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[. INTRODUCTION

The twentieth century is the century of science. In a century that has seen special and general
relativity, quantum electrodynamics and chromodynamics, a total revamping of our understanding
of molecules and of the cosmos, plate tectonics, and the rise of microbiology, one can make the
case that the most spectacular scientific development was the discovery of nonrelativistic quantum
mechanics in the first quarter of the century. Its aftermath not only changed the physicist's view of
matter, but it set the stage for the revolutions in chemistry, our understanding of stars, biology, and
practical electronics.

In what is one of the more striking cases of serendipity, just as Heisenberg andli8gero
were discovering the “new” quantum theory, von Neumann was developing the theory of un-
bounded self-adjoint operators and Weyl the representations of compact Lie groups—two subjects
of great relevance to the mathematics underlying nonrelativistic quantum mechanics. In short
order they produced bookson Neumanfi! and Weyf’9) that used this mathematics to give a
mathematical foundation to the framework of quantum mechanics. With later additions, notably by
Bargmann, Wigner, and Mackey, the basic foundations are mathematically firm.

This is analogous to having formulated classical mechanics as Hamiltonian flows on symplec-
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tic manifolds. What remains is what might be called the second-level foundations—existence of
solutions of the time-dependent Sctimger equatior{which is equivalent to self-adjointness of
these operatoysand general qualitative issues in dynamics. It is this subject, essentially born 50
years ago, that | will review here. The subject matter is vast with hundreds of contributors and
thousands of papers. Each section of this paper is a proxy for what deserves a book or at least a
very long review article. In attempting to overview such a vast area in a few pages, | have had to
focus on the high points. No proofs are given and | have settled for usually quoting the initial or
especially significant papers. | have no doubt that | have left out some important papers, and if so,

| ask the forgiveness of the read@nd their authorg!

To keep this paper a reasonable size, | have focused almost entirely on the general basics of
Schralinger operators and some simple applications to atomic and molecular Hamiltonians. That
means, among other areas, | have not considered general second-order oper&fbandron
general manifoldgbut see Davies and SafardVPavies>® and Kenig®) nor have | considered
some of the detailed papers on perturbations of Hamiltonians with periodic potessele.g.,

Deift and Hempéf and Gesztesy and Simhnor the extensive literature on Dirac operators nor

the considerable work on Schiinger operators in a bounded region with some boundary condi-
tions including subtle results on what happens at irregular boundary geggsDavie®) nor the

results on phenomena like the quantum Hall effect that apply and extend the general theory to
results in condensed matter physics. While there are a few results akiotitv for cases where
V(x)— as|x|—c, again there is a large literature we will not attempt to review. While Sec. X
has a brief discussion of constant magnetic field, we have not attempted to discuss the recent
extensive literature on nonconstant magnetic fields.

There is a companion piece to this one on open probféfhs.

II. MATHEMATICAL TOOLS AND ISSUES

The mathematics most relevant to the modern theory of ‘Satger operators is functional,
real, harmonic, and complex analysis. In this section, we will briefly set the stage to fix notation.
For more details, see Reed and Simtt?!!

Quantum Hamiltonians are unbounded operators, defined on a dense subspace rather than the
whole Hilbert space. Physics books tend to emphasize the symrtiéigrmiticity” ) of the
Hamiltonian; that is, thatH ¢, i) =(¢,H ) for all ¢,i#in D(H). But more important is a property
called self-adjointness. The adjoidt of an operatoH is defined to be the maximal operator so
that (H* ¢, ¥)=(¢,Hy) for all yeD(H), ¢eD(H*). Hermiticity says only thatH* is an
extension ofH.

We sayH is self-adjoint ifH=H*, H is called essentially self-adjoint if and only Hf is
symmetric and has a unique self-adjoint extension. This holds if and oy ifs self-adjoint.
Self-adjointness is important in the first place becauseif self-adjoint, one can form the unitary
groupe "M and so solve o,=He, (as ¢;=e "M ¢) for initial conditions ¢ € D(H). Indeed,
Stone’s theorem says that any one-parameter continuous unitary group is associated with a self-
adjoint operator. Second, self-adjointness implies the spectral theorem. There is for each Borel set
ACR, a projection,Ex(H), so thatH= [\ dE, ande "= fe ™M dE, . One defines spectral
measuresiu! by

LR (A)=(@,Ea(H) o) (I1.1)

so that

| emauion=(oe o) (1.2

and
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du(n
f—M“’( )=(¢,(H—z)‘1¢). (I1.3)

4

a(H), the spectrum oH, is preciselyU , supp(d,u';,').
Much of what we discuss in this paper involves two distinct decompositions of the spectrum
of H. The first is

agsd H)={\|\ is an eigenvalue of finite multiplicity and an isolated point @fH)}
oesd H)=0(H)\ogisdH).

Equivalently,\ € o4s{H) if and only if for somee>0, dimE, _, ) +.)(H) is finite and for all
£>0, E(\_ )+ (H)#0. o4s{H) captures the notion of bound states.
The second breakup involves the fact that any meaguren R has a decomposition

du=dpppt dpact duse,

wheredu, is a pure point measurgsum of delta functions du,c is F(A)d\, with F a non-
negative locally integrable density, aigl. is a singular continuous measutike the Cantor
measurg | will define o,5(H) to be the set of eigenvalues if it is not the union of the supports
of up, because it may not be closed

oadH)=U suppdu),,
[

oadH)=U suppdu)...
[

One often defines a refined et with 2 .= o,{H), the essential support of the ac measure.
Basically, the essential support of the a.c. meagde)d\ is {\|F(\)#0}. Itis defined modulo
sets of Lebesgue measure zek,. is the union of the essential support ai;(ﬂ)ac over a
countable dense set gk.

lll. SELF-ADJOINTNESS

The theory of Schrdinger operators was born with Kato’s famous self-adjointness theorem
for atomic Hamiltonians. His theorem abstracted states the following:

Theorem 1I1.1: (Kato™¥) Let H=L2(R®N) where xeR3N is written (xq,...xy) with X
eR®. LetA; be the Laplacian in xand let {,V;; be functions orR® in L%(R®) +L”(R?). Let

N
HO:_Zl (2u) A, (I1.1)
N
V=i:21 Vi(Xa)+i2<j Vij (X —X;) (11.2)
and let H=H,+V. Then H defined on [Hy) is self-adjoint and is essentially self-adjoint on
Co (RN,
Remarks:

(1) See Reed and Sim8Ht for a proof.

(2) The basic idea of the proof is a perturbation theoretic one. There is a general tHédmeem
Kato—Rellich theoremthat if A is a self-adjoint operator anB is a symmetric operator with
D(B)DD(A) and for somex<<1 andB>0 and all¢ e D(A), that
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IBel<allAg|+ Bllel, (11.3)

then A+ B is self-adjoint onD(A) and essentially self-adjoint on any domain of essential self-
adjointness foA. If (111.3) holds, we will sayB is A bounded. The infimum over adl is called the
relative bound oB with respect toA.

(3) If one looks at a general bound of typ#l.3) with <1 whereA=—A on L?(R¥) andB
is multiplication byV, then in terms of requirements thdte Lf (R¥), one needs

p=2 k=123 (11.4a)

p>2 k=4 (111.4b)
k

p?z k=5 (l.4c)

by using Sobolev estimatdsee, e.g., Cycoet al>).

(4) If k=3N and we useonly the LP requirements of Remark 3, Coulomb potentials stop
working already atN=2. Thus, for Kato’s theorem, it is critical to use Sobolev estimates in
subsets of variables as Kato did.

An industry developed in understanding whem +V is essentially self-adjoint o&q(R").

An illustrative example is

Example: Let H=—A—c|x| 2 on C3(R¥) with n=5 (needed forHpeL? for all ¢
e C5(RX). Then it can be seetReed and Simoft! Example 4 in Sec. X Rthat if c>co=(n
—4)n/4, thenH is not self-adjoint onC{ . This is a quantum analog of the classical fact that if
V=—c|x| 2 for anyc>0, a set of initial conditions of positive measure falls inte 0 in finite
time (co>0 is a reflection of an uncertainty principle repulsion

This example shows that for pute’ requirements, one cannot do better tH#h4) since
|x|72eLP+L> if p<k/2. But it turns out this is only so i¥ is allowed to have any sign. For
V=0, one can do much better. The best result of this genre is

Theorem 111.2: (Leinfelder and Simadé&f) Let V=0, Ve L{ (RY), {a;}{_; e Lin(RY) with
V.aelLZ(RY (distributional derivatives Then

k
H=21(iaj—a,-)2+v (1.5)
=

is essentially self-adjoint on ﬂR").
Remarks:
(1) For a proof, see Cycoat a
(2) This is essentially a best possible resultal0, H is defined onCy if and only if V
€ L%c; so the result says for positivé, we have essential self-adjointness if and onlHifis
defined. Similarly, unless there are cancellaticns; LrcandV-ae L3 is required forH to be
defined onCy .

(3) It was SimoR®® who first realized that fok=0, there only needed to be lodaf condi-
tions. However, he required a global conditi¢|11V(x)|2e‘bX2dx<oc for someb>0. It was
Kato'®? who proved the general=0 result(and also allowed for smoots). Kato's paper used
the distributional inequality, now called Kato’s inequality

|53

Alu|=Re(sgnuAu) (111.6)

that is also critical to the Leinfelder—Simader proof.
(4) (111.6) is essentially equivalent to the fact thedt' is positivity preserving. The version of
(11.6) with magnetic fields is equivalent to diamagnetic inequalities:

[(e"™Me)(x)|=<(e™]e])(x) (IN.7)
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for thleigl)-| of (I11.5) (with V=0). These ideas were discovered by Nel§&"§imon?*1?*’and Hess
et al:

While there are best possible self-adjointness results for magnetic fields and positive poten-
tials, the results fol’s which can be negative are not in such a definitive form. All the basic
principles are understood but | am not aware of a single result that puts them all togethef
the best results is in Kato’s papgralthough, as we will see, it is not quite optimal with regard to
local singularities So | will present the general principles that are understood in this case.

(@ —|x|? borderline for behavior at infinityNegative potential® of compact support for
which H=—A+V is essentially self-adjoint o€ normally obey a global estimate of the form
(11.3) (with A=—A, B=V) and, in particularH is bounded from below. However, \f is not of
compact support, it can go to minus infinity at infinity without destroying self-adjointness. More or
less, the borderline for keeping self-adjointness {|?. For example, it can be provésee, e.g.,
Reed and Simoft! Theorem X.9 that — (d?/dx?) —|x|% on L?(—,=) is essentially self-adjoint
on C{(—,») if and only if @<2. This is attractive since a classical particle with the same
potential reaches infinity in finite time if and only #>2. Nelson has exampldsee Reed and
Simon? p. 156 of V(x) with V(x)<—cx* so — (d?/dx?) + V(x) is still essentially self-adjoint
and thus, the borderline will not be if and only if, but the general version of this is th&pxf
=—cx? in some averaged sense, them\ +V(x) will be essentially self-adjoint ol . The
earliest version of this is Ikebe and Kaf}.My favorite theorem of this genre is due to Faris and
Laviné® (see Reed and Simdht Theorem X.38. In particular, Stark Hamiltonians whehé
=c-x+V, are essentially self-adjoint for suitablg,. In any event, | will focus henceforth on
cases where- A +V is not unbounded from below.

(b) Stability of relative boundedness under adding & or a magnetic field SupposeA=0.
Then(I11.3) holds for somex<<1 if and only if

lim |B(A+y) Y <1.

y— e
On the other hand|ll.7) implies that forV=0, anya and any multiplication operatdi:
IW(H+ %) “HI<IIW(=A+5) 7Y

and so the second principle is that in studying the negative p&ft ohe can assumé is negative
and then add back an arbitrary positikq%,C positive V. While this is true, it ignores situations
where there are cancellations between the positive and negative parts which cafseecerg.,
Combescure and Ginibt.
(c) Relative bounds need only hold uniformly locallyhe following proposition holds:
Proposition 111.3: Suppose V is a function di so that for somey, 8 and every y

IVx(- =y)el<al=Ael+ Blell, (111.8)
wherey is the characteristic function of the unit cube. Then for @nya, there is somes so that

IVell<@l— Al +Bllell. (11.9)

This result is proven by a variant of an idea of Sig&IFind a “partition of unity” 1 ubu SO
;hatEjffl, eac_hj_M is suppozrtfed in_ some unit cutﬁsojM_X(. -Y.) =], for somej,), a_nd_the
j,'s are locally finite,=(Vj ) is uniformly boundedthe j,’s can be translates of a singig)
andX|Aj,| is uniformly bounded. IHo=—A, we have(whereC is related to|(Vj,)?|.. and

IS (A] )
; [iu.[i . HEII<C(Ho+1)

and from this that
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> [Hoi . @llP<(1+e)lIHoell>+C, ] ¢l%. (111.10)

Thus

IVel?= % IVX(- =y uel?

<(1+e)a?Y [Hojael?+(1+e B¢l (by (I11.8)
“

<(1+e)?aHoel?+((1+e 1) B2+ Cy)l¢|? (by 111.10)

which yields(l11.9).

Proposition 111.3 states that the proper condition\omo yield a—A bound is a uniform local
condition.

(d) Convolution results are the proper local conditiohs discussed earliet,? conditions on
V do not properly control functions on subspaces. Explicitly,7eR¥— R' be a projection and
V(x)=W(m(x)). Then forV to be —A bounded(assumingk=1=5), we needVNe L (R') for
p=1/2 and soV e LfgC(Rk) with p=1/2. But if V is not a function of a subset of variables, in
general we neep=k/2. It is a discovery of Stumm&F that by stating conditions in terms of
convolution estimates, one can find conditions that respect subsets of variables. In particular, the
following is a space, introduced in Stummel®? Let V be a function orR”; we sayV e S, if and

only if
lim| sup Ix—y[*""|V(y)?|d"y|=0 if v=5,
al0| x JIx—yl<a
lim| sup In(|x—y| " H|V(y)|?d*y|=0 if v=4
alo| x JIx—yl=sa

supf V(y)|2dy<o if »<3.
x JIx—yl<1

This class respects functions of subvariables in the sense thaRif—R' is a projection,
V(x)=W(m(x)) andWeS, thenVeS,. Moreover, it is not hard to shoysee, e.g., Cycon
etal®) that if Ve S,, thenV is —A bounded with relative bound zero. Moreovsee Cycon
et al,®® Theorem 1.9 if for somea,b>0 andé with 0<5<1 and all 0<e<1 andg e D(H,)

[Vel?<e|Ap|?+aexpbe %) ¢|? (11.11)

thenV isin S,. See Schecht&® for more on Stummel conditions.
(3) The Kato class and going beyond relative boundednieshis inequality papet>? Kato
introduced a form analolf, of S,: Let V be a function orR”; we sayV e K, if and only if

lim
a0

sup Ix—y|2""|V(y)|d"y|=0 if »=3, (Il.12a)

x JIx=yl=a
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lim supf In(|x—y| " H|V(y)|d"y|=0 if v=2, (11.12b)
alo| x JIx—yl<a

supf [V(y)|dy<e if v=1. (1n.12c)
x JIx—y[<1

Then Katd®! proved if max¢-V,0)eK, andVeL2(R), then —A+V is essentially self-
adjoint onCg(R”). While it is not Kato’s proof, this is intimately connected with the semigroup
result discussed in Sec. IV. Defining the form suf) one knows expftH):L>—L”* so
L*NL2ND(H) is a domain of essential self-adjointness. It is not hard to then $howD (H),
the L™ functions of compact support are a domain of essential self-adjointness. Then convolution
allows one to geC; approximations.

(f) Logarithmic improvementNeitherS, nor K, is quite the ideal space for essential self-
adjointness. For example, #=5 andV(x)=|x| "?(1+|log|x|))"¢, V is in K, only if a>1,inS,
only if &> 2, but —A bounded with relative bound zero df>0.

Analogous to the issue of self-adjointness is a question of whether maximal and minimal
forms agree. This is discussed in K&foand SimoA*® (see Theorem 1.13 in Cycagt al>®).

IV. PROPERTIES OF EIGENFUNCTIONS, GREEN’'S FUNCTIONS, SEMIGROUPS, AND
ALL THAT

| wrote a long review of these subjects 20 years &jmorf>% and the situation has hardly
changed since then, although there has been extensive interesting work on what happens for
general elliptic operators and for bounded regitsee, e.g., Davie®). So it will suffice to hit a
few major themes. The basic theorem is

Theorem IV.1: Let V, e L} (R”) and V_eK,, the space oflll.12). Let H=—A+V as a
form sum. Then for anygq,e” ™ maps IP to L% and for t<1,

le™ ™, q=Ct™, (IV.1)
where
vl 1
aZE(B_ a) (IvV.2)
Remarks:

(1) SemigroupLP bounds were first found by DaviééHerbst and Sloafh'® and Kovalenko
and Semend\¥* with further developments by CarmofiaSimon?® and Aizenman and Simof.

(2) In particular, it was Aizenman and SimBrwho found thatk , is the natural class fdrP
bounds. Indeed, they not only proved Theorem IV.1 in this form but also showed W&tdfand
exp(—tH) mapsL™ to itself with lim; o e "|.. .=1, thenVeK,,.

(3) The result holds when magnetic fields are adtlda diamagnetic inequality

(4) Most of these authors use a combination of path integral estimatek Faimderpolation
theory. In particular, the Feynman—Kac and Feynman—Kadettaulas(see Simoff*® for exten-
sive discussionare useful tools in studying Schiimger operators. See SinfGAfor an extension
to cases wheiV(x)=—cx°.

(5) In fact, e ™" takesLP not only intoL” but into the continuous functiorisee Simorf>°
Theorem B.3.1

(6) (IV.1)/(IV.2) are precisely the best results fidr=—A.

(7) This theorem says that can be defined as the generator of a semigroup onleaspace.
The spectrum has been shown to b independent in Hempel and Voight For a general
discussion olLP Schralinger operators, see Davigs.

Downloaded 20 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



3530 J. Math. Phys., Vol. 41, No. 6, June 2000 Barry Simon

Once one has these estimates, they can be used to derive:
(a) Sobolev estimatedAs in the free case i¥ obeys the conditions of Theorem V.1, then
(H—2) " takesLP to LY if

7) . (IV.3)

pfl_qfl<

The result(see Simorf>° Theorem B.2.1is obtained by integrating the semigroup boufit.3)
comes from(lV.2) and the requirement of integrability &t 0.

(b) Integral kernels:Bounded operators from?® to L* have bounded integral kernels and so
Theorem IV.1 can be usdgee Simorf>° Theorem B.7.1to provee M, (H—2) "% (a>v/2) are
integral operators with continuous integral kernels. One can also €Biowon?*° Theorem B.7.2
that for 0<a<wv/2, (H—2z)~“ is an integral operator with an integral kernel that is continuous
away fromx=y with a precise singularity at=y.

(c) Eigenfunctions:Since global eigenfunction§.e., ¢ e L? that obeyHp=Eg) are in
Rane '), Theorem IV.1 implies such eigenfunctions areLifi. In fact, all this can be done
locally. Any eigenfunction(distributional solution oH ¢=E¢) is automatically continuous and
one can prove Harnack inequalities and subsolution estimates. This is discussed in detail in
Aizenman and Simds and Simor?>°

We end this section with a discussion of some issues involving eigenfunctions. There is much
literature on when Schdinger operators have positive solutions. This was begun by Alledtetto
and Piepenbrir® with later results by Agmohand Pinchovef®’

Here is a typical theorer(S8imon[Ref. 250, Theorem C.8]t

Theorem IV.2: Let V_eK, and K, eK'°°. Then Hu=Eu has a nonzero distributional
solution which is everywhere positive if and onlynifspecH)=E.

There is also much literature on the issue of exponential decay of eigenfunctions. One result
(see Simofr® Theorem C.3.says that any.? eigenfunction actually goes to zero pointwise—of
interest only for eigenfunctions of embedded eigenvalues. For discrete spectrum, the decay is at
least exponential under minimal regularity hypothesi&/oiThe original key papers on this theme
are by O'Connct® and Combes and Thom&5From their ideas, one obtairisee Sec. C.3 of

Simon);?*°
Theorem IV.3: Let V_eK,, V, eK'° and let H=—A+V and let Hu=Eu with ue L.
Then
lu(x)|<Ce AN, (IV.4)
where:

(i) For general E in the discrete spectryiiV.4) holds for some &0 and C>0.

(i)  If H has compact resolvent, thé€h/.4) holds in the sense for any>A0, there is a suitable
C>0.

(i) If SeinfoedH) and E<Z s, then (IV.4) holds in the sense that for any A
< E— 3. there is a suitable G 0.

One can go beyond this to get fairly detailed behavior on decay in casesiivhas compact
resolvent or forN-body potentials. In one dimension, one can justify under some regularity
conditions the WKB formula that states wh¥iix) —«, eigenfunctions decay like

V(x)lf“exp( - f:\/V(y)— E dy). (IV.5)

It was Agmort who realized the proper higher-dimensional analog for this involves what is
now called the Agmon metrigp(x) is the geodesic distance gfto 0 in the Riemannian metric
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pij(X) =8 (V(X) — E) . d?x. There is a related but more subtle definition fbbody systems. See
Agmorf and Deiftet al>® for further discussions. See Sinfohand Helffer and Sjstrand** for
an application to tunneling probabilities.

Eigenfunctions play a critical role in explicit spectral representations of Satger opera-
tors. The basic ideas go back to work of BrowdeGarding®® Gel'fand®® Kac*” and especially
Berezanskif>*° See Sec. C.5 of Simé and Last and Simdr° for some additional one-
dimensional results.

Finally, we mention issues of cusps and nodes of eigenfunctions*®aims a famous paper
on cusps at Coulomb singularities for atomic eigenfunctions. See Hoffmann-Ostenhof
et a| 108120124 recent developments in this area.

V. ONE-DIMENSIONAL DECAYING POTENTIALS
One-dimensional Schdinger operators
d2
~ 52tV (V.1)
on L?(—,») andL?(0,<) and their discrete analogs
hu(n)=u(n+1)+u(n—21)+V(u)u(n) (V.2)

on|?(—x,) andl?[0.) have been heavily studied for two reasons. First, ordinary differential
equation(ODE)/difference equation methods allow one to study them in much greater detail than
one can the higher-dimensional analogs. Second/(¥)=V(|x|) is a spherically symmetric
function onR”, then— A +V is unitarily equivalent to a direct sum of operatorsldif0,) or the

form (V.1) where the effectivd/’s have the formV,(x) = kx| 2+ V(x) for suitablex,’s. The
details can be found, for example, in Reed and SiftdiExample 4 to the Appendix for X.1.

The one-dimensional theory has been in and out of vogue. It was extensively studied from
1930 to 1950 with important contributions by Titchmarsh, Kodaira, Gel'fand, Hartman—Wintner,
Levinson, Coddington—Levinson, and Jost. Significant developments during the next 25 years
were mainly in the area of inverse spectral the@ynajor exception was Weidmann’s wark to
be discussed shortlyvhich will be discussed in Sec. VI. From about 1975 starting with the work
of Goldsheidet al®® and Pearsof?* this has been an active area with extensive study of the
one-dimensional case, especially with long-range and with ergodic potentials.

One special feature of one dimension is that one can limit spectral multiplicities under very
general conditions oN':

Theorem V.1:

(@ Let H=—(d%dx?)+V(x) on L?(0») with fixed hi{0)+u’(0)=0 boundary conditions
and suppose H is essentially self-adjoint ofj[G). Then H has simple spectrumulti-
plicity 1).

(b) Let H=—(d%dx?)+V(x) on L?(—x,») and suppose H is essentially self-adjoint on
Ci(—o,). Then

(i) The absolutely continuous spectrum of H is of multiplicity at most 2
(i)  The singular spectrum of H is of multiplicity 1

Remarks:

(1) All one needs for local regularity of is V e LY[0,R] for all R>0 or L (—%,»).

(2) The result holds even il is not essentially self-adjoir{i/ limit circle at +«) so long as
a boundary condition is imposed &tor at —.

(3) The only subtle part of the result is that the singular continuous spectrum is simple on the
real line. This is a theorem of Kdd®1*see also BerezansKii:** My preferred proof is due to
Gilbert %
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In this section, we will discuss the case wh¥fie) — 0 at infinity. In Sec. VI, we will discuss
inverse spectral theory, and in Sec. VII, we will discuss ergodic potenfidiese two subjects are
mainly one dimensionalThe issue of the asymptotic eigenvalue distribution wklen~ as +o
is discussed in Sec. XIV on the quasiclassical limit.

This section will discus$V.1)/(V.2) in situations wher&/(x) (or V(n)) goes to zerdat least
in an average sens@s Xx—o (or n—=). The interesting thing is that there are three natural
breaks in behavior. Expressed in termgxjf * behavior, they are

(i) At a=2, we shift between a finite number of bound states 2) or an infinite number
(a<?2) at least ifV(x)<O0.

(i) At a=1(Vell), we shift between a pure scattering situation for positive energies (
>1) and the possibility of positive energy bound states ().

(i) At a=3, (Vel?), we shift from there being a.c. spectrum for almost everywhere positive
energy &> 3) to at least the possibility of very different spectrum.

(i) and(ii) have been known since the earliest days of quantum mechanics:=hdorder-
line first occurred in Simafi* who found that random decay potentials had point spectrum when
a< 3. Delyonet al® then showed ifr= 2, there may be some nonpoint spectrum. As we will see,
subsequent results confirmed this borderline.

The negative spectrum for decaying potentials is easy: So Iorfgf+af$V(y)|dy—>0, His
bounded below and hd$®, «) as essential spectrum by Weyl's criteriggee, e.g., Reed and
Simon?® Sec. XIlI.4), which means that—, 0) has only discrete eigenvalues of finite multi-
plicity, which can only accumulate at energy 0. Indeed, by Theorem V.1, the point spectrum is of
multiplicity 1. Once these basics are established for the discrete spectrum, a number of detailed
questions about it arise:

(a) Is oy finite or infinite? The borderline, as mentioned above;, i€ decay. Explicitly, one
has Bargmann’s bouf8ithat the number of eigenvalues on a half line witf0)=0 boundary
conditions is bounded byx|V(x)|dx and on a whole line by % [“_|x||V(x)|dx (see Simof{*®
for a review of bounds on the number of bound stat€n the other hand, iim,_..|x|?V(x)
< -1, one can prove that has an infinity of bound statésee, e.g., Reed and Sim®ri,Theorem
XI1.6).

(b) If ogisc is infinite, how doedim, ;o dimE .. ,y(H) diverge? This is a quasiclassical limit
and discussed in Sec. XIV.

(c) Bounds on moments of eigenvalukeigb and Thirring'®® motivated in part by their work
on the stability of mattet’* initiated extensive study on the best constapy in

3 Jeylr=t,a ] Ivoo ] vax
J

which holds if y=3. Here{e;} are the negative eigenvaluestdéf For y= 3 the constant ,, ; is

known to be quasiclassicéhizenman and Liep® For ye[3,3), it is known thatL; is strictly
larger than the quasiclassical restfIt is conjectured to be the optimal value for a single bound
state1,2§1)s explained in Lieb and Thirriff§, but this is still open(except aty= 3 (Hundertmark

et al=).

(d) Is there a bound state for weak couplingi?one(and twg dimensionsH has bound states
even for very weak coupling. The resusimort*?) is that if f|x||V(x)|dx<c and [V(x)dx
<0 andV#0, thenH always has a bound state and the binding energy &f+ uV is ~cu? as
w] 0 (if [V(X)dx<O0; itis ~cu®if fV(x)=0).

As for positive energies, the situation is simplevie L':

Theorem V.2: Let Ve L!(—,) or L}(0). Then HEy.(H) is unitarily equivalent to
—d?/dx? (on L?(—,») or L?(0.¢) with u(0)=0 boundary conditions

Remarks:

(1) This result is essentially due to Titchmar8h.

(2) In terms ofr ~¢ falloff, Ve L* meansa>1.
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(3) Using scattering theoretic ideas, one can prove wave operators exist and are c¢seglete
Sec. VIII).

(4) This says there is no point of singular continuous spectrum at positive energies and that the
a.c. spectrum has essential supgOrte) with multiplicity 2 or 1.

(5) We have stated the result faof0)=0 boundary condition for simplicity; it holds for all
boundary conditions at 0.

As for slower decay thah!, if one has control of derivatives, one can still conclude the
positive spectrum is purely absolutely continuous. The simplest result of this genre is

Theorem V.3: (Weidmani’) Let V=V, +V, where \{ is in L, V,(x)—0 as x— +%, and
V, is of bounded variation. TherHE.)(H) is unitarily equivalent to—d?dx® (on L?
(—o,%) or on L?(020) with u(0)=0 boundary conditions

Remarks:

(1) V, of bounded variation withv/,—0 at infinity essentially says thatdV,/dxeL?; in fact,
anyV, of bounded variation can be writtéry+V, with Ve L andV, a C! function with
dV,/dxelL?.

(2) Pure power potentials™ “ for any >0 are included in this theorem; indeed, any monotone
function V(x) with V(x)—0 asx—o is of bounded variation.

For a short proof of Theorems V.2/V.3, see SinfthBoth theorems can be understood as
coming from the fact that all solutions of u”+Vu=u with A\>0 are bounded. That such a
conclusion implies the spectrum is purely absolutely continuous was first indicated by C&mona
(who required some kind of uniformity iR). Important later developments that capture this idea
are due to Gilbert and Pears®nlast and Simort/® and Jitomirskaya and La$t® The tools in
those papers are also important for the proofs of the results of Sec. VII.

Once one allows decay slower than'~ ¢ for both V andV’, the conclusion of Theorems
V.2/V.3 can fail because of embedded point spectrum. The original examples of this were found
by von Neumann and Wignéf? Basically, if V(x)=y|x| *sin(x) for x large andy>1, then
—u"+Vu=13u has a solution which i4.? at infinity (see, e.g., Theorem XI1.67 in Reed and
Simorf'd. By adjustingV at finite x, one can arrange for any boundary condition one wants at
x=0. In fact, if one allows slightly slower decay th&x|~!, one can arrange dense point spec-
trum. Nabokd®” and SimoR®’ have shown that for any sequenpe,}._, of energies in(0, )
(Naboko has a mild restriction on thés) and anyg(r) obeying lim_ .. rg(r) =, there is a/(x)

obeying:

(i) [V(X)|=g(]x|) for x large;

(i)  —u"+Vu=X\,u has a solutior.? at infinity and obeying a prescribed boundary condition
atx=0.

Remark:lt is an interesting open question about whether there exist potentials decaying faster
than|x| Y2 with dense singular continuous spectrgrather than dense point spectrum

The interesting fact is that even though potentials of Naboko—Simon type have dense point
spectrum, they may also have lots of a.c. spectrum. The best result is:

Theorem V.4: (Deift and Killip®) Let Ve L2. Then the essential support of the a.c. spectrum
of H=—(d?/dx?)+V is [0, ).

Remarks:

(1) In terms ofr ~« decay, this result requiras> 1.

(2) This result is optimal in that it is known for any Orlicz space strictly larger tharin
terms of behavior at infinity, there ak&s whose associateld has no a.c. spectrum.

(3) The first result of this genre was found by Kiseéf@who proved the conclusion of this
theorem fo V(x)|<Cx %4 €. There were subsequent improvements of this by Kis€lehrist
and Kiselev*® and Remling?®

(4) Killip **° has a partially alternate proof of Theorem V.4.
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Once the decay is allowed to be slower thart’2, one can have much different spectrum in
[0, e):

(i) If Wis a suitable family of random homogeneous potentials \&40d = |x| ~*W(x) with
a< 3, thenH has only dense point spectrum(y ). This was first proven in the discrete case by
Simorf>! and later in the continuum case by Kotani and Ushirt{a.

(i) Generic potentials decaying like|~“(3> «>0) produce singular continuous spectrum as
discovered by Simof® For example, iV e C(R)|sup|x|*|V(x)|=||V||,} viewed as a complete
metric space in|-|,, a denseG; of V's are such that-d?/dx?+V(x) has purely singular
continuous spectrum dm, «).

(iii) Much more is known in the borderline= 3 case, at least for the discrete Satirger
operator(V.2). For example, ifa, are independent, identically distributed random variables uni-
formly distributed in[—1, 1] and V(n)=un *2a,, then for suitable coupling constanisand
energiesE in [—2, 2], the spectral measures have fractional Hausdorff dimension with an exactly
computable local dimension. This is discussed in Kiselesl1*® There are earlier results on this
model by Delyonet al® and Delyorf?

(iv) A very different class of decaying potentials was studied by Pe&féétis potentials are
of the form

oo

V(X)= 2 a,W(x—x,), (V.3)

n=1

whereW=0, a,,— 0, andx,— o> very rapidly so the bumps are sparse. He showed that for suitable
a, , X, the correspondingl has purely singular spectrum—providing the first explicit examples of
such spectrum. Strong versions of his results were found by Rethiiagd Kiselevet al*® In
particular, the latter authors proved K, ;/x,)—> (e.g.,x,=n!), then potentials of the form
(V.3) 2Iead toH’s with purely singular spectrum l‘}iaﬁ=oo and to ones with purely a.c. spectrum

if Zap<o.

VI. INVERSE SPECTRAL THEORY

One area related to Sclinger operators, especially in one dimension, is the question of
inverse theory: How does one go from spectral or scattering information to the potential. There is
much literature, including three books | would like to refer the reader to: Chadan and Sébatier,
Levitan’® and Marchenkd® | will only touch some noteworthy ideas here.

In one dimension, a key role is played by the Weayfunction and the associated spectral
measuredp. Given a potentiaV so thatH is self-adjoint withu(0)=0 boundary conditions, for
eachz with Im z>0, there is a solutiom(x;z) of —u”+Vu=zu which is L? at infinity. Them
function is defined by

B u’(0;z) Vi1
m(z)= W02 (VI.1)
Imm(2)>0 in Imz>0 so by the Herglotz representation theorem
=B f dp(\ ! A VI.2
m(z)=B+ | dp( )E—mz (V1.2)

for a suitable constar. dp is called the spectral measure fdr One can recovelp from m by
1 :
;Im M(A+ig)dh—dp(N\) (VI.3)

weakly ase |0 and (VI1.2) allows the recovery ofn from dp given the known asymptotics
(Atkinson® Gesztesy and Simép
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m(—«%)=—k+0(1) (V1.4)

as|k|—o with §<Argx<(m/2)— 8. dp really is a spectral measure for [g{x,\) solve —¢"
+ Vo =\ with boundary condition®(0\)=0, %'(0\)=1, and define foff € C;(0,»)

(Uf )(x)=f:o(x,x)f(x)dx. (VI.5)

ThenU is a unitary map of.2(0,,dx) to L2(R,dp(\)); in particular,

f |(Uf)(7\)|2dp(>\)=f [f(x)|?dx (V1.6)

or formally

f e(X,M)e(y,M)dp(A)=8(x—y). (VL7)

Moreover, UHf)(N)=N(Uf)(N\). dp and its equivalent functiomis therefore close to spectral
information. One way of seeing this explicitly isW(x) —ce. In that casem is meromorphic, the
poles ofm are precisely the eigenvaluestéfwith u(0)=0 boundary conditions and by definition
of m, the zeros are precisely the eigenvalues witfl0)=0 boundary conditiongn is uniquely
determined by these two sets of eigenvalues.

In many ways, the fundamental result in inverse theory is the following one:

Theorem VI.1: (Borg®’—Marchenkd®®) m determines gthat is, if ¢ and @, have equal
m’s, then g=q5.

Recently, the following local version of the Borg—Marchenko theorem was proven

Theorem VI.2: Let g; and ¢, be potentials and mand m, their m functions. Then,g=q, on
[0,a] if and only if

|my(— &%) —my(— k?)|=0(e™22%)

as k— for k obeyingd=argrx=m/2— 6.

Remarks:

(1) This result was first proven by Sim&fi whenq; andq, are bounded from below.

(2) The general result which even allowsto be limit circle at infinity was first obtained by
Gesztesy and Simot.

(3) A simple proof of Theorem VI.2 was subsequently obtained by Gesztesy and 3tmon.

Given the uniqueness result, it is natural to ask about concrete methods of detemyaniag
m. There are two approaches for the general case. The first is due to Gel'fand and Lexitn
depends on the orthogonality relatid¥1.7), while the other, due to Simdii® is a kind of
continuum analog of the continued fraction approach to solving the moment problem.

The Gel'fand—Levitan approach depends on a representation of the solgtichge to

Povznef® and Levitan*’®

sintkx) + JOXK(x,y) sincky) dy, (VL.8)

QD(X!)\): k k

wherex =k2. In essence(VI.7) leads to a linear Volterra integral equation fowhose kernel is
determined by. Once one hak, one can determin¥ from (VI.8) and — ¢” +Ve=\ ¢ or from
more direct relations oK to V.

The approach of Simon depends on a representation a$ a Laplace transform
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m(—K2)=—K—faA()\)e_z"ada-l-O(e_za"), (V1.9)
0

which determinesA given m (there is also a direct relation & to p given in Gesztesy and
Simor®). One can introduce a second variable and funcfgr,a) so A(x=0,a)=A(a). A

obeys
A_A, fBA(x,,B)A(x,a—,B)d,B (V1.10)
ax  da  Jo
and
Iirl‘rg) A(X,a)=V(X). (VI.11)

In this approachm determinesA(x=0,-) by (VI1.9); the differential equatioriVl.10) determines
A(x,a), and then(VI.11) determinesV.

Inverse spectral theory is connected to inverse scattering for short-range potentialdgsince
on [0, ») is determined by scattering data. Scattering data also determine the positions of the
negative eigenvalues. One needs to supplement that with the weight of the pure points at these
negative eigenvalues known as norming constants. March&h#®8has an approach to inverse
scattering related to the Gel'fand—Levitan approach by using a different representation than
(VI.8). When[5x|V(x)|dx<, Levin‘’*has proven that in Irk>0, there is a solutiogs(x,k) of
— "+ Vy=Kk?y given by

¢(x,k)=eiXK+f K(x,y)evdy.
X
Krein'®2-1%43iso developed an approach to inverse problems. A different approach to inverse
scattering is due to Deift and TrubowftzFor another approach to inverse problems, see Méfin.
Inverse theory for periodic potentials also has an extensive literature starting with Dubrovin
etal,’”” Its and Matvee#?? McKean and van Moerbek&® McKean and Trubowit2?? and
Trubowitz2®8

As for higher-dimensional inverse scattering, these scattering data overdetermine the poten-
tial. For example, for short-rangé’s, the scattering amplitude at fixed momentum transfer ap-
proaches the Fourier transform dfat large energy, so the large energy asymptotics of scattering
determineV. There is considerable literature on recoverihdrom partial scattering data, which
we will not try to summarize here.

One reason for the interest in inverse theory is the connection it sets up between spectral
theory of Schrdinger operators and the analysis of certain nonlinear partial differential equations
like KdV (see Doddet al.®® Novikov et al.*®® and Belokoloset al?®).

VIl. ERGODIC POTENTIALS

Let () be a compact metric space with probability measiyeand T, with t e R” or T,, with
neZ’ be an ergodic family of measure-preserving transformationsf1i@t-R be continuous.
For w € (), define

V,(X)=f(Tyw) (VIL1)
and

H,=—A+V,. (VI1.2)
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Note: To allow unbounded/’s as seen, for example, in Gaussian random potentials, one
wants to extend this picture to either alldvio be discontinuous and/or take valuesRit{«},
and/or allow{) to be noncompact; for simplicity, we will discuss this model for motivation.

H,, is a family of Schrdinger operators, not a single one, but by the ergodicity and an obvious
translation covarianc&’Tyw(x)=Vw(x+y), many spectral properties occur with the probability
one. So one can speak of typical properties. In particular, it is known that the full speXtrim
essential support of the absolutely continuous specfiym the closure of the point spectrum

2 pp: and the singular continuous spectriig, are a.e. constant i (see, e.g., Theorems 9.2 and
9.4 in Cyconet al> for proofs; the result fo andX,, is due to Pastdf? and the other results

to Kunz and Souillartf®. Note onlygpp is a.e. constant. ,,, the actual set of eigenvalues is not.
Examples:

(1) Let Q=[a,b]*" and letdy be the infinite product of normalized Lebesgue measure on
[a,b]. Let (Tw)n=wn+m. The corresponding discrete Sctitmger operator is called the Ander-
son model and is typical of random potential models.

(2) If Q is a compact Abelian group witll” or R” as a dense subgroud;y is the Haar
measure and, is the group translate, thevi is a periodic or almost periodic function. A fre-
quently discussed example is

V(n)=\ cod man+6), (VI1.3)

where « is irrational, 6 runs in[0, 2] (which is ), and\ is a parameter. The corresponding
discrete Schidinger operator is called the almost Mathieu model.

The simplest example of this framework—which is atypical in many ways—is the periodic
potential. The basic facts in this case go back to physics literature at the start of quantum me-
chanics(Bloch, Brillouin, Kramer, and Wignernd, in one dimension, to work on Hill's equation
(Floquet, Lyapunov, Hamel, and HaupA critical early mathematical paper on the multidimen-
sional case is Gel'fant’ The key result is that for periodiv’s with a mild local regularity
condition, H=—A+V has purely absolutely continuous spectrum. This result is discussed in
detail in Reed and Simoft? Sec. XI11.16. The only subtle part of the argument is to eliminate the
possibility of what are called flatbands, a result of ThoR?s.

In the mathematical physics literature, the period from 1975 onwards has seen enormous
interest in the study of almost periodic and random models and special cases thereof. Three books
that discuss this are part of Carmona and Lactbi@yconet al.®® and Pastur and Figotf?® We
will only touch some of the general principles, leaving the details—especially of detailed
models—to the books and the vast literature. We will make references to the Lyapunov exponent
without defining it; see Cycoet al,>® Sec. 9.3.

For random potentials, the most interesting results concern localization. While the spectrum is
typically an interval(e.g., for the Anderson model in dimensions, it iga—2v,b+2v]), the
spectrum is pure point with eigenvalues dense in the interval and exponentially decaying eigen-
functions.

In one dimension, localization was first rigorously proven by Goldskeeial.” with a later
alternative by Kunz and Souillafd® Following an idea of Kotant>® Simon and Wolf?®! and
Delyon et al®3 found another proof. Typical is

Theorem VII.1: For the one-dimensional Anderson model, the spectrurais2,b+2] and
is pure point with probability one with eigenfunctions decaying at the Lyapunov rate

Carmonaet al*® and Shubiret al??® have approaches that work if the single site distribution
is discrete(the other quoted approaches require an absolutely continuous component for this
distribution.

In higher dimensions, the two main approaches to localization are duetdidirand
Spencet’ (see also von Dreifus and Kléiff) and to Aizenman and Molchand?.(See also
Aizenman and Gréfand Aizenmaret all?) Basically, these authors and the many papers that
extend their ideas prove dense point spectrum in regimes where the coupling constant is large or

|98
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one is near the edge of the spectrum. It is believed—but not proven—that in suitable regimes
whenv=3, there is absolutely continuous spectrum.

For almost periodic models, one can have any kind of spectral type. The almost Mathieu
model has been almost entirely analyzed and the spectral type shows a great variety. Recall this is
the discrete model with potential

Vg o(N)=\cog man+ 6),

where\, « are fixed parameters ar@runs through(). Then

(i) If A<2, there is alwaysi.e., for any irrationak) lots of a.c. spectrum and it is known for
somea and believed for allx that is all there is(see Last®® Gesztesy and Simofs, Gordon
et al, % Jitomirskaya:>* the earliest results of this genre are due to Dinaburg and®Gjinai

(i) If A=2 andea is an irrational whose continued fraction integers are unboutaletbst all
a have this property then the spectrum is known to be purely singular continuous for almost all
6 (see Gordoret al1%).

(i) If A>2 anda is an irrational with good Diophantine propertigsy p/q|=Cq~' for
someC, | and allp, g e7Z), then for a.ef, the spectrum is dense pure pofditomirskaya->* see
also Bourgain and Goldstéfh.

(iv) If A\>2 ande is irrational, there are always lots 6f(a denses 5) for which the spectrum
is purely singular continuouglitomirskaya and Simdr®). For somex, like those in(iii), the set
while a denséG s has measure 0. For Liouville (irrational &’s with lim(1/g)In|sin wag|= —),
the spectrum is purely singular continuais/ron and Simof? using results of Gorddh).

In general, for almost periodic models, the spectral type is dependent on the number theoretic
properties of the frequencies. Among the general spectral results known for almost periodic
models is that the spectrum is everywhere constanflofmather than only almost everywhere
constant; Avron and Siméf) and that the essential support of the a.c. spectrum is everywhere
constant(Last and Simot9). It is known[see(iv)] that oy, and o may only be almost every-
where constant and fail to be constant on allbf

VIII. TWO-BODY HAMILTONIANS

Hamiltonians of the form- A +V whereV(x)— 0 at infinity are often referred to as two-body
Hamiltonians since the Hamiltonian of two particles with a potentigt,—r,) reduces to— A
+V (whereV is a multiple of W depending on the masseafter removal of the center of mass.
The issues are essentially the same as for one-dimensional decaying potentials as discussed in Sec.
V.

With regard to the negative spectrum, again Weyl's criterion easily showsathdH)
=[0,») so thatH has only discrete spectrum of finite multiplicity (r-, 0) and only O can be an
accumulation point. Typical is:

Theorem VIII.1: For ae?”, let x, be the characteristic function of the unit cube abaut
Let V:R—R. Suppose ¥ K, and that asa—, |x,Vllk —0. Thenoes{ —A+V)=[0,°).

As for whetherN(V), the number of negative bound stat@ounting multiplicity, i.e.,

N(V)=dim E_.. q(H)), is finite or infinite, there is considerable literature. The earliest bound is
2

due to Birmar? and Schwingéf’ for v=3. It states
1 [ IVl _
N(V)< am)? X—y[? dxdy (v=3). (VI.1)

Perhaps the most famous bound is that of Cwickélieb,!”” and Rosenbljuni?°

N(V)sl_o,yf IV(x)["2dx  (v=3). (VII.2)
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One reason this is of special interest is that for nice as\ —o, N(AV)/[|AV|"2dx converges
to a universal constaiisee Sec. XIV. In particular,(VIIl.1) has the wrong largk behavior while
(VII1.2) has the right such behavigSimorf*3 had the first bounds with the right largebehavior
for nice enoughV'’s; he also conjecture@VIll.2).)

As in the one-dimensional case, there are Lieb—Thirring-type bounds on the moments of the
negative eigenvalues of —A+V

E |e]-|7$L%VJ’ dx|V(x)|"*"2d"x
J

for y>0 if v=2 andy=0 if »=3. These were proven first in Lieb and Thirritfj. There has
been considerable literature on the best valuek ,of. In particular, a recent pair of papers of
Laptev and Weidf® and Hundertmarlet al}?* has obtained a breakthrough in understanding the
v dependence df , , . In particular, they show that foy= 3 L, is given by the quasiclassical
value. On the other hand, it is known that,_,,> L‘j‘i‘o’v, the quasiclassical value for ail
(Helffer and Robeff%119.

For a review of the literature on bounds on the number of eigenvalues, especially the subtle
two-dimensional case, see Birman and Solonifak.

The absence of eigenvalues at positive energies is a specialized issue largely independent of
the rest of the analysis of positive spectrum. Given the examples of Wigner—von Neumann and
related ones of Naboko and Simon discussed in Sec. V, one needs some condition on the falloff or
lack of oscillations. Here is a simple result:

Theorem VIIL.2: Let V(x)=V1(x)+Vy(x) where |x||Vi(x)|—0 and |(x-V)V,(x)|—0.
Then—A+V has no eigenvalues i, «).

Remarks:

(1) The stated theorem requires local regularkgj pounded near infinity an¥l, is C1), but
there are extensions that allow local singularities.

(2) Rellich?'® proved that ifV has compact support, there are no positive energy eigenvalues.
Theorem VIII.2 whenV,=0 is due to Kat&®® and the full result to Agmdhand Simor?>®

(3) See Froeset al® for another result of this genre; we will discuss their result further in
Sec. IX.

The methods we will discuss below typically show thaj,N (0,°) is finite; one can then
usually use Theorem VIII.2 to prove that the set is actually empty.

As for positive spectrum, it is intimately related to scattering theory. Given two self-adjoint
operatorsA, B, one says the wave operators exist if

QO*(A,B)=s-lime'**e "Bp_(B)

t—Fx

exists whereP,; is the projection onto the a.c. subspace BorWe say they are complete if
Ran()*(A,B)=RanP.,{A), in which caseQ*(A,B) are unitary maps of RaP,{B) to
RanP,{A) which intertwineA andB. See Reed and Simdf Baumdatel and Wollenberd® or
YafaeV’’ (or many other booKsfor a discussion of the physics involved.

The development of abstract scattering theory is closely intertwipad intended to its
applications to Schdinger operators. Fundamental work was done by JaticiGook?!
Rosenblunt?! Kato,*° Birman?® and Birman and Kreif®

The basic result for positive spectrum for “short-range” potentials is:

Theorem VIIL.3: Let V be such tha(1+]|x|)1"*V(x) e LP+L*(R") for max(2p/2)<p
<o and let H=—A+V and Hy=—A. ThenQ*(H,H,) exist and are complete. Moreover, H
has no singular continuous spectrum and any eigenvalue®,inc) are isolated(from other
eigenvaluesand of finite multiplicity.

Remarks:

(1) The first results on absence of singular continuous spectrum depended on eigenfunction
expansions and were obtained by PovZTiefV's of compact supportand Ikebé®® (V's which
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wereO(|x| ~27®) at infinity). The earliest results on completeness of wave operators depended on
the trace class theory of scatteriigf Rosenblur?! and Katd*®) and were obtained by
Kurodal®®1®’From 1960 to 1972, the decay was successively improved until Agmiotained

the O(|x|~17#) result quoted.

(2) Ensg’ has a different, quite physical, approach to this result. Enss’ work depends in part
on an earlier geometric characterization of the continuous subspace of ali@gercoperator by
Ruellé?® and Amrein and Georgesdfi.This is sometimes called the RAGE theorem after the
initials of the authors.

(3) It is known (e.g., Dollard®) that if V(x)=0(|x| 1), Q= (H,H,) may not exist.

For long-range behavior decaying slower ti@jx| 1), there are results ¥V decays faster
than O(|x| "17#). Basically, there is only a.c. spectrum at positive energy #V,;+V, with
V;=0(|x|"17*) andx- VV,=0(|x| "?). For details, see Lavin€? Agmon and Homander and
Hormandert?? These works use modified wave operators as introduced by Déflard.

IX. N-BODY HAMILTONIANS

Let H be the Hamiltonian oN particles inR”. Explicitly, H is an operator om.?(R*N) given
by H=Hy+V where

N
1
=2 om M
with x=(Xy,...,.Xy) a point inR*N=R”XR"X...XR” (N time9 and
VZZ Vij (X —=Xj),
i<j

with V;; a function inRN which decays at infinity. There is a standard way of removing the center
of mass and getting an associated Hamiltortiaon L2(R*N~1)). For a more extensive review of
the subject than this brief discussion, see Hunziker and &i§jal.

For any partitiona of {1,...N} into disjoint subsets, one definé6a) == ; j)¢,Vi; over the
pairs (i, j) in distinct clusters andi(a)=H—1(a).

The issues one faces are similar to those in the two-body case but often more subtle. The first
thing one needs to establish abdlsbody systems is where the essential spectruid tés. The
result involves

S(a)=inf spedH(a)), (1X.1)
> =min(2(a)). (1X.2)
fa=2

3, is the minimum energy the system can have after it is broken into two pieces moved very far
from each other. That makes the following physically attractive:

Theorem IX.1: (HVZ Theorem Suppose each;Vviewed as an operator on’(R*) obeys
Vij(—Aj;+1)~* is compact. Then

TesdH)=[2,).

Remarks:

(1) The name “HVZ” comes from work of Hunzike¥?® van Winter?®® and Zhislirf®® who
first proved it.

(2) The original proofs used resolvent equations; a geometric proof was later found B§ Enss
and Simorf*
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The next issue is whether the discrete spectrum is finite or infinite. A great deal of attention
has been paid to atomic or ionic Hamiltonians. DefineL8aR3N):

EVV+E

M iS5 i<j X Xj|

:-%(‘i il

i=1

which describedN electrons moving around a nucleus of chaljand massM. A basic result
states that neutral atoms and positive ions always have an infinite humber of bound states:

Theorem IX.2: (Zhislin®®9) If N<Z, dimE._.. 5)(Hu(N,Z))=2 for any M (including M
:(}O).

Remarks:

(1) The first result of this genre was Kafd who proved the result iN=Z=2 andM =
(Helium). He did not properly handIl# <o because he did not use the right coordinate systems.
As shown by Simor*® Kato'’s idea, which involved placintl—1 electrons in the ground states
for the N—1 ion and theNth in a hydrogen-like state around the core, can prove Theorem IX.2.

(2) This result holds even if one adds Fermi statist®se, e.g., Simarid).

(3) If Zis not restricted to be an integer, the proper conditioN{sZ+ 1.

As for negative ions, we have

Theorem 1X.3: (Zhislin®®!) dim E(_.. 5)(Hu(Z+1,Z)) <

Remarks:

(1) This result also has a geometric proof by Staand Simor?*

(2) This result may not be true for fermion electrons because\thel. problem may have a
degenerate ground state which allows one with a nonzero dipole moment.

(3) While it is presumably true that difE_.. sy(Hu(N,Z)) <o for all N>Z+1, that is not
known.

Finally, with regard to bound states of atoms, there is the issue of wheigdims,=0. The
result is the following:

Theorem IX.4: Let M =,

(@ (Ruskaf?®??*and Sigat®>?%) For any Z, there is an B(Z) so that for N=Ny(Z), there is
no spectrum in—o, X). No(Z) denotes the smallestNor which this is true

(b) (Lieb et al!®Y) For fermions No(Z)/Z—1 asZ—».

(c) (Benguria and Lieff) Without Fermi statisticsNo(Z)>1.2Z for Z large

(d) (Lieb'® Ny(2)=<2Z.

Remarks:

(1) If N=Ng, then infspecfi(N,Z))=infspecH (Ng,2Z))<infspecH(Ny—1,2)).

(2) Some of these results hold M <.

With short-range potentials, the situation is simple if the bottom of the essential spectrum is
two body. Define

;= min (2(a)).

#(a)=3

Then(see Cycoret al,> Sec. 3.9

Theorem IX.5: (Sigaf®") SupposeX;>3, v=3, and each Y lies in L"*(R"). Then
dim E(_OC‘E)(H)<00.

On the other hand, iE£;=2, there can be an infinite number of bound states even ¥{}ie
have compact suppotin x;;). In particular, ifN=3, V;,=V,3=V3=—Cx;, with x the charac-
teristic function of a unit ball and chosen so that inf speld() =0 but inf specH +&V) <0 for all
£>0, it is known that dimE _., o(H)=0. This is known as the Efimov effect after work of
Efimov.47® For proofs of this phenomenon, see Yafdéand Ovchinnikov and Sig&P*

In analyzing the spectrum ¢f on [, «), a particular class of physically significant energies
occurs, the thresholds. For each partiteoof {1,...N} with #a=2, there is a natural decompo-
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sition of L?(R*(N~1) =7, H? whereH, are functions ok; —x; with i and] in the same cluster
of a andH*® are functions oR,—Rj, whereR,, is the center of mass of a clustesee Ref. 128
for an elegant way of doing this kinematjic&/nder the decompositiod (a)=H, ® | +1®T?. H,
is the internal energy of the cluster amél the kinetic energy of the cluster centers of mags)
is the set of eigenvalues ¢f, (with the condition that iff (a)=N, soH, is 0 onC, thenZ(a)
={0}. The set of thresholds is defined as

7=Uxa).

a

Note: An energy inZ(a) is a sum of eigenvalues of individual cluster Hamiltonians. In
particular, the statement in the theorems below that the set of thresholds is a closed countable set
follows by induction from the other statement that eigenvalues can only accumulate at thresholds.

The three-body problem turns out to have some aspects that make it simpler than the general
N-body problem, and Fadde®\and later Ens$ (using very different methodave fairly com-
plete results on spectral and scattering theoryNer3. We will focus here on results that apply
for all N.

Historically, the first aspect of the continuous spectrum for gem¢taddy systems controlled
was the absence of a singular continuous spectrum. The earliest result required analyticity of the
potentials but included atoms:

Theorem IX.6: (Balslev and Combé$ Suppose each Mx)=f;;(x;—X;) where f; is a
function onR"\{0} that obeys

A(O)=V(e®)(—A+1)"1

is compact and has an analytic continuation frahae R to {6|| Im 8|<e} for somee>0. Then
osdH)=3.
Moreover,

(i) Any eigenvalue of H iR\Z is of finite multiplicity, and eigenvalues can only accumulate at
thresholds
(i)  The set of eigenvalues union thresholds is a closed countable set

Remarks:

(1) Such potentials are called dilation analytic.

(2) This result was first proven for two-body systems by Aguilar and Corfbes.

(3) See Simof"?%8for extensions of this result.

Thelggost general results on absence of singular continuous spectrum depend on the ideas of
Mourre:

Theorem IX.7: Suppose Y(x)=f;;(xj—X;) where {; is a function onR” that obeys(as
operators on B(R"))

i ;00— A+1) Lis compact
(i) (=A+1) ' Vf;j(—A+1) ' is compact

Theno{H) is empty. Moreover, any eigenvaluelinZ is discrete, eigenvalues can only accu-
mulate at thresholds, and the set of eigenvalues and thresholds is a closed countable set

Remarks:

(1) This theorem was proven foi=3 by Mourre®® His methods were extended and eluci-
dated by Pernet al?®® who obtained the generlbody result. Substantial simplifications of the
proof were found by Froese and HerBst.

(2) Condition (ii) does not require that;; be smooth becaus€f;;=[V,f;] and V(-
+1)~ ! is bounded. Basically(), (i) hold if f;; —f(11)+f(12) Wherexf(l)( A+1)7tis compact

andf(?) is smooth with &-V)f?(—A+1)" 1 andf(z)( A+1)"! compact.
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(3) Froese and HertfSthave some general results that imply tat(0,) = (see Theorem
4.19 in Cyconet al®®).

Finally, there has been extensive study of scattering theory and completeness. For each cluster
with #(a)=2, let P, on H, be the projection onto the point spectrumtdf and letP(a)=P,
®1, the projection onto vectors which are bound within the clusters and arbitrary for the centers
of mass coordinates. The cluster wave operators are defined by

O~ (a)=s-limettHe tH(@p(g). (1X.3)

t— ¥

Ran(*(a)) are those states which in the distant past look like bound clu&tersesponding to
the partitiona) moving freely relative to one another.

The existence of cluster wave operat@i$.3) was proven first by Hack’® It is not hard to
see(e.g., Theorem XI.36 in Reed and Sintoh that for a#b, RanQ*(a) is orthogonal to
Ran*(b). Asymptotic completeness is the statement that

® Rar(Q"(a))=H.dH),
#(a)=2

whereH,{H) is the absolutely continuous subspace HorAfter fairly general results foN=3
(Faddee{® and Ens&) and for generaN with weak coupling(lorio and O’Carrolt*}) and repul-
sive potentialgLavine'’}), Sigal and Soffér® solved the general result. Their theorem is

Theorem 1X.8: (Sigal and Soffé®®) If each Vij(x)=f;;(x;—x;) where|(D“f;;(x)|<C(1
+|x|)~!l=#=1 for all multiindices with|a|<2, then asymptotic completeness holds

Extensions and clarifications of this work are due to GPafHunziker?” and Yafaev’®
Long-r%glge potentials are discussed in Derezif5i8jgal and Soffef>* and Derezinski and
Gerard?

X. CONSTANT ELECTRIC AND MAGNETIC FIELDS

Quantum mechanics with a potential and constant electric or magnetic field played a critical
role experimentally and theoretically in the earliest days of the subject, and there has been con-
siderable mathematical literature on the spectral properties of these operators. The basic Stark
Hamiltonian onL?(R”) is

H=—A+Ex +V(x), (X.1)

whereV is short range. A key role has been played by an explicit formula of Avron and Hérbst
for the operator wheNV =0, viz.,

exp(—it(—A+x;))=exp —it33)exp —itx,)exp —itA+ip,t?), (X.2)

wherep; = (1/i)(9/dx;). Classically in an electric field, a particle hag=N—ct? ast—o and
(X.2) realizes this with thep;t? term. It means the borderline for short rangédxs Y2 ¢ rather
than|x|~17%. The result is

Theorem X.1: SupposdV(x)|<C(1+]|x|) *(1+|x,])"Y¥?7¢. Then H given by(X.1) has
complete wave operators and empty singular continuous spectrum. Eigenvalues are isolated and
of finite multiplicity.

This result and ones similar to it are discussed by HéMstajima?2’® and Simorf*® Mul-
tiparticle completeness in electric fields has been studied by Hetlmt'!® and Adachi and
Tamurat

There is much literature on both constant and variable magnetic fields but an extensive review
of it is beyond the scope of this paper. One can begin looking at the literature by consulting a
series by Avroret al1®~2'and Chapter 6 of Cycoat al>® and references therein. See also Sec.
XIl.
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Xl. COULOMB ENERGIES

While much of the mathematical theory of nonrelativistic quantum mechanics has focused on
general potentials, nature uses the Coulomb potential and there is considerable literature on bind-
ing energies of Coulomb systems, especially as some parameter goes to infinity. Sedsee IX
Theorem IX.4 already discussed one such result. We will only introduce some seminal themes;
consult LieB” for a review of the subject.

The most famous of these results is the stability of matter. In its simplest form, it concerns the
Hamiltonian

1 1 1

Rt

+
S [xi—xj|  a=p [Ra—Ryl

N
HIN,M;Ry, ... Ry) == A=, X
i=1 ha | X

of N electrons moving in the field d1 infinitely massive protons. Lek{; be the functions on
L2(R®N) thought of as functiong/(x,...Xy) of N variables inR® which are antisymmetric, that
is,

P(Xr(1) e X)) = (= D) Th(Xq, ... XN)

for any permutationr; that is,H; is the wave function with Fermi statisti¢&e ignore spin which
is easily accommodatgedDefine

E(N,M)=inf (g,H(N,M;Ry,...Ry)¥).
e He
Ry...., Rm

Stability of matter states that
E(N,M)=—c(N+M). (X1.1)

Among other things, this bound is important because it is equivalent to the fact that the radius of
a chunk of matter witiN=M does not shrink to zero d$— .
The first proof of(XI.1) was obtained by Dyson and Len&td®with a constanC that was
many powers of ten too large. Lieb and ThirrtAfound an elegant proof with a constabthat
is on the order of magnitude of Rydbergs. The regXltl) fails if one does not impose Fermi
statistics(see Dysoft and Conlonet al®®). Extensions that involve relativistic kinetic energy,
magnetic and/or radiation fields can be found in Corfbhieb et al,'® and Feffermaret al8!
Another Coulomb energy problem that has been extensively studied is the total binding
energy in the limit of large oZ. One defines

N z 1
H(N,Z)=i21 (_A‘_W = m
on H; and
E(N,Z)= inf (,H(N,2)¢)
e H;

and

E(Z)zn?\‘inE(N,Z).
One knows that

E(Z)=aZ"3+ BZ%+ yZ53+0(Z%3). (X1.2)
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The « term is given by Thomas—Fermi theory and this leading asymptotics was proven by Lieb
and Simon'® The B term is called the Scott correction and it was established by a combination of
ideas of Hugheé'$® and Siedentop and Weikaft?>*°The full asymptoticgX1.2) was obtained by

Fefferman and Sedd. Results for largeZ and large magnetic field can be found in Lieb
et al _183,184

XIl. EIGENVALUE PERTURBATION THEORY

Some of Schrdinger’s earliest papers on quantum mechanics concerned eigenvalue pertur-
bation theory. Kato’s bodR®is a source of detailed information on what we will call regular and
asymptotic perturbation theory below. A review of some of the other aspects can be found in Reed
and SimoR'? and Simorf>*

If Ais self-adjoint and is A-bounded in the sense @il.3), and ifEg is a simple eigenvalue
of A, then forB small, A+ 8B has a unique eigenvall&3) nearEy, andE(B) is analytic ing.

This is a result of Rellich® and Kato**>143An example is

1 1 1 1

_A _A - -
! 2 X1l IXal  Z [x1— X

(XII.1)

about 1Z=0 which is equivalent after scalingf space and energyo

A Z Z N 1
VT Il bl xaxel”
The numerical radius of convergence|ifZ| is about 1.06 sdd(Z=2) andH(Z=1) are both
included. Katd*’ developed the theory for form perturbations. Rellich and Kato included degen-
erate eigenvalues.
Titchmars®2%¢ and Katd*® also developed the theory of asymptotic situations like the
anharmonic oscillator

d2
—E+x2+,8x4, (X11.2)

where each eigenvalug,(8) for >0 has an asymptotic series

©

En(B)~ 2 a,8"

n=0

even though this series can be divergéarid is for the caséXIl.2), as shown by Bender and
Wu?’). See Herbst and Sim&H for an example where an asymptotic series converges but to the
wrong answer! See Sim6it for a study of multiwell problems.

In some cases, includingXll.2), it is known that the divergent perturbation series can be
made to give the right eigenvalue with a summability method, either Rpgeximation(Loeffel
et al!®’) or Borel summatior(Graffi et al1%). Borel summability is also known to work for the
Zeeman series for hydrogen—hydrogen perturbed by turning on a constant magnetic field; see
Avron et al?* and Avronet all’

In certain cases, eigenvalues are perturbed into resonances, the subject of Sec. XIll. For
eigenvalues embedded in continuous spectrum under regular perturkiiker{Xll.1)), the con-
vergence of the perturbation series for a resonance and its related time-dependent perturbation
theory and the Fermi golden rule is discussed in SifiéA%®For Stark Hamiltonians, the basic
paper is Herbst*® Harrell and Simotf’ found the leading resonance asymptotics in this case.
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X1ll. RESONANCES

Almost everything we have discussed so far has involved a single operator and properties
invariant under unitary transformations. The notion of resonances has got to involve additional
structure. For example, the operatoera — |x| "1—Fx=H(F) are unitarily equivalent for alF
# 0. But according to the physics lore, there is a resonance witr@pendent position. We will
not emphasize the extra structure, but it is there. We will focus on two definitions of resonances:
one suitable for potentials that decay very rapidige Zworsk®*?%%for reviews and the method
of complex scaling already discussed in a different context in Sec(3%e Reed and Simdft
and SimoR*® for reviews)

Let v be an odd dimension, |&t be a bounded potential of compact supportlidh and for
Rex>0, define

B(K):|V|1/2(_A+ K2)_1V1/2,

whereV2=|V|Y2sgn{). Then— «? is an eigenvalue of A+V if and only if —1 is an eigen-
value of B(«). Sincewv is odd,B(«) has an analytic continuation as a compact operator-valued
function of x to all of C (when v=1, there is a simple pole at=0 but kB(«) is entirg. If
Rex<0 and—1 is an eigenvalue dB(«), we say— 2 is a resonance of A+V.

Froes&® has a lovely formula that relates resonances defined by this method to scattering
theory. For all, B(x)—B(— «) is trace class so (4B(—«))(1+B(«)) !is 1 plus trace class
and has a determinant as an operatot.8(R”). Fork real andS(k), the Smatrix onL?(S"" 1),

det S(k))=de{(1+B(—ik))(1+B(ik)) 1),

S0 resonances are related to poles of the analytic continuatiGn of
There has been considerable literature on the number of resonancégR)ebe the number
of resonances with enerdy obeying|E|<R. In one dimension, one has a complete result:
Theorem XIII.1: (Zworsk?®?) Let v=1 and supposéa,b] is the convex hull of the support
of V. Then

2
lim R‘l/zN(R)=;|b—a|.

R—ox

Remarks:

(1) The result depends on a theorem of Titchmarsh and Cartwright on the zeros of Fourier
transforms of functions of compact support.

(2) Froes& has obtained some results for cases when a potential decays faster than any
exponential but may not have compact support.

In higher dimensions, much less is known. Zwot&kproved that foV of compact support,
N(R)<C(R+1)"? (see also Froe&8. On the other hand for generdls, it is only known(Sa
Barreto and Zworskf) that limg_... N(R) =.

SupposeV is a dilation analytic potential in the sense of Theorem IX.6. Let

H(0)=—-e 2'A+V(e’T).

Because of the analyticity assumptiad(6) is analytic in{6||Im(#)|<a} for some a. Then
Aguilar and Combeésfound the essential spectrum ldf{ ) for N=2 and Balslev and Comb&s
for generalN:

Theorem XII1.2: oe{H(0)) = Ug 14 (E+e 2R)

Remarks:

(1) Z(#) is the thresholds ofi(6) defined analogously to the cage-0. It is not hard to see
that o.s{H(#)) andZ(6) depend only on Ind.

(2) If Im 6>0, o.s{H(#))NR consists precisely df. Basically as we increase lehfrom O,
the essential spectrum rotates about the thresholds. In doing that, it can uncover resonances.
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Resonances defined by this method have been used by quantum chemists for numerical cal-
culations as well as a theoretical tool. Sifithf>8used it to study the Fermi golden rule and
Harrell and Simoftf’ to prove various one-dimensional tunneling estimates.

Avron'® used these ideas to study large-order perturbation theory for hydrogen in a magnetic
field; a rigorous proof of his results was obtained by Helffer andst&mad*?

Herbst!® has extended the ideas to Hamiltonians with constant electric field. Among his
results is the surprising one that ikdm 6<w/3, then—e ™ 2°A +e’x has empty spectrum!

XIV. THE QUASICLASSICAL LIMIT

There has been considerable literature on the connection between quantum and classical
mechanics. Much of it has focused on what happens-a®, but there are other limiting situa-
tions where a classical or semiclassical picture is appropriate—for example, theZlngj¢ of
atoms. We will touch on some of the subjects considered, but the literature is vast.’&dimst
an excellent review of those results obtained for very smooth potentials using the Fourier integral
operator methods pioneered by ifmnder and Maslov. Therefore, | will not try to cover these
results here. We note that in Sec. Xl, we referenced the Thomas—Fermi limit, which is quasiclas-
sical.

Consider first théi | 0 limit. Let H, = — (A%/2m)A + V. Kac*®!*'had the idea that the small
f limit of exp(—sH;) was the same as the zero time limit in Brownian motion. This allows one to
prove under great generality that the quantum partition function Tr(exigd()) approaches a
classical partition function a8 |0; see, for example, Theorem 10.1 in Sinf6hThe earliest
results | know of on this subject are due to BereZin.

Quantum dynamicse 'sM /"y, . on suitable stateg; make an elegant classical limit—one
takesy; to be a coherent state which collapses to a single point in phase spédé®.aSuch
results were found by HageddPA=1® (similar methods were developed independently by
Ralstorf*9).

Since —#2A+V=Ah%—A+#A"2V], the small% limit is the same as the large coupling
constant limit for— A+ V. In particular, ifN(V) =dim E_.. o (—A+V), the quantity discussed
in Sec. VIII, one has

Theorem XIV.1: Let v=3 and Ve L"?(R"). Thenlim,_ . NOAV)/\"?=2m) "7,fy=0
(—V(x)"?d"x), wherer, is the volume of a unit ball ifR”.

Remarks:

(1) This theorem is quasiclassical since the right side ig)(2 times the volume of the
classical phase space region whpfe- V(x)<0.

(2) The historical thread for this theorem goes back to a celebrated paper of eyl
Dirichlet Laplacians. Theorems like XIV.1 with stronger conditions\biare due to Birman and
Borzov3* Kac*! Martin,*** and Tamur&®® See Reed and Simdi? Theorem XI11.80 for the
proof under the stated assumptions.

Let V(x)—< as|x|— in a fairly regular way(e.g., suppos& is an elliptic polynomigl.

Then —A+V has discrete spectrum and the asymptotics of the number of eigenvalues
dimE(_. 4(-A+V) asa—x is determined by phase space. Results of this type go back to
Titchmarsh?®” see also Reed and Siméff, Theorem XII1.81. Similarly, if V(x)—0 but so
slowly that N(V)=o, for example,V(x)~—|x| # with 0<g<2, then the divergence of
dimE(_. ,(—A+V) asa(0 is sometimes given by quasiclassical considerations; see Brownell
and Clark’ McLeod** and Reed and Simatt? Theorem XII1.83.
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