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c© 2005 Birkhäuser Verlag Basel/Switzerland

Sturm Oscillation and Comparison Theorems

Barry Simon

Abstract. This is a celebratory and pedagogical discussion of Sturm oscil-
lation theory. Included is the discussion of the difference equation case via
determinants and a renormalized oscillation theorem of Gesztesy, Teschl, and
the author.

1. Introduction

Sturm’s greatest contribution is undoubtedly the introduction and focus on Sturm-
Liouville operators. But his mathematically deepest results are clearly the oscil-
lation and comparison theorems. In [26, 27], he discussed these results for Sturm-
Liouville operators. There has been speculation that in his unpublished papers
he had the result also for difference equations, since shortly before his work on
Sturm-Liouville operators, he was writing about zeros of polynomials, and there
is a brief note referring to a never published manuscript that suggests he had a
result for difference equations [17]. Indeed, the Sturm oscillation theorems for dif-
ference equations written in terms of orthogonal polynomials are clearly related
to Descartes’ theorem on zeros and sign changes of coefficients [31].

In any event, the oscillation theorems for difference equations seem to have
appeared in print only in 1898 [3], and the usual proof given these days is by linear
interpolation and reduction to the ODE result. One of our purposes here is to make
propaganda for the approach via determinants and orthogonal polynomials (see
Section 2). Our discussion in Sections 3 and 4 is more standard ODE theory [4]
– put here to have a brief pedagogical discussion in one place. Section 5 makes
propaganda for what I regard as some interesting ideas in a paper written by
Gesztesy, Teschl, and me [10]. Section 6 has three applications to illustrate the
scope of applicability.

Our purpose here is celebratory and pedagogical, so we make simplifying as-
sumptions, such as only discussing bounded and continuous perturbations. Stan-
dard modern techniques allow one to discuss much more general perturbations, but
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this is not the place to make that precise. And we look at Schrödinger operators,
rather than the more general Sturm-Liouville operators.

We study the ODE

Hu = −d2u

dx2
+ V u = Eu (1.1)

typically on [0, a] with u(0) = u(a) = 0 boundary conditions or on [0,∞) with
u(0) = 0 boundary condition. The discrete analog is

(hu)n = anun+1 + bnun + an−1un−1 = Eu (1.2)

for n = 1, 2, . . . with u0 ≡ 0.
For discussions of Sturm-Liouville theory and its history, see [4, 28, 12, 8].

It is a pleasure to thank W. Amrein for the invitation to give this talk and
for organizing an interesting conference, Y. Last and G. Kilai for the hospitality
of Hebrew University where this paper was written, and F. Gesztesy for useful
comments.

2. Determinants, orthogonal polynomials, and Sturm theory
for difference equations

Given a sequence of parameters of positive reals a1, a2, . . . and a sequence of reals
b1, b2, . . . for the difference equation (1.2), we look at the fundamental solution,
un(E), defined recursively by u1(E) = 1 and

anun+1(E) + (bn − E)un(E) + an−1un−1(E) = 0 (2.1)

with u0 ≡ 0, so

un+1(E) = a−1
n (E − bn)un(E) − a−1

n an−1un−1(E). (2.2)

Clearly, (2.2) implies, by induction, that un+1 is a polynomial of degree n with
leading term (an . . . a1)−1En. Thus, we define for n = 0, 1, 2, . . .

pn(E) = un+1(E) Pn(E) = (a1 . . . an)pn(E). (2.3)

Then (2.1) becomes

an+1pn+1(E) + (bn+1 − E)pn(E) + anpn−1(E) = 0 (2.4)

for n = 0, 1, 2, . . . . One also sees that

EPn(E) = Pn+1(E) + bn+1(E)Pn(E) + a2
nPn−1(E). (2.5)

We will eventually see pn are orthonormal polynomials for a suitable measure on
R and the Pn are what are known as monic orthogonal polynomials.
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Let Jn be the finite n× n tridiagonal matrix

Jn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0
a1 b2 a2

0 a2 b3
. . .

. . . . . . . . .
. . . bn−1 an−1

an−1 bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proposition 2.1. The eigenvalues of Jn are precisely the zeros of pn(E). We have

Pn(E) = det(E − Jn). (2.6)

Proof. Let ϕ(E) be the vector ϕj(E) = pj−1(E), j = 1, . . . , n. Then (2.1) implies

(Jn − E)ϕ(E) = −anpn(E)δn (2.7)

where δn is the vector (0, 0, . . . , 0, 1)T . Thus every zero of pn is an eigenvalue of
Jn. Conversely, if ϕ̃ is an eigenvector of Jn, then both ϕ̃j and ϕj solve (2.2), so
ϕ̃j = ϕ̃1ϕj(E). This implies that E is an eigenvalue only if pn(E) is zero and that
eigenvalues are simple.

Since Jn is real symmetric and eigenvalues are simple, pn(E) has n distinct
eigenvalues E

(n)
j , j = 1, . . . , n with E

(n)
j−1 < E

(n)
j . Thus, since pn and Pn have the

same zeros,

Pn(E) =
n∏

j=1

(E − E
(n)
j ) = det(E − Jn).

�

Proposition 2.2. (i) The eigenvalues of Jn and Jn+1 strictly interlace, that is,

E
(n+1)
1 < E

(n)
1 < E

(n+1)
2 < · · · < E(n)

n < E
(n+1)
n+1 . (2.8)

(ii) The zeros of pn(E) are simple, all real, and strictly interlace those of pn+1(E).

Proof. (i) Jn is obtained from Jn+1 by restricting the quadratic form u→〈u,Jn+1u〉
to Cn, a subspace. It follows that

E
(n+1)
1 = min

u,‖u‖=1
〈u, Jn+1u〉 ≤ min

u∈Cn,‖u‖=1
〈u, Jn+1u〉 = E

(n)
1 .

More generally, using the min-max principle

E
(n+1)
j = max

ϕ1,...,ϕj−1
min
‖u‖=1

u⊥ϕ1,...,ϕj−1

〈u, Jn+1u〉

one sees that
E

(n)
j ≥ E

(n+1)
j .

By replacing min’s with max’s,

E
(n)
j ≤ E

(n+1)
j+1 .
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All that remains is to show that equality is impossible. If E0 = E
(n)
j = E

(n+1)
j

or E0 = E
(n)
j = E

(n+1)
j , then pn+1(E0) = pn(E0) = 0. By (2.4), this implies

pn−1(E0) = 0 so, by induction, p0(E) = 0. But p0 ≡ 1. Thus equality is impossible.
(ii) Given (2.6), this is a restatement of what we have proven about the

eigenvalues of Jn. �

Here is our first version of Sturm oscillation theorems:

Theorem 2.3. Suppose E0 is not an eigenvalue of Jk for k = 1, 2, . . . , n. Then

#{j | E(n)
j > E0} = #{� = 1, . . . , n | sgn(P�−1(E0)) �= sgn(P�(E0))}, (2.9)

#{j | E(n)
j < E0} = #{� = 1, . . . , n | sgn(P�−1(E0) = sgn(P�(E0))}. (2.10)

Proof. (2.9) clearly implies (2.10) since the sum of both sides of the equalities is
n. Thus we need only prove (2.9).

Suppose that E
(�)
1 < · · · < E

(�)
k < E0 < E

(�)
k+1 < E

(�)
� . By eigenvalue interlac-

ing, J�+1 has k eigenvalues in (−∞, E
(�)
k ) and n−k eigenvalues in (E(�)

k+1,∞). The

question is whether the eigenvalue in (E(�)
k , E

(�)
k+1) lies above E0 or below. Since

sgn det(E − J�) = (−1)#{j|E(�)
j >E0}, and similarly for J�+1, and there is at most

one extra eigenvalue above E0, we see

sgnP�(E0) = sgnP�+1(E0)⇔ #{j | E(�)
j > E0} = #{j | E(�+1)

j > E0},
sgnP�(E0) �= sgnP�+1(E0)⇔ #{j | E(�)

j > E0}+ 1 = #{j | E(�+1)
j > E0}.

(2.9) follows from this by induction. �

We want to extend this in two ways. First, we can allow Pk(E0) = 0 for
some k < n. In that case, by eigenvalue interlacing, it is easy to see Jk+1 has one
more eigenvalue than Jk−1 in (E0,∞) and also in (−∞, E0), so sgn(Pk−1(E0)) =
− sgn(Pk+1(E0)) (also evident from (2.5) and Pk(E0) = 0). Thus we need to be
sure to count the change of sign corresponding to three successive values of P·
which are, respectively, negative, zero and positive, as just one change of sign. We
therefore have

Proposition 2.4. (2.9) and (2.10) remain true so long as Pn(E0) �= 0 if we define
sgn(0) = 1. If Pn(E0) = 0, they remain true so long as � = n is dropped from the
right side.

One can summarize this result as follows: for x ∈ [0, n], define y(x) by linear
interpolation of P , that is,

x = [x] + (x)⇒ y(x) = P[x] + (x)(P[x]+1 − P[x]).

Then the number of eigenvalues of Jn above E is the number of zeros of y(x, E) in
[0, n). If we do the same for ỹ with P[x] replaced by (−1)[x]P[x], then the number
of eigenvalues below E is the number of zeros of ỹ in [0, n). Some proofs (see [6])
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of oscillation theory for difference equations use y and mimic the continuum proof
of the next section.

The second extension involves infinite Jacobi matrices. In discussing eigenval-
ues of an infinite J , domain issues arise if J is not bounded (if the moment problem
is not determinate, these are complicated issues; see Akhiezer [1] or Simon [25]).
Thus, let us suppose

sup
n

(|an|+ |bn|) <∞. (2.11)

If J is bounded, the quadratic form of Jn is a restriction of J to Cn. As in
the argument about eigenvalues interlacing, one shows that if J has only N0 <∞
eigenvalues in (E0,∞), then Jn has at most N0 eigenvalues there. Put differently,
if E

(∞)
1 > E

(∞)
2 > · · · are the eigenvalues of J , E

(∞)
j ≥ E

(n)
j . Thus, if Nn(E) is the

number of eigenvalues of Jn in (E,∞) and N∞ the dimension of RanP(E,∞)(J),
the spectral projection, then

Nn(E) ≤ Nn+1(E) ≤ · · · ≤ N∞(E). (2.12)

On the other hand, suppose we can find an orthonormal set {ϕj}N
j=1 with

M
(∞)
jk = 〈ϕj , Jϕk〉 = ejδjk and min(ej) = e0 > E0. If M

(n)
jk = 〈ϕj , Jnϕk〉, M (n) →

M (∞), so for n large, M (n) ≥ min(ej) + 1
2 (e0 − E0) > E0. Thus Nn(E0) ≥ N

for n large. It follows that limNn ≥ N∞, that is, we have shown that N∞(E0) =
limn→∞ Nn(E0). Thus,

Theorem 2.5. Let J be an infinite Jacobi matrix with (2.11). Then (with sgn(0) =
1) we have

N∞(E0) = #{� = 1, 2, . . . | sgn(P�−1(E0)) �= sgn(P�(E0))}, (2.13)

dimP(−∞,E0)(J) = #{� = 1, 2, . . . | sgn(P�−1(E0)) = sgn(P�(E0))}. (2.14)

Corollary 2.6. a− ≤ J ≤ a+ if and only if for all �,

P�(a+) > 0 and (−1)�P�(a−) > 0. (2.15)

While on the subject of determinants and Jacobi matrices, I would be remiss
if I did not make two further remarks.

Given (2.6), (2.5) is an interesting relation among determinants, and you
should not be surprised it has a determinantal proof. The matrix Jn+1 has bn+1

and an in its bottom row. The minor of E−bn+1 in E−Jn+1 is clearly det(E−Jn).
A little thought shows the minor of −an is −an det(E − Jn−1). Thus

det(E − Jn+1) = (E − bn+1) det(E − Jn)− a2
n det(E − Jn−1), (2.16)

which is just (2.5).
Secondly, one can look at determinants where we peel off the top and left

rather than the right and bottom. Let J (1), J (2) be the Jacobi matrices obtained
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from J by removing the first row and column, the first two, . . . . Making the J-
dependence of Pn( · ) explicit, Cramer’s rule implies

[(z − Jn)−1]11 =
Pn−1(z, J (1))

Pn(z, J)
. (2.17)

In the OP literature, a−1
1 pn(z, J (1)) are called the second kind polynomials.

The analog of (2.16) is

Pn(z, J) = (z − b1)Pn−1(z, J (1))− a2
1Pn−2(z, J (2))

which, by (2.17), becomes

[(z − Jn)−1]11 =
1

(z − b1)− a2
1[(z − J

(1)
n−1)−1]11

. (2.18)

In particular, if dγ is the spectral measure [20] of J for the vector δ1, we have

[(z − J)−1]11 =
∫

dγ(x)
z − x

≡ −m(z, J) (2.19)

and (2.18) becomes in the limit with [(z − J
(1)
n−1)

−1]11 → −m(z, J (1))

m(z; J) =
1

b1 − z − a2
1m(z; J (1))

. (2.20)

(2.18) leads to a finite continued fraction expansion of [(z − Jn)−1]11 due to Ja-
cobi, and (2.20) to the Stieltjes continued fraction. Sturm’s celebrated paper on
zeros of polynomials is essentially also a continued fraction expansion. It would
be interesting to know how much Sturm and Jacobi knew of each other’s work.
Jacobi visited Paris in 1829 (see James [13]), but I have no idea if he and Sturm
met at that time.

3. Sturm theory on the real line

We will suppose V is a real bounded function on [0,∞). We are interested in
solutions of

−u′′ + V u = Eu (3.1)
for E real.

Theorem 3.1 (Sturm Comparison Theorem). For j = 1, 2, let uj be not identically
zero and solve −u′′

j +V uj = Ejuj. Suppose a < b, u1(a) = u1(b) = 0 and E2 > E1.
Then u2 has a zero in (a, b). If E2 = E1 and u2(a) �= 0, then u2 has a zero in
(a, b).

Proof. Define the Wronskian

W (x) = u′
1(x)u2(x) − u1(x)u′

2(x). (3.2)

Then
W ′(x) = (E2 − E1)u1(x)u2(x). (3.3)
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Without loss, suppose a and b are successive zeros of u1. By changing signs
of u if need be, we can suppose u1 > 0 on (a, b) and u2 > 0 on (a, a + ε) for
some ε. Thus W (a) = u′

1(a)u2(a) ≥ 0 (and, in case E1 = E2 and u2(a) �= 0,
W (a) > 0). If u2 is non-vanishing in (a, b), then u2 ≥ 0 there, so W (b) > 0 (if
E2 > E1, (E2 − E1)

∫ b

a
u1u2 dx > 0, and if E2 = E1 but u2(a) �= 0, W (a) > 0).

Since W (b) = u′
1(b)u2(b) with u′

1(b) < 0 and u2(b) ≥ 0, this is impossible. Thus
we have the result by contradiction. �
Corollary 3.2. Let u(x, E) be the solution of (3.1) with u(0, E) = 0, u′(0, E) = 1.
Let N(a, E) be the number of zeros of u(x, E) in (0, a). Then, if E2 > E1, we have
N(a, E2) ≥ N(a, E1) for all a.

Proof. If n = N(a, E1) and 0 < x1 < · · · < xn < a are the zeros of u(x, E1), then,
by the theorem, u(x, E2) has zeros in (0, x1), (x1, x2), . . . , (xn−1, xn). �

This gives us the first version of the Sturm oscillation theorem:

Theorem 3.3. Let E0 < E1 < · · · be the eigenvalues of H ≡ −d2/dx2 + V (x) on
L2(0, a) with boundary conditions u(0) = u(a) = 0. Then u(x, En) has exactly n
zeros in (0, a).

Proof. If uk ≡ u( · , Ek) has m zeros x1 < x2 < · · · < xm in (0, a), then for any
E > Ek, u( · , E) has zeros in (0, x1), . . . , (xm−1, xm), (xm, a) and so, uk+1 has at
least m + 1 zeros. It follows by induction that un has at least n zeros, that is,
m ≥ n.

Suppose un has m zeros x1 < · · · < xm in (0, a). Let v0, . . . , vm be the function
un restricted successively to (0, x1), (x1, x2), . . . , (xm, a). The v’s are continuous
and piecewise C1 with v�(0) = v�(a) = 0. Thus they lie in the quadratic form
domain of H (see [20, 21] for discussions of quadratic forms) and

〈vj , Hvk〉 =
∫ a

0

v′jv
′
k +

∫ a

0

V vjvk

= δjkE

∫ a

0

v2
j dx (3.4)

since if j = k, we can integrate by parts and use −u′′ + V u = Eu.
It follows that for any v in the span of vj ’s, 〈v, Hv〉 = E‖v‖2, so by the

variational principle, H has at least m+1 eigenvalues in (−∞, En], that is, n+1 ≥
m + 1. �
Remark 1. The second half of this argument is due to Courant-Hilbert [5].

If we combine this result with Corollary 3.2, we immediately have:

Theorem 3.4 (Sturm Oscillation Theorem). The number of eigenvalues of H strict-
ly below E is exactly the number of zeros of u(x, E) in (0, a).

As in the discrete case, if Ha is −d2/dx2+V (x) on [0, a] with u(0) = u(a) = 0
boundary conditions and H∞ is the operator on L2(0,∞) with u(0) = 0 boundary
conditions, and if Na(E) = dimP(−∞,E)(Ha), then Na(E)→ N∞(E), so
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Theorem 3.5. The number of eigenvalues of H∞ strictly below E, more generally
dimP(−∞,E)(H), is exactly the number of zeros of u(x, E) in (0,∞).

There is another distinct approach, essentially Sturm’s approach in [26], to
Sturm theory on the real line that we should mention. Consider zeros of u(x, E),
that is, solutions of

u(x(E), E) = 0. (3.5)
u is a jointly C1 function of x and E, and if u(x0, E0) = 0, then u′(x0, E0) �= 0
(since u obeys a second-order ODE). Thus, by the implicit function theorem, for
E near E0, there is a unique solution, x(E), of (3.4) near x0, and it obeys

dx

dE

∣∣∣∣
E0

= − ∂u/∂E

∂u/∂x

∣∣∣∣
x=x0,E=E0

. (3.6)

Now, v ≡ ∂u/∂E obeys the equation

−v′′ + V v = Ev + u (3.7)

by taking the derivative of −u′′ + V u = Eu. Multiply (3.7) by u and integrate by
parts from 0 to x0. Since v(0) = 0, there is no boundary term at 0, but there is at
x0, and we find

v(x0)u′(x0) =
∫ x0

0

|u(x)|2 dx.

Thus (3.6) becomes

dx0

dE
= −|u′(x0, E)|−2

∫ x0

0

|u(x, E)|2 dx < 0. (3.8)

Thus, as E increases, zeros of u move towards zero. This immediately implies
the comparison theorem. Moreover, starting with un, the (n + 1)th eigenfunction
at energy En, if it has m zeros in (0, a) as E decreases from En to a value, E′,
below −‖V ‖∞ (where u(x, E′) > 0 has no zeros in (0,∞)), the m zeros move out
continuously, and so u(a, E) = 0 exactly m times, that is, m = n. This proves the
oscillation theorem.

4. Rotation numbers and oscillations

Take the solution u(x, E) of the last section and look at the point

Π(x, E) =
(

u′(x, E)
u(x, E)

)
in R2. Π is never zero since u and u′ have no common zeros. At most points in R2,
the argument of Π, that is, the angle π makes with

(
1
0

)
, can increase or decrease. u

can wander around and around. But not at points where u = 0. If u′ > 0 at such
a point, Π moves from the lower right quadrant to the upper right, and similarly,
if u′ < 0, it moves from the upper left to the lower left. Thus, since π starts at(
1
0

)
, we see
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Theorem 4.1. If u(x, E) has m zeros in (0, a), then Arg π(a, E) (defined by conti-
nuity and Arg π(0, E) = 0) lies in (mπ, (m + 1)π].

If u and v are two solutions of −u′′ + V u = Eu with u(0) = 0, v(0) �= 0, we
can look at

Π̃(x, E) =
(

v

u

)
.

Π̃ is never zero since u and v are linear independent. W (x) = u′v − v′u is a
constant, say c. c �= 0 since u and v are linear independent. Suppose c > 0. Then
if u(x0) = 0, u′(x0) = c/v(x0) has the same sign as v(x0). So the above argument
applies (if c < 0, there is winding in the (u, v)-plane in the opposite direction).
Rather than look at Π̃, we can look at ϕ = u + iv. Then uv′ − vu′ = Im(ϕ̄ϕ′).
Thus we have

Theorem 4.2. Let ϕ(x, E) obey −ϕ′′ + V ϕ = Eϕ and be complex-valued with

Im(ϕ̄(0)ϕ′(0)) > 0. (4.1)

Suppose Re ϕ(0) = 0 and Im ϕ(0) < 0. Then, if Re ϕ has m zeros in (0, a), then
Arg(ϕ(a)) is in ((m− 1

2 )π, (m + 1
2 )π].

The ideas of this section are the basis of the relation of rotation numbers and
density of states used by Johnson-Moser [15] (see also [14]). We will use them as
the starting point of the next section.

5. Renormalized oscillation theory

Consider H = −d2/dx2 + V on [0,∞) with u(0) = 0 boundary conditions where,
as usual, for simplicity, we suppose that V is bounded.

By Theorem 3.5, dimP(−∞,E)(H) is the number of zeros of u(x, E) in (0,∞).
If we want to know dim P[E1,E2)(H), we can just subtract the number of zeros of
u(x, E1) on (0,∞) from those of u(x, E2). At least, if dim P(−∞,E2)(H) is finite,
one can count just by subtracting. But if dimP(−∞,E1)(H) =∞ while dim P[E1,E2)

is finite, both u(x, E2) and u(x, E1) have infinitely many zeros, and so subtraction
requires regularization.

One might hope that

dimP[E1,E2)(H) = lim
a→∞(N(E2, a)−N(E1, a)) (5.1)

where N(E, a) is the number of zeros of u(x, E) in (0, a). This is an approach of
Hartman [11]. (5.1) cannot literally be true since N(E2, a)−N(E1, a) is an integer
which clearly keeps changing when one passes through a zero of u(x, E2) that is
not also a zero of u(x, E1). One can show that for a large, the absolute value of
the difference of the two sides of (5.1) is at most one, but it is not obvious when
one has reached the asymptotic region.
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Instead, we will describe an approach of Gesztesy, Simon, and Teschl [10];
see Schmidt [23] for further discussion. Here it is for the half-line (the theorem is
true in much greater generality than V bounded and there are whole-line results).

Theorem 5.1. Let V be bounded and let H = −d2/dx2 + V (x) on [0,∞) with
u(0) = 0 boundary condition. Fix E1 < E2. Let

W (x) = u(x, E2)u′(x, E1)− u′(x, E2)u(x, E1) (5.2)

and let N be the number of zeros of W in (0,∞). Then

dimP(E1,E2)(H) = N. (5.3)

The rest of this section will sketch the proof of this theorem under the assump-
tion that dimP(−∞,E2)(H) = ∞. This will allow a simplification of the argument
and covers cases of greatest interest. Following [10], we will prove this in three
steps:
(1) Prove the result in a finite interval [0, a] in case u(a, E2) = 0.
(2) Prove dim P(E1,E2)(H) ≤ N by limits from (1) when dimP(−∞,E2)(H) =∞.
(3) Prove dim P(E1,E2)(H) ≥ N by a variational argument.
Step 1. We use the rotation number picture of the last section. Define the Prüfer
angle θ(x, E) by

tan(θ(x, E)) =
u(x, E)
u′(x, E)

(5.4)

with θ(0, E) = 0 and θ continuous at points, x0, where u′(x0, E) = 0. Using
d
dy tan y = 1 + tan2 y, we get

dθ

dx
=

(u′)2 − uu′′

u2 + (u′)2
. (5.5)

Let θ1, θ2 be the Prüfer angles for u1(x) ≡ u(x, E1) and u2(x) ≡ u(x, E2).
Suppose W (x0) = 0. This happens if and only if u(x0, E1)/u′(x0, E1) =
u(x0, E2)/u′(x0, E2), that is, θ2 = θ1 + kπ with k ∈ Z. If it happens, we can
multiply u2 by a constant so u1(x0) = u2(x0), u′

1(x0) = u′
2(x0). Once we do that,

(5.5) says
d

dx
(θ2 − θ1) =

(E2 − E1)u2
1(x0)

u′
1(x0)2 + u2

1(x0)
> 0.

Thus
θ1 = θ2 mod π ⇒ θ′2 > θ′1. (5.6)

Think of θ2 as a hare and θ1 as a tortoise running around a track of length
π. There are two rules in their race. They can each run in either direction, except
they can only pass the starting gate going forward (i.e., θj = 0 mod π ⇒ θ′j > 0),
and the hare can pass the tortoise, not vice-versa (i.e., (5.6) holds).

Suppose Ha, the operator on (0, a) with u(0) = u(a) = 0 boundary condition,
has m eigenvalues below E2 and n below E1. Since u(a, E2) = 0, θ2(a) = (m+1)π,
that is, at x = a, the hare makes exactly m + 1 loops of the track. At x = a,
the tortoise has made n loops plus part, perhaps all, of an additional one. Since
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θ′2 − θ′1 > 0 at x = 0, the hare starts out ahead. Thus, the hare must overtake
the tortoise exactly m− n times between 0 and a (if θ1(a) = (n + 1)π, since then
θ′2 − θ′1 > 0 at x = 0, θ2 − (m + 1)π < θ1 − (n− 1)π, and x = a; so it is still true
that there are exactly m− n crossings). Thus

dimP(E1,E2)(Ha) = #{x0 ∈ (0, a) |W (x0) = 0}. (5.7)

Step 2. Since dimP(−∞,E2)(H) =∞, there is, by Theorem 3.5, an infinite sequence
a1 < a2 < · · · → ∞ so that u(aj , E2) = 0. Haj → H in strong resolvent sense, so
by a simple argument,

dim P(E1,E2)(H) ≤ lim inf dimP(E1,E2)(Ha)

= N (5.8)

with N the number of zeros of W in (0,∞). (5.8) comes from (5.7).
Step 3. Suppose N <∞. Let 0 < x1 < · · · < xN be the zeros of W. Define

ηj(x) =

{
u1(x)− γju2(x) 0 < x ≤ xj

0 x ≥ xj

(5.9)

η̃j(x) =

{
u1(x) + γju2(x) 0 < x < xj

0 x > xj

(5.10)

where uj(x) = u(x, Ej) and γj is chosen by

γj =

{
u1(xj)/u2(xj) if u2(xj) �= 0
u′

1(xj)/u′
2(xj) if u2(xj) = 0.

(5.11)

Since W (xj) = 0, ηj is a C1 function of compact support and piecewise C2, and
so in D(H). But η̃j is discontinuous.

We claim that if η is in the span of {ηj}N
j=1, then∥∥∥∥(H − E2 + E1

2

)
η

∥∥∥∥ =
|E2 − E1|

2
‖η‖. (5.12)

Moreover, such η’s are never a finite linear combination of eigenfunctions of H .
Accepting these two facts, we note that since the ηj are obviously linear indepen-
dent, (5.12) implies dim P(E1,E2)(H) ≥ N . This, together with (5.8), proves the
result.

To prove (5.12), we note that(
H − E2 + E1

2

)
ηj = −|E2 − E1|

2
η̃j . (5.13)

Since η̃j is not C1 at xj , η̃ is not in D(H), hence η cannot be in D(H2) (so we get
control of dim P(E1,E2)(H), not just dimP[E1,E2](H)).
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Next, note that since W ′(x) = (E2−E1)u2u1, we have if W (xi) = W (xi+1) =
0 that ∫ xi+1

xi

u1(x)u2(x) dx = 0

for i = 0, 1, 2, . . . , N where x0 = 0. Thus

〈ηi, ηj〉 = 〈η̃i, η̃j〉 (5.14)

since if i < j, the difference of the two sides is 2(γi +γj)
∫ xj

xi
u1(x)u2(x) = 0. (5.14)

and (5.13) imply (5.12). That completes the proof if N <∞.
If N is infinite, pick successive zeros 0 < x1 < · · · < xL and deduce

dimP(E1,E2)(H) ≥ L for all L. �

6. Some applications

We will consider three typical applications in this section: one classical (i.e., fifty
years old!), one recent to difference equations, and one of Theorem 5.1.

Application 1: Bargmann’s Bound. Let u obey −u′′ + V u = 0 on [0,∞) with
u(0) = 0. Then, if V is bounded, u(x)/x has a finite limit as x ↓ 0. Also suppose
V ≤ 0.

Define m̃ = −u′/u so
m̃′ = |V |+ m̃2 (6.1)

since −V = |V |. Thus m̃ is monotone increasing. It has a pole at each zero, x0 = 0,
x1, x2, . . . , x�, . . . of u. Define

b(x) = −xu′(x)
u(x)

= xm̃(x). (6.2)

Then b(x) has limit −1 as x ↓ 0 and

b′(x) = x|V (x)| + b(x) + b2(x)
x

. (6.3)

In particular,
−1 ≤ b ≤ 0⇒ b′(x) ≤ x|V (x)|. (6.4)

By the monotonicity of m̃, there are unique points 0 < z1 < x1 < · · · <
x�−1 < z� < x� where b� = 0, and since b → −∞ as x ↓ xj , there are last points
yj ⊂ [xj−1, zj ] where b(y) = −1 for j = 2, 3, . . . , � and at y1 = 0, b(0) = −1.
Integrating b′ from yj to zj, using (6.4), we find∫ zj

yj

x|V (x)| dx ≥ 1

so ∫ x�

0

x|V (x)| dx ≥ �.
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By the oscillation theorem, if N(V ) = dimP(−∞,0)(H), then

N(V ) ≤
∫ ∞

0

x|V (x)| dx. (6.5)

This is Bargmann’s bound [2]. For further discussion, see Schmidt [24].
Application 2: Denisov-Rakhmanov Theorem. Rakhmanov [18, 19] (see also [16])
proved a deep theorem about orthogonal polynomials on the unit circle that trans-
lates to

Rakhmanov’s Theorem. If J is an infinite Jacobi matrix with its spectral measure,
dµ = f dx + dµs and f(x) > 0 for all x ∈ [−2, 2] and supp(dµs) ⊂ [−2, 2] (i.e.,
σ(J) ⊂ [−2, 2]), then an → 1, bn → 0.

From the 1990’s, there was some interest in extending this to the more general
result, where σ(J) ⊂ [−2, 2] is replaced by σess(J) ⊂ [−2, 2]. By using the ideas of
the proof of Rakhmanov’s theorem, one can prove:

Extended Rakhmanov Theorem. There exist C(ε) → 0 as ε ↓ 0 so that if dµ =
f dx + du and f(x) > 0 for a.e. x in [−2, 2] and σ(J) ⊂ [−2− ε, 2 + ε], then

lim sup
n→∞

(|an − 1|+ |bn|) ≤ C(ε).

Here is how Denisov [7] used this to prove

Denisov-Rakhmanov Theorem. If dµ = f(x) dx+dµ0, f(x) > 0 for a.e. x ∈ [−2, 2]
and σess(J) ⊂ [−2, 2], then an → 1 and bn → 0.

His proof goes as follows. Fix ε. Since J has only finitely many eigenvalues in
[2+ε,∞), Pn(2+ε) has only finitely many sign changes. Similarly, (−1)nPn(−2−
ε) has only finitely many sign changes. Thus, we can find N0 so Pn(2 + ε) and
(−1)nPn(−2− ε) both have fixed signs if n > N0. Let ã, b̃ be given by

ãn = aN0+n b̃n = bN0+n.

By a use of the comparison and oscillation theorems, J̃ has no eigenvalues in
(−∞,−2− ε) ∪ (2 + ε,∞). Thus, by the Extended Rakhmanov Theorem,

lim sup
n→∞

(|an − 1|+ |bn|) = lim sup
n→∞

(|ãn − 1|+ |b̃n|) ≤ C(ε).

Since ε is arbitrary, the theorem is proven.
Application 3: Teschl’s Proof of the Rofe-Beketov Theorem. Let V0(x) be periodic
and continuous. Let H0 = −d2/dx2 + V0 on L2(0,∞) with u(0) = 0 boundary
condition. Then

σess(H0) =
∞⋃

j=1

[aj , bj ]

with bj < aj+1. (In some special cases, there is only a finite union with one infinite
interval.) (bj , aj+1) are called the gaps. In each gap, H0 has either zero or one
eigenvalue. Suppose X(x) → 0 as x → ∞, and let H = H0 + X . Since σess(H) =
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σess(H0), H also has gaps in its spectrum. When is it true that each gap has at most
finitely many eigenvalues? Teschl [29, 30] has proven that if

∫∞
0 x|X(x)| dx < ∞,

then for each j, the Wronskian, w(x), of u(x, bj) and u(x, aj+1) has only finitely
many zeros. He does this by showing for H0 that |X(x)| → ∞ as x → ∞ and
by an ODE perturbation argument, this implies |w(x)| → ∞ for H . Thus, by the
results of Section 5, there are finitely many eigenvalues in each gap.

It is easy to go from half-line results to whole-line results, so Teschl proves if∫
|x| |X(x)| dx <∞, each gap has only finitely many eigenvalues.

This result was first proven by Rofe-Beketov [22] with another simple proof in
Gesztesy-Simon [9]; see that later paper for additional references. Teschl’s results
are stated for the discrete (Jacobi) case (and may be the first proof for the finite
difference situation), but his argument translates to the one above for Schrödinger
operators.
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