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l. Introductlon

-

Perhaps the most common theme in Fntz Gesztesy s broad opus is the study
of problems with periodic or almost periodic finite gap differential and difference
equations, especially those connected to integrable systems. The present paper
reviews recent progress in the understanding of finite gap Jacobi matrices and their
perturbations. We'd like to acknowledge our debt to Fritz as a collaborator and
friend. We hope Fritz enjoys this birthday bouquet! e

We consider Jacobi matrices, J, on £2({1,2,...,}) indexed by {an,bn}2,,
a, > 0, b, € R, where (ug = 0) PN ;T

(1.1) (Ju)n = @ntingr + bnu,;‘—l- Gn—1Un—1 . oy

”

or its two-sided analog on ¢€2(Z) where a,, by, u, are indexed by n € Z and J is still
given by (1.1) (we refer to “Jacobi matrix” for the one-sided objects and “two-sided
Jacobi matrix” for the Z analog) Here the a’s and b’s parametrize the operator J
and {u,} € ¢°. . ¢
We recall that associated to each bounded Jacobi matrix, J, there is a unique
probability measure, u, of compact support in R characterized by either of the
equivalent o
(a) J is unitarily equivalent to multiplication by x on L?(R,du) by a umtary w1th
(Udi)(z) =1.
(b} {an,b,}22, are the recursion parameters for the orthogonal polynomials for .
We'll call i the spectral measure for J. SN
By a finite gap Jacobi matrix, we mean one whose essential spectrum is a finite »"
union '

(1.2) Cess{J) = ¢ = [ag, B1] U - - - U [aes1, Bes] .
where '
(1.3) a1 < Py < < apyr < P
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¢ counts the number of gaps. .
We will see that for each such ¢, there is an é-dimensional torus of two-sided

J’s with ¢(J) = ¢ and J almost periodic and regular in the sense of Stahl-Totik
[56]. We’'ll present the theory of perturbations of such J that decay but not too
slowly. Qur interest will be in spectral types, Lieb-Thirring bounds on the discrete
eigenvalues and on orthogonal polynomial asymptotics. We begin in Section 2 with
a discussion of the case £ = 0 where we may as well take e = [—2,2], in which the
(0-dimensional) torus is the single point with a, = 1, b, = 0. We’ll discuss the
theory in that case as background.

Section 3 describes the isospectral torus. Section 4 discusses the results for
general finite gap sets with a mention of the special results that occur if each
[@;, B;] has rational harmonic measure, in which case the isospectral torus contains
only periodic J's. Section 5 discusses a method for the general finite gap case
- which relies on the realization of CU {oc} \ ¢ as the quotient of the unit disk in C by
a Fuchsian group—a method pioneered by Peherstorfer-Sodin-Yuditskii [42, §5],
who were motivated by earlier work of Widom [64] and Aptekarev [4].

- While we focus on the finite gap case, we note there are some results on general
compact ¢’s in R with various restrictive conditions on ¢ (e.g., Parreau-Widom),
Peherstorfer-Yuditskii [42] discuss homogencous sets and Christiansen [8,9)] proves
versions of Theorems 4.3 and 4.5 below for suitable infinite gap ¢'s. See [16,65] for
discussion of properties of some ¢’s and examples relevant to this area.

These works suggest forms of two conditions in the finite gap case suitable
for generalization. Let p. be the equilibrium measure for ¢ and G,(z) its Green's
function (—&(p.) — ®,,(z) in terms of (3.1)/(3.2)). Then (4.5) should read

N
(1.4) Y " Ge(za) <0
n=1
{(which for finite gap e is equivalent to (4.5)). Similarly, (4.6) should read
(15) . [roslr@ndnta) > —o

(again, for finite gap e equivalent to (4.6)).
2. The Zero Gap Case

The Jacobi matrix, Jy, with a, = 1, b,, = 0 is called the free Jacobi matrix. It
is easy to see that the solutions of Jou = Au are given by solving

(2.1) a+a"l=)\
for A € C and setting

(2.2) . = §1; (a” —a™)

This is polynomially bounded in 7 if and only if |a| = 1. If a = e, then
{2.3) A =2cosk, u, = sin(kn)

Thus, .

(2.4) o(Jo) =[-2,2), A€ (~2,2) = all eigenfunctions bounded

{by all eigenfunctions here, we mean without the boundary condition ug = 0).
In identifying the spectral type, the following is useful:
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THEOREM 2.1. Let J be a Jacobi matriz with an +a; + [ba| bounded. Suppose
all solutions of (Ju)p, = Au, (where ug, u; are arbttrar'y) are bounded for A € § C R.
Then the spectrum of J on S is purely a.c. in the sense that if p is the spectral |
measure of J and |-| is Lebesgue measure, then |

@9) - (=0 TCSamd[TI>0% pu(M)>0 .

REMARK. The modern approa,ch to this theorem would use the mequa,htzes of
Jitomirskaya-Last [28,29] or Gilbert-Pearson subordinacy theory (23,24, 30, 40|
to handle 5 and the results of Last-Simon [36] for the a.c. spectrum. The simplest
proof for this special case (where the above 1deas are overkill) is perhaps Stmon
[49] S : w

* A simple variation of para.meters in the difference equation implies that under
£! perturbations, eigenfunctions remain bounded when X € (—2,2), that is,

THEOREM 2.2. Let J be a’ Jaco!;i mairiz with .

(2.6) - ‘ Z lan — 1|+ |bn| < 00 1.

LR | . ﬂ-l

Then J,,,(J) =[-2,2] and the spectrum on ( -2, 2) is purely a.c.
REMARK. The continuum analog of Theorem 2.2 goes back to T1tchma.rsh [60].

Thus, the spectrum outside [-2,2] is a set of elgenvalues {z .}, where Ne
N U {o0}.  (2.6) has implications for these e:genvalues ’

THEOREM 2.3. Let {z.}_, be the e:genvalues of a Jacobi matm‘:&:fl Then

' o 50 , o0
(2.7) " Z(x —HV2 S bal +4) e —1]
n=l n=1 - n=1 '

- REMARKS. 1. This implies

(2.8) . desc(x,,, [-2 2))1/2 < (Z 5] + 4 Z lan — 11)

[ n—

2. The analog of (2.8) in the continuum case is due to Lleb—Thlrrmg [37] who
proved it when the power 1/2 is replaced by p > 1/2 and the right side is replaced
by [bn|?t1/2, |ar ~ 1[P1*/2 and 1/2 by a suitable constant. They proved the analog
is false if p < 1/2 and conjectured the result if p = 1/2. This conjecture was proven
by Weidl [63] with an alternate proof and optimal constant by Hundermark-Lieb—
Thomas [25). (2.8) and its p > 1/2 analogs are called Lieb—Thirring inequalities
after [37). o

3. This theorem is a result of Hundertmark-Simon [26] who used a method
lD.SplI'Bd by [25). . ¢ .

4. (2.7) is optimal in the sense that :ts P < 1/2 analog is false and one cannot
put a constant ¥ < 1 in front of neither the  sum nor the a — 1 sum. The same
also applies to (2.8).

5. (2.7) implies p > 1/2 analogs by an argument of Aizenman-Lieb [3].

6. The one-half power in (2.7)/(2.8) is especially significant for the following
reasomn: .

('2I.9) . z(z) =z 4+ 27!
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maps D to CU {oo} \ [-2,2]. Its inverse

(2.10) - gz =L(z— Va2 -4)
has a square root singularity at = £2. Thus, the finiteness of the left side of
(2.7)/(2.8) is equivalent to a Blaschke condition

2

_ N
(2.11) > (1—|z(za)l) < 00
s - n= l
THEOREM 2.4. Let 7 be a Jacobi matric with gen(J) = [-2,2] and Jacobr
pammeters {an, ba} . Suppose its spectral measure has the form
(2. 12) - . dp, f(x)dr +dpu,

where dp is singular with respect to dz. Suppose that {xn}Y_, are ils pure points

outszde [ 2 2] Consider the three conditions:
i . RN P

N
(2.13)° Zdlst(:rn,[ ~2,2)1? < oo
) C r|.—1 o
21 ) ‘::] (4 — 22)~ Y2 loglf ()] dz > —00
' . -J=2
(2.15) {c) .~ ILHCI,O ai ...an exists in {0, 00)

Then any two conditior;sﬁimply the third. Morcover, in that case,

o0

(2.16) (@) D (an—1)?+b: <o
n=1
’ K K
(217) - (¢)  lim > (an—1) and lim Z bn egist
. ’ 'n=1

REMARKS 1. (2. 13) is called a critical Lieb-Thirring inequality. (2.14) is the
Szegb condition. n

2. Since f € L', the integral in (2.14) can only diverge to —oc. That is, the
integral over log is always finite and (2.14) is equivalent to the integral converging
absolutely.

3. By a result of Ullman [62], 0ess(J) = [-2,2] and f(z) > O for ae. z in
[~2,2] implies lim,_,00(ay - --a,)™ = 1, so (2.15) can be thought of as a second
term in the asymptotlcs of ~ log(a; ...an}

4. Condition (c) can be thought of as three statements: limsup < oo, liminf >
0, and lim sup = liminf. The full strength of {c) is not always needed. For example,
(a) plus lim sup > 0 implies (b) and the rest of (c).

5. This result can be thought of as an analog of a theorem of Szegé for OPUC
[67] (see also [60, Ch. 2]). That (b) = (c), if there are no eigenvalues, is due to
Shohat [47] and that (b) & (c), if there are finitely many z's, is due to Nevai [38).
The general (a) + (b) = (c) is due to Peherstorfer-Yuditskii [41] and the essence
of this theorem is from Killip-Simon [32], although the precise theorem is from
Simon-Zlatos [54].

COROLLARY 2.5. If (2.6) holds, then so does (2.14).
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ProoF. (2.6) implies [];2, a,;,' converges absolutely and, by Theorem 2.3, it
implies (2.13). Thus, (2.14) holds by Theorem 2.4. = O
' T
REMARKS. 1. This result was a conjecture of cha,l [39] -
2. It was proven by Kllhp -Simon [32]. It was the need to complete the proof
of this that motivated Hundertmark-Simon [26].

There is a close connection between these conditions and asymptotlcs of the
OPRL: ‘
H . ’ " .
THEOREM 2, 6 Let {pn(:t:)}n._o be the orthonormal polynomials for a Jacobi
matriz, J, obeying the conditions (a)-(c) of Theorem 2. 4 Then uniformly for:r: in
compact subsets of CU {0} \ [-2,2],

, Pn()
(218) , . . nl-rn;o [%(I-l'\/m)]n

erists and i3 analytic with zeros only at the x,,'s.

REMARKS. 1. When there are no 'z,’s, this is essentially a result of Szego
[57,58]. For the general case, sce Peherstorfer-Yuditskii [41]. -

2. This is called Szegé asymptotics.

3. The reason for the different sign in (2.10) and (2.18) is that, as n e oo,‘
pr(z) = o0, |2(z)| < 1 so z(x)"pn(x) is bounded. The other solution of (2 9) is

z(z)~? and it is that solution that appears in the denominator of (2.18). '
s

While conditions (a)~(c) of Theorem 2.4 are sufficient for Szegd asymptoticé,.
they are not necessary:

THEOREM 2.7. Let J be a Jacoba matriz whose parameters obey (2. 16) and
(2.17). Then (2.18) holds on compact subsets of CU {o0} \ [~2,2]. Conversely, if
(2.18) holds uniformly on the circle |z| = R for some R > 2, then (2.16} and (2 17)|
hold.

REMARKS. 1. This is a result of Damanik-Simon [14].

2. There exist examples where (2.16) and (2.17) hold but both (2.13) and (2 14)
fail. -

THEOREM 2.8. For a Jacobi matriz, J, with parameters {an,bn}peq, spectml
measure obeying (2.12), and discrete eigenvalues {za}3_,, one has

(2.19) i(an —1)? 4+ b2 < o0
n=1 )
if and only if |
(2.20) (@)  Oess(J) =[-2,2] l
N
(2.21) (b) Z dist(za,[-2,2])%% < 0
n=1

(2.22) (c) /_22(4 — 22yt 2)og[f(x)} dz > —c0

a
1

. "‘.

R A
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REMARKS. -1. This theorem is due to Killip-Simon [32). They call (a)
Blumenthal-Wey!, (b) Lieb-Thirring, and (c) quasi-Szegd.
L N - - .
2. The continuous analog of (2.19) => (2.21) is due to Lieb-Thirring [37].

THEOREM 29 Let J be a Ja;:obi matnz with Tess(J) = {—2,2) and spectral
measure, dp, given by (2.12). Suppose f(x) >0 for a.e. T 1n [~2,2]. Then

(2.23) L. lim fan — 1+ [bal = 0

REMARK. This is often called the Denisov-Rakhmanov theorem after (15,44,
45). The result is due to Denisov.” Rakhmanov had the analog for OPUC which
implies the weak version of Theorem 2.9, where ge(J) = (—2,2] is replaced by
o(J} = [-2,2]. That the result as stated was true was a long-standing conjecture
settled by Denisov. SR

Conditionsfﬁbn the 'SI;ectrum combined with weak conditions on the Jacobi pa-
rameters have strong consequences. For cxample, the existence of lima 0 1...84
clearly has no implication for the b's, but if combined with o(J) = [~2, 2] implies,
by Theorems 2.4 and 2.8, that 327 , 2 < oo, Similarly, one has

THEOREM 2.10. S?lppose Oess{J) = [—2,2] and

(2.24) ’ .. lim (ay...an)Y" =1
. . n—oo |
Then
P 1 N
. 3 T —13¥2 2 _
(2.25) . Jim ; (an—1)2+02 =0

T

REMARKS. 1. (2.24) says that the underlying measure is regular in the sense
of Ullman-Stahl-Totik; see the discussion in Section 3.

2. This theorem is a result of Simon [52)].

< '
5

3. The Isospectral Torus

Let e be a finite gap set with £ gaps and ¢ + 1 components, ¢, = [a;,5),
Jj =1,...,8+ 1. There is associated to ¢ a natural ¢-dimensional torus, T, of
almost periodic’ Jacobi matrices. If {an,bn}3%_, are almost periodic sequences,
they are determined by their values for n > 1 so we can view the elements of 7, as
either one- or two-sided Jacobi matrices. There are at least three different ways to
think of 7,: i,
(a) As reflectionless two-sided Jacobi matrices, J, with o(J) = ¢. This is the

approach of [5,7,21,22,42,53,55,59].
(b) As one-sided Jacobi matrices whose m-functions are minimal Herglotz func-

tions on the Riemann surface of | H;’:; (z—a,)(z—8,)] '/2_ This is the approach
of [10].

(¢) As two-sided almost periodic J which are regular in the sense of Stahl-Totik
[56] with a(J) = e. This is the approach of [35].

In understanding these notions, some elementary aspects of potential theory
are relevant, so we begin by discussing them. For discussion of potential theory
ideas in spectral theory, see Stahl-Totik {56] or Simon [51].

¥
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On our finite gap set, ¢, there is a unique probability ﬁleasure, }),, called the
equilibrium measure which minimizes ' '
3.1) &)= [y deadpt)
among all probability measdrés'supported on ¢. The corresponding equilibrium "

potential is -

T @, (x) f/loglx ~y|"  dpe(z)

"

The c.;_xpacity, C(e), is defined by -

K

(3.2)

(33) VT O = ep(=E(ed)
A Jacobi matrix with oee(J) =¢ has .-
34 i lim sup(a; .- .an)V™ < Cle)

J is called regular if one has equality in (34) We call a two-sided Jacobi matrix |
regular if each of the (one-sided) Jacobi matrices '

(3.5) Js (resp::J_) with parameters {am‘bn‘};,"‘f__l (resp. {G-nyb-n+1}nel)

is regular. p, is the density of zeros for any Jregu]ar J with gegs(J) = ¢.

The £ + 1 numbers p([a;, B;]), j = 1,...,£+ 1, which sum to 1 are called the
harmonic measures of the bands. We also recall that a bounded function, ¥, on Z
is called almost periodic if {S*¥}xez, where (S*9)n = ta—k, has compact closure
in £° (see the appendix to Section 5.13 in [53] for more on this class). Such ¢’s
are associated to a continuous function, ¥, on a torus of finite or countably infinite
dimension so that

(3.6) . 'd/’n = \I,(emrmu; , e2rrirwz, L )

The set of {no + E,il Wi : Mo, Nk € Z, Zngl |ng| < oo} is called the frequency
module of 1 when there is no proper submodule (over Z) that includes all the
nonvanishing Bohr-Fourier coefficients. This set for arbitrary {wx} f=1 is called the .
frequency module generated by {wi}i ;.

With J+ given by (3.5), we define m.(z) for z € C\R by

(3.7) m4(z) = (61, (Jx — 2) 7' 61)
One has for a two-sided Jacobi matrix that
(3.8) (B0, (J — 2) 7180} = —(aZm4(2) —m_(z)"1)™*!

An important fact is that J; are determined by my, essentially because my deter-
mine the spectral measures py via their Herglotz representations,

duy(x
(3.9) m.—.l:(z) = f__ﬂ_:t(__)
rT—2z
and p+ determine the ¢'s and b’s via recursion coefficients for OPRL. Alternatively,

the Jacobi parameters can be read off a continued fraction expansion of m4 (z) at
z = 00.

It is sometimes useful to let J_ have parameters {@-n-1,b_n}2,, in which
case

(3.10) {80, (J = 2)7 80) = —(2 — bo + agmy(2) + &% pu_(2)) !
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We can now turn to the descriptions of the isospectral torus. A two-sided
Jacobi matrix, J, is called reflectionless on ¢ if for a.c. A € ¢ and all n,

(3.11) ¢ ReBn, (J — (A +i0))716,) =0
(9(A + i0) means lim,;o g(A + i¢)). It is known that this is equivalent to

(3.12) admy (N +i0)m_(A+10) = 1 for a.c. A€ ¢

First Definition of the Isospectral Torus. A two-sided Jacobi matrix, J,
is said to lie in the isospectral torus, 7, for ¢ if 0(J) = ¢ and J is reflectionless on
e

Goo(z) = (b0, (J = 2)~18p) 'is determined by Imlog(Goo(x + i0)) via an expo-
nential Herglotz representation. This argument is 7/2 on ¢, O on (—oc. ), and 7
on (Be+1,00). Gyo i8 real in each gap and monotone, so Gy has at most one zero
and that zero determines Imlog(Goo(x + i0)) on that gap. If Gy > 0 on (8;.0,41)
we’ll say the zero is at 8, and if Gop < 0 on (3,,0,41) the zero is at a,4y. Thus,
the zeros of Gpg determine Gyo and so Im Gyo{A + 70) on ¢.

By (3.10), Ggo has a zcro at Ag if and only if my4 or i has a pole at A,
and one can show that m4 and m_ have no common poles. The residue of the
pole is determined by the derivative of Ggg at A = Ag. The reflectionless condition
determines Imm 4 and Im 7. on e, so ag, a—1, bo. 4,1 _, and thus J, are uniquely
determined by knowing the position of the zero and if they are in the gaps (as
opposed to the edges) whether the poles are in my or m_. Hence, for each gap, we
have the two copies of {8,, ;1) glued at the ends, that is, a circle. Thus, given
that one can show each possibility occurs, 7, is a product of ¢ circles, that is, a
torus. It is not hard to show that the Jacobi parameters depend continuously on
the positions of the zeros of Ggg and m.; /m_ data.

We turn to the second approach. Any Gyo as above is purely imaginary on the
bands which implies, by the reflection principle, that it can be meromorphically
continued to a matching copy of S = CU {00} \ ¢. This suggests meromorphic
functions on &, two copies of &4 glued together along ¢, will be important. S is
precisely the compactified Riemann surface of \/R(z), where

£+1

(3.13) R(z) = H(z -a,z—8,))

=1

S is a Riemann surface of genus €. Meromorphic functions on the surface that are
not functions symmetric under interchange of the sheets (i.e., meromorphic on C)
have degree at least £ + 1.
By a minimal meromorphic Herglotz function, we mean a meromorphic function
of degree £+ 1 on S that obeys
i) Imf>00on S NC4 (Cy ={z: Imz2 > 0})
(ii) f has a zero at o¢ on 84 and a pole at oo on S..

Such functions must have their ¢ other poles on R in the gaps on one sheet or
the other and are uniquely, up to a constant, determined by these £ poles, one per
gap. Each “gap,” when you include the two sheets and branch points at the gap
edges, is a circle. So if we normalize by m(2) = —271 + O(z27?) near oo on S, the
set of such minimal normalized Herglotz functions is an #-dimensional torus. Each



" FINITE GAP JACORI MATRICES: A REVIEW ” a5

such Herglotz function can be written on S; NC, as
_ N dy(x)

3.14 =

@19 =

where 4 is supported on ¢ plus the poles of m in the gaps on 8. p then determines
a Jacobi matrix.

ey
i -

Second Deﬁnition of the isospéétral Torus. The isospectral torus, 7, is
the set of one-sided J’s whose m-functions are minimal Herglotz functions on the
compact Riemann surface S of V'R given by (3.13).

The relation betwccn the two definitions is that the restrictions of the two-sided
J’s to the one—mded are these J glven by minimal Herglotz functions. In the other
direction, each J is almost penodlc and so has a unique almost periodic two-sided
extension. T .

Third Deﬁmtmn of the I;bépectral Torus. The isospectral torus is the
almost perlodlc two-sided J's with o(J) = ¢ and which are regular.

This is equwalent to the reflectionless definition since regularity implies the
Lyapunov exponent is zero and then Kotani theory [33,48] implies J is reflection-
less. -

As noted, the J’s in the isospectral torus are all almost periodic. Their fre-
quency module is generated by the harmonic measures of the bands. In particular,
the elements of the isospectral torus are periodic if and only if all harmonic mea-
sures are rational. Their spectra are purely a.c. and all solutions of Ju = Au are
bounded for any A € ¢i™,

Szegd asymptotics is more complicated than in the £ = 0 case. One has for
the OPRL associated to a point in the isospectral torus (thought of as a one-sided
Jacobi matrix) that for all z € C\ o(J),

(3.15) | pn(z) exP( nq)p.(z))

is asymptotically almost perlodlc as a function of n with magnitude bounded away
from O for all n. The frequency module is z-dependent (as written, this is even
true if £ = 0 as can bee scen from the free case): the frequencies come from the
harmonic measures of the bands plus one that comes from the conjugate harmonic
function of ®,,(2) in C4 {which gives the z-dependence of the frequency module).
The limit of (3.15) on ¢, where &, () = 0, yields the boundedness of solutions
of (J — A)u = 0. There is also a limit at z = o0: @y ...4a,/C(¢)"™ which is almost
periodic.

4. Results in the Finite Gap Case

_As we've seen, if J is in the isospectral torus for ¢ and A € ¢, then all solutions
of Ju = Au are bounded. This remains true under #* perturbations by a variation
of parameters, so Theorem 2.1 is applicable and we have

THEOREM 4.1. Let ¢ be a finite gap set and J, with parameters {&n,f)n},i,";p
an element of T,, the isospectral torus for ¢. Let J be a Jacobi matriz with

oo

(4.1) > 1an = &al + lbn — b} < 00

n=1

Then acss(J) = ¢ and the spectrum on €™ is purely a.c.
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REMARK. We are not aware of this appearing explicitly in the literature, al-
though it follows easily from results in [10,42].

As for eigenvalues in R \ ¢:

THEOREM 4.2. There is a constdnt C dependmg only on ¢ so that for any Jacobi
matriz, J, obeying (4.1) for some J € 7;, we have, with {x,}N_, the eigenvalues
of J, . t s,

N

n=1 n=1

(4.2) Zdlst(:cn, )2 < Co + C(Z |an — @, + [b ~ by |)

where

1/2
aj+l —'183 /

(4.3) Z

REMARKS. 1. This result is essentially in Frank-Simon [18]. They are only
explicit about perturbations of two-sided Jacobi matrices where J has no eigenval-
ues. They mention that one can use interlacing to then get results for the one-sided
case—this makes that idea explicit.

2. Prior to [18], Frank-Simon-Weidl [19] proved such a bound on the z, in
R\ [e1,Be+1} and Hundertmark-Simon [27] if 1/2 in the power of dist(...)!/? is
replaced by p > 1/2 and 1 in the power of |an — @n] and |by — ba| by p+ 1/2, that
is, noncritical Lieb—Thirring bounds.

THEOREM 4.3. Let J be a Jacobi matriz with 6.4,{J) = ¢ and Jacobi parameters
{@n,bn}2 ;. Suppose its spectral measure has the form

(4.4) dp = f(z)dz + dps

where du, is singular with respect to dr. -Suppose {:::',.,},,"“;l are the pure points of
du outside e. Consider the three conditions:

N
(4.5) (¢) ) dist(zn, )% < oo
n=1
(4.6) (t) / dist(z, R\ &)~ log|f(2)} dz > ~oo
(4.7) (c) For some constant R>1, R-' < 8429 o p
Cle ~
Then any two imply the third, and if they hold, there exists J € T, so that
(4.8) lim |ap — dn| + |bp — ba| =0
n—300
Moreover,
(4.9) (@)  lim 22 erists in (0, 00)
n—+00 @1 .., 85
K -
(4.10) ()  Jim > (bn — bn) ezists in R

n=1



s :
I !

FINITE GAP JACOBI MATRICES: A REVIEW 97\

1:REMARKS. 1. Depending on which implications one looks at, only part of {c)
is needed. For example, if (a) holds,
LAy . S
(4.1‘1)! C .(b) & ll:;njolép C( ) >0 -
(that is, indeed, limsup and not liminf). RS | .
2. As stated, this theorem (except for (e); see below) is due to Christiansen— .
Simon-Zinchenko [11], but parts of it were known. While {11] focus on Szegd
asymptotics (see below), the work of Widom [64} and Aptekarev [4] implied if
there are no or finitely many z,,’s, then (b) = (c), and Peherstorfer-Yuditskii [42] .
proved (a) + (b) = (c) (and as noted to us privately by Peherstorfer, combining
their results and an idea of Garnett [20] yields (4.11)). ' o
3. That (e) holds does niot seem to have been noted before, although it follows
easily from the results in [11]. For g,(z) = pa(z}/Pn(2) has a limit as n = cc on "
C\ [o1, Bes+1] and that limit also exists and is analytic and nonzero at infinity (see
Theorem 4.5 below) Slnce LT

(4.12) .. . z7"pa(2) = (a1 .- a,;) (1-(2&) '1+0I(z-2))

VI

near z = 00,
J";i
(4.13) .-- log(gn(2)) = -—Iog(

) [Z(b —b; ] 214+ 0(z7%)

SO convergence of the analytlc functlons uniformly near oo 1mpl1es convergence of
the O(z7!) term. -

'+ Theorems 4.2 and 4.3 immediately imply: S
COROLLARY 4.4. If (4. 1) holds, so does (4 6).

" 'ProoF. Since d;.%.dy, / C(e)" is almost periodic bounded away from 0 and oo~
and 527 la, — @n| < o0 and Gn, @1 bounded imply Y oo |1 = an/dn| < 00, we
have (4.9), which implies (4.7). By Theorem 4 2, (4.1) = (4.5), so Theorem 4.3
implies (4.6). O

REMARK. This is a result of {18), although [11] conjectured Theorem 4.2 and
noted it would imply this corollary.

THEOREM 4.5. If the conditions (a)-(c) of Theorem 4.3 hold, then for all z €
Cu{oo}\ |1, Be+1), imuyoo pr(2)/Pn(2) exists and the limit is analytic with zeros
only at the z,, in R\ {ay, Bey1].

REMARKS. 1. In this form, this result is from [11], although earlier it ap-
peared implicitly in Peherstorfer-Yuditskii [42,43], and special cases (with stronger -
assumptions on the z,,’s) are in {4,64]. See also [53].

-2. There is also an asymptotic result on ¢ not pointwise but in L?(dyu) sense;
see [11).

. 3. Asymptotics results for orthogonal polynomials on finite gap sets have been
pioneered by Akhiezer and Tomd¢uk [1,2].

We do not know an analog of the “if and only if” statement of Theorem 2.7,
but there is one direction:



98 JACOB S. CHRISTIANSEN, BARRY SIMON, AND MAXIM ZINCHENKO

THEOREM 4.6. Let {an, b, }52, be an element of the isospectral torus, T, of a
finite gap set, ¢. Let {an,ba}52, be another set of Jacobi parameters and da,, b,

given by S, .

Suppose that

(a)
(4.14) |6an|? 4 16ba|* < 00
n=1
(b) For any k € Z¢, o
N _ N
(4.15) Z e2rikwing, " and Z gimikwingy,
n=1 n=1

have (finite) limits as N — 00.
(¢) For everye > 0,
N
Z e?w:(k-u)ndan
n=1

N
+ Zez"i(““")"ﬁbn‘} < Ce explelki)
n=1

(4.16) stp{

Let po(z) (resp. pa(z)) be the orthonormal polynomials for {an,bn}7%; (resp.
{8n,00}221). Then for any z € C\ R,

z
(4.17) lim  22(2)
n—roo Pn{z)
exists and ts finite and nonzero. |
REMARKS. 1. Here w = (wy,...,we) is the £-tuple of harmonic measures (ie.,

w, = pel[ej, B;])) and k - w = Z§=1 k,w,. We thus require infinitely many condi-
tions. :

2. This result is from [12].

3. If the torus consists of period p elements (i.e., cach pc([a,, 8,]) is k;/p, where
there is no common factor for p,k;,..., k), then the infinity of conditions (4.15)
reduces to the finitely many conditions that for j = 1,2,...,p, Zf:o danp+, and
ZnN:o 0bnp+, have finite limits and (4.16) becomes automatic.

4. [12] uses this theorem to construct examples where Szegd asymptotics holds,
but both (4.5) and (4.6) fail to hold.

An analog of Theorem 2.8 is not known for general ¢ but is known in one special
case. We say ¢ is p-periodic with all gaps open if  =p—1, and for j =1,....

pt([ajwﬂj]) = 1/'9- .
We also need a notion of approach to the isospectral torus rather than a single
element. Given two Jacobi matrices, we define

(4.18) dn(J,J) =) e ¥ (lamir — alyi| + bmsic — blpssl)
k=0

and

(4.19) (T = jnf dm(J.J")
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., THEOREM 4.7. Let ¢ be p-periodic with oll gaps open. Let J be a Jacobi matriz
with spectral measure obeying (4.4) and eigenvalues {x,}-, outside ¢. Then

[ oo "7 b

. . m=1 :

if and only if

(4‘21‘) . _ (a) aess(']) = f '
(4.2!?) o Z dlst(a:,,, )3/2 < 00
6T ‘_L‘"% ‘=1
(4.23) . /d[st(:r: R \ e)“ﬂlog[f(x)] dr > —00

REMARK "This theorem is due to Damamk*Kllhp—Simon [13). Their method
is specxahzed to the periodic case, and in that case, proves some of the earlier results
of this section, such as Theorem 4.2,

"THEOREM 4.8. Suppose J is a Jacobi matriz with 6..(J) = ¢ and so that the
f of (4.4) is a.e. strictly positive on ¢. Then ' *

(4.24) Jim d(J,T7) =0

REMARKS 1. This is a result of Remlmg [46]. For the periodic case, it was
proven earlier by [13], who conjecture the result for general e.

2. Remling replaces (4.24) by the assertion that every right limit of J (i.e.,
limit point of {@n¢r,bn4r}SS, as 7 — o) is in 7. By a compactness argument, it
is easy to see that this is equivalent to (4.24).

3

b THEOREM 4.9, Let ¢ be a finite gap set and J @ Jacobi matriz so that
(4 25) {a) Cess{J) =¢-

(4.26) (b))  J is regulor, ie., lm (a1.. Lap)™ = C(e)
Then
) 1 XM
R 2
(4.27) Jim =3 dm( TR =0

REMARKS. 1. This result was proven in case all harmonic measures are rational
by Simon [52], who conjectured the result in general. It was proven by Kriiger [34].

2. By the Schwarz inequality, (4.27) is equivalent to
M
] 1
(4.28) lim i dm(J,7T) =0

M—=oo
m=1

We close this section on results with a list of some open questions:
(1) Do (a)-{e) of Theorem 4.3 imply that

(4.29) D {an = @n)? + (bn — bn)?
n=1

as is true in the case ¢ = [~-2,2]?
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(2) Is there an extension of Theorem 4.7 to the general ¢ case?
(3) Is there a converse to Theorem 4.67 This would be interesting even in the
periodic case.

L]

5. Methods

The theory of regular Jacobi matrices says one expects the leading growth of
P,(2) as n — oo to be exp(n®,, (2)). ®,, is harmonic on C U {oc} \ ¢ so we can

locally define a harmonic conjugate and so (Al;p,(z) analytic with Re®, =&, . If
you circle around z, log(z — x} changes by 2, so circling around the band [a,, 3],
we expect [ log(z—z) dp.{x) to change by 2mip.([a;, 8;]) and cxp(—;f’p, (z)) to have
a change of phase by exp(—2mip,([a;, 5;])). Thus, we are led to consider analytic
functions on C4 which we can continue along any curve in CU {00} \ ¢.

To get a single-valued function, we need to lift to the universal covering space
of CU {00} \ ¢ and exp(—®,,(2z)) will transform under the homotopy group via a
character of this group.

So long as € # 0, this cover, as a Riemann surface, is the disk, I, and the deck
transformations act as a family of fractional linear transformations on the disk,
that is, a Fuchsian group. The use of these Fuchsian groups is thus critical to the
theory and used to prove several of the theorems of Section 4 {Theorems 4.7, 4.8,
and 4.9 are exceptions).

For more on Fuchsian groups, see Beardon [6], Ford [17], Katok {31], Simon
[53], and Tsuji [61]). The pioneers in this approach were Sodin-Yuditskii [55]. Sce
[10-12,42,53] for applications of these techniques.
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