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I. INTRODUCTION

The twentieth century is the century of science. In a century that has seen special and
relativity, quantum electrodynamics and chromodynamics, a total revamping of our understa
of molecules and of the cosmos, plate tectonics, and the rise of microbiology, one can ma
case that the most spectacular scientific development was the discovery of nonrelativistic qu
mechanics in the first quarter of the century. Its aftermath not only changed the physicist’s v
matter, but it set the stage for the revolutions in chemistry, our understanding of stars, biolog
practical electronics.

In what is one of the more striking cases of serendipity, just as Heisenberg and Schro¨dinger
were discovering the ‘‘new’’ quantum theory, von Neumann was developing the theory o
bounded self-adjoint operators and Weyl the representations of compact Lie groups—two s
of great relevance to the mathematics underlying nonrelativistic quantum mechanics. In
order they produced books~von Neumann271 and Weyl275! that used this mathematics to give
mathematical foundation to the framework of quantum mechanics. With later additions, nota
Bargmann, Wigner, and Mackey, the basic foundations are mathematically firm.

This is analogous to having formulated classical mechanics as Hamiltonian flows on sym

*Dedicated to Tosio Kato~1917–1999!, father of the modern theory of Schro¨dinger operators.
a!Electronic mail: bsimon@caltech.edu
35230022-2488/2000/41(6)/3523/33/$17.00 © 2000 American Institute of Physics
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tic manifolds. What remains is what might be called the second-level foundations—existen
solutions of the time-dependent Schro¨dinger equation~which is equivalent to self-adjointness o
these operators! and general qualitative issues in dynamics. It is this subject, essentially bo
years ago, that I will review here. The subject matter is vast with hundreds of contributor
thousands of papers. Each section of this paper is a proxy for what deserves a book or at
very long review article. In attempting to overview such a vast area in a few pages, I have
focus on the high points. No proofs are given and I have settled for usually quoting the init
especially significant papers. I have no doubt that I have left out some important papers, an
I ask the forgiveness of the reader~and their authors!!.

To keep this paper a reasonable size, I have focused almost entirely on the general ba
Schrödinger operators and some simple applications to atomic and molecular Hamiltonians
means, among other areas, I have not considered general second-order operators onRn and on
general manifolds~but see Davies and Safarov,57 Davies,55 and Kenig154! nor have I considered
some of the detailed papers on perturbations of Hamiltonians with periodic potential~see, e.g.,
Deift and Hempel58 and Gesztesy and Simon91! nor the extensive literature on Dirac operators n
the considerable work on Schro¨dinger operators in a bounded region with some boundary co
tions including subtle results on what happens at irregular boundary points~see Davies55! nor the
results on phenomena like the quantum Hall effect that apply and extend the general the
results in condensed matter physics. While there are a few results about2D1V for cases where
V(x)→` asuxu→`, again there is a large literature we will not attempt to review. While Sec
has a brief discussion of constant magnetic field, we have not attempted to discuss the
extensive literature on nonconstant magnetic fields.

There is a companion piece to this one on open problems.260

II. MATHEMATICAL TOOLS AND ISSUES

The mathematics most relevant to the modern theory of Schro¨dinger operators is functional
real, harmonic, and complex analysis. In this section, we will briefly set the stage to fix not
For more details, see Reed and Simon.214,211

Quantum Hamiltonians are unbounded operators, defined on a dense subspace rather
whole Hilbert space. Physics books tend to emphasize the symmetry~‘‘Hermiticity’’ ! of the
Hamiltonian; that is, that̂Hw,c&5^w,Hc& for all w,c in D(H). But more important is a property
called self-adjointness. The adjointH* of an operatorH is defined to be the maximal operator s
that ^H* w,c&5^w,Hc& for all cPD(H), wPD(H* ). Hermiticity says only thatH* is an
extension ofH.

We sayH is self-adjoint if H5H* , H is called essentially self-adjoint if and only ifH is
symmetric and has a unique self-adjoint extension. This holds if and only ifH* is self-adjoint.
Self-adjointness is important in the first place because ifH is self-adjoint, one can form the unitar
group e2 i tH and so solvei ẇ t5Hw t ~as w t5e2 i tHw! for initial conditions wPD(H). Indeed,
Stone’s theorem says that any one-parameter continuous unitary group is associated with
adjoint operator. Second, self-adjointness implies the spectral theorem. There is for each B
A,R, a projection,EA(H), so thatH5*l dEl and e2 i tH5*e2 i tH dEl . One defines spectra
measuresdmw

H by

mw
H~A!5~w,EA~H !w! ~II.1!

so that

E e2 i tldmw
H~l!5~w,e2 i tHw! ~II.2!

and
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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E dmw
H~l!

l2z
5~w,~H2z!21w!. ~II.3!

s(H), the spectrum ofH, is preciselyøw supp(dmw
H).

Much of what we discuss in this paper involves two distinct decompositions of the spec
of H. The first is

sdisc~H !5$lul is an eigenvalue of finite multiplicity and an isolated point ofs~H !%

sess~H !5s~H !\sdisc~H !.

Equivalently,lPsdisc(H) if and only if for some«.0, dimE(l2«,l1«)(H) is finite and for all
«.0, E(l2«,l1«)(H)Þ0. sdisc(H) captures the notion of bound states.

The second breakup involves the fact that any measuredm on R has a decomposition

dm5dmpp1dmac1dmsc,

wheredmpp is a pure point measure~sum of delta functions!, dmac is F(l)dl, with F a non-
negative locally integrable density, anddmsc is a singular continuous measure~like the Cantor
measure!. I will define spp(H) to be the set of eigenvalues ofH; it is not the union of the support
of mpp because it may not be closed

sac~H !5ø
w

supp~dmw
H!ac,

sac~H !5ø
w

supp~dmw
H!sc.

One often defines a refined setSac with S̄ac5sac(H), the essential support of the ac measu
Basically, the essential support of the a.c. measureF(l)dl is $luF(l)Þ0%. It is defined modulo
sets of Lebesgue measure zero.Sac is the union of the essential support of (dmw

H)ac over a
countable dense set ofws.

III. SELF-ADJOINTNESS

The theory of Schro¨dinger operators was born with Kato’s famous self-adjointness theo
for atomic Hamiltonians. His theorem abstracted states the following:

Theorem III.1: ~Kato144! Let H5L2(R3N) where xPR3N is written (x1 ,...,xN) with xi

PR3. Let D i be the Laplacian in xi and let Vi ,Vi j be functions onR3 in L2(R3)1L`(R3). Let

H052(
i 51

N

~2m i !
21D i , ~III.1!

V5(
i 51

N

Vi~xi !1(
i , j

Vi j ~xi2xj ! ~III.2!

and let H5H01V. Then H defined on D(H0) is self-adjoint and is essentially self-adjoint o
C0

`(R3N).
Remarks:
~1! See Reed and Simon211 for a proof.
~2! The basic idea of the proof is a perturbation theoretic one. There is a general theore~the

Kato–Rellich theorem! that if A is a self-adjoint operator andB is a symmetric operator with
D(B).D(A) and for somea,1 andb.0 and allwPD(A), that
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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iBwi<aiAwi1biwi , ~III.3!

then A1B is self-adjoint onD(A) and essentially self-adjoint on any domain of essential s
adjointness forA. If ~III.3! holds, we will sayB is A bounded. The infimum over alla is called the
relative bound ofB with respect toA.

~3! If one looks at a general bound of type~III.3! with a,1 whereA52D on L2(Rk) andB
is multiplication byV, then in terms of requirements thatVPL loc

p (Rk), one needs

p>2 k51,2,3 ~III.4a!

p.2 k54 ~III.4b!

p>
k

2
k>5 ~III.4c!

by using Sobolev estimates~see, e.g., Cyconet al.53!.
~4! If k53N and we useonly the Lp requirements of Remark 3, Coulomb potentials st

working already atN52. Thus, for Kato’s theorem, it is critical to use Sobolev estimates
subsets of variables as Kato did.

An industry developed in understanding when2D1V is essentially self-adjoint onC0
`(Rn).

An illustrative example is
Example: Let H52D2cuxu22 on C0

`(Rk) with n>5 ~needed forHwPL2 for all w
PC0

`(Rk)). Then it can be seen~Reed and Simon,211 Example 4 in Sec. X.2! that if c.c05(n
24)n/4, thenH is not self-adjoint onC0

` . This is a quantum analog of the classical fact tha
V52cuxu22 for any c.0, a set of initial conditions of positive measure falls intox50 in finite
time (c0.0 is a reflection of an uncertainty principle repulsion!.

This example shows that for pureLp requirements, one cannot do better than~III.4! since
uxu22PLp1L` if p,k/2. But it turns out this is only so ifV is allowed to have any sign. Fo
V>0, one can do much better. The best result of this genre is

Theorem III.2: ~Leinfelder and Simader173! Let V>0, VPL loc
2 (Rk), $aj% j 51

k PL loc
4 (Rk) with

¹•aPL loc
2 (Rk) ~distributional derivatives!. Then

H5(
j 51

k

~ i ] j2aj !
21V ~III.5!

is essentially self-adjoint on C0
`(Rk).

Remarks:
~1! For a proof, see Cyconet al.53

~2! This is essentially a best possible result. Ifa50, H is defined onC0
` if and only if V

PL loc
2 ; so the result says for positiveV, we have essential self-adjointness if and only ifH is

defined. Similarly, unless there are cancellations,ajPL loc
4 and¹•aPL loc

2 is required forH to be
defined onC0

` .
~3! It was Simon239 who first realized that forV>0, there only needed to be localL2 condi-

tions. However, he required a global condition* uV(x)u2e2bx2
dx,` for some b.0. It was

Kato152 who proved the generala50 result~and also allowed for smootha’s!. Kato’s paper used
the distributional inequality, now called Kato’s inequality

Duuu>Re~sgnuDu! ~III.6!

that is also critical to the Leinfelder–Simader proof.
~4! ~III.6! is essentially equivalent to the fact thatetD is positivity preserving. The version o

~III.6! with magnetic fields is equivalent to diamagnetic inequalities:

u~e2tHw!~x!u<~etDuwu!~x! ~III.7!
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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for theH of ~III.5! ~with V>0). These ideas were discovered by Nelson,198 Simon,241,247and Hess
et al.119

While there are best possible self-adjointness results for magnetic fields and positive
tials, the results forV’s which can be negative are not in such a definitive form. All the ba
principles are understood but I am not aware of a single result that puts them all together~one of
the best results is in Kato’s paper151 although, as we will see, it is not quite optimal with regard
local singularities!. So I will present the general principles that are understood in this case.

~a! 2uxu2 borderline for behavior at infinity. Negative potentialsV of compact support for
which H52D1V is essentially self-adjoint onC0

` normally obey a global estimate of the form
~III.3! ~with A52D, B5V! and, in particular,H is bounded from below. However, ifV is not of
compact support, it can go to minus infinity at infinity without destroying self-adjointness. Mo
less, the borderline for keeping self-adjointness is2uxu2. For example, it can be proven~see, e.g.,
Reed and Simon,211 Theorem X.9! that2(d2/dx2)2uxua on L2(2`,`) is essentially self-adjoint
on C0

`(2`,`) if and only if a<2. This is attractive since a classical particle with the sa
potential reaches infinity in finite time if and only ifa.2. Nelson has examples~see Reed and
Simon,211 p. 156! of V(x) with V(x)<2cx4 so 2(d2/dx2)1V(x) is still essentially self-adjoint
and thus, the borderline will not be if and only if, but the general version of this is that ifV(x)
>2cx2 in some averaged sense, then2D1V(x) will be essentially self-adjoint onC0

` . The
earliest version of this is Ikebe and Kato.130 My favorite theorem of this genre is due to Faris a
Lavine80 ~see Reed and Simon,211 Theorem X.38!. In particular, Stark Hamiltonians whereV
5c"x1V0 are essentially self-adjoint for suitableV0 . In any event, I will focus henceforth on
cases where2D1V is not unbounded from below.

~b! Stability of relative boundedness under adding V>0 or a magnetic field. SupposeA>0.
Then ~III.3! holds for somea,1 if and only if

lim
g→`

iB~A1g!21i,1.

On the other hand,~III.7! implies that forV>0, anya and any multiplication operatorW:

iW~H1g!21i<iW~2D1g!21i

and so the second principle is that in studying the negative part ofV, one can assumeV is negative
and then add back an arbitrary positiveL loc

2 positive V. While this is true, it ignores situation
where there are cancellations between the positive and negative parts which can occur~see, e.g.,
Combescure and Ginibre48!.

~c! Relative bounds need only hold uniformly locally. The following proposition holds:
Proposition III.3: Suppose V is a function onRd so that for somea, b and every y,

iVx~•2y!wi<ai2Dwi1biwi , ~III.8!

wherex is the characteristic function of the unit cube. Then for anyã.a, there is someb̃ so that

iVwi<ãi2Dwi1b̃iwi . ~III.9!

This result is proven by a variant of an idea of Sigal.231 Find a ‘‘partition of unity’’ $ j m%m so
that S j m

2 51, eachj m is supported in some unit cube~so j mx(•2ym)5 j m for somej m), and the
j m’s are locally finite,((“ j m)2 is uniformly bounded~the j m’s can be translates of a singlej m!
andSuD j mu is uniformly bounded. IfH052D, we have~whereC is related toiS(¹ j m)2i` and
iS(D j m)i`!

(
m

@ j m ,@ j m ,H0
2##<C~H011!

and from this that
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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( iH0 j mwi2<~11«!iH0wi21C«iwi2. ~III.10!

Thus

iVwi25(
m

iVx~•2ym! j mwi2

<~11«!a2(
m

iH0 j awi21~11«21!b2iwi2 ~by ~III.8!

<~11«!2a2iH0wi21~~11«21!b21C«!iwi2 ~by III.10!

which yields~III.9!.
Proposition III.3 states that the proper condition onV to yield a2D bound is a uniform local

condition.
~d! Convolution results are the proper local condition. As discussed earlier,Lp conditions on

V do not properly control functions on subspaces. Explicitly, letp:Rk→Rl be a projection and
V(x)5W(p(x)). Then forV to be2D bounded~assumingk> l>5), we needWPL loc

p (Rl) for
p> l /2 and soVPL loc

p (Rk) with p> l /2. But if V is not a function of a subset of variables,
general we needp>k/2. It is a discovery of Stummel262 that by stating conditions in terms o
convolution estimates, one can find conditions that respect subsets of variables. In particu
following is a spaceSn introduced in Stummel:262 Let V be a function onRn; we sayVPSn if and
only if

lim
a↓0

Fsup
x
E

ux2yu<a
ux2yu42nuV~y!2udnyG50 if n>5,

lim
a↓0

Fsup
x
E

ux2yu<a
ln~ ux2yu21!uV~y!u2dnyG50 if n54

sup
x
E

ux2yu<1
uV~y!u2dny,` if n<3.

This class respects functions of subvariables in the sense that ifp:Rk→Rl is a projection,
V(x)5W(p(x)) and WPSl , then VPSk . Moreover, it is not hard to show~see, e.g., Cycon
et al.53! that if VPSn , then V is 2D bounded with relative bound zero. Moreover~see Cycon
et al.,53 Theorem 1.9!, if for somea,b.0 andd with 0,d,1 and all 0,«,1 andwPD(H0)

iVwi2<«iDwi21a exp~b«2d!iwi2, ~III.11!

thenV is in Sn . See Schechter226 for more on Stummel conditions.
~3! The Kato class and going beyond relative boundedness. In his inequality paper,152 Kato

introduced a form analogKn of Sn : Let V be a function onRn; we sayVPKn if and only if

lim
a↓0

Fsup
x
E

ux2yu<a
ux2yu22nuV~y!udnyG50 if n>3, ~III.12a!
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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lim
a↓0

Fsup
x
E

ux2yu,a
ln~ ux2yu21!uV~y!udnyG50 if n52, ~III.12b!

sup
x
E

ux2yu<1
uV~y!udny,` if n51. ~III.12c!

Then Kato151 proved if max(2V,0)PKn and VPL loc
2 (R), then 2D1V is essentially self-

adjoint onC0
`(Rn). While it is not Kato’s proof, this is intimately connected with the semigro

result discussed in Sec. IV. Defining the form sumH, one knows exp(2tH):L2→L` so
L`ùL2ùD(H) is a domain of essential self-adjointness. It is not hard to then showL0

`ùD(H),
theL` functions of compact support are a domain of essential self-adjointness. Then convo
allows one to getC0

` approximations.
~f! Logarithmic improvements. NeitherSn nor Kn is quite the ideal space for essential se

adjointness. For example, ifn>5 andV(x)5uxu22(11u loguxuu)2a, V is in Kn only if a.1, in Sn

only if a. 1
2, but 2D bounded with relative bound zero ifa.0.

Analogous to the issue of self-adjointness is a question of whether maximal and mi
forms agree. This is discussed in Kato152 and Simon248 ~see Theorem 1.13 in Cyconet al.53!.

IV. PROPERTIES OF EIGENFUNCTIONS, GREEN’S FUNCTIONS, SEMIGROUPS, AND
ALL THAT

I wrote a long review of these subjects 20 years ago~Simon250! and the situation has hardl
changed since then, although there has been extensive interesting work on what happ
general elliptic operators and for bounded regions~see, e.g., Davies55!. So it will suffice to hit a
few major themes. The basic theorem is

Theorem IV.1: Let V1PL loc
1 (Rn) and V2PKn , the space of~III.12!. Let H52D1V as a

form sum. Then for any p<q,e2tH maps Lp to Lq and for t<1,

ie2tHip,q<Ct2a, ~IV.1!

where

a5
n

2 S 1

p
2

1

qD . ~IV.2!

Remarks:
~1! SemigroupLp bounds were first found by Davies,54 Herbst and Sloan,118 and Kovalenko

and Semenov161 with further developments by Carmona,41 Simon,246 and Aizenman and Simon.12

~2! In particular, it was Aizenman and Simon12 who found thatKn is the natural class forLp

bounds. Indeed, they not only proved Theorem IV.1 in this form but also showed that ifV<0 and
exp(2tH) mapsL` to itself with limt↓0 ie2tHi`,`51, thenVPKn .

~3! The result holds when magnetic fields are added~by a diamagnetic inequality!.
~4! Most of these authors use a combination of path integral estimates andLp interpolation

theory. In particular, the Feynman–Kac and Feynman–Kac–Itoˆ formulas~see Simon246 for exten-
sive discussion! are useful tools in studying Schro¨dinger operators. See Simon259 for an extension
to cases whenV(x)>2cx2.

~5! In fact, e2tH takesLp not only intoL` but into the continuous functions~see Simon,250

Theorem B.3.1!.
~6! ~IV.1!/~IV.2! are precisely the best results forH52D.
~7! This theorem says thatH can be defined as the generator of a semigroup on eachLp space.

The spectrum has been shown to beLp independent in Hempel and Voight.113 For a general
discussion ofLp Schrödinger operators, see Davies.56
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Once one has these estimates, they can be used to derive:
~a! Sobolev estimates:As in the free case ifV obeys the conditions of Theorem IV.1, the

(H2z)2n takesLp to Lq if

p212q21,S 2a

n D . ~IV.3!

The result~see Simon,250 Theorem B.2.1! is obtained by integrating the semigroup bound.~IV.3!
comes from~IV.2! and the requirement of integrability att50.

~b! Integral kernels:Bounded operators fromL1 to L` have bounded integral kernels and
Theorem IV.1 can be used~see Simon,250 Theorem B.7.1! to provee2tH, (H2z)2a (a.n/2) are
integral operators with continuous integral kernels. One can also show~Simon,250 Theorem B.7.2!
that for 0,a,n/2, (H2z)2a is an integral operator with an integral kernel that is continuo
away fromx5y with a precise singularity atx5y.

~c! Eigenfunctions:Since global eigenfunctions~i.e., wPL2 that obeyHw5Ew! are in
Ran(e2tH), Theorem IV.1 implies such eigenfunctions are inL`. In fact, all this can be done
locally. Any eigenfunction~distributional solution ofHw5Ew! is automatically continuous an
one can prove Harnack inequalities and subsolution estimates. This is discussed in de
Aizenman and Simon12 and Simon.250

We end this section with a discussion of some issues involving eigenfunctions. There is
literature on when Schro¨dinger operators have positive solutions. This was begun by Allegre13

and Piepenbrink206 with later results by Agmon5 and Pinchover.207

Here is a typical theorem~Simon @Ref. 250, Theorem C.8.1#!:
Theorem IV.2: Let V2PKn and K1PKn

loc . Then Hu5Eu has a nonzero distributiona
solution which is everywhere positive if and only ifinf spec(H)>E.

There is also much literature on the issue of exponential decay of eigenfunctions. One
~see Simon250, Theorem C.3.1! says that anyL2 eigenfunction actually goes to zero pointwise—
interest only for eigenfunctions of embedded eigenvalues. For discrete spectrum, the dec
least exponential under minimal regularity hypothesis onV. The original key papers on this them
are by O’Connor200 and Combes and Thomas.47 From their ideas, one obtains~see Sec. C.3 of
Simon!;250

Theorem IV.3: Let V2PKn , V1PKn
loc and let H52D1V and let Hu5Eu with uPL2.

Then

uu~x!u<Ce2Auxu, ~IV.4!

where:

~i! For general E in the discrete spectrum, ~IV.4! holds for some A.0 and C.0.
~ii ! If H has compact resolvent, then~IV.4! holds in the sense for any A.0, there is a suitable

C.0.
~iii ! If Sess5inf sess(H) and E,Sess, then ~IV.4! holds in the sense that for any A

<AE2(ess, there is a suitable C.0.

One can go beyond this to get fairly detailed behavior on decay in cases whenH has compact
resolvent or forN-body potentials. In one dimension, one can justify under some regul
conditions the WKB formula that states whenV(x)→`, eigenfunctions decay like

V~x!21/4expS 2E
a

x
AV~y!2E dyD . ~IV.5!

It was Agmon4 who realized the proper higher-dimensional analog for this involves wh
now called the Agmon metric:r(x) is the geodesic distance ofx to 0 in the Riemannian metric
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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r i j (x)5d i j (V(x)2E)1d2x. There is a related but more subtle definition forN-body systems. See
Agmon4 and Deiftet al.59 for further discussions. See Simon253 and Helffer and Sjo¨strand111 for
an application to tunneling probabilities.

Eigenfunctions play a critical role in explicit spectral representations of Schro¨dinger opera-
tors. The basic ideas go back to work of Browder,39 Garding,88 Gel’fand,89 Kac,137 and especially
Berezanskii.29,30 See Sec. C.5 of Simon250 and Last and Simon170 for some additional one-
dimensional results.

Finally, we mention issues of cusps and nodes of eigenfunctions. Kato148 has a famous pape
on cusps at Coulomb singularities for atomic eigenfunctions. See Hoffmann-Ost
et al.108,120,121for recent developments in this area.

V. ONE-DIMENSIONAL DECAYING POTENTIALS

One-dimensional Schro¨dinger operators

2
d2

dx2 1V~x! ~V.1!

on L2(2`,`) andL2(0,̀ ) and their discrete analogs

hu~n!5u~n11!1u~n21!1V~u!u~n! ~V.2!

on l 2(2`,`) and l 2@0,̀ ) have been heavily studied for two reasons. First, ordinary differen
equation~ODE!/difference equation methods allow one to study them in much greater detail
one can the higher-dimensional analogs. Second, ifV(x)5V(uxu) is a spherically symmetric
function onRn, then2D1V is unitarily equivalent to a direct sum of operators onL2(0,̀ ) or the
form ~V.1! where the effectiveV’s have the formVl(x)5k l uxu221V(x) for suitablek l ’s. The
details can be found, for example, in Reed and Simon,211 Example 4 to the Appendix for X.1.

The one-dimensional theory has been in and out of vogue. It was extensively studied
1930 to 1950 with important contributions by Titchmarsh, Kodaira, Gel’fand, Hartman–Win
Levinson, Coddington–Levinson, and Jost. Significant developments during the next 25
were mainly in the area of inverse spectral theory~a major exception was Weidmann’s work,273 to
be discussed shortly! which will be discussed in Sec. VI. From about 1975 starting with the w
of Goldsheidet al.98 and Pearson,204 this has been an active area with extensive study of
one-dimensional case, especially with long-range and with ergodic potentials.

One special feature of one dimension is that one can limit spectral multiplicities under
general conditions onV:

Theorem V.1:

~a! Let H52(d2/dx2)1V(x) on L2(0,̀ ) with fixed hu(0)1u8(0)50 boundary conditions
and suppose H is essentially self-adjoint on C0

`@0,̀ ). Then H has simple spectrum~multi-
plicity 1!.

~b! Let H52(d2/dx2)1V(x) on L2(2`,`) and suppose H is essentially self-adjoint o
C0

`(2`,`). Then

~i! The absolutely continuous spectrum of H is of multiplicity at most 2.
~ii ! The singular spectrum of H is of multiplicity 1.

Remarks:
~1! All one needs for local regularity ofV is VPL1@0,R# for all R.0 or L loc

1 (2`,`).
~2! The result holds even ifH is not essentially self-adjoint(V limit circle at 6`! so long as

a boundary condition is imposed at` or at 2`.
~3! The only subtle part of the result is that the singular continuous spectrum is simple o

real line. This is a theorem of Kac;138,139see also Berezanskii.29,30 My preferred proof is due to
Gilbert.95,96
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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In this section, we will discuss the case whereV(x)→0 at infinity. In Sec. VI, we will discuss
inverse spectral theory, and in Sec. VII, we will discuss ergodic potentials.~These two subjects ar
mainly one dimensional.! The issue of the asymptotic eigenvalue distribution whenV→` as6`
is discussed in Sec. XIV on the quasiclassical limit.

This section will discuss~V.1!/~V.2! in situations whereV(x) ~or V(n)! goes to zero~at least
in an average sense! as x→` ~or n→`). The interesting thing is that there are three natu
breaks in behavior. Expressed in terms ofuxu2a behavior, they are

~i! At a52, we shift between a finite number of bound states (a.2) or an infinite number
(a,2) at least ifV(x),0.

~ii ! At a51(VPL1), we shift between a pure scattering situation for positive energiea
.1) and the possibility of positive energy bound states (a,1).

~iii ! At a5 1
2, (VPL2), we shift from there being a.c. spectrum for almost everywhere pos

energy (a. 1
2) to at least the possibility of very different spectrum.

~i! and~ii ! have been known since the earliest days of quantum mechanics. Thea5 1
2 border-

line first occurred in Simon251 who found that random decay potentials had point spectrum w
a, 1

2. Delyonet al.64 then showed ifa5 1
2, there may be some nonpoint spectrum. As we will s

subsequent results confirmed this borderline.
The negative spectrum for decaying potentials is easy: So long as*x

x11uV(y)udy→0, H is
bounded below and has@0, `! as essential spectrum by Weyl’s criterion~see, e.g., Reed an
Simon,213 Sec. XIII.4!, which means that~2`, 0! has only discrete eigenvalues of finite mul
plicity, which can only accumulate at energy 0. Indeed, by Theorem V.1, the point spectrum
multiplicity 1. Once these basics are established for the discrete spectrum, a number of d
questions about it arise:

~a! Is sdisc finite or infinite? The borderline, as mentioned above, isr 22 decay. Explicitly, one
has Bargmann’s bound24 that the number of eigenvalues on a half line withu(0)50 boundary
conditions is bounded by*xuV(x)udx and on a whole line by 11*2`

` uxuuV(x)udx ~see Simon240

for a review of bounds on the number of bound states!. On the other hand, iflimx→`uxu2V(x)
<2 1

4, one can prove thatH has an infinity of bound states~see, e.g., Reed and Simon,213 Theorem
XIII.6 !.

~b! If sdisc is infinite, how doesliml↑0 dimE(2`,l)(H) diverge? This is a quasiclassical limi
and discussed in Sec. XIV.

~c! Bounds on moments of eigenvalues. Lieb and Thirring,186 motivated in part by their work
on the stability of matter,185 initiated extensive study on the best constantLg,1 in

(
j

uej ug<Lg,1E uV~x!ug11/2dx,

which holds ifg> 1
2. Here$ej% are the negative eigenvalues ofH. For g> 3

2, the constantLg,1 is

known to be quasiclassical~Aizenman and Lieb!.9 For gP@ 1
2,

3
2), it is known thatLg,1 is strictly

larger than the quasiclassical result.186 It is conjectured to be the optimal value for a single bou
state, as explained in Lieb and Thirring,186 but this is still open~except atg5 1

2 ~Hundertmark
et al.125!.

~d! Is there a bound state for weak coupling?In one~and two! dimensions,H has bound states
even for very weak coupling. The result~Simon242! is that if * uxuuV(x)udx,` and *V(x)dx
<0 andVÞ0, thenH always has a bound state and the binding energy of2D1mV is ;cm2 as
m↓0 ~if *V(x)dx,0; it is ;cm4 if *V(x)50).

As for positive energies, the situation is simple ifVPL1:
Theorem V.2: Let VPL1(2`,`) or L1(0,̀ ). Then HE(0,̀ )(H) is unitarily equivalent to

2d2/dx2 ~on L2(2`,`) or L2(0,̀ ) with u(0)50 boundary conditions!.
Remarks:
~1! This result is essentially due to Titchmarsh.267

~2! In terms ofr 2a falloff, VPL1 meansa.1.
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~3! Using scattering theoretic ideas, one can prove wave operators exist and are comple~see
Sec. VIII!.

~4! This says there is no point of singular continuous spectrum at positive energies and t
a.c. spectrum has essential support~0, `! with multiplicity 2 or 1.

~5! We have stated the result foru(0)50 boundary condition for simplicity; it holds for al
boundary conditions at 0.

As for slower decay thanL1, if one has control of derivatives, one can still conclude
positive spectrum is purely absolutely continuous. The simplest result of this genre is

Theorem V.3: ~Weidmann273! Let V5V11V2 where V1 is in L1, V2(x)→0 as x→6`, and
V2 is of bounded variation. Then, HE(0,̀ )(H) is unitarily equivalent to2d2/dx2 ~on L2

(2`,`) or on L2(0,̀ ) with u(0)50 boundary conditions!.
Remarks:

~1! V2 of bounded variation withV2→0 at infinity essentially says that2dV2 /dxPL1; in fact,
any V2 of bounded variation can be writtenV31V4 with V3PL1 andV4 a C1 function with
dV4 /dxPL1.

~2! Pure power potentialsr 2a for any a.0 are included in this theorem; indeed, any monoto
function V(x) with V(x)→0 asx→` is of bounded variation.

For a short proof of Theorems V.2/V.3, see Simon.256 Both theorems can be understood
coming from the fact that all solutions of2u91Vu5lu with l.0 are bounded. That such
conclusion implies the spectrum is purely absolutely continuous was first indicated by Carm42

~who required some kind of uniformity inl!. Important later developments that capture this id
are due to Gilbert and Pearson,97 Last and Simon,170 and Jitomirskaya and Last.135 The tools in
those papers are also important for the proofs of the results of Sec. VII.

Once one allows decay slower thanr 212e for both V and V8, the conclusion of Theorem
V.2/V.3 can fail because of embedded point spectrum. The original examples of this were
by von Neumann and Wigner.272 Basically, if V(x)5guxu21 sin(x) for x large andg.1, then
2u91Vu5 1

4 u has a solution which isL2 at infinity ~see, e.g., Theorem XI.67 in Reed an
Simon213!. By adjustingV at finite x, one can arrange for any boundary condition one want
x50. In fact, if one allows slightly slower decay thanuxu21, one can arrange dense point spe
trum. Naboko197 and Simon257 have shown that for any sequence$ln%n51

` of energies in~0, `!
~Naboko has a mild restriction on thel’s! and anyg(r ) obeying limr→` rg(r )5`, there is aV(x)
obeying:

~i! uV(x)u<g(uxu) for x large;
~ii ! 2u91Vu5lnu has a solutionL2 at infinity and obeying a prescribed boundary conditi

at x50.

Remark:It is an interesting open question about whether there exist potentials decaying
than uxu21/22« with dense singular continuous spectrum~rather than dense point spectrum!.

The interesting fact is that even though potentials of Naboko–Simon type have dense
spectrum, they may also have lots of a.c. spectrum. The best result is:

Theorem V.4: ~Deift and Killip60! Let VPL2. Then the essential support of the a.c. spectr
of H52(d2/dx2)1V is @0, `!.

Remarks:
~1! In terms ofr 2a decay, this result requiresa. 1

2.
~2! This result is optimal in that it is known for any Orlicz space strictly larger thanL2 in

terms of behavior at infinity, there areV’s whose associatedH has no a.c. spectrum.
~3! The first result of this genre was found by Kiselev156 who proved the conclusion of thi

theorem foruV(x)u<Cx23/42e. There were subsequent improvements of this by Kiselev,157 Christ
and Kiselev,46 and Remling.218

~4! Killip 155 has a partially alternate proof of Theorem V.4.
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Once the decay is allowed to be slower thanr 21/2, one can have much different spectrum
@0, `!:

~i! If W is a suitable family of random homogeneous potentials andV(x)5uxu2aW(x) with
a, 1

2, thenH has only dense point spectrum in~0, `!. This was first proven in the discrete case
Simon251 and later in the continuum case by Kotani and Ushiroya.160

~ii ! Generic potentials decaying likeuxu2a( 1
2.a.0) produce singular continuous spectrum

discovered by Simon.255 For example, in$VPC(R)usupxuxuauV(x)u[iVia% viewed as a complete
metric space ini•ia , a denseGd of V’s are such that2d2/dx21V(x) has purely singular
continuous spectrum on@0, `!.

~iii ! Much more is known in the borderlinea5 1
2 case, at least for the discrete Schro¨dinger

operator~V.2!. For example, ifan are independent, identically distributed random variables u
formly distributed in@21, 1# and V(n)5mn21/2an , then for suitable coupling constantsm and
energiesE in @22, 2#, the spectral measures have fractional Hausdorff dimension with an ex
computable local dimension. This is discussed in Kiselevet al.158 There are earlier results on th
model by Delyonet al.64 and Delyon.62

~iv! A very different class of decaying potentials was studied by Pearson.204 His potentials are
of the form

V~x!5 (
n51

`

anW~x2xn!, ~V.3!

whereW>0, an→0, andxn→` very rapidly so the bumps are sparse. He showed that for suit
an ,xn , the correspondingH has purely singular spectrum—providing the first explicit example
such spectrum. Strong versions of his results were found by Remling217 and Kiselevet al.158 In
particular, the latter authors proved if (xn11 /xn)→` ~e.g.,xn5n!), then potentials of the form
~V.3! lead toH’s with purely singular spectrum ifSan

25` and to ones with purely a.c. spectru
if (an

2,`.

VI. INVERSE SPECTRAL THEORY

One area related to Schro¨dinger operators, especially in one dimension, is the questio
inverse theory: How does one go from spectral or scattering information to the potential. Th
much literature, including three books I would like to refer the reader to: Chadan and Saba45

Levitan,176 and Marchenko.190 I will only touch some noteworthy ideas here.
In one dimension, a key role is played by the Weylm function and the associated spectr

measuredr. Given a potentialV so thatH is self-adjoint withu(0)50 boundary conditions, for
eachz with Im z.0, there is a solutionu(x;z) of 2u91Vu5zu which is L2 at infinity. Them
function is defined by

m~z!5
u8~0;z!

u~0,z!
. ~VI.1!

Im m(z).0 in Imz.0 so by the Herglotz representation theorem

m~z!5B1E dr~l!F 1

l2z
2

l

11l2G ~VI.2!

for a suitable constantB. dr is called the spectral measure forH. One can recoverdr from m by

1

p
Im m~l1 i«!dl→dr~l! ~VI.3!

weakly as«↓0 and ~VI.2! allows the recovery ofm from dr given the known asymptotics
~Atkinson,15 Gesztesy and Simon93!
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m~2k2!52k1o~1! ~VI.4!

as uku→` with d,Argk,(p/2)2d. dr really is a spectral measure for letw̃(x,l) solve2w̃9
1Vw̃5lw̃ with boundary conditionsw̃(0,l)50, w̃8(0,l)51, and define forf PC0

`(0,̀ )

~U f !~l!5E w̃~x,l! f ~x!dx. ~VI.5!

ThenU is a unitary map ofL2(0,̀ ,dx) to L2(R,dr(l)); in particular,

E u~U f !~l!u2dr~l!5E u f ~x!u2dx ~VI.6!

or formally

E w~x,l!w~y,l!dr~l!5d~x2y!. ~VI.7!

Moreover, (UH f )(l)5l(U f )(l). dr and its equivalent functionm is therefore close to spectra
information. One way of seeing this explicitly is ifV(x)→`. In that case,m is meromorphic, the
poles ofm are precisely the eigenvalues ofH with u(0)50 boundary conditions and by definitio
of m, the zeros are precisely the eigenvalues withu8(0)50 boundary conditions.m is uniquely
determined by these two sets of eigenvalues.

In many ways, the fundamental result in inverse theory is the following one:
Theorem VI.1: ~Borg37–Marchenko188! m determines q, that is, if q1 and q2 have equal

m’s, then q15q2 .
Recently, the following local version of the Borg–Marchenko theorem was proven
Theorem VI.2: Let q1 and q2 be potentials and m1 and m2 their m functions. Then q15q2 on

@0,a# if and only if

um1~2k2!2m2~2k2!u5O~e22ak!

as k→` for k obeyingd<argk<p/22d.
Remarks:
~1! This result was first proven by Simon258 whenq1 andq2 are bounded from below.
~2! The general result which even allowsqi to be limit circle at infinity was first obtained by

Gesztesy and Simon.93

~3! A simple proof of Theorem VI.2 was subsequently obtained by Gesztesy and Simo94

Given the uniqueness result, it is natural to ask about concrete methods of determiningq given
m. There are two approaches for the general case. The first is due to Gel’fand and Levitan90 and
depends on the orthogonality relation~VI.7!, while the other, due to Simon,258 is a kind of
continuum analog of the continued fraction approach to solving the moment problem.

The Gel’fand–Levitan approach depends on a representation of the solutionsw due to
Povzner208 and Levitan:175

w~x,l!5
sin~kx!

k
1E

0

x

K~x,y!
sin~ky!

k
dy, ~VI.8!

wherel5k2. In essence,~VI.7! leads to a linear Volterra integral equation forK whose kernel is
determined byr. Once one hasK, one can determineV from ~VI.8! and2w91Vw5lw or from
more direct relations ofK to V.

The approach of Simon depends on a representation ofm as a Laplace transform
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m~2k2!52k2E
0

a

A~l!e22kada1O~e22ak!, ~VI.9!

which determinesA given m ~there is also a direct relation ofA to r given in Gesztesy and
Simon93!. One can introduce a second variable and functionA(x,a) so A(x50,a)[A(a). A
obeys

]A

]x
5

]A

]a
1E

0

b

A~x,b!A~x,a2b!db ~VI.10!

and

lim
a↓0

A~x,a![V~x!. ~VI.11!

In this approach,m determinesA(x50,•) by ~VI.9!; the differential equation~VI.10! determines
A(x,a), and then~VI.11! determinesV.

Inverse spectral theory is connected to inverse scattering for short-range potentials sindr
on @0, `! is determined by scattering data. Scattering data also determine the positions
negative eigenvalues. One needs to supplement that with the weight of the pure points a
negative eigenvalues known as norming constants. Marchenko190,189 has an approach to invers
scattering related to the Gel’fand–Levitan approach by using a different representation
~VI.8!. When*0

`xuV(x)udx,`, Levin174 has proven that in Imk.0, there is a solutionc(x,k) of
2c91Vc5k2c given by

c~x,k!5eixk1E
x

`

K̃~x,y!eikydy.

Krein162–164also developed an approach to inverse problems. A different approach to in
scattering is due to Deift and Trubowitz.61 For another approach to inverse problems, see Melin195

Inverse theory for periodic potentials also has an extensive literature starting with Dub
et al.,70 Its and Matveev,132 McKean and van Moerbeke,193 McKean and Trubowitz,192 and
Trubowitz.268

As for higher-dimensional inverse scattering, these scattering data overdetermine the
tial. For example, for short-rangeV’s, the scattering amplitude at fixed momentum transfer
proaches the Fourier transform ofV at large energy, so the large energy asymptotics of scatte
determineV. There is considerable literature on recoveringV from partial scattering data, which
we will not try to summarize here.

One reason for the interest in inverse theory is the connection it sets up between s
theory of Schro¨dinger operators and the analysis of certain nonlinear partial differential equa
like KdV ~see Doddet al.,68 Novikov et al.,199 and Belokoloset al.26!.

VII. ERGODIC POTENTIALS

Let V be a compact metric space with probability measuredg andTt with tPRn or Tn with
nPZn be an ergodic family of measure-preserving transformations. Letf :V→R be continuous.
For vPV, define

Vv~x!5 f ~Txv! ~VII.1!

and

Hv52D1Vv . ~VII.2!
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Note: To allow unboundedV’s as seen, for example, in Gaussian random potentials,
wants to extend this picture to either allowf to be discontinuous and/or take values inRø$`%,
and/or allowV to be noncompact; for simplicity, we will discuss this model for motivation.

Hv is a family of Schro¨dinger operators, not a single one, but by the ergodicity and an obv
translation covarianceVTyv(x)5Vv(x1y), many spectral properties occur with the probabil
one. So one can speak of typical properties. In particular, it is known that the full spectrumS, the
essential support of the absolutely continuous spectrumSac, the closure of the point spectrum
S̄pp, and the singular continuous spectrumSsc are a.e. constant inc ~see, e.g., Theorems 9.2 an
9.4 in Cyconet al.53 for proofs; the result forS and S̄pp is due to Pastur202 and the other results
to Kunz and Souillard165!. Note onlyS̄pp is a.e. constant;Spp, the actual set of eigenvalues is no

Examples:

~1! Let V5@a,b#Zn
and letdg be the infinite product of normalized Lebesgue measure

@a,b#. Let (Tmv)n5vn1m . The corresponding discrete Schro¨dinger operator is called the Ande
son model and is typical of random potential models.

~2! If V is a compact Abelian group withZn or Rn as a dense subgroup,dg is the Haar
measure andTx is the group translate, thenV is a periodic or almost periodic function. A fre
quently discussed example is

V~n!5l cos~pan1u!, ~VII.3!

wherea is irrational,u runs in @0, 2p# ~which is V!, andl is a parameter. The correspondin
discrete Schro¨dinger operator is called the almost Mathieu model.

The simplest example of this framework—which is atypical in many ways—is the peri
potential. The basic facts in this case go back to physics literature at the start of quantu
chanics~Bloch, Brillouin, Kramer, and Wigner! and, in one dimension, to work on Hill’s equatio
~Floquet, Lyapunov, Hamel, and Haupt!. A critical early mathematical paper on the multidime
sional case is Gel’fand.89 The key result is that for periodicV’s with a mild local regularity
condition, H52D1V has purely absolutely continuous spectrum. This result is discusse
detail in Reed and Simon,212 Sec. XIII.16!. The only subtle part of the argument is to eliminate t
possibility of what are called flatbands, a result of Thomas.264

In the mathematical physics literature, the period from 1975 onwards has seen eno
interest in the study of almost periodic and random models and special cases thereof. Thre
that discuss this are part of Carmona and Lacroix,44 Cyconet al.,53 and Pastur and Figotin.203 We
will only touch some of the general principles, leaving the details—especially of det
models—to the books and the vast literature. We will make references to the Lyapunov exp
without defining it; see Cyconet al.,53 Sec. 9.3.

For random potentials, the most interesting results concern localization. While the spect
typically an interval~e.g., for the Anderson model inn dimensions, it is@a22n,b12n#), the
spectrum is pure point with eigenvalues dense in the interval and exponentially decaying
functions.

In one dimension, localization was first rigorously proven by Goldsheidet al.98 with a later
alternative by Kunz and Souillard.165 Following an idea of Kotani,159 Simon and Wolff,261 and
Delyon et al.63 found another proof. Typical is

Theorem VII.1: For the one-dimensional Anderson model, the spectrum is@a22,b12# and
is pure point with probability one with eigenfunctions decaying at the Lyapunov rate.

Carmonaet al.43 and Shubinet al.228 have approaches that work if the single site distribut
is discrete~the other quoted approaches require an absolutely continuous component fo
distribution!.

In higher dimensions, the two main approaches to localization are due to Fro¨hlich and
Spencer87 ~see also von Dreifus and Klein270! and to Aizenman and Molchanov.10 ~See also
Aizenman and Graf8 and Aizenmanet al.11! Basically, these authors and the many papers
extend their ideas prove dense point spectrum in regimes where the coupling constant is l
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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one is near the edge of the spectrum. It is believed—but not proven—that in suitable re
whenn>3, there is absolutely continuous spectrum.

For almost periodic models, one can have any kind of spectral type. The almost Ma
model has been almost entirely analyzed and the spectral type shows a great variety. Reca
the discrete model with potential

Va,l,u~n!5l cos~pan1u!,

wherel, a are fixed parameters andu runs throughV. Then
~i! If l,2, there is always~i.e., for any irrationala! lots of a.c. spectrum and it is known fo

somea and believed for alla that is all there is~see Last,169 Gesztesy and Simon,92 Gordon
et al.,100 Jitomirskaya;134 the earliest results of this genre are due to Dinaburg and Sinai67!.

~ii ! If l52 anda is an irrational whose continued fraction integers are unbounded~almost all
a have this property!, then the spectrum is known to be purely singular continuous for almos
u ~see Gordonet al.100!.

~iii ! If l.2 anda is an irrational with good Diophantine properties (ua2p/qu>Cq2 l for
someC, l and allp, q, PZ!, then for a.e.u, the spectrum is dense pure point~Jitomirskaya;134 see
also Bourgain and Goldstein38!.

~iv! If l.2 anda is irrational, there are always lots ofu ~a denseGd! for which the spectrum
is purely singular continuous~Jitomirskaya and Simon136!. For somea, like those in~iii !, the set
while a denseGd has measure 0. For Liouvillea ~irrational a’s with lim(1/q)lnusinpaqu52`),
the spectrum is purely singular continuous~Avron and Simon22 using results of Gordon99!.

In general, for almost periodic models, the spectral type is dependent on the number th
properties of the frequencies. Among the general spectral results known for almost pe
models is that the spectrum is everywhere constant onV ~rather than only almost everywher
constant; Avron and Simon22! and that the essential support of the a.c. spectrum is everyw
constant~Last and Simon170!. It is known @see~iv!# that s̄pp andssc may only be almost every
where constant and fail to be constant on all ofV.

VIII. TWO-BODY HAMILTONIANS

Hamiltonians of the form2D1V whereV(x)→0 at infinity are often referred to as two-bod
Hamiltonians since the Hamiltonian of two particles with a potentialW(r12r2) reduces to2D
1V ~whereV is a multiple ofW depending on the masses! after removal of the center of mas
The issues are essentially the same as for one-dimensional decaying potentials as discusse
V.

With regard to the negative spectrum, again Weyl’s criterion easily shows thatsess(H)
5@0,̀ ) so thatH has only discrete spectrum of finite multiplicity in~2`, 0! and only 0 can be an
accumulation point. Typical is:

Theorem VIII.1: For aPZn, let xa be the characteristic function of the unit cube abouta.
Let V:R→R. Suppose VPKn and that asa→`, ixaViKn

→0. Thensess(2D1V)5@0,̀ ).
As for whetherN(V), the number of negative bound states~counting multiplicity, i.e.,

N(V)5dim E(2`,0)(H)), is finite or infinite, there is considerable literature. The earliest boun
due to Birman32 and Schwinger227 for n53. It states

N~V!<
1

~4p!2 E uV~x!uuV~y!u
ux2yu2 dx dy ~n53!. ~VIII.1 !

Perhaps the most famous bound is that of Cwickel,52 Lieb,177 and Rosenbljum:220

N~V!<L0,nE uV~x!un/2dx ~n>3!. ~VIII.2 !
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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One reason this is of special interest is that for niceV’s asl→`, N(lV)/* ulVun/2dx converges
to a universal constant~see Sec. XIV!. In particular,~VIII.1 ! has the wrong largel behavior while
~VIII.2 ! has the right such behavior.~Simon243 had the first bounds with the right largel behavior
for nice enoughV’s; he also conjectured~VIII.2 !.!

As in the one-dimensional case, there are Lieb–Thirring-type bounds on the moments
negative eigenvaluesej of 2D1V

(
j

uej ug<Lg,nE dxuV~x!ug1n/2dnx

for g.0 if n52 andg>0 if n>3. These were proven first in Lieb and Thirring.185 There has
been considerable literature on the best values ofLg,n . In particular, a recent pair of papers o
Laptev and Weidl168 and Hundertmarket al.124 has obtained a breakthrough in understanding
n dependence ofLg,n . In particular, they show that forg> 3

2, Lg,n is given by the quasiclassica
value. On the other hand, it is known thatLg50,n.Lg50,n

q.c. , the quasiclassical value for alln
~Helffer and Robert109,110!.

For a review of the literature on bounds on the number of eigenvalues, especially the
two-dimensional case, see Birman and Solomyak.36

The absence of eigenvalues at positive energies is a specialized issue largely indepen
the rest of the analysis of positive spectrum. Given the examples of Wigner–von Neuman
related ones of Naboko and Simon discussed in Sec. V, one needs some condition on the fa
lack of oscillations. Here is a simple result:

Theorem VIII.2: Let V(x)5V1(x)1V2(x) where uxuuV1(x)u→0 and u(x•¹)V2(x)u→0.
Then2D1V has no eigenvalues in@0, `!.

Remarks:
~1! The stated theorem requires local regularity (V1 bounded near infinity andV2 is C1), but

there are extensions that allow local singularities.
~2! Rellich216 proved that ifV has compact support, there are no positive energy eigenva

Theorem VIII.2 whenV250 is due to Kato150 and the full result to Agmon2 and Simon.235

~3! See Froeseet al.86 for another result of this genre; we will discuss their result further
Sec. IX.

The methods we will discuss below typically show thatsppù(0,̀ ) is finite; one can then
usually use Theorem VIII.2 to prove that the set is actually empty.

As for positive spectrum, it is intimately related to scattering theory. Given two self-ad
operatorsA, B, one says the wave operators exist if

V6~A,B!5s-lim
t→7`

eitAe2 i tBPac~B!

exists wherePac is the projection onto the a.c. subspace forB. We say they are complete i
RanV6(A,B)5RanPac(A), in which caseV6(A,B) are unitary maps of RanPac(B) to
RanPac(A) which intertwineA andB. See Reed and Simon,213 Baumgärtel and Wollenberg,25 or
Yafaev277 ~or many other books! for a discussion of the physics involved.

The development of abstract scattering theory is closely intertwined~pun intended! to its
applications to Schro¨dinger operators. Fundamental work was done by Jauch,133 Cook,51

Rosenblum,221 Kato,149 Birman,33 and Birman and Krein.35

The basic result for positive spectrum for ‘‘short-range’’ potentials is:
Theorem VIII.3: Let V be such that(11uxu)11«V(x)PLp1L`(Rn) for max(2,n/2),p

,` and let H52D1V and H052D. ThenV6(H,H0) exist and are complete. Moreover,
has no singular continuous spectrum and any eigenvalues in~0, `! are isolated~from other
eigenvalues! and of finite multiplicity.

Remarks:
~1! The first results on absence of singular continuous spectrum depended on eigenfu

expansions and were obtained by Povzner209 (V’s of compact support! and Ikebe129 (V’s which
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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wereO(uxu222«) at infinity!. The earliest results on completeness of wave operators depend
the trace class theory of scattering~of Rosenblum221 and Kato149! and were obtained by
Kuroda.166,167From 1960 to 1972, the decay was successively improved until Agmon3 obtained
the O(uxu212«) result quoted.

~2! Enss77 has a different, quite physical, approach to this result. Enss’ work depends in
on an earlier geometric characterization of the continuous subspace of a Schro¨dinger operator by
Ruelle222 and Amrein and Georgescu.14 This is sometimes called the RAGE theorem after
initials of the authors.

~3! It is known ~e.g., Dollard69! that if V(x)5O(uxu21), V6(H,H0) may not exist.
For long-range behavior decaying slower thanO(uxu21), there are results if¹V decays faster

than O(uxu212«). Basically, there is only a.c. spectrum at positive energy ifV5V11V2 with
V15O(uxu212«) andx•¹V25O(uxu2«). For details, see Lavine,172 Agmon and Ho¨rmander,6 and
Hörmander.122 These works use modified wave operators as introduced by Dollard.69

IX. N-BODY HAMILTONIANS

Let H̃ be the Hamiltonian ofN particles inRn. Explicitly, H̃ is an operator onL2(RnN) given
by H̃5H̃01V where

H̃052(
j 51

N
1

2mj
Dxj

with x5(x1 ,...,xN) a point inRnN5Rn3Rn3...3Rn ~N times! and

V5(
i , j

Vi j ~xi2xj !,

with Vi j a function inRN which decays at infinity. There is a standard way of removing the ce
of mass and getting an associated HamiltonianH on L2(Rn(N21)). For a more extensive review o
the subject than this brief discussion, see Hunziker and Sigal.128

For any partitiona of $1,...,N% into disjoint subsets, one definesI (a)5S ( i , j )úaVi j over the
pairs ~i, j! in distinct clusters andH(a)5H2I (a).

The issues one faces are similar to those in the two-body case but often more subtle. T
thing one needs to establish aboutN-body systems is where the essential spectrum ofH lies. The
result involves

S~a!5 inf spec~H~a!!, ~IX.1!

S5 min
]a>2

~S~a!!. ~IX.2!

S is the minimum energy the system can have after it is broken into two pieces moved ve
from each other. That makes the following physically attractive:

Theorem IX.1: ~HVZ Theorem! Suppose each Vi j viewed as an operator on L2(Rn) obeys
Vi j (2D i j 11)21 is compact. Then

sess~H !5@S,`!.

Remarks:
~1! The name ‘‘HVZ’’ comes from work of Hunziker,126 van Winter,269 and Zhislin280 who

first proved it.
~2! The original proofs used resolvent equations; a geometric proof was later found by E76

and Simon.244
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The next issue is whether the discrete spectrum is finite or infinite. A great deal of atte
has been paid to atomic or ionic Hamiltonians. Define onL2(R3N):

HM~N,Z!5(
i 51

N S 2D i2
Z

uxi u
D1

1

M (
i , j

¹ i¹ j1(
i , j

1

uxi2xj u
,

which describesN electrons moving around a nucleus of chargeZ and massM. A basic result
states that neutral atoms and positive ions always have an infinite number of bound states

Theorem IX.2: ~Zhislin280! If N<Z, dim E(2`,S)(HM(N,Z))5` for any M ~including M
5`).

Remarks:
~1! The first result of this genre was Kato145 who proved the result ifN5Z52 andM5`

~Helium!. He did not properly handleM,` because he did not use the right coordinate syste
As shown by Simon,236 Kato’s idea, which involved placingN21 electrons in the ground state
for the N21 ion and theNth in a hydrogen-like state around the core, can prove Theorem I

~2! This result holds even if one adds Fermi statistics~see, e.g., Simon236!.
~3! If Z is not restricted to be an integer, the proper condition isN,Z11.
As for negative ions, we have
Theorem IX.3: ~Zhislin281! dim E(2`,S)(HM(Z11,Z)),`
Remarks:
~1! This result also has a geometric proof by Sigal231 and Simon.244

~2! This result may not be true for fermion electrons because theN21 problem may have a
degenerate ground state which allows one with a nonzero dipole moment.

~3! While it is presumably true that dimE(2`,S)(HM(N,Z)),` for all N>Z11, that is not
known.

Finally, with regard to bound states of atoms, there is the issue of when dimE(2`,S)50. The
result is the following:

Theorem IX.4: Let M5`.

~a! ~Ruskai223,224and Sigal231,232! For any Z, there is an N0(Z) so that for N>N0(Z), there is
no spectrum in~2`, S!. N0(Z) denotes the smallest N0 for which this is true.

~b! ~Lieb et al.181! For fermions, N0(Z)/Z→1 asZ→`.
~c! ~Benguria and Lieb28! Without Fermi statistics, N0(Z).1.2Z for Z large.
~d! ~Lieb178! N0(Z)<2Z.

Remarks:
~1! If N>N0 , then inf spec(H(N,Z))5 inf spec(H(N0 ,Z)), inf spec(H(N021,Z)).
~2! Some of these results hold ifM,`.
With short-range potentials, the situation is simple if the bottom of the essential spectr

two body. Define

S35 min
]~a!>3

~S~a!!.

Then ~see Cyconet al.,53 Sec. 3.9!
Theorem IX.5: ~Sigal231! SupposeS3.S, n>3, and each Vi j lies in Ln/2(Rn). Then

dim E(2`,S)(H),`.
On the other hand, ifS35S, there can be an infinite number of bound states even if theVi j ’s

have compact support~in xi j ). In particular, ifN53, V125V235V1352cx1 , with x the charac-
teristic function of a unit ball andc chosen so that inf spec(H)50 but inf spec(H1«V),0 for all
«.0, it is known that dimE(2`,0)(H)5`. This is known as the Efimov effect after work o
Efimov.74,75 For proofs of this phenomenon, see Yafaev276 and Ovchinnikov and Sigal.201

In analyzing the spectrum ofH on @S, `!, a particular class of physically significant energi
occurs, the thresholds. For each partitiona of $1,...,N% with ]a>2, there is a natural decompo
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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sition of L2(Rn(N21))5Ha^ Ha whereHa are functions ofxi2xj with i and j in the same cluster
of a andHa are functions ofRa2Rb , whereRa is the center of mass of a cluster~see Ref. 128
for an elegant way of doing this kinematics!. Under the decompositionH(a)5Ha^ I 1I ^ Ta. Ha

is the internal energy of the cluster andTa the kinetic energy of the cluster centers of mass.I(a)
is the set of eigenvalues ofHa ~with the condition that if](a)5N, so Ha is 0 onC, thenI(a)
5$0%. The set of thresholds is defined as

I5ø
a

I~a!.

Note: An energy inI(a) is a sum of eigenvalues of individual cluster Hamiltonians.
particular, the statement in the theorems below that the set of thresholds is a closed count
follows by induction from the other statement that eigenvalues can only accumulate at thres

The three-body problem turns out to have some aspects that make it simpler than the g
N-body problem, and Faddeev79 and later Enss78 ~using very different methods! have fairly com-
plete results on spectral and scattering theory forN53. We will focus here on results that app
for all N.

Historically, the first aspect of the continuous spectrum for generalN-body systems controlled
was the absence of a singular continuous spectrum. The earliest result required analyticity
potentials but included atoms:

Theorem IX.6: ~Balslev and Combes23! Suppose each Vi j (x)5 f i j (xi2xj ) where fi j is a
function onRn\$0% that obeys

A~u!5V~eux!~2D11!21

is compact and has an analytic continuation fromuPR to $uuu Im u u,«% for some«.0. Then
ssc(H)5B.

Moreover,

~i! Any eigenvalue of H inR\I is of finite multiplicity, and eigenvalues can only accumulate
thresholds.

~ii ! The set of eigenvalues union thresholds is a closed countable set.

Remarks:
~1! Such potentials are called dilation analytic.
~2! This result was first proven for two-body systems by Aguilar and Combes.7

~3! See Simon237,238for extensions of this result.
The most general results on absence of singular continuous spectrum depend on the i

Mourre.196

Theorem IX.7: Suppose Vi j (x)5 f i j (xi2xj ) where fi j is a function onRn that obeys~as
operators on L2(Rn)!

~i! f i j (x)(2D11)21 is compact;
~ii ! (2D11)21x•¹ f i j (2D11)21 is compact.

Thensess(H) is empty. Moreover, any eigenvalue inR\I is discrete, eigenvalues can only acc
mulate at thresholds, and the set of eigenvalues and thresholds is a closed countable set.

Remarks:
~1! This theorem was proven forN53 by Mourre.196 His methods were extended and eluc

dated by Perryet al.205 who obtained the generalN-body result. Substantial simplifications of th
proof were found by Froese and Herbst.85

~2! Condition ~ii ! does not require thatf i j be smooth because¹ f i j 5@¹, f i j # and ¹(2D
11)21 is bounded. Basically,~i!, ~ii ! hold if f i j 5 f i j

(1)1 f i j
(2) , wherex f i j

(1)(2D11)21 is compact
and f i j

(2) is smooth with (x•¹) f i j
(2)(2D11)21 and f i j

(2)(2D11)21 compact.
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~3! Froese and Herbst85 have some general results that imply thatIù(0,̀ )5B ~see Theorem
4.19 in Cyconet al.53!.

Finally, there has been extensive study of scattering theory and completeness. For each
with ](a)>2, let Pa on Ha be the projection onto the point spectrum ofHa and letP(a)5Pa

^ I , the projection onto vectors which are bound within the clusters and arbitrary for the ce
of mass coordinates. The cluster wave operators are defined by

V6~a!5s-lim
t→7`

e1 i tHe2 i tH ~a!P~a!. ~IX.3!

Ran(V1(a)) are those states which in the distant past look like bound clusters~corresponding to
the partitiona! moving freely relative to one another.

The existence of cluster wave operators~IX.3! was proven first by Hack.103 It is not hard to
see ~e.g., Theorem XI.36 in Reed and Simon213! that for aÞb, RanV1(a) is orthogonal to
RanV1(b). Asymptotic completeness is the statement that

%

]~a!>2

Ran~V1~a!!5Hac~H !,

whereHac(H) is the absolutely continuous subspace forH. After fairly general results forN53
~Faddeev79 and Enss78! and for generalN with weak coupling~Iorio and O’Carroll131! and repul-
sive potentials~Lavine171!, Sigal and Soffer233 solved the general result. Their theorem is

Theorem IX.8: ~Sigal and Soffer233! If each Vi j (x)5 f i j (xi2xj ) where u(Da f i j (x)u<C(1
1uxu)2uau2«21 for all multiindices withuau<2, then asymptotic completeness holds.

Extensions and clarifications of this work are due to Graf,101 Hunziker,127 and Yafaev.278

Long-range potentials are discussed in Derezinski,65 Sigal and Soffer,234 and Derezinski and
Gerard.66

X. CONSTANT ELECTRIC AND MAGNETIC FIELDS

Quantum mechanics with a potential and constant electric or magnetic field played a c
role experimentally and theoretically in the earliest days of the subject, and there has bee
siderable mathematical literature on the spectral properties of these operators. The basi
Hamiltonian onL2(Rn) is

H52D1Ex11V~x!, ~X.1!

whereV is short range. A key role has been played by an explicit formula of Avron and Her18

for the operator whenV50, viz.,

exp~2 i t ~2D1x1!!5exp~2 i t 3/3!exp~2 i tx1!exp~2 i tD1 ip1t2!, ~X.2!

wherep15(1/i )(]/]x1). Classically in an electric field, a particle hasx15N2ct2 as t→` and
~X.2! realizes this with thep1t2 term. It means the borderline for short range isuxu21/22« rather
than uxu212«. The result is

Theorem X.1: SupposeuV(x)u<C(11uxu)2«(11ux1u)21/22«. Then H given by~X.1! has
complete wave operators and empty singular continuous spectrum. Eigenvalues are isolat
of finite multiplicity.

This result and ones similar to it are discussed by Herbst,114 Yajima,279 and Simon.249 Mul-
tiparticle completeness in electric fields has been studied by Herbstet al.,116 and Adachi and
Tamura.1

There is much literature on both constant and variable magnetic fields but an extensive
of it is beyond the scope of this paper. One can begin looking at the literature by consul
series by Avronet al.19–21 and Chapter 6 of Cyconet al.53 and references therein. See also S
XII.
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XI. COULOMB ENERGIES

While much of the mathematical theory of nonrelativistic quantum mechanics has focus
general potentials, nature uses the Coulomb potential and there is considerable literature o
ing energies of Coulomb systems, especially as some parameter goes to infinity. Section~see
Theorem IX.4! already discussed one such result. We will only introduce some seminal the
consult Lieb179 for a review of the subject.

The most famous of these results is the stability of matter. In its simplest form, it concern
Hamiltonian

H~N,M ;R1 ,...,RM !52(
i 51

N

D i2(
i ,a

1

uxi2Rau
1(

i , j

1

uxi2xj u
1 (

a,b

1

uRa2Rbu

of N electrons moving in the field ofM infinitely massive protons. LetHf be the functions on
L2(R3N) thought of as functionsc(x1 ,...,xN) of N variables inR3 which are antisymmetric, tha
is,

c~xp~1! ,...,xp~n!!5~21!pc~x1 ,...,xN!

for any permutationp; that is,Hf is the wave function with Fermi statistics~we ignore spin which
is easily accommodated!. Define

E~N,M !5 inf
cPHf

R1 ,...,RM

^c,H~N,M ;R1 ,...,RM !c&.

Stability of matter states that

E~N,M !>2c~N1M !. ~XI.1!

Among other things, this bound is important because it is equivalent to the fact that the rad
a chunk of matter withN5M does not shrink to zero asN→`.

The first proof of~XI.1! was obtained by Dyson and Lenard72,73 with a constantC that was
many powers of ten too large. Lieb and Thirring186 found an elegant proof with a constantC that
is on the order of magnitude of Rydbergs. The result~XI.1! fails if one does not impose Ferm
statistics~see Dyson71 and Conlonet al.50!. Extensions that involve relativistic kinetic energ
magnetic and/or radiation fields can be found in Conlon,49 Lieb et al.,180 and Feffermanet al.81

Another Coulomb energy problem that has been extensively studied is the total bi
energy in the limit of large ofZ. One defines

H~N,Z!5(
i 51

N S 2D i2
Z

uxi u
D1(

i , j

1

uxi2xj u

on Hf and

E~N,Z!5 inf
cPHf

^c,H~N,Z!c&

and

E~Z!5min
N

E~N,Z!.

One knows that

E~Z!5aZ7/31bZ21gZ5/31o~Z5/3!. ~XI.2!
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The a term is given by Thomas–Fermi theory and this leading asymptotics was proven by
and Simon.182 Theb term is called the Scott correction and it was established by a combinatio
ideas of Hughes123 and Siedentop and Weikard.229,230The full asymptotics~XI.2! was obtained by
Fefferman and Seco.82 Results for largeZ and large magnetic field can be found in Lie
et al.183,184

XII. EIGENVALUE PERTURBATION THEORY

Some of Schro¨dinger’s earliest papers on quantum mechanics concerned eigenvalue p
bation theory. Kato’s book153 is a source of detailed information on what we will call regular a
asymptotic perturbation theory below. A review of some of the other aspects can be found in
and Simon212 and Simon.254

If A is self-adjoint andB is A-bounded in the sense of~III.3!, and if E0 is a simple eigenvalue
of A, then forb small,A1bB has a unique eigenvalueE(b) nearE0 andE(b) is analytic inb.
This is a result of Rellich215 and Kato.142,143An example is

2D12D22
1

ux1u
2

1

ux2u
2

1

Z

1

ux12x2u
~XII.1!

about 1/Z50 which is equivalent after scaling~of space and energy! to

2D12D22
Z

ux1u
2

Z

ux2u
1

1

ux12x2u
.

The numerical radius of convergence inu1/Zu is about 1.06 soH(Z52) andH(Z51) are both
included. Kato147 developed the theory for form perturbations. Rellich and Kato included de
erate eigenvalues.

Titchmarsh265,266 and Kato146 also developed the theory of asymptotic situations like
anharmonic oscillator

2
d2

dx2 1x21bx4, ~XII.2!

where each eigenvalueEn(b) for b.0 has an asymptotic series

En~b!; (
n50

`

anbn

even though this series can be divergent~and is for the case~XII.2!, as shown by Bender an
Wu27!. See Herbst and Simon117 for an example where an asymptotic series converges but to
wrong answer! See Simon252 for a study of multiwell problems.

In some cases, including~XII.2!, it is known that the divergent perturbation series can
made to give the right eigenvalue with a summability method, either Pade´ approximation~Loeffel
et al.187! or Borel summation~Graffi et al.102!. Borel summability is also known to work for th
Zeeman series for hydrogen–hydrogen perturbed by turning on a constant magnetic fie
Avron et al.21 and Avronet al.17

In certain cases, eigenvalues are perturbed into resonances, the subject of Sec. X
eigenvalues embedded in continuous spectrum under regular perturbations~like ~XII.1!!, the con-
vergence of the perturbation series for a resonance and its related time-dependent pertu
theory and the Fermi golden rule is discussed in Simon.237,238For Stark Hamiltonians, the basi
paper is Herbst.115 Harrell and Simon107 found the leading resonance asymptotics in this case
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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XIII. RESONANCES

Almost everything we have discussed so far has involved a single operator and prop
invariant under unitary transformations. The notion of resonances has got to involve add
structure. For example, the operators2D2uxu212Fx5H(F) are unitarily equivalent for allF
Þ0. But according to the physics lore, there is a resonance with anF-dependent position. We wil
not emphasize the extra structure, but it is there. We will focus on two definitions of resona
one suitable for potentials that decay very rapidly~see Zworski284,285for reviews! and the method
of complex scaling already discussed in a different context in Sec. IX.~See Reed and Simon212

and Simon245 for reviews.!
Let n be an odd dimension, letV be a bounded potential of compact support onRn , and for

Rek.0, define

B~k!5uVu1/2~2D1k2!21V1/2,

whereV1/25uVu1/2sgn(V). Then2k2 is an eigenvalue of2D1V if and only if 21 is an eigen-
value ofB(k). Sincen is odd,B(k) has an analytic continuation as a compact operator-va
function of k to all of C ~when n51, there is a simple pole atk50 but kB(k) is entire!. If
Rek,0 and21 is an eigenvalue ofB(k), we say2k2 is a resonance of2D1V.

Froese83 has a lovely formula that relates resonances defined by this method to scat
theory. For allk, B(k)2B(2k) is trace class so (11B(2k))(11B(k))21 is 1 plus trace class
and has a determinant as an operator onL2(Rn). For k real andS(k), theS matrix onL2(Sn21),

det~S~k!!5det~~11B~2 ik !!~11B~ ik !!21!,

so resonances are related to poles of the analytic continuation ofS.
There has been considerable literature on the number of resonances. LetN(R) be the number

of resonances with energyE obeyinguEu,R. In one dimension, one has a complete result:
Theorem XIII.1: ~Zworski282! Let n51 and suppose@a,b# is the convex hull of the suppor

of V. Then

lim
R→`

R21/2N~R!5
2

p
ub2au.

Remarks:
~1! The result depends on a theorem of Titchmarsh and Cartwright on the zeros of F

transforms of functions of compact support.
~2! Froese83 has obtained some results for cases when a potential decays faster tha

exponential but may not have compact support.
In higher dimensions, much less is known. Zworski283 proved that forV of compact support,

N(R)<C(R11)n/2 ~see also Froese84!. On the other hand for generalV’s, it is only known~Sá
Barreto and Zworski225! that limR→` N(R)5`.

SupposeV is a dilation analytic potential in the sense of Theorem IX.6. Let

H~u!52e22uD1V~eut!.

Because of the analyticity assumption,H(u) is analytic in $uuuIm(u)u,a% for some a. Then
Aguilar and Combes7 found the essential spectrum ofH(u) for N52 and Balslev and Combes23

for generalN:
Theorem XIII.2: sess(H(u))5øEPI(u)(E1e22uR)
Remarks:
~1! I~u! is the thresholds ofH(u) defined analogously to the caseu50. It is not hard to see

that sess(H(u)) andI~u! depend only on Imu.
~2! If Im u.0, sess(H(u))ùR consists precisely ofI. Basically as we increase Imu from 0,

the essential spectrum rotates about the thresholds. In doing that, it can uncover resonanc
0 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Resonances defined by this method have been used by quantum chemists for numeri
culations as well as a theoretical tool. Simon237,238 used it to study the Fermi golden rule an
Harrell and Simon107 to prove various one-dimensional tunneling estimates.

Avron16 used these ideas to study large-order perturbation theory for hydrogen in a ma
field; a rigorous proof of his results was obtained by Helffer and Sjo¨strand.112

Herbst115 has extended the ideas to Hamiltonians with constant electric field. Among
results is the surprising one that if 0,Im u,p/3, then2e22uD1eux has empty spectrum!

XIV. THE QUASICLASSICAL LIMIT

There has been considerable literature on the connection between quantum and c
mechanics. Much of it has focused on what happens as\→0, but there are other limiting situa
tions where a classical or semiclassical picture is appropriate—for example, the largeZ limit of
atoms. We will touch on some of the subjects considered, but the literature is vast. Robert219 has
an excellent review of those results obtained for very smooth potentials using the Fourier in
operator methods pioneered by Ho¨rmander and Maslov. Therefore, I will not try to cover the
results here. We note that in Sec. XI, we referenced the Thomas–Fermi limit, which is qua
sical.

Consider first the\↓0 limit. Let H\52(\2/2m)D1V. Kac140,141had the idea that the sma
\ limit of exp(2sH\) was the same as the zero time limit in Brownian motion. This allows on
prove under great generality that the quantum partition function Tr(exp(2sH\)) approaches a
classical partition function as\↓0; see, for example, Theorem 10.1 in Simon.246 The earliest
results I know of on this subject are due to Berezin.31

Quantum dynamics,e2 isH\ /\c\ , on suitable statesc\ make an elegant classical limit—on
takesc\ to be a coherent state which collapses to a single point in phase space as\↓0. Such
results were found by Hagedorn104–106 ~similar methods were developed independently
Ralston210!.

Since 2\2D1V5\2@2D1\22V#, the small\ limit is the same as the large couplin
constant limit for2D1lV. In particular, ifN(V)5dim E(2`,0)(2D1V), the quantity discussed
in Sec. VIII, one has

Theorem XIV.1: Let n>3 and VPLn/2(Rn). Then liml→` N(lV)/ln/25(2p)2ntn*V<0

(2V(x)n/2dnx), wheretn is the volume of a unit ball inRn.
Remarks:
~1! This theorem is quasiclassical since the right side is (2p)2n times the volume of the

classical phase space region wherep21V(x)<0.
~2! The historical thread for this theorem goes back to a celebrated paper of Weyl274 on

Dirichlet Laplacians. Theorems like XIV.1 with stronger conditions onV are due to Birman and
Borzov,34 Kac,141 Martin,191 and Tamura.263 See Reed and Simon,212 Theorem XIII.80! for the
proof under the stated assumptions.

Let V(x)→` as uxu→` in a fairly regular way~e.g., supposeV is an elliptic polynomial!.
Then 2D1V has discrete spectrum and the asymptotics of the number of eigenv
dim E(2`,a#(2D1V) as a→` is determined by phase space. Results of this type go bac
Titchmarsh;267 see also Reed and Simon,212 Theorem XIII.81!. Similarly, if V(x)→0 but so
slowly that N(V)5`, for example, V(x);2uxu2b with 0,b,2, then the divergence o
dim E(2`,a#(2D1V) asa↑0 is sometimes given by quasiclassical considerations; see Brow
and Clark,40 McLeod,194 and Reed and Simon,212 Theorem XIII.82!.
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