
JMM 2017 LECTURE SAMPLER

Barry Simon, Alice Silverberg, Lisa Jeffrey, Gigliola Staffilani, Anna Wienhard, Donald St. P. Richards, Tobias Holck Colding, Wilfrid Gangbo,
and Ingrid Daubechies.

Some of the Joint Mathematics Meetings invited speakers have kindly provided these intro-
ductions to their lectures in order to entice meeting attendants and to include nonattendants
in the excitement. —FrankMorgan

page 8 — Barry Simon, “Spectral Theory Sum Rules, Meromorphic Herglotz
Functions and Large Deviations”
10:05 am–10:55 am, Wednesday, January 4.

page 10 — Alice Silverberg, “Through the Cryptographer’s Looking-Glass, and What
Alice Found There”
11:10 am–12:00 pm, Wednesday, January 4.

page 12 — Lisa Jeffrey, “The Real Locus of an Antisymplectic Involution”
10:05 am–10:55 am, Thursday, January 5.

page 12 — Gigliola Staffilani, “The Many Faces of Dispersive and Wave Equations”
2:15 pm–3:05 pm, Thursday, January 5.

page 15 — Anna Wienhard, “A Tale of Rigidity and Flexibility—Discrete Subgroups of
Higher Rank Lie Groups”
10:05 am–10:55 am, Friday, January 6.

page 16 — Donald St. P. Richards, “Distance Correlation: A New Tool for Detecting
Association and Measuring Correlation between Data Sets”
11:10 am–12:00 pm, Friday, January 6.

page 18 — Tobias Holck Colding, “Arrival Time”
9:00 am–9:50 am, Saturday, January 7.

page 19 — Wilfrid Gangbo, “Paths of Minimal Lengths on the Set of Exact 𝑘-forms”
1:00 pm–1:50 pm, Saturday, January 7.

page 20 — Ingrid Daubechies, “Reunited: Francescuccio Ghissi’s St. John Altarpiece”
3:00 pm–3:50 pm, Saturday, January 7.

page 23 — Biographies of the Speakers
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Barry Simon

Spectral Theory Sum Rules, Meromorphic
Herglotz Functions and Large Deviations

Barry Simon received
the 2016 Steele Prize
for Lifetime
Achievement and was
featured in the 2016
August and September
issues of Notices.

Almost exactly forty years
ago, Kruskal and collabora-
tors revolutionized significant
parts of applied mathemat-
ics by discovering remarkable
structures in the KdV equa-
tion. Their main discovery
was that KdV is completely
integrable with the resulting
infinite number of conserva-
tion laws, but deeper aspects
concern the connection to the
1𝐷 Schrödinger equation

(1) − 𝑑2

𝑑𝑥2 +𝑉(𝑥)

where the potential, 𝑉, is
actually fixed time data for
KdV.

In particular, the conserved
quantities which are integrals

of polynomials in 𝑉 and its derivatives can also be
expressed in terms of spectral data. Thus one gets a sum
rule, an equality between coefficient data on one side and
spectral data on the other side. The most celebrated KdV
sum rule is that of Gardner et al.:
(2)
1
𝜋 ∫

∞

0
log |𝑡(𝐸)|−1𝐸1/2𝑑𝐸+ 2

3 ∑
𝑛
|𝐸𝑛|3/2 = 1

8 ∫
∞

−∞
𝑉(𝑥)2𝑑𝑥

where {𝐸𝑛} are the negative eigenvalues and 𝑡(𝐸) the
scattering theory transmission coefficient. We note that
in this sum rule all terms are positive.

While these are well known, what is not so well known
is that there are much earlier spectral theory sum rules,
which, depending on your point of view, go back to 1915,
1920, or 1936. They go under the rubric Szegő’s Theorem,
which expressed in terms of Toeplitz determinants goes
back to 1915. In 1920 Szegő realized a reformulation
in terms of norms of orthogonal polynomials on the
unit circle (OPUC), but it was Verblunsky in 1936 who
first proved the theorem for general measures on 𝜕𝔻
(={𝑧 ∈ ℂ | |𝑧| = 1})—Szegő had it only for purely a.c.
measures—and who expressed it as a sum rule.

To explain the sum rule, given a probability measure, 𝜇,
on 𝜕𝔻 which is nontrivial (i.e. not supported on a finite

Barry Simon is I.B.M. Professor of Mathematics and Theoretical
Physics, Emeritus, at Caltech. His e-mail address is bsimon@
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set of points), let {Φ𝑛(𝑧)}∞𝑛=0 be the monic orthogonal
polynomials for 𝜇. They obey a recursion relation
(3)

Φ𝑛+1(𝑧) = 𝑧Φ𝑛(𝑧) − 𝛼𝑛Φ∗
𝑛 (𝑧);Φ0 ≡ 1; Φ∗

𝑛 (𝑧) = 𝑧𝑛Φ𝑛 (
1
̄𝑧)

where {𝛼𝑛}∞𝑛=0 are a sequence of numbers, called Verblun-
sky coefficients, in 𝔻. 𝜇 ↦ {𝛼𝑛}∞𝑛=0 sets up a 1-1
correspondence between nontrivial probability measures
on 𝔻 and 𝔻∞.

The Szegő-Verblunsky sum rule says that if

(4) 𝑑𝜇(𝜃) = 𝑤(𝜃) 𝑑𝜃2𝜋 +𝑑𝜇𝑠

then

(5) ∫ log(𝑤(𝜃)) 𝑑𝜃
2𝜋 = −

∞
∑
𝑛=0

log(1 − 𝛼𝑛|2)

In particular, the condition that both sides are finite at
the same time implies that

(6)
∞
∑
𝑗=0

|𝛼𝑗|2 < ∞ ⟺ ∫ log(𝑤(𝜃)) 𝑑𝜃2𝜋 > −∞

Simon [3] calls a result like (6) that is an equivalence
between coefficient data and measure theoretic data a
spectral theory gem.

In 2000 Killip and I found an analog of the Szegő-
Verblunsky sum rule for orthogonal polynomials on the
real line. One now has nontrivial probability measures
on ℝ, and {𝑝𝑛}∞𝑛=0 are orthonormal polynomials whose
recursion relation is
(7)
𝑥𝑝𝑛(𝑥) = 𝑎𝑛+1𝑝𝑛+1(𝑥)+𝑏𝑛+1𝑝𝑛(𝑥)+𝑎𝑛𝑝𝑛−1(𝑥); 𝑝−1 ≡ 0
where the Jacobi parameters obey 𝑏𝑛 ∈ ℝ, 𝑎𝑛 ≥ 0. There
is now a bijection of nontrivial probability measures of
compact support on ℝ and uniformly bounded sets of
Jacobi parameters (Favard’s Theorem).

If

(8) 𝑑𝜇(𝑥) = 𝑤(𝑥)𝑑𝑥 + 𝑑𝜇𝑠

then the gem of Killip-Simon says that

∞
∑
𝑛=1

(𝑎𝑛 − 1)2 +𝑏2
𝑛 < ∞

⟺
ess supp (𝑑𝜇)=[−2, 2], 𝑄(𝜇)<∞ and ∑

𝑚
(|𝐸𝑚|−2)3/2<∞

(9)

where

(10) 𝑄(𝜇) = − 1
4𝜋 ∫

2

−2
log(√4− 𝑥2

2𝜋𝑤(𝑥))
√4− 𝑥2 𝑑𝑥

The sum rule is

𝑄(𝜇) + ∑
𝜇({𝐸𝑛})>0, |𝐸𝑛|>2

𝐹(𝐸𝑛) =
∞
∑
𝑛=1

[ 1
4𝑏2

𝑛 + 1
2𝐺(𝑎𝑛)](11)
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where

𝐹(𝛽+ 𝛽−1) = 1
4[𝛽2 +𝛽−2 − log(𝛽4)], 𝛽 ∈ ℝ\[−1, 1]

(12)

𝐺(𝑎) = 𝑎2 − 1− log(𝑎2)(13)

The gem comes from 𝐺(𝑎) > 0 on (0,∞)\{1}, 𝐺(𝑎) =
2(𝑎 − 1)2 + O((𝑎 − 1)3), 𝐹(𝐸) > 0 on ℝ\[−2, 2], 𝐹(𝐸) =
2
3(|𝐸|−2)3/2 +O((|𝐸|−2)5/2). To get gems from the sum
rule without worrying about cancellation of infinities, it
is critical that all the terms are positive.

This situation
changed

dramatically
in the

summer of
2014

It was mysterious why there
was any positive combination
and if there was any meaning
to the functions 𝐺 and 𝐹 which
popped out of calculation and
combination. Moreover, the
weight (4− 𝑥2)1/2 was mysteri-
ous. Prior work had something
called the Szegő condition with
theweight (4−𝑥2)−1/2, which is
natural, sinceunder𝑥 = 2 cos𝜃
one finds that (4 − 𝑥2)−1/2𝑑𝑥
goes to 𝑑𝜃 up to a constant.

This situation remained for almost fifteen years, during
which period there was considerable follow-up work
but no really different alternate proof of the Killip-Simon
result. This situation changed dramatically in the summer
of 2014 when Gamboa, Nagel, and Rouault [1] (henceforth
GNR) found a probabilistic approach using the theory of
large deviations from probability theory.

Their approach shed light on all the mysteries. The
measure (4 − 𝑥2)1/2𝑑𝑥 is just (up to scaling and nor-
malization) the celebrated Wigner semicircle law for the
limiting eigenvalue distribution for 𝐺𝑈𝐸. The function 𝐺
of (13) is just the rate function for averages of sums of
independent exponential random variables, as one can
compute from Cramér’s Theorem, and the function F
of (12) is just the logarithmic potential in a quadratic
external field which occurs in numerous places in the
theory of random matrices.

In the first half of my lecture, I’ll discuss sum rules via
meromorphic Herglotz functions and in the second half
the large deviations approach of GNR.
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Alice Silverberg

Through the Cryptographer’s Looking-Glass,
and What Alice Found There

Alice Silverberg

Mathematicians and
cryptographers have
much to learn from
one another. How-
ever, in many ways
they come from dif-
ferent cultures and
don’t speak the same
language. I started
as a number theo-
rist and have been
welcomed into the
community of cryptog-
raphers. Through joint
research projects and
conference organizing,
I have been working to
help the two communi-
ties play well together
and interact more. I

have found living and working in the two worlds of
mathematics and cryptography to be interesting, useful,
and challenging. In the lecture I will share some thoughts
on what I’ve learned, both scientifically and otherwise.

Can more than
three parties

efficiently create
a shared secret?

A primary scientific fo-
cus of the talk will
be on the quest for a
Holy Grail of cryptography,
namely, cryptographically
useful multilinear maps.

Suppose that Alice and
Bobwant to create a shared
secret, for example to use

as a secret key for encrypting a credit card transaction,
but their communication channel is insecure. Creating a
shared secret can be done using public key cryptography,
as follows. Alice and Bob fix a large prime number 𝑝
and an integer 𝑔 that has large order modulo 𝑝. Alice
then chooses a secret integer 𝐴, computes 𝑔𝐴 mod 𝑝, and
sends it to Bob, while Bob similarly chooses a secret 𝐵 and
sends 𝑔𝐵 mod 𝑝 to Alice. Note that Eve, the eavesdropper,
might listen in on the transmissions and learn 𝑔𝐴 mod 𝑝
and/or 𝑔𝐵 mod 𝑝. Alice and Bob can each compute their
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