIGNS AND APPLICATIOGNSE £34

EEE

THEOR 1»1:»% 2 5 (4T, Fixan infereni la,b]. Then the follawing are equizaient:

{a) GE} < o0 forae Bin| 3,08 L Debesgue measure).,
Ej Pm we o foprf Lebesgue meagurs), A, has only pure point spectrant @
ENOR

Proor. Lot § = {F & a5 | G{E) = oo}, Suppose {a) hobds. Then iS] =0
by hypothesis. By Theorem 1.8 thal menns [ e (Syde = 8 50 1,08) == 0 for
foe. v, Bt if g, 08 = 0, then in the language of Theovem 2.2, o (L Mie, 0] =
to {8 1 [ B3 == 0 B follows by that theoremn that g, has enly point spectramn, so
(b holds.

Conversely, if A, has only point spectrum on o B, thes 1, (S = 0. IF (b}
holds, [ (8 do =0, 5o by Theorem 1.8, 151 = 0 and (a) holds, O

As an exaraple of Bow o apply this eheorem, we want 1o prose localization for
the Anderson model in one dimension following 451 We'll use various facts about
that model proven elsewhere.

TuporEs 2.6, Lef fu fx)} be bounded Gid. s with distribution pid)da.
Let by, = by + w, os 0 517, Then for woe @, b, fos only poimd specfrum.

Rumanks. 1. ‘The general proof Iotlowing the steps below requires a lob less
than bownded or independend random variablies; see {451

2. ‘Fhe proofs show that the elgenfunctions decay exponcedially.

3. Hsuppp = o, b, then speclh,) = fo — 2,9+ 2] with probabifity one, so this
is point spectrum demse in an interval.

Paoor. 1 The transfer matrix, A, (F,wl, s the two by two mairix defined by
) s AL LE, w("?‘-‘\ where u obeys {2.3) for v, General principles (the

y @/ )

5 itive ergodic theorem; see (451} imply that for each fixed &,
1 .

{2.4) s o +E}

: bl (7]

for e w and 2 fixed . Qbviously, whether the Hmit in {2.4} holds ealy depends
ot v, iha nwgﬁi:orhu( s of Infinity.
2. It can be proven that w(E} » 0 for almest all F. In the L1 d. cage under
discussion, this follows from Furstenbory's theorem (11915 for oll E, bus under much
weaker conditions {v-non-deterministic}, one gels the result for a.e. B from Kotanis
theory (32, 44].
3. The theorem of Ruelle-Oseledec {39, 37! implies that when (2.4) holds, with
+EY = 0, then there exist inltial values vy (0], 2:{1] 0 that the co rresponding
solutions wa of {23} are £2 af oo {In fact, the som{;mxm decay exponentialiy.]
A, Theorerrs 2.4 then fmplies that ¥ ~(E1 > 0 an"‘ {2.4Y holds, then either £ is
a7l et ez,vaius’ of o, or GIF.w) < oo {with G{E.«) ass(,cmicd o hy, and &)
. By Fabint's theorem, for se. {3,000} agn. (2.4} bolds for ne. £ with v > 0.
Céi:wp i, has anly countably many elgenvalues, we conclude that GUE w0} <2 for
a.e. F {for this fypical of wl. Thus. by Theorem 2.5, &, + ofy has pure point
spectrum for ag. o,
By the hypothesls on the abselute continuity of the distribadion of w1,

- has point speetrum for as w. O
Essentially, the identical argment proves
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"I"I-EIG();'{}:-:;? 2.7, Let {Vulrihomonnes b6 & non-delerministic bounded erpodic

’1"‘-11?01‘{;-‘” 2.8, Suppos
Then for cach K €
FER {,! and

(ol = B =iy~ 3R

Yoo WA
GUEY = fim 3 }4..

Proor, By {'%t‘ Plancherel theorem, the sum iz HA -~ B~ i) el =

T dpe(eyi {a 1. The monctoniclly and identification of the limit ave
Imnediate.

2.4, Instability of Point gpectrunx Randon: potertials have poind spoc
trum embedded in Lhe esserdial spestrum of A, One of our resulis in this section
is that there are locally uneountably many values of 2,{07 which wurn thay point
spectram info singuler continuous spectrum. These are ideas obtained by ordon
{26, 27}, and then independently by det Rio o ol {11, 124 whose presentation we
foliow,

The key in many ways i Theorem L2{8v) which savs that {2 ] Gix

Ys. As an example of what this bnplics, we prove the lollowing {
sy weaker form by del Rio 1000 '

= o0h bEa
3l proven

Fusorue 2.8 Let Vo be o bounded polentiol on [E},{x‘-}, Lol 5 be the sel of non-
isolated points of do (~d fda? £V {this setds
at (1%, Then, there e

{1} T isnol on eige
af @ = Ik

(0] FEeT, (—d/de® & Vig = Eu does net hove o solution £ at infindiy

and, in parlcudar, there is ne Lyapunov behavior with ~{ ) > 0 f{f?: e
T

Prooe By ]b{*or{“rl 1.2{iv), the GLE) assoclated to the Neumann operator
with ¢ = &{z? Tt m oo oom Th, 2 dense Gg in 9. Tet T he T minus any
ugenva ues for § = 772, {1}, {i1} follow by the results eariier in this section. 13 )

Examerg. IF 1 is random with spec{H ) = 0,00}, this lmplies non-Lyprnoy
behavior for o dense Ga on [0, 00}, ever though we koow there i3 such behavior
for se. B Dense 7 sobs are sometimes called Beire generic while complements
of ety of measure sero are called Lebesgue generic. Both kinds of sels are locally
uncountable. The theorem says the sebs where one does/doss nol have Lyapunoy
behavior with + > { are inlerpwined, loeally sncountable sets!

e want to turg the (}QLJ = o pesull info one about o values.

welie r}f wd‘ﬂf& 4 ¥ For any boundary condition §

TrHEOREM 2.3 {;1 j_;, Lot du be any measioe on B obeying (}_,ei}_ Then the
set af sabues (F(E 400 1 F < suppldp) end GUE) < oo} is the complement of ¢
dense .

OTHAL ANALYSIS OF RANK ONE PERTURBATIONS AND APPLIC

Proor. There is a general argument that the complement iz a (g [46], 50 we
focug om the faet that the sed, §, is & countable union of nowhere danse sels, We
sketch the idea behind the prool in {12}, leaving the details for thal paper.

Write \Z_‘ I suppldy} and ¢ if*,-‘) < oo} as a countable union of sets Ax so that

{ GUEY s close 10 the :
{ii} for sorne &, and all x E A
to the varistion of 7 over A..
{1} Tor each » € A,, consider the aguilateral triangle, 7y, in £ with one
versex af x and base on the Hne bn z = of, with a fixed number, . {fixed
i the proof in (2]} Then Ll ., 7, s connected.
By (i}, {3i) F [Z Y s A

w2 dulyl s small compared

} ¢ close b L}ie constant v, on each T, so [Fiz— Figt -
By 2 simple peometric srgument using (i),
€S Sy 2t for g5 € 1, T and so in A Sinee
Ay s nowhere dense and ihis imeguality says that Fen A, 8 ihe restriction of g
homeomorphism from B Lo &, we see that FlA] s nowhere dense.

Combining this with Theorem 2.2, we 11;3111{3(‘1:&11:&:;3* gek

THuormt 2.1 1. Fr ithe penerad context of ronk one perivrbalions, suppose that
B oapec(4) and spee,d f—‘ﬂ My fa b)) = @ Then for o dense Gg of s, Ao hos
perely singular continuous specirum on {0, 5),

We emphasize & hex[- Lhere i & distinction hetween singular and point speelrum,
1f spee, (A M{a.b) = @ and {o,b) & speclA), there are alweys many os for which
A, has singular continuous spectrum. There may or may not be e's Wixoz; there is
poirnt spectram there. The Bimon-Wollf ariterion gives cases where Lhere 15 point
specirum for many o', but the criterion may ov may not hold.

TeeMang. This result on singular continuous spectium for dense G5 1= one of
many recently discovered (27, 48, 13, 280 For example, in 461, it is prover thai
n L (BT the continupus functions vanishing ab inflnity, there iz o dense e, 8,

sn that 3V & 8, then ~A + V has purely singular contiouous speciram on Mok,

w
il

CorotLany 212, Let Vo) bo o non-delerministic ergodic rendom process
Jor € B so thal spec{-d® /de® + V) = la, 00) for some 0. Let Hy be i pdrt 4V
on LA, 00} with 8 boundery condition ol x = & Then for a dense Gis of 85, Hy
hm purely sinpular confinucus spectrum on 18, oo} {while for Lebesgue almost all,

¢ hgs only point spectrum therel.

Conotrany 2.13. Let {V {nllaeze b érzeicpefzfie-nﬁ identically distributed ran-
dem seriebles with wniform distribufion in e ¥ end let M., be fhe corresponding
Jaeoli malrir on £0EY). Let |b - af be o lorge that M. has only point specloum
for e, w {see Section 3__;. Then for a.c. w, there is o dense Gs, § in la. B, 50 Hhat
Jor oo £ 5
n ¥ b

Win} = { !

r o=
yiekds o Jecobl mutriz with only singular continuous spaclrum.
Both coraliaries foftow immediately from the theorem and earlier discassions of
the examples.
2.5. Examples. The sstute reader may have noticed & fal d;m completely
determines the speciral properties of the family A, {assuming of courw}
Moreover, givernl iy, let 4 be muitiplication by x on L7{R,
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Then Fiz} is just bhe Borel transform of dus. So we cen deseribe axamples by
giving the measure diy. which we'll denate by d

Exampre 1 {Tee Prsnrious MobeL) Let die = die T HL 14 &0 De the
sum of Lebespne measure on 1, 1] and 4 polnt mass 88 1/2. Then (“{x} = 0K O
0,14 and '

H
ZImF {4l =
- :

1, G rd lizd1i2

{ 172, w01

Tias, 4, has <>ntv a.¢, spect mm on 0,1} for o # 0 (there is a single cigonvalue on

{—oc, 0} for o < D and on {1, 2¢) for o > (), Fhe enzbe{idcd f*zgen\rdnm dissalves,
EXamrLe 2. Let {qn}ﬁ_; be a counding of the ratfonais on {0, 1}, Let

P

edpp = e | {{}. i E;‘ geng

= ot

Fraatl

As above, all ecigenvalies dissppear for o # 0. The inferesting case is to take
dis.;. The new 4 has no sigenvalues on 0,11 bus 4+ {¢, ) suddenly bas
s podnd spectran embedded in the ac. spectruny,

Exanmp: Let dgs be conventional Cantor measure. We claim that (7{z) = oc
on £ the Cantor set. Tn fact,

2.5} Im Fio 4 de) — o0

for @ & £, which mplies that G} = oo, This fact sbout Im F fmplies that 4,
has neither poing nor singular spectrum on ¢ In fact, each 4, Las one elgenvalie
weien] in each Interval, Iy in 8,114 . The corregponding eigenvectors, tog gether

E canfod, in Jy = BA 0L 1L ave complete. Spec{dnl = U {e ot} ud since
the limit polnts of the e's are precisely €7 To prove (2.5), we clahn firse that

o o 1 .-
(2.6} I Fg -+ e} > u,:gc{{g,r et < el)
for any meagure g Moreover, 2 £ (0, then

uidy

#0 (2,67 bmplies 2.5}

Examrir 4 (4T Let dp,, = Y
Voa. < oo M€ 01 then ceardy, since th?w isaf with fo -
have

and o= 3 an, du, where

{J/27P0 =27 we

/ ooy T ey 2 (2R T

50 B3 2%, = oo, then Gle} = oo on 10,8 and thaw A, Fas oo poink speetrum
Hh1L So A4 has dense pmw spectrun: on 18,1} which tutns into purely singular
continuous spectram on ¥ 1 for all o #£ 0.

ExampLe 5. Let dv be (.-a;smr mepsures and lok

o

df-f-{-?-'} = K z 7 [}_‘{ /{7‘ }’“}” ]g

}
Then ply fjy ~ o] S 277 2 37% for apy y 5 B3 50

(Ji? f, .},,\ 23 iy »;, d“({é}gi KeS ‘z.r/_l

L35
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for any nand 5o G = oc on [0, 11 This vields an example with o{4,,) purely singular
continuons on ¥, 3] for all o, As noted, this cannot happen for poud SPECLIUAL.
Exampii § (7). Let o, be arbitrary polnts in 10, 1L Lel o, be 5 seguence

5
with § < a, < Qo™ for some o < 1. Let

T

We clalm O] < o for ae o

Gl < 2: Con™ D7 e

Thug
{w iz = (1~ !

E'C[}__.;D} < 2’:2_{)1!29:1;;-.3 - 21}%%1 Y

gous &0 zere as L - O proving that G} < oo for ae 20 In this csse, by the
Shmon-Wolff criterion, 4, has only pure point specirum fov a.e. &, but for & dense
G of @, it has singular continupus spectrim, of course.

Lat o, be the counting of the dyadic sationas. Let dp = 3 boé,, . Exmnples 4
aned 6 say that depending on the ¥'s, 4, can bave dense point or singular contineous
spectriun for Lebesgue fypical oo Speciral properties depend heavily on ¢ ag well

ay Al
FrAMPLE T . Lt ‘{;fo 3 b{, # counting of the rmtionals in (0,11 De f’zz@
fhy, = z:linfi}“'”'"],qu l---(;,q ai? At § = | [ {g, ~0n. g tasten i8S £ QTQ,! <
Let diy = xs 1,1 sinee § & dense i 10,11, Since 0,1
-:- and diy el (J‘ 1y ﬂ'“ = f! thare must be & positive 'zlea,suu: set of 'y with
f)()m{. and for singular ‘o}?i’:i’.{-} um emibedded in ﬂpecf A1 Asin éhe lnst example, if
w @l 2 et 23T for all m, then Glay € e 11~ /173 Thus, fr e 5]
s e e JI73 ) e L - 18 so Glal < oo forae £ 1L E
We conclude that for se @, A, has no slegular spectrum on 5 bt 1_?.- hias some
point. spectriim there for o positive weasuve st of o',
ExampLe 8 (11310, Let $, = | 127 j; 9 — 4RI, 50 1/ (dn?27)) and
= E S, 80 (5. £ 1Y h.r“, and (51 < #5712 < b Let dup = ysde, Then,
‘-i)f’-‘(‘\‘ i0, 11 but since 0,10 5] > U 11;54 e st be g poaii?v&: measure set of
o' with poing aild,fol «13;9,13 ar gpecirn embedded in speci A, 1 As In Example 4,
{x) = oo an {3 1] sinee for any n

(;;‘I"} _} {Edf\,ul :.i_...ifg._.n_. ‘}'}, L2 — 2’?'_,;8?'?-' s o,

Thus, for alf « we have no point spectrug in [ 1] but we bave singnlar continuous
speciram embedded in the a.c. speetiun for 4 set of positive measure o's.

3. Localization in the Anderson Medel
Following Alzenman-Molchanov

To thiy section we'll present the approach of Alzenman-Molchanov |2 to the
nroof of ncalization for the large conpling Anderson model i arbitrary dimension.
The proof is s0 simble, we won't even pui it in separate sections. Hesults on
exponential decay of Green's functions were first oblained hy Brohiich-Spencer (18,
with Iater extensions and shnpiifications by {17, 15, Even iaking info account
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the fact ibal we have slready deweloped some of the facls we need, this proof 8
something like a factor of Len shorter and has smaller constangs.
We will prove:

Treones 3.1, Lot 1V, (nl}agpe be mdependent identically distributed random
earmfl(m wﬁh uniform denaify on {1 3], Then, there is o fived constant, K, so that
i Al Ko™, then the Jacobi mairis, Ry + AV., hes only pure poind spectrum {and
# 1z dense in [ —Zw, dr + AL

REMARK. | believe that & = 3% fs what comes ou of the minimization prabiem
below,

Suppose for & moment that we could prove that £L.{ 5, IGin, 0, £ 4 03] <
Ce P17 Then, by Fubini's theorem, we'd get that for n.e. pair {E, ), 57 HE, {4~
BN < o, 80 by Theorems 2.8 and 2.5, we'd bave localization. The
probifem. wiih this idea iz that there 8 no chance that even B 1G04 £+ @0
finite, since after all, GIO,0; B4 40 5 +40} for o = V(0 and that
s F/1+afland has a ﬁrsf order zerc at o = —1/F if there is 1o be an eigemalue.
Bul then, [ dviljiz ~% g infinite if o € suppe{l}. So the first key idea of 2]
is fo ook at powers of \(ﬁ“ with 1 < & < 1. For simplicity, we will take 2 = 172

The ilowing lesums will be %14_15:

%

LEMMA 3.2, Ifs >3, then for {o,}0 ., off posttive (W = 1,2,.. .ol

E s

ffs < 1, then

Papor. s>

a g1 e
e Tt and the proof i identical.

Nowsumover n. Il s < 3
In particatar,

144
(1.1) Z e, 0 B + ie)] 2) <3 G, 0 e
' Tl i

g + 3 I
30 we need only control ¥, B0 {04
A key lemama that we wilk 1;9&.‘-(5 is
LEmaa 330 Thearm iv a wversal constant, O so that for all complex numbers,
o,

1

foroany £, NEE

{2 / i ol
i

Bovank, Ibelieves = 4 = 1/21s the sxtreme point, in which case O = 1/vE.
PROCOF. It is easy to see the integral on the lefl side of {3.2} only decre%a& if
e i replaced by Beo or if o € 10,1 snd is replaced by the nearest point in [0, 11

THING 12¥

PERTURBATIONE AND APPLIC
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So we Can ‘-'-I"“JI)OS? that o < 10,11 By ¢ - /2~ 2 sytnmetry, we can suppose
o € {1, 1/2 Bub then

s we need only show thag

Let R{4} be the funciion in §-]. 1% ks clearly continuous on £, non-vanishing and

e RLTY == 174 50 the inf i sizieily posithe. 03
Mg . BT = 174 50 the of iy posit
One last lemma we will need concerns the free Laplacian, be.

Lienua 3.4, (a] Let fLg e 82"} be non-negative functions and suppose that

(l—ahyif g

for some 8 < o < 1/2¢. Then

f g f\l - {}J}l{]}_,ﬁ‘{}‘

() o <e< {2, then

{3. - !Ti-!?-{u, {5‘?: < {2ra

Proor. by has norm 26 80 {1~ ahp)” { S f Zea < 3 This
s & positivity preserving operafor, s0 i preserves m?qli‘liml*?‘% which proves {a).
Moraosver, by the above expression and {ahe)™ (4,7} = 0 i m < 4 — 71, we see that

. e o
(1 = mhy) i, §Y = Z {aféﬁ}”’( Al Z {2va)™
L i 3;;,.':-!:{-\_3';

proving (), O
Paoor oF THeomsm 3.1, Fixr e LR and led g.{n) = GoiBiniz) and

K(n) = Bl

We claim thai {with Oy the copstant in Lemma 3.3%

(3.3} Efnd < (CpAlHy-d (Z ki{n + ?3) # Enn

LMW —

For T
OF . obeys

Z guint 11+ Dag{nd — slaning = faa.

Using Lemma 3.2,

(3.4) E A, {n) — 2]

g () < e+ E E{n+ 7).
1
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Fix {26}

” }h(‘H\ by (1.04h goind = CF (e, {4
functions of {w.]

) with O £ 0 and O, 4 ave
thew.,. Thas averaging only over m.{nh

L

/ [ Xz — x
4

where Cy i the constant in Lemma 3.3, Averaging over {,.{f

(3.5 E.{lhu -

) = CodlPin

Obwviously, {3.4/5) imply (330
{3.37 can be rewriilen to soy

RN .
-;1-{]_}-’4.- f‘; f:’ni'].

80 kg E 0 We can therefore apply Lemma
< (2017 foe Ao a0

Eln) < {C-’UAE--’?‘-" IS (U R S R Y
GG A e Cp Al P I C Be Y

Thus, ¥, Eind s bounded uniformly in 2, so by {313
sup K., (?‘ Him, U

i bounded aniformiy in 2. Using Theorem 2.8, this implies that for A = f,, ¢ =
we have

ELGLEY
for all B e B Thus for ae pales, (V. E), GIE) < oo, Now apply Theorem 2.5 to
geb localization. £

Actually, the proof shows that E, {if)“:”"é > ARG ”-"“’} < oo for som(* § >
U and this implies exponential decay of (rzg_-\erafum.h(mb {easentially by (2

deed, one eastly sees that sach ejgenvecior ¢ ob 2
for each & > . For extensions of these ideas, see 12, 1

4, The Xi Function

Introduction: The Trace Formula, In this section, Il discuss » program
of F. Gesztesy and mine {in part with Holden and Zhao) thal desls with nverse
speciral theory for one-dimensional Schetdinger and Jacobi matrices 1220 In the
study of the inverse problem for periodic potentials, an Important role s played
by the trace formula originaily proven by Gelfand-Levitan and exploited/zefined by
many authors subseguently; see [24] for a history.
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Let me deseribe this formudas et Vin + L) = Vi) Then spoci —df fdz® -+
1% !;r:! = CET U E Byl whove By By Ea . %, Eine ... are peripdic
{“go!l‘»aimw angd Fi Ea, L Esaer Faege,. . are aﬁflpf"mm(‘ eigenvalues, Lt
{ig; (&1}, be the eigenvalyes on Ly o+ L} with wiz} wl.e? + L} =} Dirlch
et houndary conditions. Tt ean be shown that oy ] Ezzj-. The trace
formula says thak, at least when Vs smooth pnough {

T
(4.1) Vigh= Eo+ > (Eay + Eopoi — 2w}
EES

e of owr goals in this section & to extend this formula to move generad ¥'s
ihan periodic. One kssue to consider immediately i 5 case lke Vi = a% -}
where ¥z} — oo as il — oo, Then the bands, (Eyy, Byjpisl collapse fo a point
and we have slgenvalues B < By < --- and Dirlehlet eigenvaloes {j{x) 5%, {with
wix} = { houndayy condiions) and B, = e} € Ejizy, The formal analog of
(417 i

o

\ 1.9 r)\ V(’I‘} = Ef.} -+ Z(E d E}. s 2;;,3- (3“}]

et

As an example, take Vgl = &7 — L and look at gz = 8) B, = A, n=>0,1,2....
and [ (07175, are {2,2,6,6,18, 10, 1. Tt follows that (4.2} says

Alm Rl

Since the Abefan sum 1 - L+ -+ is 1/2, this s promising bat il & clear that the
il resalt will need a summability method o pccommuodate the formula. Indeed,
oy trace formula {when ¥V > 0] will read: et €2, A% be the Krein spectral shift

for InSnite coupling with 4 = —d%/de® & Viz) and ¢ = §lzj. Then

v ,‘
(4.3 Vi = iim / . \2(1 — Bt )\J]dg‘
e 4

' ¥l
Note that | S M| w1 in 2l discrele specivum cases, clendly ilustrating the
need for a summability mwethod,

4.1. Abstract Trace Formula, We recall some facls from §1.5.6. As usual,
ot A >0, An w A+ ale, de with A defined ns the sirong resolvent limdd of Aq
as i — oo Beline

{445 Flzi = {g.(4 - 2) "]

2 e] d

A

Aw Fia -+ il

EN
H

‘“}u—-

Then
{4.6) Tr(fds - f{.fix}) - /’f’{/\_‘jfm{)\j da

and
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]

zln £
4 Lo

and 9, The point of
3,0 25, have the

We alzo will copsider a second problem with 4%
& comparison is that with great generality, Greon's rurzctz‘(a!ls‘: ]
sarne behavior, viz {(2{—232 7 ot 2 e —on

Tumonsm 4.1 {1241}, Suppose that B, Fle) (PO —m) = 1 Then for
s e £ Ho)

{4.8) }{LJdI'm’/N\xp tim /T”

\ Sz
Proor. {4 ’;’) far F', F =0 mii’{.)mwd sayvs that

4.9} lrIfF(z

i

A dA

{4,101 liza

e

{4.97-{4. 1 snd Iim?. lnff‘{—— v1i iFE "{ - ,'}; = {} imply (4.5,

THEOLE
sone ¢ >

{(Tue ApSTRACY TRACE ForMULA) [24]. Suppese that for
i ) - 1) = . Then

Thiz plus {4.7) implies the result, 0

4.2. The Trace Formula for Schrédinger Operators, We'll postpone the
proof of the following wntil later in this section:

wata L3 Suppose that ¥ s bowunded from below and iy condinuons af 2. FLet
Junction for —d%/de” + V() os L¥(—ec.o¢). Then as

Examrne, T

i the compurisan F W ogn it s ac 3(‘&1 example: Led
- [y = N
= —d¥idz? on Let ¢ = &. Then e =
V2R Thas F + 8 w () R/2 and g_:,; () =1 2‘ e 1
Wa now apply the abstract theory of the last section

RN 141
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THEOREM 4.4, Suppese thel V ois non- nrgc!ﬁz?'ﬂ and iz conffnuous of . Let

Ll A) Be &olxd for A = ~d%jde? . Then
) =S e
(4.12) ¥iz) = Jim [ S 1 - 28 V)

zmﬂlxez%i equaiion, since T-" is Lounded

{4.14) (o EHG + ¥V 4 91 1) o (8. EHp 4 17

The first ferm in {(4.14) 8 ~~V9/2 and the

where
segond i

T

H

7&[{}]“% 0{1;

e A

4.3 1 THE GENERAL Casin, We will prove with H = Hy+ ¥

sinee [
PrROOF oF Lk

that
(415 e M xy = (AL - 1 () & oft)).
{411} then follows from
ey
Gla oy —) = / e e iy wyds
o
and

R o _ o o X 1 -
/ R gt = i and / PR V7
1l i -

To prove {4158} let {wdsh} b the Brownian bridge 43} so the Feynman-

Kac formula has the form 143

. Ty s il
{4,163 I3 ‘ﬁ-._:z:?:x} = iy E

A Levy-type sstimate implies thot

B {‘ sup wist > o

Changing V outside L2 - £ w -+ 87 changes the right side of {416} by 0
proving {4,159}, we can suppose that ¥ is bounded. Bus if V' is hounded, 1t i5 easy
s see that the tegral 3 1 — ¥ {a) + o{t). 3
ce we eomtrolied o7 (2 a), we can prove the shighthy stronger version of
£4.12), vis (245

Vi) = Ei_m / e \{i Ll )\3} X,
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This is all with ¥ positive. If & iz only bounded below and B < iaf speci H),
then i
2T 28w, AY) A

See (23] for higher order asympiotic formula involving moments of £
4.3. Examples. ‘
ExaMpLE 1 {Peuiopie PorenTiale). We begin with the motivating case of
periodic potentials, Vi) = Vi{z+ L], The speciramof H iy T, By By, Byl
Jeneval privciples boply shat £{r, A} obeys
1”‘2( 1—‘(‘\'; =l >\ < f Lt
E{w, A} = 4 L, Egpy <A< f"n”g)
i, polny < A< B oor A < B

IV is smooth enough {eg. Vo2 OV, $Ey, — By < oe 30 f§2 -
25(x, A dA < oo and the summabliity meshod is not needed. { l eazly,

il

B
/ (1- 2‘&} dh = (g, - By 5 + (Ey — :u':_';_} = fy & Bagey - B

I
* T

[wﬂw%MAz&

J
and we get
2 i
" -y N
V(é{.‘_:l = By 4 2 (!‘5‘312 i

Exampre 2 {Hanmonie Qsaiiarorl Ve = 2% — 1; the eigenvaines are

0,2,4 ... and
et I, O<a<sHdachah,. ..
LA = 3

6, 2<A<d b 5.
s T .
/ rz_""\‘{—iia‘_i({‘z, )\}\ A = r_x"'ii_'_l - C"'”}"'} Z{ SRR
A pete]
= o H 'xmnﬁ1+edﬁ

converges Lo —1 as oo | . Thus the summabilily method vields § In g(-:nez‘a.l,:

PHEOREM 4.5, Lef Vig) — oo as laf — oo0 Let By < iz 5 i =0 be
the winerualues of —dffde? £V oon ol of DB du] and with o [Hrichiet boundary
condition af @, Then

Viey = B+ lm_fl L sl vl {f“".?‘;"_-‘]"__f—.?,

nd

- PTASL R TR RN ATl R
FxaAMPLE 3 [SHORT RANGE POTENTIALSY. Suppose WV {xji < OO0+ 12}

Let Hs{A} be the usual reflection coefficient and fifr, A] the Jost funciion at —oc.
Then {21}

S n) = =+ Al + R AP /iR )P A0

B3 b
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W see thai if [ IRAAN A < o0, shen [ 11— 260w, Mide < oo and one can ake the
limit inside the integral. See {21} for other short range examples.

As & preliminary 5o the next example, we need a formula aboui how IMrichles
elgenvalues pix) move az @ changes.

Trworem 4.6, Let {a, b} be ant inderval in B\ spec{H} {ie., o spectral gap of
HY and suppose plz} is an eigenvaine of H,, the operator with o Dirichlet bor wndary
condition af ¢ with pix € (o, 8. Let gl A= Gle,m AL
(5 Bgldxie, /\}I = 1 with the value equal +1 {resp. —1} if the eigen-
pafue les on {-00, 8] {resp. [, o)),
{8} Wtk the some sign o5 in (1)

: - sy [y, ) o
417 pliny =& L\w(,}{»g (:c?;z[x}}) .

Proor. {i7 By general principles with 2. L7 al oo

AL ga{zy, either ot = 0 in w mch case dgife = -1, or wola) = 0}, in which case
Hgidz = 1 as claimed.

{11} Tmumediate from (1), given the Impiicih funciion theorem $hat says that
u = —18a i8]/ i

EXAMPLE 4 [THE SOLIT on. A reflectioniess potential i one with &{x, 3) =
1/2 for allx and s A in spee, I H). Let us look for reflectionless potentials with a
single eigenvaiue al £ = -1, Loi plr) be the Dirichlet eigenvalne in {1,081 Then

0, A< -lormai<Ai<G
fle M= {1, 1<« piz)
s Az
The formulas for g sad ¥V then equal

Vir) =2(-1 - piz))

gla, A} =
{4.17} reads
{4.18} Iz I\r}: 4 ““!‘)2 ,E‘:'] 4 4]

Lot ofx) s= (~u} % Then {4.18) becomes
T
whose soluiion is {.’k.‘r) = L 1{1 ) EO we pey
Viz) = ~2{1 - tank®{z))
%
cosb™ i)’




P BARRY SIMOGN

the familiar soliton! This argument does nof show this potential is reflectionless,
only that 3i 15 the only candidate, However, s comparison with the formula for
£1x,2) in Example 3 indeed verifies that Be(A) = 0,2 > { in the present case.

4.4, The TFrace Formula for Jacobi Matrices.

THEOREM 4.7, Let B = Hy + V be o Jocohi mairie on 27 with ¥V bowndad,
Lot Em A de o for d = HL; sV oand = & Let By = q:‘ specl Y. Then

B, 5
B, ‘”f (E{n,/\} - ;-)fz/\,
PR 2

Proor. {4.19) is unchanged If we add a constant, ¢, to V (since then V,
. oand B all increase by ¢ o wlog we can suppose that & > @ Sinee
- 0 (resp. 10 for A < E_ {resp. A > E.) we seed owjy prove {4.19) for some
> sup specl # 1 and E_ < il spec{#h
Next we note that {4.19) can be rewriiten

{4.1m Vini =

t-.}iw

Vind e B / (e Ay~ 1)dh = B+ / PEfm, Ay — 34

;
e
P A Elr ) da

g0 it suffices to prove

o

V{ny = (8fn o} — 1)dx

Fu
for H = QL
But soting ihat

B {H 5 917180 = 7y V) = Oty
this follows from {1.30) {Theorers 1.17). 13

section we'll

4.5. A Regularity Theorem for the A.C. Spectrum. In this
prove the following:

TrEOkEM 4.8 (124}, Lot Vafe) and Vi) be fonctions on B [resp. Z} 5o
that

Vo) = —oo and for soch B > 0, supren (Valol < oo {resp.
m;i

Vi ()] < 00},

(i} Vi — Voo uniformly on compacis {resp. poinluise).

{i1) Bach ¥, 5 pertedic {but the period can be m-dependent).
Lot Ho . Heo be the Homilbonions —d® fde? 2 Vo, (resp. the Jacobi mairices on £{F),
fup o+ Vi) 'Ihw {agith |- 5 = Lebosgus meastres):

!‘Ym:(H:w.}; = firs 59:=e:{};r;aji'

The most ipteresting application of this resull Is to prove a slightly strengthened
version of a striking result of Last [34):

=
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CoroLLARY 4.9, et V(n) = Acos{mon + &y and let k be the correspomding
Jacoli matrie. Then {ey (A} = 4 - 2]

Proor. H o = p/g s relional, this Is proven in 7). U o is arbitrary, lot
B f Gy, ¢ anael Lo Vi {nd = Acosizon +8). Then V. Vi, obey the hypotheses of
Fheorem 4.8, So, by I,}w theorem, we can Lake Hmits, [

ReEmank. o e a Liouville number (rrational but well approximated by ta-
tionals), it is known for A > 2, ibal A has only singular confinuous spectrum and
hefore Last [34], some believed thal was tmae also for |A] < 2. Last showed thai if
A< 2, doaetB) > 0 '

T prove Theorem 4.8, we begin with

TurgonsM $.10. Under the hypotheses {1, () of Theorem 4.8,

i Ay - €59, Al d

G

"‘7;
e
A

weakly qs measiures where Eie 1 the speciral shif fi for —d? fﬂf;’” ¥, with o =
Proor. I osuflices to prove that for all s ¢ LR

/5{\”’(; Ayda

{/\—?’

by & standard deus?f,t; armm:\nt' By {1.29) and the Caunchy formula, it suffices to
prove that Fu{z) — Foo {2} where {m(z\ = Gy {1 23, Writing

Wy 27 = (Ho  2) " W = 208 = {Hy = 2)7 (Vo = V)00
for 9 € CFF (R}, we see that

{4,260} sHmiH, — 23 = (Hoe — 2¥7°

Lot My = —d?/dz® Then (M. + 0T, — 2 Y He+ 11172 s uniformiy bonnded,

50 {4.20) implies that

slim(Hop + D Ha = 23 Hy + 17 = (Hy = 172 - 2y iy + 112
Sinee {(Hy + 13728 bs in L% we can toke mairiv elements in ihls vector and
conclude that Fio{z) — Foofzbis as vequired.

PROOF OF 'i"ILE(JREM 4.3, Bince Vi is periodie, Sala, A} = 0, L or 172 for

ae. A Fix b © R bounded and let Ay = (A | Sudn Al = 0 nile bl v m = 1,
2

5

2,0, D Then
0w £olm, AddA = lun/ Eolm, Ay dA
A A
We conclude that
!Ax{ < m %“ﬁim |-

A similar argument with £, = 1 shows that

A0 < £ (e, M) < 1} B = Bm ;{/\zag,,_(m) = i} Al Bl
L - 1
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Bul &.{x, A} = Argl{F (X +i0)} / w Hes o (0,1) f and only # Im Fae > 0 {ay
poinks with Fo (h -+ 40 fmi“e_), bf.}

ol Hu ) Tl 8l 2 HATO < £, A < 1} e b

with equality if ne is Bnige. I

4.8, Inverse Problems., These ideas play an mportant rele in onderstand-
ing inverse spectral theory, We'll give an example here; see {248 {and = paper in
preparation] for furiher examples. We'll rely on the Gelfand Levitan theory (20,
35] which allows one to recover V{r} from any m,{z) and, in particular, from
sl 2y In 1952 Borg 8] and Maréenko [36} preved thai:

THEOREM 411, Let Via) — oo to afindy. Let {EX7128 . be the eigenmalues
for wd® w4V {x) with § 5 boundory conditions at v = O where o = — cot{F}. Then
V' con be recovered from {L“‘ Y., for any twe distinet unlues of o

Acinally, Marfenko [38] proved in addition thai the two values of & can be

recovered as well from the two sets {Ex77 128
We'll prove 2 peneralization of this.

THEOREM 4.12. Suppose thot V1 bounded below. Lot £, 203) (o > 8Y be the
speciral shifl for going from Az io A, Then o, 8, ond V can be recovered from
‘f(k,;"}{)\}‘

Remari. This nplies Theoremn 4,11, For in that case &
and

0 BV <A<E gh
Proovr. Let F{z) be the Neumann-Green's function, Gy,

¥iz) can be recovered by Gelfand-Levitan. We have thas £,

Lf0,0; 2), from which
(A] = &a{d} — £ald}

angd

{4.21) 00
(#-22) 5= 00
and

{4.23} Flz) = {—z)1?

by {1163, {118}, (129}, and {4.11).

Since [E{AY/ (1A + 1) = oo ifand only i o = o0, we see that [ £, 20/ +
13dA = oo if and or\]v if o mf nite, and we can read that fack off of knowing
£.2(AL Consider first the case with a, 5 finite, By (4.23)

{1+ aF{z)) = oF{z) - ;a, 1F(2)% 4 OFF{

Ii
o
=y
|
2

W o
)....2__.2 — aag{_ﬁz}...l + (){3_%' 2)_

Thas, by {4.21}

w2y HE L 0 — G ) O
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s we can fng o — F and o - A% wned 30 o and A from £, 5. Moreover, since

.0 Getermines F{z) and so ¥V by Gelfand-Levilan.
Now consider é.-h(-: eage x = oo, Then by {423} and a contour integral

“‘?13 {2374+ 0025

Thus by {':i_22} anel the diseussion of {4.21%

/' {0 —
LA
H

so we can read 2 off of £ 5131, By the above

E:x:ﬁ\r. A) i P
S8 o © e P
Doy T g {z]

Lo i b f o 238 4+ 4

W WE p le_ﬂ,_ &1 A g)
1, s

=-z o (gl )

.
Y
(?+A)“

and we can recaver Ha and so F from & 503), Gelland-Leviian completes the
provoi. H
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