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Yogi Berra is reputed to have said, "Prediction is difficult, especially about the 
future.'~ Lists of open problems are typically lists of probh-'lflS 011 which you expect 
progress in a reasonable time scale and so they involve an clement of prediction. 

We have seen remarkable progress in the past fifty years in our understanding of 
Schrodinger operators, as I discussed in Simon J. In this companion piece, I present 
fifteen open problems. In 1984, I presented a list of open problem in Mathematical 
Physics, including thirteen in Schrodinger operators. Depending on how you count 
(since some are multiple), five have been solved. 

\Ve will focus on two main areas: anOInalous transport (Section 2) where I 
expect progress in my lifetinle, and Coulomb energies where some of the problenls 
are so vast and so far from current technology that I do not expect. t.hem t.o be 
solved in my lifetime. (There is a story behind the use of t.his phrase. I have 
heard that when Jeans lectured in Cottingen around 1910 on his conjecture on the 
number of nodes in a cavity, Hilbert remarked that it was an interesting problen1 
but it would not be solved in his lifetime. Two years later, Hilbert's own student, 
Weyl, solved the problem using in part. techniques pioneered by Hilbert. So I figure 
the use of that. phrase is a good jinxl) 

In a final section, J present two other problems. 

2 Quanhlln Transport and Anomalous Spectral Behavior 

For the past twenty-five years, a major thrust has involved the study of Schrodinger 
operators with ergodic potentials and unexpected spectral behavior of Schrodinger 
operators in slowly decaying potentials. (This is discussed in Sections 5 and 7 
of Simon 1.) The simplest models of ergodic Schrodinger operat.ors involve finite 
difference approximat.ions. The first is the prototypical random model and the 
second, the prototypical almost periodic model. 

Example 2.1. (Anderson model) Let Vw(n) be a mullisequence of independent. 
Identically distributed random variables wllh distribution uniform on [a, bJ. Here 
n E ;Z" lS the mullisequellce label and w the stochastic label. On f2(;zv), define 

(hwu)(n) = L lI(n + j) + Vw(n)u(n). 
Ijl=l 



284 

Example 2.2. (Almost Mathieu equation) 0" (2(£), define 

(""J,'l/){n) = u(n + 1) + urn - 1) + .\008(11"00 + B)u(n), 

Here 0','\ are fixed l)(lmmf'iLTs where c¥ is usually required to be irrational and'\ is a 
coupling constant e runs in [0, 211") and plays a role sim,za1' to tlu; w of Ewmplc 2,1, 

It is known that the Anderson model has spectrum [a - 2v, b + 2vJ and that if 
v = 1, the spectrum is dense pure point with probability 1, and if v 2. 2, this is true 
if Ib - 01 is large enough (we will not try to recount the history here; see Simon 2 for 
proofs of these facts and sorne history) and also there is smne pure point spectrum 
near the edges of the spectrum when Ib - 0 I is small. 

Problem 1. (Extended states) Prove for v 2: 3 and suitable values of b - a that the 
Anderson model has purely absolutely continuous spectrum in some energy range. 

This is the big kahuna of this area, the problem whose solution will make a 
splash outside the field. In fact, just proving that there is any a.c. spectrum will 
cause a big stir. The belief is that for Ib - 01 small, there is a subinterval (c, d) C 
[0 - 2v, b + 21/J = (J(Hw) on which the spcctum is purely a,c. and that on the 
complerrH'.nt of this interval 1 the spectrmll is dense pure point. As Ib - al increases 
beyond a critical value, Id - ('I goes to zero, 

Problem 2. (Locali7,ation in two dirrlCnsions) Prove that for 1/ = 2, the sped.rum 
of the Andcr~oll model is dense pure point. for all values of b - u. 

This is the general belief among physicists, although the claims for this model 

have fluctuated in time. 

Problem 3. (Quantum diffusion) Prove that for v 2: 3 and values of Ib - al where 
there is a,c. spectrum that EnEZv n2 1eitH (n, 0)1' grows as ct as t -+ 00. 

That is, (x(tf)1/2 ~ (;tl/2 For scattering states, of course, the a.c, spectrum 
leads to ballistic behavior (i.e., (x(t)')'/2 ~ ct) rather than diffusive behavior. This 
problem is one of a large nurnber of issues concerning the long time dynarnics of 
Schrodinger operators with unusual spectral properties, 

An enormous amount is now known about the almost Mathieu Inodel whose 
study is a fascinating laboratory. I would mention three remaining problems about 

it: 

Problem 4. (Ten Martini problem) Prove for all .\ '" ° and all irrational a that, 
spec(ha,A,O) (which is e independent) is a Cantor set, that is, that it is nowhere 

dense. 

The problem name comes from an offer of Mark Kac, Bellissard-Simon 3 proved 
the weak form of this for Baire generic pairs of (a, .\). It would be interesting to 
prove this even just at the self-dual point .\ = 2, 

Problem 5. Prove for all irrational a and .\ = 2 that spec(lla,),,') has measure 

zero. 

This is known (Last 4) for all irrational a's whose continued fraction expansion 
has unbounded entries, But it is open for a the golden mean which is the value with 
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the most numerical evidence! To prove this, one will need a new understanding of 
t.he problf'm. 

Probleln 6. Pro\"e for all irrational 0 and ,\ < 2 that the s·pect.rum is purel~1 
absolutely continuous. 

It. is known (Last 5, Gesztesy-Simon 6) that the Lebesgue mea,ure of the 
a.c. spectrum is the same a.'3 t.he t.ypical Lebesgue lneasure of t.he spectrum for 
all irrational a and .\ < 2. The result is known (Jitomirskaya 7) for all ,,'s with 
good Diophantine properties but is open for other a's. One will need a new under­
st.anding of a.c. spectrum to handle the case of Louiville 0'5. 

\Vhile we have focused on t.he almost Mat.hieu equation, t.he general ahnost. 
periodic problern needs more understanding. As for slowly decaying pot.entials, I 
will mention two problems: 

Problem 7. Do there exist potentials V(l:) on [0,00) so that lV(x)l:s Clxl-I/"-' 
for some E > 0 and so that - d~") + \f has some singular continuous spectrum. 

It is known that such models always have a,c, spectrum on all of [0, (0) (Rem­
ling 8, Christ-Kiselev 9, Deift-Killip 10, Killip "). It is also known (Naboko 12, 

Simon 13) t.hat such models can also have dense point spectruln. Can they have 
singular continuous spectrum as well? 

Problem 8. Let V be a function on JH:" which obeys 

Prove that -6 + II has a,c, spectrum of infinite multiplicity on [0,00) if 1/ 2: 2, 

If II = 1, this is the result of Deifi-Killip 10 (see also Killip II). Their result 
implies the conjecture in this problem for spherically symrnetric potentials (which 
is where the lxi-HI comes from), 

3 Coulomb Energies 

The past thirty-five years have seen impressive development in the study of energies 
of Schrodinger operators with Coulomb potentials (see Sections 9 and 11 of Simon I 

or the review of Lieb "') of which the high points were stability of matter, the three­
term asymptotics of the total binding energy of a large atom, and some considerable 
information on how many electrons a given nucleus can bind. 

While these results involve deep mathematics, except for stability of matter, 
they are very remote from problems of real physics, Since one does not often fully 
ionize an atom, total binding energies are not important, but rather single ionization 
energies are, Understanding the binding energies of atoms and molecules is a huge 
task for mathematical physics. The problems in this section may be signposts along 
the way. As we progress, the problems will get less specific. We will deal throughout 
with fermion electrons, 1ljNl will be the space of functions antisymmetric in spin 

and space in L2(JH: 3N; C'N). 



286 

Define lJ(H, /) to be the Hamiltonian on 1i1, 

and 

R(N,Z) = minH(N,Z). 
Ii} 

!V(}(/c) is defined to be t.he smallest value of N for which E(N + j, Z) = E(N. /) 
for j = 1, 2, 3,. Ruskai 15.16 and Sigal 17,18 showed such an1'(o(Z) exists. Lieb 19 

showed that No(Z) <: 2Z and Lieb et al. 20 that. N(Z)IZ --+ I as Z goes to infinity. 
Hy Zhislin 21, we know No(Z) ? Z. 

Problem 9. Prove that No(Z) - Z is bounded as Z --+ 00. 

It is not an unreasonable conjecture that No(Z) is always either Z or Z + 1. 
One has (sec SimOlI 1 for detailed references) 

E(Z) =' min E(N, z) = aZ7
/

3 + bZ' + cZ5
/

3 + 0(Z5/3), 
N 

but more phYtiically significant is the ionization energy 

(6E)(Z) = E(Z,Z -1) - £(Z,Z). 

Problem 10. What is the asymptotics of (6E)(Z) as Z --+ 'Xl? 

There is a closely related issue: to define a radius of an atom (perhaps that 
11(2) so that N - 1 electrons are within the ball of radius 11) and determine the 

asymptotics of 1I( Z). 

Problem 11. Make mathematical sense of the shell model of all atom. 

This is a vague problem, but the issue is what does the most popular model used 
by aton~ic physicists and chemical physicists have to do \",rith the exact. qllantum 

t.heory. 

Here is an even vaguer problem: 

Problem 12. Is there a mathematical sense in which one can justify from first 
principles current techniques for determining molecular configurations? 

Drug designers and others use computer programs that claim to deternline con­
figurations of fairly large molecules. While one technique these programs use is 
called ab initIO, all that. means is they use few parameter molecular orbitals. This 
problem should be viewed as asking for some precise way to go from fundamental 
quantunl theory to configuration of macromolecules. 

Finally, 

Problem 13. Prove that the ground state of some neutral system of molecules 
and electrons approaches a periodic limit as the number of nuclei goes to infinity. 

That is, prove crystals exist from first quantum principles. 
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4 Other Problems 

Here arc two final OpC:1l prohlems: 

Problem 14. Prove the integrated density of states, k(£), is continuous in the 
ellergy. 

For a definition of Ie( E), see Cycon et al. 22 Continuity is known in one di~ 
mensioll and for the rliscretf> case, but has been open in the higher-dimensional 
continullm case for over fifteen years. 

ProbleIl1 15. Prove th~ Lieb-Thirring conjecture on their constants L,,{,u for 1/ = 
and ~ < '( < ~. 

L_/,I/ is defined to be the smallest constant so that 

L h(VW <: LOY.I dJ:W(x)I Hu /2dvx, 
J 

where fJ(V) is the jlh negative eigenvalues of -~ + V on L2(Jl!:V). 
Here .... l 2: ~ in 1/ = 1 dimension and .... l 2: 0 in dimensions 2: 2. Two lower bounds 

on L_{,1/ can be computed-the quasicla'3sical value Li-,: and the best constant, L;~l~ 
for one bound st.at.e (which is related t.o best. constants in Sobolev inequalit.ies). For 
1/ = 1, Lieb-Thirring 2a conjectured 

11-Y,v = max(L~',~, J1~~~)) 

which is L~-,CZ; if I 2: ~ and L;~~) if ~ ::; u :::; ~. The conjecture is known to hold 

if -y ? ~ (Aizenman~Lieb 24) and if -y = ~ (Hundertmark~Lieb~Thomas 25). Also 
open is -the best value of the const.ant if I/-? 2 and 0 <: -y < ~. It is known that if 
v 2: 8 and .... ,. = 0) L-y,1/ > max(V~~~', L;~::) with strict inequality. 
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We show how different aspects of the restricted three-body problem can be un­
derstood with physical intuition, rigorous mathematics and computer simulations. 
The first explains the short time stability, the second tells liS when it is stable for 
all times, and the third shows when and why chaos takes over. 

1 Introduction 

The t.hree-body problem is very old (see Reference J for a historic review which 
starts even with the Babylonians) and an immense literature has accllmulated over 
the centuries. How can one think that one can make a new'contribution to it? It is 
not. that we possess new observational data, but the computer puts us in a better 
position than previous generations. Any idea which would have taken years to 
verify or falsify with a slide rule can now be settled within seconds. Furthermore, 
unlike a,.<:;tronomers we can change the mass ratios at will to understand the various 
mechanisms and to see when and why things become chaotic. Of course, a general 
solution is impossible and would also be too complicated to be of any use. So 
we concentrate on some limited hut relevant questions on the limiting situation 
where one body is so light that it does not influence the (circular) motion of the 
two others. The answers to these questions require different tools and we shall 
formulate them such that they make use of physical intuition, rigorous analysis 
and computational methods. 

Question 1. Even if the second body is much lighter than the heaviest one, 
its influence on the third is much less than a naive estimate would tell us. For 
instance, MJupitec/ Mo ~ 1/1000, but without sun it would take Mars at rest only 
about 200 years to fall freely into Jupiter. But its Kepler orbit is stable for a 
much longer time, merely its excentricity is about twice that of the Earth. What 
is exactly the mechanism which stabilizes the orbit? 

Answer 1. The radial motion of nearly circular orbits is like a harmonic oscillator, 
and the influence of Jupiter is like periodic kicks (better pUlls). From the kicked 
oscillator one knows that the amplitude of the induced oscillations gets damped 
again if one is not at a resonance, and the kicks get out of phase. We shall underpin 


