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Orthogohal Polynomials with Exponentially Decaying
Recursion Coefficients

Barry Simon

ABSTRACT. We review recent results on necessary and sufficient conditions for
measures on R and 8D to yield exponential decay of the recursion coefficients of
the corresponding orthogonal polynomials. We include results on the relation
of detailed asymptotics of the recursion coefficients to detailed analyticity of
the measures. We present an analog of Carmona’s formula for OPRL. A major
role is played by the Szegé and Jost functions.

1. Introduction: Szegd and Jost functions

In broad strokes, spectral theory concerns the connection between the coeffi-
cients in differential or difference equations and the spectral measures associated
to those equations. The process of going from coefficients to the measures is the
direct problem, and the other direction is the inverse spectral problem. The gems
of spectral theory are ones that set up one-one correspondences between classes of
measures and coefficients with some properties. Examples are Verblunsky’s form
of Szegd’s theorem [25] and the Killip—Simon theorem [12]. In this paper, our goal
is to describe (mainly) recent results involving such gems for orthogonal polynomi-
als whose recursion coeflicients decay exponentially. These are technically simpler
systems than the L? results just quoted but have more involved details.

The two classes we discuss are orthogonal polynomials on the real line (OPRL)
and on the unit circle (OPUC). For the OPRL case, we have a probability measure,
dp, on R of bounded but infinite support whose orthonormal polynomials, p,(z),
obey

1.1) ZPn(Z) = Gn41Pn+1(Z) + bnt1Pn(2) + @npn—1(z)

with b, € R and a, € (0,00) and called Jacobi parameters. {an,b,}32,; is a
description of dp in that there is a one-one correspondence between bounded sets
of such Jacobi parameters and such dps. For background discussion of OPRL, see
[4,9,18,24].
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For the OPUC case, D= {2 €C||2|] <1},and duisa probal?ility measure on
8D whose support is not a finite set. The orthonormal polynomials, ¢, (z), obey
the Szegd recursion relation:

(1.2) 2pn(2) = Papn+1(2) + Gnpn(2)
(1.3) pn(2) = 2"pa(1/2)
(14) pn=(1—lan)/?

with a,, € D and called Verblunsky coefficients. {as}7Z is a descript"wn of dy in
that there is a one-one correspondence between sequences of a, obeying lan| <1
and such dps. For background discussion of OPUC, see [10,17-19,24]. A
The measure theoretic side of the equivalences will be in teltms (}f a derived
object, rather than the measures themselves. For OPUC., f;he object. is D(z), tl'le
Szegé function [18, Section 2.4]. One says the Szegd condition holds if and only if

dé
(1.5) du(6) = w(8) =t dps
where dp, is singular and

de
(1.6) /log(w(O)) 2y > T

(which is known to be equivalent to T2 olan]? < o0). In that case, D(z) is defined
by

i0 de
@ p(e) = e [ G2 vou(wl®) 1)
which obeys
(1.8) Ph(2) = D(2)7!
if |]z2| < 1.

D(z) does not uniquely determine dyu, but it does if dus = 0, as it will be in
our cases of interest, since

(1.9) w(f) = lim |D(re)?

for a.e. 8. o
For OPRL, the object is the Jost function. The situation is not as clean as

the OPUC case in that there are not simple necessary and suﬁ"lcienti conditio?s. for
existence in terms of the measure. There are necessary and sufficient conditions
in terms of the Jacobi parameters (see [5; 19, Section 13.9]) but not for the mea-
sure. However, there are sufficient conditions for existence that suffice for us here.

Suppose

(1.10) dp(z) = f(z)dz + dpa(x)

where f is supported on [-2,2], and outside this set, the singular part, dp,, has
only pure points {E;t };v:o with

(1.11) Ef <Ej <--<-2<2<--<Ef <Ef
and suppose
(1.12) S (Ef|-2)* <0

g
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and that
2
(1.13) / log(f(z))(4 - z%)~/2dz > —00
-2

Then (originally in Peherstorfer— Yuditskii [15]; see also Simon-Zlatos (23]
and [19, Theorem 13.8.9]) there is an analytic function u on I so that its zeros are
precisely those points z; in D given by

(1.14) 4+ () =EF
and if B is the Blaschke product (convergent by (1.12))

(1.15) B = [[ Lt
. z) = —
Prabrs 1- Zz
then Bu~! € H? and the boundary values of u obey
(1.16) |u(e!®)[? Tm M(e'®) = sin
where
_ dp(z)
(1.17) M(z) = / e

(so Im M(e'®) is related to f(2cos#)).

These properties determine u uniquely. Unlike the OPUC case, u does not
determine dp even if dps | [~2,2] = 0 for u only determines f and the localization
of the pure points of dp on R \ [-2,2]. To recover dp, we also need to know the
weights of the pure points; equivalently, the residues of the poles of M at the zj‘.

The theme of this review is that detailed results on exponential decay of recur-
sion coefficients are equivalent to analyticity results on D! in the OPUC case and
u in the OPRL case. That exponential decay implies analyticity has been in the
physics literature for Schrodinger operators for over fifty years. The subtle aspect
is the strict equivalence —an idea that appeared first in Nevai- Totik [14].

In Section 2, we discuss some aspects of finite range potentials, and in Section 3,
following Nevai- Totik [14] and Damanik—-Simon [6], the initial equivalence. In
Section 4, following Simon [20,21], we discuss detailed exponential asymptotics
and meromorphic S and u.

I would like to thank J. Christiansen, L. Golinskii, P. Nevai, and V. Totik for
useful comments.

* Stas Molchanov is a leading figure in spectral theory. It is a pleasure to present
this birthday bouquet to him.

2. Finite range

In this section, we present new results on approximation by finite range “po-
tentials.” We begin with an OPRL analog of Carmona’s result [3] on boundary
condition averaging for Schrédinger operators. We will also see that Bernstein—
Szegé measures for OPUC can be viewed through the Carmona lens. Carmona’s
proof relies on computing derivatives of Priifer variables— our proof here is spectral
averaging making the relation to [22] transparent.
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Let J be the semi-infinite Jacobi matrix

by a7 O
a; by a2
2.1) J=|0 a b

associated to an OPRL with measure dp; Jn.r, the matrix obtained from the top n
rows and n left columns; and Jz, the matrix J, . with b, replaced by b, +b. Here
b € C. Notice that if Imb < 0, then spec(J2) C C\ C,, so

m®(z) = (o, (JP — 2)7"60)

is analytic for b € C_ and z fixed in C..
If dp is a determinate moment problem, then J is essentially selfadjoint on

finite sequences [16], so
dp(z)
(8) = | 22
(2.2) md(z) - m(z) = / pra
for any b. Thus, if dv, is defined by

(23) @) =1 [ m®e) 13
_ / dv™)(z)
r—z
then
(2.4) ™ —dp

weakly. dv(™ is thus the average over b of the pure point spectral measures of Jn )

Theorem 2.1. If p,(x) are the orthonormal OPRL, then
dz

2.5 A (z) =
®9) (@@ + P (@)

In particular, the right-hand side of (2.5) converges weakly to dp. More is
true, for Gaussian quadrature implies that if mn By = dp® (z)(z — 2)~?, then
JE dp® (z) = [z dp(z) for £ < 2n -2, and thus,

(2.6) /zldu(")(x):/z‘dp, ¢=0,... 2m—2

Of course, dv(™ does not have all moments finite; indeed, [ lz|f dv™ = oo for
£>2n—1.

PROOF OF THEOREM 2.1. It is well known (see [18, Section 1.2]) that
2.7) det(z — Jn,r) = Pn(2)
the monic OPRL, and if J,(‘f}, is the matrix obtained by removing the top row and
leftmost column (i.e., 11 minor), then

(2.8) det(z — I$F) = Qn(2)
the monic second kind polynomial of degree n — 1.
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By expanding det(z — J,(.b)) in minors, we see
(2.9) det(z — J) = Po(2) ~ bP,_1(2)
‘ =(ar--- an—l)(anpn(z) —bpn_1 (z))
and thus,
(anQn(z) —bgn—1 (Z))
(anpn(z) —bpn-1(2z ))

As noted above, if Imb < 0, mg.b)(z) has its poles in Imz < 0 and thus, if

Imz > 0, m® (2) is analytic in Imb < 0. Thus, we can close the contour in the
lower half-plane and find for Im z > 0,

(2.10) m®(z) = —

(2.11) fitn(2) = mP="(z) = _(8n9n(2) +ign-a (b))

(anpn(z) + ipn-l(z))

Thus, iy, is analytic on C,, so

dv,(z) = 77 Im i, (z) dz
Since pn, Pn-1, gn, gn—1 are real on R,
Qp, (pn-l (x)Qn(x) - P'n(z)q'l—l(z))
(42pa(2)? + pr_s(z)?)
which is (2.7) by a standard Wronskian calculation (see [18, (1.2.51)]). 0

(2.12) Im fiy (z) =

By this same calculation, one can recover Carmona’s formula for the Schrédin-
ger operator case.

One can ask about the analog of this for OPUC. Given a nontrivial measure,
du, on 8D and w = € € 9D, we define du(“’) to be the trivial measure with
Verblunsky coefficients

o; =aj(dp), 7=0,...,n~1
op =w
(w)

Then dus” is the measure with n+1 pure points at the zeros of the paraorthogonal
polynomial (POPUC),

(2.13) 3!, (2) = 28, (2) -~ @B (2)
Theorem 2.2. du, = [ d6/(2n)dp,(e) is the Bernstein - Szegs measure
de
2.14 dy, = ——————
@14 o = B Ton (@)

PROOF. If 4, are the second kind polynomlals Geronimus’ formula for F(z)
(see [18, Theorem 3.2.4]) implies (F(z;du) = e—;-,—f—zd;z(O))
(2.15) F(zdul) = La(0) = wevn(z)
P(2) — wzpn(2)
Averaging w over %—% gives the value at w = 0 since this function is analytic in w
for z fixed in D. It follows that

(2.16) F(zdpa) = an;
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and yields (2.14) by [18, (3.2.35)]. O

The Bernstein — Szeg approximation also has the property of being the measure
associated to extending the as up to n to be free beyond n (i.e., a; = 0 for j > n).
One can ask about the analogous approximation for OPRL. We will get the function
Sr, used by Dombrowski—Nevai (8]:

Let J; be the Jacobi matrix with parameters

an(J) n=1,...,6-1
(2.17) aam={l "
ba(d) n=1,...,2
(2.18) bu(Je) = {0 n>t

According to Theorem 13.6.1 (with a, replaced by 1), its Jost function is (z =
z2+1/2)

(2.19) 9e(2) = 2 (m (z + ;) ~ 2pp_y (z + -i—))

Define Sy(z) by

(2.20) S, (z + %) = g[(z)gl(;)
Then, by (2.19),
(2.21) Se(x) = pe(x)? + pr_1 ()2 — Tpe(2)pe-1(z)

Taking into account the different normalization (for us, “free” is ax = 1; for them,
ai = 1), this is the function Sy(z) of Dombrowski—~Nevai (8]. The approximating
measure has a.c. part related to dz/|ge(z)|? on [—2, 2] which is dz/S¢(z). The eigen-
values of J; are zeros of Sy(z) but not all zeros since S, also vanishes if g,(1/2) = 0,
that is, at antibound state and resonance energies.

For most purposes, (2.7) is a more useful representation than the one associated

to S.

3. Necessary and sufficient conditions on exponential decay

The starting point of the recent results on exponential decay is the following
result of Nevai - Totik for OPUC:

Theorem 3.1 ([14]). Let du be a nontrivial probability measure on 0D and
R > 1. Then the following are equivalent:

(a)
(3.1) lim sup|ay (du)|V/™ < R7!
(b) dps = 0, the Szeg6 condition (1.6) holds, and D(2)~! has an analytic
continuation to {z | |z| < R}.

Remark. Since R~! < 1, (3.1) is an expression of exponential decay.
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The proof is easy. If (3.1) holds, Szegd recursion first implies inductively that
for |z| =1,

(3.2) [€n+1(6°)] < (1 + |an))|n(e™)]

s0

(3.3) sup |®7(z)| = sup|®;(e!®)| (by the maximum principle)
n,|z|<1 n,8

<J[a+lyh)=C<oo

=0
and thus, for |z] > 1,
(3.4) [®n(2)| < Cle|"
Iterating

(35) ®;,,1(2) = B3(2) - n2®n(2)
we get

n-1
(3.6) @ (2) =1- ) 0;29;(2)

=0

(3.1), (3.4), and (3.6) imply that for any € > 0,

sup |#}(2)] < oo
n,|z|<R-¢
which implies that ¢}, (z) has a limit for |2|] < R. This limit defines the analytic
continuation of D(z)~!.
For the other direction, one can use either of two similar-looking but distinct
formulas relating D to ay,. One can use a formula of Geronimus [10] and Freud [9]
as Nevai-Totik [14] do (it requires dus = 0)

(3.7) ay = -nw/‘ﬁnﬂ(ei") D(e'®)~1du(9)
or the following formula of Simon [20] derived from iterated Szegd recursion:
(3.8) an = —kZIK2 / 3.(@%) [D(e®)~" — D(0)~")e~ du(8)

In these formulas,
n-1
rn= 1A - 10572 Koo = Jim x,
=0

To get exponential decay of ay, from (3.7) or (3.8), one uses [ ®,, (e?®)e~'/? du(6)
=0 for j < n and the Taylor series for D! to see that o, is bounded by the tail
of the Taylor series of D(z)~! which, of course, decays exponentially if D(z)~! is
analytic in |z| < R.

For OPRL, the analogs of Theorem 3.1 are due to Damanik—Simon [6]. The
result is simpler if there are no bound states or resonances where

D



460 B. SIMON

Definition. We say a measure dp on R has no bound states or resonances if

(3.9) dp(z) = f(z)dz +dps
where

(3.10) supp(dp) C [-2,2]
and :

(3.11) /(4—z2)“f(z)dm < 00

Theorem 3.2 ([6])- Let R > 1. Suppose dp has no bound states or resonances.
Then u(z) has an analytic continuation to {z | |z| < R} if and only if

(3.12) lim sup[lan(dp) — 1] + [ba(dp)[]/* < R

[6] has several proofs, but the simplest one is in [21]. When (3.11) holds, there
is a measure du on 9D given by

(313) du(6) = w(®) 50 +de
where
(3.14) w (amcos (;)) = c(4— )72 f(z)

for suitable ¢ and dps. The Verblunsky coefficients a, for dp and J acobi parameters
for dp are related by ([2; 11; 19, Section 13.2])

(3.15) bpt1 = Q2n — Cant2 — Q2nt1(C2n + Q2n42)

(3.16) a2, —1=o0ony1 — Qan43 — a2, 12(1 — aznt3)(1 + Q2nt1) — Q204302041
and the Jost function for dp and Szegd function for du by

(3.17) u(2) = (1 - |aof?)(1 — @1)D(z) "

From this, it is easy to derive Theorem 3.2 from Theorem 3.1. .
To understand the situation when J has bound states, we note the analytic

continuation of (1.16) says

(3.18) u(z)u(%) [M(z) - MG)] —z—gt

(this uses also u, M real on R). Recall that if 20 € D is such that zp + 25 lis
an eigenvalue of J, then u(zp) = 0. An argument shows that if |zg| > R™! and
|@n — 1|+ bn| < CR™?", then u(zg') # 0 and M(1/z) is regular at zo. Thus, (3.18)
implies a relation between u'(z0), u(1/20), and the residue of the pole of M(z) at
zg. This leads to

Definition. Suppose u is analytic in {z | |z| < R} for some B> 1 and z el D
with u(zo) = 0 and |zo| > R™*. We say the weight of the point mass at z + zy is
canonical if

(319 tim = )M (a0) = 20— ) [o ol (5 )|

Theorem 3.3 ([6]). Fiz R > 1. Then (3.13) holds if and only if
(i) u(2) has an analytic continuation to {z]12| < R}.
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(i) The point mass at each zp € D with |20] > R~ and u(z) = 0 is a
canonical weight.

If u is entire and has m zeros in I, the set of measures with that u has dimension
m — 1. A single point on this space has decay at rate faster than any exponential.
Similarly, if u is a polynomial, {a, — 1,b,} has finite support if and only if all
weights are canonical.

4. Detailed asymptotics
Let S be defined by

(4.1) S() == aj12’
j=0

where a_; = —1. Of course, when D exists, both D(z)~! and 5(z) are analytic
near z = 0. Theorem 3.1 can be rephrased.

Theorem 4.1. The Taylor series of D(z)~! and S(z) have the same radius of
convergence.

Barrios Rolanfa et al. [1] extend this to show S(z) is meromorphic in {z | |2| <
R + ¢} with a single simple pole at z = R if and only if D(z)~! is meromorphic in
a similar region. This condition on S is, of course, equivalent to

(4.2) an = CR™™ + O(R™™(1+9)
which is how they phrased their result. To go further, it is useful to define
(4.3) r(z) = D(1/2) D(z) !

which is analytic in {z | 1 — ¢ < |z| < R} if (3.1) holds. Simon [18] proved
that r(z) — S(z) is analytic in {z | 1 — € < |2| < R?} when (3.1) holds, thereby
generalizing [1]. The ultimate result of this genre was found independently by
Deift — Ostensson [7] and Martinez-Finkelshtein et al. [13]; an alternate proof was
then found by Simon [20].

Theorem 4.2. If (3.1) holds for some R > 1, then r(2z) — S(2) is analytic in
{z]1-¢e< || < R3}.
This is optimal in that there are examples [13,20] where S (and r) have a simple

pole at z = R but S —r has a pole at z = R3.
Motivated by this, Simon [20] proved:

Theorem 4.3. S(z) is an entire meromorphic function if and only if D(z) ™" is.

One can even relate the poles. Given a set S in {z | |z] > 1} which is discrete,
one defines G(S) to be the set of all products 21 ... zn41Zn42 - - - Zont1 Where 2; € S.
Then

Theorem 4.4 ([20]). Let S(2) be entire meromorphic and let P be the poles
of D(z)~? and T the set of poles of S(z). Then P C G(T) and T C G(P).

Simon [21] studies analogs of the results for OPRL. In the Jacobi case, define
oo
(4.4) B(z) =1= Y [bpy12"™*" + (ans2 — 1)2*"*]
n=0

The analog of Theorem 4.2 is
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Theorem 4.5 ([21]). Suppose R > 1 and
lim sup (la}, — 1] + [ba])!/?" = R
n—oo

Then (1 — z2)u(z) + 2*u(1/2)B(2) is analytic in {z | R7} < 2| < R?}.
As explained there, R? is optimal. The analog of Theorem 4.3 is
Theorem 4.8. B(z) is an entire meromorphic function if and only if u(2) s.

The connection between poles, that is, the analog of Theorem 4.4 is complicated
but appears in [21].

Notes added in proof

(1) Theorem 2.1 is not new. It appeared already (at least if a, = 1) as Propo-
sition 2.1 in: D. Krutikov and C. Remling, Schrodinger operators with sparse poten-
tials: Asymptotics of the Fourier transform of the spectral measure, Comm. Math.
Phys. 223 (2001), no. 3, 509~532. Remling informs me that their proof using
non-selfadjoint boundary conditions (essentially equivalent to our calculation) was
motivated by earlier work of Atkinson and Clark.

(2) A. Zlatos has pointed out that in the discussion of the formulas of Dom-

browski - Nevai, I left out a factor of /(4 — x2).
1 would like to thank Christian Remling and Andrej Zlatos for their remarks.
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