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Abstract We review the work of Tosio Kato on the mathematics of non-relativistic
quantummechanics and some of the research that was motivated by this. Topics in this
first part include analytic and asymptotic eigenvalue perturbation theory, Temple–Kato
inequality, self-adjointness results, and quadratic forms including monotone conver-
gence theorems.

Keywords Kato · Schrödinger operators · Quantum mechanics

Mathematics Subject Classification Primary 81Q10 · 81U05 · 47A55; Secondary
35Q40 · 46N50 · 81Q15

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Eigenvalue perturbation theory, I: regular perturbations . . . . . . . . . . . . . . . . . . . . . . . . .
3 Eigenvalue perturbation theory, II: asymptotic perturbation theory . . . . . . . . . . . . . . . . . . .
4 Eigenvalue perturbation theory, III: spectral concentration . . . . . . . . . . . . . . . . . . . . . . .
5 Eigenvalue perturbation theory, IV: pairs of projections . . . . . . . . . . . . . . . . . . . . . . . . .
6 Eigenvalue perturbation theory, V: Temple–Kato inequalities . . . . . . . . . . . . . . . . . . . . . .

Communicated by Ari Laptev.

B. Simon: Research supported in part by NSF Grants DMS-1265592 and DMS-1665526 and in part by
Israeli BSF Grant No. 2014337.

B Barry Simon
bsimon@caltech.edu

1 Departments ofMathematics andPhysics,Mathematics 253-37,California Institute of Technology,
Pasadena, CA 91125, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13373-018-0118-0&domain=pdf


122 B. Simon

7 Self-adjointness, I: Kato’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Self-adjointness, II: the Kato–Ikebe paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Self-adjointness, III: Kato’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Self-adjointness, IV: quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

Note: There are four pictures in this part and one picture in Part 2.
In 2017, we are celebrating the 100th anniversary of the birth of Tosio Kato (August

25, 1917–October 2, 1999).While there can be arguments as towhich of his work is the
deepest or most beautiful, there is no question that themost significant is his discovery,
published in 1951, of the self-adjointness of the quantum mechanical Hamiltonian for
atoms and molecules [314]. This is the founding document and Kato is the founding
father of what has come to be called the theory of Schrödinger operators. So it seems
appropriate to commemorate Kato with a comprehensive review of his work on non-
relativistic quantum mechanics (NRQM) that includes the context and later impact of
this work.

One might wonder why I date this field only from Kato’s 1951 paper. After all,
quantum theory was invented in 1925–1926 as matrix mechanics in Göttingen (by
Heisenberg, Born and Jordan) and as wave mechanics in Zürich (by Schrödinger)
and within a few years, books appeared on the mathematical foundations of quan-
tum mechanics by two of the greatest mathematicians of their generation: Hermann
Weyl [681] (not coincidentally, in Zürich; indeed the connection between Weyl and
Schrödinger was more than professional—Weyl had a passionate love affair with
Schrödinger’s wife) and John von Neumann [664] (von Neumann, whose thesis had
been in logic, went to Göttingen to work with Hilbert on that subject, but was swept
up in the local enthusiasm for quantum theory, in response to which, he developed the
spectral theory of unbounded self-adjoint operators and his foundational work). One
should also mention the work of Bargmann andWigner (prior to Kato, summarized in
[579] with references) on quantum dynamics. I think of this earlier work as first level
foundations and the theory of Schrödinger operators as second level. Another way of
explaining the distinction is that the Weyl–von Neumann work is an analog of setting
up a formalism for classical mechanics like the Hamiltonian or Lagrangian while the
theory initiated by Kato is the analog of celestial mechanics—the application of the
general framework to concrete systems.
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Tosio Kato’s work on non-relativistic quantum mechanics: part 1 123

When I began this project I decided to write about all of Kato’s major contributions
to the field in a larger context and this turned into a much larger article than I originally
planned.As such, it is a reviewof a significant fractionof theworkof the last 65years on
themathematics ofNRQM.Two important areas only touched on or totallymissing are
N-body systems and the largeN limit. Of course, Kato’s self-adjointnesswork includes
N-body systems, and there are papers on bound states in Helium and on properties of
many body eigenfunctions. As we’ll see, his theory of smooth perturbations applies to
give a complete spectral analysis of certain N-body systems with only one scattering
channel and is one tool in the study of general N -body systems. But there is much
more to the N-body theory—for reviews, see [101,116,197,212,264]. Except for the
1972 work of Lieb–Simon on Thomas Fermi almost all the large N limit work is after
1980 when Kato mostly left the field; for recent reviews of different aspects of this
subfield, see [51,424,425,428,429,529,551].

While this review will cover a huge array of work, it is important to realize it is only
a fraction, albeit a substantial fraction, of Kato’s opus. I’d classify his work into four
broad areas, NRQM, non-linear PDE’s, linear semigroup theory and miscellaneous
contributions to functional analysis. We will not give references to all this work. The
reader can get an (almost) complete bibliography from MathSciNet or, for papers up
to 1987, the dedication of the special issue of JMAA on the occasion of Kato’s 70th
birthday [122] has a bibliography.

Around 1980, one can detect a clear shift in Kato’s interest. Before 1980, the
bulk of his papers are on NRQM with a sprinkling in the other three areas while
after 1980, the bulk are on nonlinear equations with a sprinkling in the other areas
includingNRQM.Kato’s nonlinearwork includes looking at the Euler, Navier–Stokes,
KdV and nonlinear Schrödinger equations. He was a pioneer in existence results—we
note that his famous 1951 paper can be viewed as a result on existence of solutions
for the time dependent linear Schrödinger equation! It is almost that when NRQM
became too crowded with workers drawn by his work, he moved to a new area which
took some time to become popular. Terry Tao said of this work: the Kato smoothing
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effect for Schrödinger equations is fundamental to the modern theory of nonlinear
Schrödinger equations, perhaps second only to the Strichartz estimates in impor-
tance…Kato developed a beautiful abstract (functional analytic) theory for local well
posedness for evolution equations; it is not used directly too much these days because
it often requires quite a bit more regularity than we would like, but I think it was
influential in inspiring more modern approaches to local existence based on more
sophisticated function space estimates.

And here is what Carlos Kenig told me: T. Kato played a pioneering role in the
study of nonlinear evolution equations. He not only developed an abstract framework
for their study, but also introduced the tools to study many fundamental nonlinear
evolutions coming from mathematical physics. Some remarkable examples of this are:
Kato’s introduction of the “local smoothing effect” in his pioneering study of the
Korteweg–de Vries equation, which has played a key role in the development of the
theory of nonlinear dispersive equations.

Kato’s unified proof of the global well-posedness of the Euler and Navier–Stokes
equations in 2d, which led to the development of the Beale–Kato–Majda blow-up
criterion for these equations. Kato’s works with Ponce on strong solutions of the Euler
and Navier–Stokes equations, which developed the tools for the systematic application
of fractional derivatives in the study of evolutions, which now completely permeates
the subject. These contributions and many others, have left an indelible and enduring
impact for the work of Kato on nonlinear evolutions.

The basic results on generators of semigroups on Banach spaces date back to the
early 1950s going under the name Feller–Miyadera–Phillips and Hille–Yosida theo-
rems (with a later 1961 paper of Lumer–Phillips). A basic book with references to this
work is Pazy [475]. This is a subject that Kato returned to often, especially in the 1960s.
Pazy [475] lists 19papers byKatoon the subject. There is overlapwith theNRQMwork
and the semigroup work. Perhaps the most important of these results are the Trotter–
Kato theorems (discussed below briefly after Theorem 3.7) and the definition of
fractional powers for generators of (not necessarily self-adjoint) semigroups. There are
also connections between quantum statistical mechanics and contraction semigroup
on operator algebras. To keep this reviewwithin bounds, we will not discuss this work.

The fourth area is a catchall for a variety of results that don’t fit into the other
bins. Among these results is an improvement of the celebrated Calderón–Vaillancourt
bounds onpseudo-differential operators [346]. In [342],Kato proved the absolute value
for operators is not Lipschitz continuous even restricted to the self-adjoint operators
but for any pair of bounded, even non-self-adjoint, operators one has that

‖|S| − |T |‖ ≤ 2

π
‖S − T ‖

(
2 + log

‖S‖ + ‖T ‖
‖S − T ‖

)
(1.1)

(I don’t think there is any significance to the fact that the constant is the same as in
(10.31)).

The last of these miscellaneous things that we’ll discuss (but far from the last of
the miscellaneous results) involves what has come to be called the Heinz–Loewner
inequality. In 1951, Heinz [225] proved for positive operators, A, B on aHilbert space,
one has that A ≤ B ⇒ √

A ≤ √
B. Heinz was a student of Rellich and Kato was
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paying attention to the work of Rellich’s group and a year later published a paper
[319] with an elegant, simple proof and extended the result to A �→ As for 0 < s < 1
replacing the square root. Neither of them knew at the time that Loewner [436] had
already proven a much more general result in 1934! Despite the 17 year priority, the
monotonicity of the square root is called variably, the Heinz inequality, the Heinz–
Loewner inequality or even, sometimes, the Heinz–Kato inequality. Heinz and Kato
found equivalent results to the monotonicity of the square root (one paper with lots of
additional equivalent forms is [180]). In particular, the following equivalent form is
almost universally known as the Heinz–Kato inequality.

‖T ϕ‖ ≤ ‖Aϕ‖, ‖T ∗ψ‖ ≤ ‖Bψ‖ ⇒ |〈ψ, T ϕ〉| ≤ ‖Asϕ‖‖B1−sψ‖ (1.2)

Kato returned several times to this subject, most notably [333] finding a version of
the Heinz–Loewner inequality (with an extra constant depending on s) for maximal
accretive operators on a Hilbert space.

Returning to the timing of Kato’s fundamental 1951 paper [314], I note that he
was 34 when it was published (it was submitted a few years earlier as we’ll discuss in
Sect. 7). Before it, his most important work was his thesis, awarded in 1951 and pub-
lished in 1949–1951. One might be surprised at his age when this work was published
but not if one understands the impact of the war. Kato got his BS from the University
of Tokyo in 1941, a year in which he published two (not mathematical) papers in
theoretical physics. But during the war, he was evacuated to the countryside. We were
at a conference together one evening and Kato described rather harrowing experiences
in the camp he was assigned to, especially an evacuation of the camp down a steep
wet hill. He contracted TB in the camp. In his acceptance for the Wiener Prize [1],
Kato says that his work on essential self-adjointness and on perturbation theory were
essentially complete “by the end of the war.” Recently, several of Kato’s notebook
were discovered dated 1945 that contain most of results published in Kato [314,316]
sometimes with different proofs from the later publications (these notes have recently
been edited for publication in [358]).
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In 1946, Kato returned to the University of Tokyo as an Assistant (a position common
for students progressing towards their degrees) in physics, was appointed Assistant
Professor of Physics in 1951 and full professor in 1958. I’ve sometimeswonderedwhat
his colleagues in physics made of him. Hewas perhaps influenced by the distinguished
Japanese algebraic geometer, Kunihiko Kodaira (1915–1997) 2years his senior and a
1954 Fields medalist. Kodaira got a BS in physics after his BA in mathematics and
was given a joint appointment in 1944, so there was clearly some sympathy towards
pure mathematics in the physics department. In 1948, Kato and Kodaira wrote a 2
page note [360] to a physics journal whose point was that every L2 wave function was
acceptable for quantummechanics, something about which there was confusion in the
physics literature.

Beginning in 1954, Kato started visiting the United States. This bland statement
masks some drama. In 1954, Kato was invited to visit Berkeley for a year, I presume
arranged by F. Wolf. Of course, Kato needed a visa and it is likely it would have been
denied due to his history of TB. Fortunately, just at the time (and only for a period
of about a year), the scientific attaché at the US embassy in Tokyo was Otto Laporte
(1902–1971) on leave from a professorship in Physics at the University of Michigan.
Charles Dolph (1919–1994), a mathematician at Michigan, learned of the problem
and contacted Laporte who intervened to get Kato a visa. Dolph once told me that he
thought his most important contribution to American mathematics was his helping to
allow Kato to come to the US. In 1987, in honor of Kato’s 70th birthday, there was a
special issue of the Journal of Mathematical Analysis and Applications and the issue
was jointly dedicated [122] to Laporte (he passed away in 1971) and Kato and edited
by Dolph and Kato’s student Jim Howland.

During the mid 1950s, Kato spent close to 3years visiting US institutions, mainly
Berkeley, but also the Courant Institute, American University, National Bureau of
Standards and Caltech. In 1962, he accepted a professorship in Mathematics from
Berkeley where he spent the rest of his career and remained after his retirement.
One should not underestimate the courage it takes for a 45year old to move to a
very different culture because of a scientific opportunity. That said, I’m told that
when he retired and some of his students urged him to live in Japan, he said he
liked the weather in Northern California too much to consider it. The reader can
consult the Mathematics Genealogy Project (http://www.genealogy.ams.org/id.php?
id=32842) for a list of Kato’s students (24 listed there, 3 from Tokyo and 21 from
Berkeley; the best known are Ikebe and Kuroda from Tokyo and Balslev and Howland
from Berkeley) and [98] for a memorial article with lots of reminisces of Kato.

One can get a feel forKato’s impact by considering the number of theorems, theories
and inequalities with his name on them. Here are some: Kato’s theorem (which usually
refers to his result on self-adjointness of atomic Hamiltonians), the Kato–Rellich the-
orem (which Rellich had first), the Kato–Rosenblum theorem and the Kato–Birman
theory (where Kato had the most significant results although, as we’ll see, Rosenblum
should get more credit than he does), the Kato projection lemma and Kato dynamics
(used in the adiabatic theorem), the Putnam–Kato theorem, the Trotter–Kato theorem
(which is used for three results; see Sect. 3), the Kato cusp condition (see Sect. 19 in
Part 2), Kato smoothness theory, the Kato class of potentials and Kato–Kuroda eigen-
function expansions. To me Kato’s inequality refers to the self-adjointness technique
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discussed in Sect. 9, but the term has also been used for the Hardy like inequality with
best constant for r−1 in three dimensions (which we discuss in Sect. 10), for a result
on hyponormal operators that follows from Kato smoothness theory (the book [441]
has a section called “Kato’s inequality” on it) and for the above mentioned variant of
the Heinz–Loewner inequality for maximal accretive operators. There are also Heinz–
Kato, Ponce–Kato and Kato–Temple inequalities. In [550], Erhard Seiler and I proved
that if f, g ∈ L p(Rν), p ≥ 2, then f (X)g(−i∇) is in the trace ideal Ip. At the time,
Kato and I had correspondence about the issue and about some results for p < 2. In
[496], Reed and I mentioned that Kato had this result independently. Although Kato
never published anything on the subject, in recent times, it has come to be called the
Kato–Seiler–Simon inequality.

Of course, when discussing the impact of Kato’s work, one must emphasize the
importance of his book Perturbation Theory for Linear Operators [345] which has
been a bible for several generations of mathematicians. One of its virtues is its compre-
hensive nature. Percy Deift told me that Peter Lax told him that Friedrichs remarked
on the book: “Oh, its easy to write a book when you put everything in it!”

We will not discuss every piece of work that Kato did in NRQM—for example, he
wrote several papers on variational bounds on scattering phase shifts whose lasting
impact was limited. And we will discuss Kato’s work on the definition of a self-
adjoint Dirac Hamiltonian which of course isn’t non-relativistic. It is closely related
to the Schrödinger work and so belongs here. Perhaps I should have dropped “non-
relativistic” from the title but since almost all of Kato’s work on quantum theory is
non-relativistic and even the Dirac stuff is not quantum field theory, I decided to leave
it.

Roughly speaking, this article is in five parts. Sections 2–6 discuss eigenvalue
perturbation theory in both the analytic (where many of his results were rediscoveries
of results of Rellich and Sz-Nagy) and asymptotic (where he was the pioneer). There is
a section on situations where either an eigenvalue is initially embedded in continuous
spectrum or where as soon the perturbation is turned on the location of the spectrum
is swamped by continuous spectrum (i.e. on the theory of QM resonances). There
are a pair of sections on two issues that Kato studied in connection with eigenvalue
perturbation theory: pairs of projections and on the Temple–Kato inequalities.

Next come four sections on self-adjointness. One focuses on the Kato–Rellich
theorem and its applications to atomic physics, one on his work with Ikebe and one on
what has come to be called Kato’s inequality. Finally his work on quadratic forms is
discussed including his work on monotone convergence for forms. That will end Part
1.

Part 2 begins with two pioneering works on aspects of bound states—his result on
non-existence of positive energy bound states in certain two body systems and his
paper on the infinity of bound states for Helium, at least for infinite nuclear mass.

Next four sections on scattering and spectral theorywhich discuss the Kato–Birman
theory (trace class scattering), Kato smoothness, Kato–Kuroda eigenfunction expan-
sions and the Jensen–Kato paper on threshold behavior.

Last is a set of three miscellaneous gems: his work on the adiabatic theorem, on
the Trotter product formula and his pioneering look at eigenfunction regularity.
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128 B. Simon

I should warn the reader that I use two conventions that are universal among physi-
cists but often the opposite ofmanymathematicians. First, my (complex) Hilbert space
inner product 〈ϕ,ψ〉 is linear in ψ and anti-linear in ϕ. Secondly my wave operators
are defined by (note ± vs. ∓)

�±(A, B) = s − lim
t→∓∞ eit Ae−i t B Pac(B)

In Sect. 15 in Part 2, I’ll explain the historical reason for this very strange convention.
I should also warn the reader that I use two non-standard abbreviations “esa” and
“esa-ν” (where ν can be an explicit integer. They are defined at the start of in Sect. 7).

With apologies to those inadvertently left out, I’d like to thank a number of people
for useful information Yosi Avron, Jan Dereziński, Pavel Exner, Rupert Frank, Fritz
Gesztesy, Gian Michele Graf, Sandro Graffi, Vincenzo Grecchi, Evans Harrell, Ira
Herbst, Bernard Helffer, Arne Jensen, Carlos Kenig, Toshi Kuroda, Peter Lax, Hiroshi
Oguri, Sasha Pushnitski, Derek Robinson, Robert Seiringer, Heinz Siedentop, Israel
Michael Sigal, Erik Skibsted, TerryTao,DimitriYafaev andKenjiYajima. The pictures
here are all from the estate of Mizue Kato, Tosio’s wife who passed away in 2011. Her
will gave control of the pictures to H. Fujita, M. Ishiguro and S. T. Kuroda. I thank
them for permission to use the pictures and H. Okamoto for providing digital versions.

2 Eigenvalue perturbation theory, I: regular perturbations

This is thefirst of five sections on eigenvalue perturbation theory; this sectiondealswith
the analytic case. Section 3 begins with examples that delimit some of the possibilities
when the analytic theory doesn’t apply and that section and the next discuss two sets
of those examples after which there are two sections on related mathematical issues
which are connected to the subject and where Kato made important contributions.

Eigenvalue perturbation theory in the case where the eigenvalues are analytic (aka
regular perturbation theory or analytic perturbation theory) is central to Kato’s opus—
it is both a main topic of his famous book on Perturbation Theory and the main subject
of his thesis. We’ll begin this section by sketching the modern theory as presented
in Kato’s book [345] or as sketched in Simon [616, Sections 1.4 and 2.3] (other
book presentations include Baumgärtel [44], Friedrichs [174], Reed–Simon [497] and
Rellich [511]). Then we’ll give a Kato–centric discussion of the history.

As a preliminary, we want to recall the theory of spectral projections for general
bounded operators, A, on a Banach space, X . If the spectrum of A, σ(A) = σ1 ∪ σ2
is a decomposition into disjoint closed sets, one can find a chain (finite sum and/or
difference of contours), �, so that if w(z, �) is the winding number about z /∈ �, (i.e.
w(z, �) = (2π i)−1

∮
ζ∈�

(ζ − z)−1dζ ), then � ∩ σ(A) = ∅, w(z, �) = 0 or 1 for all
z ∈ C\�, w(z, �) = 1 for z ∈ σ1, and w(z, �) = 0 for z ∈ σ2 (see [613, Section
4.4]).

One defines an operator

Pσ1 = 1

2π i

∮
�

dz

z − A
(2.1)
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Then one can prove [616, Section 2.3] that Pσ1 is a projection (i.e. P2
σ1

= Pσ1 )
commuting with A. Thus A maps each of ran Pσ1 and ran(1 − Pσ1) onto themselves
and one can prove that

σ(A � ran Pσ1) = σ1, σ (A � ran(1 − Pσ1)) = σ2 (2.2)

Of particular interest are isolated points, λ, of σ(A) in which case one can consider
σ1 = {λ}, σ2 = σ(A)\{λ}. We write Pσ1 = Pλ and Hλ = ran Pλ. If dimHλ < ∞,
we call λ a point of the discrete spectrum. In that case, it is known there is a nilpotent,
Nλ, with PλNλ = Nλ Pλ = Nλ (and so Nλ � ran(1 − Pλ) = 0) so that

APλ = λPλ + Nλ (2.3)

In particular, this implies that λ is an eigenvalue. The Pλ are called eigenprojections
and the Nλ are called eigennilpotents. Just as the Pλ are first order residues of the poles
of (z − A)−1 at z = λ, the Nλ are second order residues (and N k

λ is the (z − λ)−k−1

residue)—see [616, Section 2.3] for more on the subject.
Kato’s book [345] is the standard reference for this beautiful complex analysis

approach to Jordan normal forms whose roots go back further. In 1913, Riesz [516],
in one of the first books on operator theory on infinite dimensional spaces, mentioned
residues of poles of (z − A)−1 could be studied and, in 1930, he noted [517] in the
Hilbert space case that decompositions of the spectrum into disjoint closed sets induced
a decomposition of the space. Nagumo [452] used (2.1) for Banach algebras in 1930.
Gel’fand’s great 1941 paper [184] discussed functions, f , analytic in a neighborhood
of σ(x) where x ∈ A, a commutative Banach algebra with unit and defined

f (x) = 1

2π i

∮
�

f (z)

z − x
dz (2.4)

where � surrounds the whole spectrum.
If σ1∪σ2 is a decomposition, f can be taken to be 1 in a neighborhood of σ1 and 0 in

a neighborhood of σ2. P2
λ = Pλ is then a special case of his functional calculus result

( f g)(x) = f (x)g(x). In 1942–1943, this functional calculus was further developed
in the United States by Dunford [125,126], Lorch [437] and Taylor [636]. In his book,
Kato calls (2.4) a Dunford–Taylor integral.

With this formalism out of the way, we can turn to sketch the theory of regular
perturbations. For details see the book presentations of Kato [345, Chaps. II and VII],
Reed–Simon [497, Chap XII] and Simon [616, Sections 1.4 and 2.3].

Step 1. Finite Dimensional Theory.Let A(β) be an analytic family of n×n matrices
for β ∈ �, a domain in C. The eigenvalues are solutions of

det(A(β) − λ) = 0 (2.5)

so algebroidal functions. The theory of such functions (see Knopp [378] or Simon
[613, Section 3.5]) implies there is a discrete set of points S ⊂ � (i.e. with no limit
points in �) so that all solutions of (2.5) are multivalued analytic functions on �\S
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130 B. Simon

and so that the number of distinct solutions and their multiplicities are constant on
�\S. At points of S, the solutions have finite limits and are locally given by all the
branches of one or more locally convergent Puiseux series (power series in (β−β0)

1/p

for some p ∈ Z+). From the integral formula (2.1) and its analog for Nλ, one sees
that the eigenprojections and eigennilpotents are also multivalued analytic functions
on �\S. They can have polar singularities at points in S, i.e. their Puiseux–Laurent
series can have finitely many negative index terms. Indeed, in 1959, Butler [77] proved
that if some λ(β) has a fractional power at a point β0 ∈ S, then the Puiseux–Laurent
series for P(β) must have non-vanishing negative powers.

The set of early significant results include two theorems of Rellich [504–508, Part
I]. If A(β) is self-adjoint (i.e. � is invariant under complex conjugations and A(β̄) =
A(β)∗), then λ(β) and P(β) are real analytic on � ∩ R, i.e. no fractional powers in
λ(β) at points of S ∩ R and no polar singularities of P(β) there. The first comes from
the fact that if a Puiseux series based at β0 ∈ R has a non-trivial fractional power
term, then some branch must have non-real values for some real values of β near β0
(interestingly enough, in his book, Kato [345] appeals to Butler’s theorem instead of
using this simple argument of Rellich). The second relies on the fact that if P(β) has
polar terms at β0, since there are only finitely many negative index terms, one has that
lim|β−β0|↓0‖P(β)‖ = ∞ which is inconsistent with the fact that spectral projections
for self-adjoint matrices are self-adjoint, so with norm 1.

For later purposes, we want to note the two leading terms in the perturbations series

E(β) = E0 + a1β + a2β
2 + O(β3) (2.6)

of a simple eigenvalue, E0, of A + βB with A and B Hermitian. Suppose {ϕ j }n−1
j=0 are

an orthonormal basis of eigenvectors of A with Aϕ j = E jϕ j . Then

a1 = 〈ϕ0, Bϕ0〉, a2 =
∑
j �=0

|〈ϕ j , Bϕ0〉|2
E0 − E j

(2.7)

One of Kato’s contributions is to describe a2 succinctly in the general infinite
dimensional case where E0 is discrete but A may have continuous spectrum. Let P
be the projection onto multiples of ϕ0. Define the reduced resolvent, S, of A at E0 by

S = (A − E0)
−1(1 − P) (2.8)

i.e. Sϕ0 = 0 and Sψ = limε→0;ε �=0(A − E0 − ε)−1ψ if ψ ⊥ ϕ0. Thus for any η:

(A − E0)Sη = (1 − P)η (2.9)

In his thesis, Kato [316] realized that a2 could be written

a2 = −〈ϕ0, BSBϕ0〉 (2.10)

Step 2. Bounded Analytic Operator Valued Functions. For A(β), a function from
a domain � ⊂ C to the bounded operators on a Banach space, X , we say that A is
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analytic at β0 ∈ � if it is given by a convergent power series near β0. This is equivalent
to A having a complex Fréchet derivative or to A(β)x being a Banach space valued
analytic function for all x ∈ X or to �(A(β)x) being a scalar analytic function for all
� ∈ X∗ and x ∈ X (see [613, Theorem 3.1.12]).

Step 3. Analytic Resolvents and Spectral Projections. Because the set of invertible
maps in L(X) is open and on that set, A �→ A−1 is analytic (by using geometric
series), if A(β) is an analytic operator valued functions, then R ≡ {(β, z) | β ∈
�, z ∈ C, A(β) − z1 is invertible} is open in � × C and the resolvent (A(β) − z)−1

is analytic there. It follows that if λ0 is an isolated point of the spectrum of A(β0),
then there are ε, δ so that for |β − β0| < ε and |z − λ0| = δ, we have that (β, z) ∈ R
and moreover that σ(A(β0)) ∩ {z | |z − λ0| ≤ δ} = {λ0}. We can thus use (2.1)
to define projections P(β) for |β − β0| < ε so that A(β)P(β) = P(β)A(β) and
σ(A(β) � ran P(β)) = σ(A(β)) ∩ {z | |z − λ0| ≤ δ}. P(β) is analytic in β, so, by
shrinking ε if need be, we can suppose that

|β − β0| < ε ⇒ ‖P(β) − P(β0)‖ < 1 (2.11)

Step 4. Reduction to a finite dimensional problem. A basic fact that we’ll prove in
Sect. 5 (see Theorem 5.1) is that when (2.11) holds, we can define an invertible map
U (β) for |β − β0| < ε analytic in β so that

U (β)P(β)U (β)−1 = P(β0) (2.12)

Moreover, if X is a Hilbert space and P(β) is self-adjoint for |β − β0| < 1 and
Im (β − β0) = 0, then U (β) is unitary for such β.

Because of (2.12), Ã(β) ≡ U (β)A(β)U (β)−1 leaves ran P(β0) invariant and

σ( Ã(β) � ran P(β0)) = σ( Ã(β)) ∩ {z | |z − λ0| ≤ δ} (2.13)

If now λ0 is a point of the discrete spectrum of A(β0), then P(β0) is finite dimen-
sional, so Ã(β) � ran P(β0) is a finite dimensional problem and all the results of Step
1 apply. Moreover, if X is a Hilbert space and A(β) is self-adjoint for β real, then so is
Ã(β) and Rellich’s Theorems extend. Note that even if A(β) is linear in β, Ã(β) will
not even be polynomial in β so it is important that step 1 be done for general analytic
families.

Step 5 Regular Families of Closed Operators. For β ∈ �, a domain, we consider
a family, A(β) of closed, densely defined (but not necessarily bounded) operators on
a Banach space, X . We say that A is a regular family if, for every β0 ∈ �, there
is a z0 ∈ C and ε > 0 so that for |β − β0| < ε, we have that z0 /∈ σ(A(β)) and
β �→ (A(β) − z0)−1 is a bounded analytic function near β0. Kato [345, Section
VII.1.2] has a more general definition that applies even to closed operators between
two Banach spaces X and Y but he proves that it is equivalent to the above definition so
long as X = Y and every A(β) has a non-empty resolvent set (which is no restriction
if you want to consider isolated eigenvalues).
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With this definition, all the eigenvalue perturbation theory for the bounded case
carries over since λ0 is a discrete eigenvalue of A(β0) if and only if (λ0 − z0)−1 is a
discrete eigenvalue of (A(β0) − z0)−1.

Step 6 Criteria for Regular Families. A type (A) family is a function, A(β), for
β ∈ �, a region in C, so that A(β) is a closed, densely defined operator on a Banach
space, X , with domain D(A(β)) = D independent of β and so that for all ϕ ∈ D we
have that β �→ A(β)ϕ is an analytic vector valued function. If A(β0) has non-empty
resolvent set, it is easy to see that A(β) is a regular family for β near β0. In particular,
if the resolvent set is non-empty for all β ∈ �, then A(β) is a regular family on �.

Of particular interest is the case where A(β) = A0 + βB where D = D(A0) and
B is an operator with D ⊂ D(B). Then A(β) is closed for all β small if only if there
are a, b > 0 so that for all ϕ ∈ D, one has that

‖Bϕ‖ ≤ a‖A0ϕ‖ + b‖ϕ‖ (2.14)

Thus (2.14) is a necessary and sufficient condition for a linear A(β) to be an analytic
family of type (A) near β = 0.

If a bound like (2.14) holds, we say that B is A-bounded. The relative bound is the
inf over all a for which (2.14) holds (typically, if a0 is this inf, the bound only holds
for a > a0 and the corresponding b’s go to∞ as a ↓ a0). There exist unbounded B for
which the relative bound is 0. There are similar bounds for general analytic families
of type (A): A(β) = A +∑∞

n=1 βn Bn and Bn obeys D(Bn) ⊃ D(A) and for some
a, b, c and all ϕ ∈ D(A) one has that

‖Bnϕ‖ ≤ cn−1(a‖Aϕ‖ + b‖ϕ‖) (2.15)

There is also a notion of type(B) families on Hilbert space (due to Kato [345])
where one demands that A(β) be m-accretive with β independent form domain.

Example 2.1 (1/Z expansion) A simple example of regular perturbation theory of
physical interest concerns two electron ions which in the limit of infinite nuclear mass
(ignoring relativistic and spin corrections) is described by

H(Z) = −�1 − �2 − Z

r1
− Z

r2
+ 1

|r1 − r2| (2.16)

on L2(R6, d3r1d3r2). Under a scale transformation Z−2H(Z) is unitarily equivalent
to

A(1/Z) = −�1 − �2 − 1

r1
− 1

r2
+ 1

Z |r1 − r2| (2.17)

This is an entire family of type (A) in 1/Z . At 1/Z = 0, the ground state energy
is E0(0) = − 1

2 . For all Z , the HVZ theorem ([497, Section XIII.5]) implies that the
continuous spectrum of A(1/Z) is [− 1

4 ,∞).
Kato was concerned with rigorous estimates on the radius of convergence, ρ, of

the power series for E0(1/Z). He discussed this in his thesis and, in his book [345,
Section VII.4.9], was able to show that ρ > 0.24 and he noted that this didn’t cover the
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physically important cases 1/Z = 1/2, i.e, Helium (Z = 2). In fact the case 1/Z = 1
is also important because it describes the H− ion which is known to exist.

There has been considerable physical literature on this example. Stillinger [628]
found numerically that the perturbation coefficients (not found numerically using
perturbation theory but by fitting variationally calculated eigenvalues) are eventually
all positive, so there is a singularity on the positive real axis atρ. Asβ = 1/Z increases,
E(β) is monotone increasing and known to be real analytic at least until E reaches
the bottom of the continuous spectrum, − 1

4 , at β = βc. Since H− exists, βc > 1. The
best current numerical estimate [145] suggests that ρ = βc and

βc = 1.09766083373855980(5)

It is known [251] (see [159,163,206] for improved results) that at β = βc, A(β) has
an eigenvalue at E(βc) = − 1

4 . It would be interesting to understand the nature of the
singularity at β = βc, e.g. is there a convergent Puiseux series?

This completes our discussion of the theory of eigenvalue perturbation theory so
we turn to some remarks on its history. Eigenvalue perturbation theory goes back to
fundamental work of Lord Rayleigh on sound waves in 1897 [492, pp. 115–118] and
[493] and by Schrödinger at the dawn of (new) quantum mechanics [544] and is often
called Rayleigh–Schrödinger perturbation theory.

The first substantial rigorous mathematical work on the subject is a five part series
of papers by Rellich [504–508] published from 1937 to 1942. It included an exhaustive
treatment of the finite dimensional case including what we called Rellich’s Theorems
on the lack of singularities in the self-adjoint case. He also noted the simple example:

A(β, γ ) =
(

β γ

γ −β

)
(2.18)

with eigenvalues ±√β2 + γ 2 which shows that his analyticity results for the self-
adjoint case do not extend to more than one variable. He also considered the infinite
dimensional case where (2.14) holds (A self-adjoint and B symmetric) and (2.15)
appeared in his papers. His papers did not use spectral projections but rather some
brute force calculations.

Sz-Nagy followed upRellich’swork in two papers published in 1947 and 1951 [454,
455] inwhich he treated the self-adjointHilbert space case and general closed operators
on Banach spaces respectively. The first paper had a 1942 Hungarian language version
[453]. He defined type (A) perturbations via (2.15). His main advance is to exploit the
definitionof spectral projections via (2.1).As a student ofF.Riesz, this is not surprising.
This was also the first place that it was proven (in the Hilbert space case) that two
orthogonal projections, P and Q with ‖P − Q‖ < 1 are related via Q = U PU−1 for
a unitary which is analytic function of Q, i.e. he implemented Step 4 above.

Wolf [689] also extended the Nagy approach to the Banach space case is 1952.
Perhaps themost significant aspect of this work is that it served eventually to introduce
Kato to Wolf for Wolf was a Professor at Berkeley who was essential to recruiting
Kato to come to Berkeley both in 1954 and 1962.
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FrantišekWolf (1904–1989) was a Czech mathematician who had a junior position
at Charles University in Prague. Wolf had spent time in Cambridge and did some
significant work on trigonometric series under the influence of Littlewood. When the
Germans invaded Czechoslovakia in March 1938, he was able to get an invitation to
Mittag–Leffler. He got permission from the Germans for a 3weeks visa but stayed in
Sweden! Hewas then able to get an instructorship atMacalester College inMinnesota.
He made what turned out to be a fateful decision in terms of later developments.
Because travel across the Atlantic was difficult, he took the trans-Siberian railroad
across the Soviet Union and then through Japan and across the Pacific to the US.
This was mid-1941 before the US entered the war and made travel across the Pacific
difficult.

Wolf stopped in Berkeley to talk with G. C. Evans (known for his work on potential
theory) who was then department chair. Evans knew of Wolf’s work and offered him
a position on the spot!! After the year he promised to Macalester, Wolf returned to
Berkeley and worked his way up the ranks. In 1952, Wolf extended Sz-Nagy’s work
to the Banach space case. At about the same time Nagy himself did similar work and
in so did Kato. While Wolf and Kato didn’t know of each other’s work, Wolf learned
of Kato’s work and that led to his invitation for Kato to visit Berkeley.

Kato’s thesis dealt with both analytic and asymptotic perturbation theory (we’ll
discuss the later in the next section). It appears that Kato found much of this in about
1944 without knowing about the work of Rellich or Nagy although he did know about
Rellich by the time his thesis was written and he learned about the work of Nagy
before the publication of the last of his early papers on perturbation theory [320,322].

Interestingly enough, Kato’s first published work on the perturbation theory of
eigenvalues [306] was a brief 1948 note with examples where the theory didn’t apply
- these will be discussed in the next section (Examples 3.5, 3.6). His thesis was pub-
lished in a university journal in full [316] in 1951 with parts published a year early in
broader journals in both English [308,309] and Japanese [310]. Two final early papers
[320,322] dealt with the Banach space case and with further results on asymptotic
perturbation theory (discussed further in Sect. 6).

Many of the most significant results in Kato’s work on regular eigenvalue pertur-
bation theory had been found (independently but) earlier by Rellich and Nagy. Kato’s
work, especially if you include his book [345], was more systematic. His main con-
tribution beyond theirs concerns the use of reduced resolvents. And, as we’ll see, he
was the pioneer in the theory of asymptotic perturbation theory.

3 Eigenvalue perturbation theory, II: asymptotic perturbation theory

In this section and the next, we discuss situationswhere theKato–Nagy–Rellich theory
of regular perturbations does not apply. Lest the reader think this is a strange pathology,
we begin with six (!) simple examples, four from the standard physics literature and
then two that appeared in Kato’s first paper—a brief note—on perturbation theory
[306].
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Example 3.1 (Anharmonic oscillator and Zeeman effect) Let

A0 = − d2

dx2
+ x2, B = x4, A(β) = A0 + βB (3.1)

on L2(R, dx). This is an example much beloved by teachers of quantum mechanics
since one can compute a2 explicitly since the sum in (2.7) is finite (indeed only two
terms which can be computed in closed form). It is also regarded as a paradigm of the
simplest quantum field theory, i.e. ϕ4

1 in one space–time dimension (see [194,578]).
A basic fact is that the perturbation series exists to all orders, in fact all the sums in the
books [345,497] for individual terms are finite or, alternatively, there exists a simple set
of recursion relations [49] for thean so that formally, the ground state energy is given by

E0(β) = E0 +
∞∑

n=1

anβn (3.2)

However, the series in (3.2) has zero radius of convergence. One intuition comes
fromDyson [128] who argued that the perturbation series in quantum electrodynamics
shouldn’t converge because the theory doesn’t make sense if e2 < 0 when electrons
attract and there is collapse. Similarly, A0−βx4 does not define a self-adjoint operator
since it is limit circle at ±∞ (see [616, Section 7.4]). While this is not a proof, one
can show ([434,435,568]) that A(β) is a type (A) family for β ∈ C\(−∞, 0] (but
not at β = 0), that any eigenvalue, En(β), of A(β) for β > 0 can be analytically
continued to all of β ∈ C\(−∞, 0] with limits on (−∞, 0) from either side with
ImEn(−β + i0) > 0 for any β > 0 (so the continuation is not analytic at β = 0).
[568] has much about the analytic structure near β = 0.

This doesn’t quite imply that the series is divergent, only that it can’t converge to
the right answer. In fact, one knows that the an grow so fast that the series diverges
for all β �= 0. Indeed, it is known that

an = 4π−3/2(−1)n+1 ( 3
2

)n+1/2
�(n + 1

2 )
(
1 + O

( 1
n

))
(3.3)

This formula with its n! growth is called the Bender–Wu formula. They guessed it [49]
from a calculation of the first 75 an in 1969 and found a non-rigorous argument for it
in 1973 [50]. It was proven by Harrell–Simon [222] in 1980—we’ll discuss it in the
next section.

There is also literature on the higher order anharmonic oscillator,

A(β) = − d2

dx2
+ x2 + βx2m; m = 2, 3, . . . (3.4)

In this case the analogs of Bender–Wu asymptotics have an ∼ C(−1)n+1Annγ �((m−
1)n) for suitable m-dependent A, C, γ .

There is a historically important model that has a similar divergence, namely the
Zeeman effect for Hydrogen which describes Hydrogen in a constant magnetic field,
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B, which if B points in the z direction in r = (x, y, z) coordinates is given by the
Hamiltonian

A(B) = − 1
2� − 1

r + B2

8 (x2 + y2) + BLz (3.5)

where Lz is the z component of the angular momentum. For the ground state (where
Lz = 0), one has that

E0(B) =
∞∑

k=0

Ek B2k (3.6)

Avron [20] found a Bender–Wu type formula

Ek =
(
4

π

)5/2

(−1)k+1π−2k�

(
2k + 3

2

)(
1 + O

(
1

k

))
(3.7)

with a rigourous proof by Helffer–Sjöstrand [234]. In natural units, the magnetic field
in early twentieth century laboratories was very small so lowest order perturbation
theory worked very well.

Example 3.2 (Autoionizing States of Two Electron Atoms) We further consider the
Hamiltonian A(1/Z)ofExample 2.1; see (2.17). For 1/Z = 0, A(0) is theHamiltonian
of two uncoupled Hydrogen atoms so its eigenvalues are En,m = − 1

4n2
− 1

4m2 , m, n =
1, 2, . . .. The continuous spectrum starts at − 1

4 (for n = 1, m → ∞), so, for exam-
ple, E2,2 at energy − 1

8 is an eigenvalue but not isolated, rather it is embedded in
the continuous spectrum on [− 1

4 ,∞). According to the physicist’s expectation, this
eigenvalue becomes a decaying state, where in a finite time, one electron drops to the
ground state and the other gets kicked out of the atom with the left over energy (i.e.
− 1

8 − (− 1
4 ) = 1

8 ). For obvious reasons, these are called autoionizing states. These
states are actually seen as electron scattering resonances (under e+ He+ → e+ He+)
or as photo ionization resonances (γ + He → He+ + e) called Auger resonances.

The situation has a complication we’ll ignore. The eigenvalue at energy − 1
8 has

multiplicity 16which one can reduce by using exchange, rotation and parity symmetry.
For our purposes, it is useful to look at states with angular momentum 2 and azimuthal
angular momentum 2 which are simple. In fact, there are states of unnatural parity
(with angular momentum 1 but parity +); the continuous spectrum below − 1

16 is only
of natural parity states so these unnatural parity eigenvalues are not embedded in
continuous spectrum and so they don’t disappear. There are actually 15 subspaces
with definite symmetry. In one, there is a doubly degenerate embedded eigenvalue, in
3 an isolated eigenvalue and in 11 a simple embedded eigenvalue.

According to what is called the Wigner–Weisskopf theory [676], these scattering
resonances are complex poles of the S-matrix so the perturbed energy, E(β) has a
non-zero imaginary part

Im E(β) = �(β)

2
(3.8)

where � is the width of the resonance, i.e. |(E − E0) + i
2�|−2 (the impact of a pure

pole to a quantum probability) has a distance � between the two points where it takes
half its maximum value.
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Physicists argue that � = h̄/τ , where τ is the lifetime of the excited state.
SometimesRayleigh–Schrödinger perturbation theory is called time–independent per-
turbation theory because there is a formal textbook argument for computing lifetimes
of embedded eigenvalues coupled to the continuum called time–dependent perturba-
tion theory. In particular, the second order term in this theory is called the Fermi golden
rule, discussed, for example, in Landau–Lifshitz [407, pp. 140–153]. Simon [574] has
a compact way to write this second order term. If A(β) = A0+βB, A0ϕ0 = E0ϕ0 and
P̃0(λ) is the spectral projection for A0 with {E0} removed, i.e. P̃0(λ) = fλ(A) where

fλ(x) =
{
1, x < λ, x �= E0
0, x ≥ λ, or x = E0

then

�(β) = �2β
2 + O(β3) (3.9)

�2 = d

dλ
〈Bϕ0, P̃0(λ)Bϕ0〉

∣∣∣∣
λ=E0

(3.10)

The physics literature arguments for time–dependent perturbation theory are mathe-
matically questionable and there were arguments about what the higher order terms
were.

So this example causes lots of problems we’ll look at in Sect. 4: What is a reso-
nance? What does the perturbation series have to do with the resonance energy? Can
one mathematically justify the Fermi golden rule? What are the higher terms? Is there
a convergent series?

In 1948, Friedrichs [172] considered a model (related to some earlier work of his
[170]) with operators acting on L2([a, b], dx) ⊕ C with A0( f (x), ζ ) = (x f (x), ζ )

where a < 1 < b so that A0 has an embedded eigenvalue at E0 = 1. A(β) =
A0 + βB where B is the rank two operator B( f (x), ζ ) = (ζh(x), 〈h, f 〉) for some
h ∈ L2([a, b], dx). For suitable h and small β > 0, Friedrichs proved that A(β) has
no eigenvalues in spite of the fact of a first order perturbation term so the eigenvalue
indeed dissolves. He did not discuss resonances but this was an early attempt to study
a model which in his words “is clearly related to the Auger effect.”

Example 3.3 (Stark Effect) The Stark Hamiltonian describes the Hydrogen atom in
an electric field. If F is the strength of the field and r = (x, y, z), then the operator
on L2(R3) has the form

A(F, Z) = −� − Z

r
+ Fz (3.11)

We will primarily consider Z = 1. Schrödinger developed eigenvalue perturbation
theory [544] to apply it to the StarkHamiltonian. Aswith the Zeeman effect, laboratory
F’s are small so first or second order perturbation theory worked well when compared
to experiment and this was regarded as a great success.

Early on, Oppenheimer [470] pointed out that when F �= 0, A(F, Z) is not bounded
below so that the A(F = 0, Z = 1) ground state is, as soon as F �= 0, swamped by
continuous spectrum. Put differently, it becomes a finite lifetime state that decays. He
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claimed to compute the lifetime but his calculation was wrong. There are arguments
about whether his method was correct but eventually universal agreement that the
correct asymptotics for the width, when Z = 1 and F is small, is that found by
Lanczos [404–406]:

�(F) ∼ 1

2F
exp

(
− 1

6F

)
(3.12)

which is usually called the Oppenheimer formula.
In fact, one can prove that for any F �= 0, and any Z including Z = 0, A(F, Z) has

spectrum (−∞,∞) with infinite multiplicity, purely absolutely continuous spectrum.
Titchmarsh [654] proved there are no embedded eigenvalues using the separability in
parabolic coordinates we’ll use again below, Avron–Herbst [24] proved the existence
of wave operators from A(F, Z = 0) to A(F, Z) (wave operators are discussed in
Sect. 13 in Part 2) and Herbst [240] proved that those wave operators were unitaries,
U , with U A(F, Z = 0)U−1 = A(F, Z).

In this regard, I should mention what I’ve called [588] Howland’s Razor after
[258,259] and Occam’s Razor: “Resonances cannot be intrinsic to an abstract operator
on a Hilbert space but must involve additional structure.” For {A(F, 1)}F �=0 are all
unitarily equivalent but we believe they have F-dependent resonance energies. We’ll
discuss the possible extra structures in the next section.

There is also a Bender–Wu type asymptotics

E(F) ∼
∞∑

n=0

A2n F2n (3.13)

A2n = −62n+1(2π)−1(2n)!
(
1 + O

(
1

n

))
(3.14)

found formally by Herbst–Simon [245] and proven by Harrell–Simon [222]. Interest-
ingly enough, there is a close connection between (3.14) and the original Bender–Wu
formula (3.3) or rather its analog for

− d2

dx2
+ x2 + βx4 − 1

4x2
(3.15)

whose Bender–Wu formula was found by Banks, Bender and Wu [43]. Jacobi [276]
discovered that a Coulomb plus linear potential in classical mechanics separates in
elliptic coordinates and then Schwarzschild [546] and Epstein [141] extended this idea
to old quantum theory. In particular, Epstein used parabolic coordinates. Schrödinger
[544] and Epstein [142] extended this use of parabolic coordinates to the Hamiltonian
(3.11). This separation was also used by Titchmarsh [647–651,654], Harrell–Simon
[222] and by Graffi–Grecchi and collaborators [48,79,198,199,201,203,205].

Many of the same questions occur as for Example 3.2 which we’ll study in Sect. 4:
What is a resonance? What is the meaning of the divergent perturbation series? What
is the difference between (3.9) where �(β) = O(β2) and (3.12) where �(β) = O(βk)

for all k.
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Example 3.4 (Double Wells) The standard double well problem is

A(β) = − d2

dx2
+ x2 − 2βx3 + β2x4 (3.16)

Writing

V (β, x) ≡ x2 − 2βx3 + β2x4

= x2(1 − xβ)2

= β2x2(β−1 − x)2

we see that if Uβ f (x) = f (β−1 − x) which is unitary, then Uβ A(β)U−1
β = A(β).

If we let ϕ0(x) = π−1/4 exp(− 1
2 x2), then 〈ϕ0, A(β)ϕ0〉 = 1 + O(β2). But by sym-

metry, 〈Uβϕ0, A(β)Uβϕ0〉 = 1 + O(β2) while 〈ϕ0, Uβϕ0〉 and 〈A(β)ϕ0, Uβϕ0〉 are
O(exp(−1/(4β2))), so very small. Thus, we see that while A(β = 0) has simple
eigenvalues at 2n + 1, n = 0, 1, 2, . . ., for β �= 0, A(β) has a least two eigenvalues
near each En(β = 0).

So far as I know, Kato never discussed anything like double wells in print, but we’ll
see shortly that it illuminates the meaning of stability, a subject that Kato was the first
to emphasize.

This model is closely related to the family on L2(Rν):

H(λ) = −� + λ2h(x) + λg(x) (3.17)

where h, g are C∞, g is bounded from below, h ≥ ε > 0 near ∞, h ≥ 0, h(x) = 0
for only finitely many points and so that at those points the Hessian matrix ∂2h

∂xi ∂x j
is

strictly positive definite. One is interested in eigenvalues of H(λ) as λ → ∞. Notice
that when g = 0, λ−2H(λ) = −λ−2� + h, so this is a quasi-classical (h̄ → 0) limit.
One can rephrase the double well as looking at − d2

dx2
+ λ2x2(1 − x)2 by scaling of

space and energy (see Simon [601]). There is a considerable literature both on leading
asymptotics and on the exponential splitting of the two lowest eigenvalues—see, for
example, Simon [601,603] and Helffer–Sjöstrand [228–234]. We note that Witten
[687] has a proof of the Morse inequalities that relies on this leading quasi-classical
limit (see also Cycon et al. [101]).

Example 3.5 Our last two examples, unlike the first four are neither well-known nor
heavily studied. They are from Kato’s first paper on perturbation of eigenvalues, a one
page letter to the editor of Progress of Theoretical Physics in 1948. Both examples,
which also appear in his thesis [316], have A(β) = A0 + βB with

A0 = −〈ψ, ·〉ψ (3.18)

where ψ ∈ L2(R, dx) has ‖ψ‖2 = 1. He focuses on what happens to the simple
eigenvalue A0 has at E0 = −1.
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In his first example, he takes B to be multiplication by x . This model is the poor
man’s Stark effect. He doesn’t mention this connection in the paper but does in the
thesis. He states without proof in the Note (but does have a proof in the thesis) that for
β �= 0, A(β) has no eigenvalues but has a purely continuous spectrum. He remarked
that this example shows that the formal perturbation series may be quite meaningless
even if no “divergence” occurs. In his later work, as we’ll see in Sect. 4, he did discuss
a possible significance of such series.

Example 3.6 A0 is given by (3.18) but now B is multiplication by x2. Kato states
and proves in his thesis that for β small and positive, A(β) has a simple eigenvalue
near E = −1. Kato proves this by direct calculation rather than the more general
strong convergence method in his book which we discuss below. He then discusses
two explicit special ψ’s for which the first order term,

∫
x2|ψ(x)|2dx , is infinite. For

ψ = c(1 + x2)−1/2, he finds (in the thesis; the paper only has the O(β1/2) term):

E(β) = −1 + β1/2 − 1
2β + 1

8β
3/2 + O(β2). (3.19)

For ψ = c|x |1/2(1 + x2)−1 where the first order integral is only logarithmically
divergent, he claims that

E(β) = −1 + β log(β) + O(β) (3.20)

The thesis but not the paper also discusses ψ = c(1 + x2)−1 where the first order
integral is finite, he claims that

E(β) = −1 + β − 2β3/2 + O(β2) (3.21)

Kato is primarily a theoremprover and concept developer but occasionally he produces
detailed calculational results, often without details; we’ll discuss this further in Sect. 7.

This example is quite artificial but in his book [345], Kato has an example going
back to Rayleigh [492]

A(β) = − d2

dx2
+ β

d4

dx4
, β > 0 (3.22)

with
ϕ(0) = ϕ′(0) = ϕ(1) = ϕ′(1) = 0 (3.23)

boundary conditions. Clearly A(0) should have A(0) = − d2

dx2
but the boundary con-

ditions (3.23) are too strong to get a self-adjoint operator. One can show that the right
boundary conditions for a strong limit are ϕ(0) = ϕ(1) = 0 and that

En(β) = n2π2
[
1 + 4β1/2 + O(β)

]
(3.24)

With these examples in mind, we turn to the general theory of asymptotic series.
Recall [614, Section 15.1] that given a function β �→ f (β) on (0, B) and a sequence
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{an}∞n=0, we say that
∑∞

n=0 anβn is an asymptotic series to order N if an only if

f (β) −
N∑

n=0

anβn = o(βN ) (3.25)

Of course, if the series is asymptotic to order (N + 1), the right side of (3.25) can be
replaced by O(βN+1). We’ll mainly discuss series asymptotic to infinite order (i.e. to
order N for all N = 1, 2, . . .). It is easy to see that if f has an asymptotic series to
infinite order, then f determines all the coefficients an uniquely.

The function g(β) = 106 exp(−1/106β) has a zero asymptotic series. f (β) and
f (β) + g(β) thus have the same asymptotic series so an asymptotic series tells us
nothing about the value, f (β0), for a fixed β0. Typically however, for β0 small, a few
terms approximate f (β0) well but too many terms diverge. A good example is given
[614, Table after (15.1.18)] for the error function Erfc(x) = 2√

π

∫∞
x exp(−y2)dy for

which h(x) ≡ πx exp(x2)Erfc(x) has an asymptotic series in 1/x about x = ∞. At
x = 10, h(x) = .99507 . . .. The order N = 2 asymptotic series is good to 5 decimal
places and for N = 108 to more than 22 decimal places. But for N = 1000, the series
is about 10565. So it is interesting and important to know that a series is asymptotic
but if one knows the series and wants to know f , it is disappointing not to know more.

One often considers A(β) defined in a truncated sector {β ∈ C | 0 < |β| <

B, | argβ| < A} and demands (3.25) (with βN in the error replaced by |β|N ) in
the whole sector.

In his thesis, Kato [316] only considered A(β) = A0 + βB with A ≥ 0, B ≥ 0
where A(β) is self-adjoint (with a suitable interpretation of the sum). He used what
are now called Temple–Kato inequalities to obtain asymptotic series to all orders in
[316,322]. We discuss this approach in Sect. 6 below.

About the same time, Titchmarsh started a series of papers [647–651,654] on eigen-
values of second order differential equations including asymptotic perturbation results
for A(β) = − d2

dx2
+ V (x) + βW (x) on L2(R, dx) (or L2((0,∞), dx) with a bound-

ary condition at x = 0). Typically both V (x) and W (x) go to infinity as |x | → ∞
(so the spectra are discrete) and W goes to ∞ faster (so analytic perturbation theory
fails; think V (x) = x2, W (x) = x4). His work relied heavily on ODE techniques.
They have overlap of applicability with Kato’s operator theoretic approach, but Kato’s
method is more broadly applicable.

In his book, Kato totally changed his approach to be able to say something about
the Banach space (and also non-self-adjoint operators in Hilbert space) so he couldn’t
use the Temple–Kato inequality which relies on the spectral theorem. There is some
overlap of this work from his book andwork of Huet [260], Kramer [388,389], Krieger
[392] and Simon [568].

Central to Kato’s approach is the notion of strong resolvent convergence and of
stability. Kato often discusses this for sequences An converging to A in some sense
as n → ∞; for our purposes here, it is more natural to consider A(β) depending on
a positive real parameter as β ↓ 0. To avoid various technicalities, we’ll also focus
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142 B. Simon

initially on the self-adjoint case were there are a priori bounds on (B − z)−1 for
z ∈ C\R, although we’ll consider some non-self-adjoint operators later.

For (possibly unbounded) self-adjoint {A(β)}0<β<B and self-adjoint A0, we say
that A(β) converges in strong resolvent sense (srs) if and only if for all z ∈ C\R, we
have that (A(β) − z)−1 → (A0 − z)−1 in the strong (bounded) operator topology.
Here is a theorem, going back to Rellich [504–508, Part 2] describing some results
critical for asymptotic perturbation theory:

Theorem 3.7 Let A0 be self-adjoint and {A(β)}0<β<B a family of self-adjoint oper-
ators on a Hilbert space, H.

(a) If D ⊂ H is a dense subspace with D ⊂ D(A0) and for all β ∈ (0, B), D ⊂
D(A(β)), and ifD is a core for A0 and for all ϕ ∈ D, we have that A(β)ϕ → A0ϕ

as β ↓ 0, then A(β) → A0 in srs.
(b) If a, b ∈ R are not eigenvalues of A0 and A(β) → A0 in srs, then

P(a,b)(A(β))
s→ P(a,b)(A0) (3.26)

where P�(B) is the spectral projection for B associated to the set � ⊂ R [616,
Chapter 5 and Section 7.2]

Proof (a) follows from a simple use of the second resolvent formula; see [616, The-
orem 7.2.11]. For (b), one first proves (3.26) when P(a,b) is replaced by a continuous
function [616, Theorem 7.2.10] and then approximates P(a,b) with continuous func-
tions [616, Problem 7.2.5]. ��
Remark Before leaving the subject of abstract srs results, we should mention two
results known as the Trotter–Kato theorem (Kato’s ultimate Trotter product formula,
the subject of Sect. 18, is also sometimes called theTrotter–Kato theorem).One version
says that if An and A are generators of contraction semigroups on a Banach space, X ,
then e−t An

s→ e−t A for all t > 0 if and only if for one (or for all)λwithRe (λ) > 0, one
has (An +λ)−1 s→ (A+λ)−1. Related, sometimes part of the statement of the theorem,
is that one doesn’t require A to exist a priori but only that for some λ in the open half
plane that (An + λ)−1 have a strong limit whose range is dense. The basic theorem
is then due to Trotter [655] in his thesis (written under the direction of Feller, whose
interest in semigroups was motivated by Markov processes). Kato’s name is often on
the theorem because he clarified an obscure point in this second version [331]. This
theorem has also been called the Trotter–Kato–Neveu or Trotter–Kato–Neveu–Kurtz–
Sova theorem after related contributions by these authors [402,403,466,622]. There
is another related result of this genre sometimes called the Trotter–Kato theorem. It
says that if An is a family of self-adjoint operators, they have a srs limit for some A if
and only if (An − z)−1 has a strong limit with dense range for one z in C+ and one z
in C−.

Returning to perturbation theory, Kato introduced and developed the key notion
of stability. Let {A(β)}0<β<B (or β in a sector) be a family of closed operators in a
Banach space, X . Let A0 be a closed operator so that as β ↓ 0, A(β) converges to A0
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in some sense. Let E0 be an isolated, discrete, eigenvalue of A0. We say that E0 is
stable if there exists ε > 0 so that σ(A0) ∩ {z | |z − E0| ≤ ε} = {E0} and so that

(a) |β| < B and |z − E0| = ε ⇒ z /∈ σ(A(β)) and for each ϕ ∈ X

lim
β↓0(A(β) − z)−1ϕ = (A0 − z)−1ϕ (3.27)

uniformly in {z | |z − E0| = ε}
(b) If P(β) is given by (2.1) with A = A(β) and with� the counterclockwise circle

indicated at the end of (a), then, for all β small, we have that

dim ran P(β) = dim ran P(0) (3.28)

The uniform strong convergence in (a) implies that

P(β)
s→ P(0) (3.29)

In the self-adjoint case, even without (a), if A(β) → A0 in srs, then

P(E0−ε,E0+ε)(A(β))
s→ P{E0}(A0) (3.30)

for ε small if E0 is in the discrete spectrum of A0. P �→ dim ran P is continuous in
the topology of norm convergence but it is only lower semicontinuous in the topol-
ogy of strong operator convergence. For example, if Pn is the rank one projection
onto multiples of the nth element of an orthonormal basis, then Pn

s→ 0. The lower
semicontinuity says that

Pn
s→ P∞ ⇒ dim ran P∞ ≤ lim inf dim ran Pn (3.31)

Kato was well aware that equality might not hold on the right side of (3.31) for
examples of relevance to physics—amain example that he mentions is the Stark effect
where the right side is infinite. Double wells show that even if (a) above holds, (b)
may fail. Simon [601] describes an extension of stability for multiple well problems.

There are two main ways that one can prove stability in cases where it is true. One
is to note that if A(β) ≥ A0 as happens if

A(β) = A0 + βB (3.32)

and B ≥ 0, then dim ran P(−∞,a)(A(β)) ≤ dim ran P(−∞,a)(A0). This and (3.31)
implies stability for E0 below the bottom of the essential spectrum for A0. This is the
typical approach that Kato uses in several places.

The second way one can have stability is illustrated by

Example 3.8 (Example 3.1 (revisited)) One might have the impression that regular
perturbation theory is associated with norm continuity of resolvents and spectral pro-
jections and asymptotic perturbation theory always only strong convergence. While
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there is some truth to this, Simon [568] found the surprising fact that even in situations
where perturbation theory diverges, one can have norm convergence of resolvents in
a sector. One starts by noting that with p = 1

i
d

dx , one has that

(p2 + W )2 = p4 + W 2 + p2W + W p2

= p4 + W 2 + 2pW p + [p, [p, W ]]
= p4 + W 2 + 2pW p − W ′′

≥ 1
2W 2 − c

if W ′′ ≤ 1
2W 2 + c and W ≥ 0. In this way, one sees that for positive constants c and d

‖(p2 + x2 + βx4)ϕ‖2 + c‖ϕ‖2 ≥ d
[
‖x2ϕ‖2 + β2‖x4ϕ‖2

]
(3.33)

which is called a quadratic estimate. This, in turn, implies that ‖x2(p2 + x2 + 1)−1‖
and ‖(p2 + x2 + βx4 + 1)−1x2‖ are bounded so that

‖(p2 + x2 + βx4 + 1)−1 − (p2 + x2 + 1)−1‖
= β‖(p2 + x2 + βx4 + 1)−1x4(p2 + x2 + 1)−1‖
≤ β‖(p2 + x2 + βx4 + 1)−1x2‖‖x2(p2 + x2 + 1)−1‖

is O(β) → 0 in norm. This implies stability by a simple argument.
A similar argument works for p2 + γ x2 + βx4 for any γ ∈ ∂D\{−1} so using

scaling and the ideas below, one proves that for each n, the nth eigenvalue, En(β), of
p2+x2+βx4 has an asymptotic series in each sector {β | 0 < |β| < BA; | argβ| < A}
so long as A ∈ (0, 3π

2 ) [568].
The above argument doesn’t work for βx2m; m > 2 but by using that ‖βx2m(p2 +

x2+βx2m +1)−1‖ is bounded, one sees that the normof the difference of the resolvents
is O(β1/m) which also goes to zero.

To state results on asymptotic series, we focus on getting series for all orders.
Kato [345] is interested mainly in first and second order, so he needs much weaker
hypotheses. LetC ≥ 1be a self-adjoint operator on aHilbert space,H. Then D∞(C) ≡
∩n≥0D(Cn) is a countably normed Fréchet space with the norms ‖ϕ‖n ≡ ‖Cnϕ‖H
(see [612, Section 6.1]). A densely defined operator, X , on D∞(C) is continuous in
the Fréchet topology if and only if for all m, there is k(m) and cm so that Dk(m)(C) ⊂
D(X), X

[
Dk(m)(C)

] ⊂ Dm(C) and ‖Xϕ‖m ≤ cm‖ϕ‖k(m). Typically, for some �,
k(m) can be chosen to be m + �.

Theorem 3.9 Let C ≥ 1 be a self-adjoint operator on a Hilbert space, H. Let
{A(β)}0≤β<B be a family of closed operators with E0 a simple isolated eigenvalue
of A0 ≡ A(0). Suppose that D∞(C) ∩ D(A0) ⊂ D(A(β)) for all β. Let V be an
operator with D∞(C) ∩ D(A0) ⊂ D(V ) so that for ϕ ∈ D∞(C) ∩ D(A0), we have
that

A(β)ϕ = (A0 + βV )ϕ (3.34)
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Suppose that E0 is stable (in the sense that the spectrum of A(β) for β small is discrete
near E0 and that (3.28) holds) and that V is a continuous map on D∞(C) and that
for some δ with σ(A0)∩ {z | |z − E0| = δ} = {E0}, we have that if |z − E0| = δ, then
(A0 − z)−1 is a continuous map of D∞(C) and continuous in z. Suppose also that if
ϕ0 �= 0 with A0ϕ0 = E0ϕ0, then ϕ0 ∈ D∞(C). Then, there is a sequence of complex
numbers, {an}∞n=0, so that the unique eigenvalue, E(β), of A(β) near E0 is asymptotic
to E0 +∑∞

n=1 anβn.

Remarks 1. The proof is easy. If P(β) is the spectral projection for E(β), then
P(β)ϕ0 → ϕ0 so for β small

E(β) = 〈ϕ0, A(β)P(β)ϕ0〉
〈ϕ0, P(β)ϕ0〉 (3.35)

Thus, it is enough to get asymptotic series for the numerator and denominator. Write
P(β) as a contour integral and expand (A(β) − z)−1ϕ0 in a geometric series with
remainder. Since ϕ0 ∈ D∞(C), all terms including the remainder are in H. The last
factor ‖(A(β) − z)−1‖ is uniformly bounded in z and small β, so we get an O(βN+1)

error.
2. The set of algebraic terms obtained by the above proof are the same for asymp-

totic and analytic perturbation theory so the an are given by Rayleigh–Schrödinger
perturbation theory.

3. Two useful choices for C are C = A0+1 and C = x2+1. For A0 = − d2

dx2
+ x2,

there are very good estimates on ‖(A0 + 1)mϕ0‖2 (see [612, Section 6.4]). If A0 =
−�+W +1, for extremely general W ’s, it is known that for z /∈ σ(A0), (A0−z)−1 has
an integral kernel with exponential decay [600, Theorem B.7.1], which implies that
‖(1 + x2)m(A0 − z)−1(1 + x2)−m‖ is bounded on L2(R), so (A0 − z)−1 is bounded
on D∞(1 + x2).

Asymptotic series have the virtue of uniquely determining the perturbation coef-
ficients from the eigenvalues as functions and they often give good numeric results
if β is small and one takes only a few terms. But mathematically, the situation is
unsatisfactory—one would like the coefficients to uniquely determine E(β) (as they
do in the regular case) or even better, one would like to have an algorithm to compute
E(β) from {an}∞n=0. This is not an issue that Kato seems to have written about but it
is an important part of the picture, so we will say a little about it.

It is a theorem of Carleman [82] that if ε > 0 and g is analytic in Rε,B =
{z | | arg z| < π

2 + ε, 0 < |z| < B}, if |g(z)| ≤ bn|z|n there and
∑∞

n=1 b−1/n
n = ∞

(e.g. bn = n!), then g ≡ 0 on Rε,B . This leads to a notion of strong asymptotic
condition and an associated result of there being at most one function obeying that
condition (and so a strong asymptotic series determines E)—see Simon [571,572] or
Reed–Simon [497, Section XII.4].

Algorithms for recovering a function from a possibly divergent series are called
summability methods. Hardy [219] has a famous book on the subject. Many methods,
such asAbel summability (i.e. limt↑1

∑∞
n=0 antn)work only for barely divergent series

like an = (−1)n . The series that arise in eigenvalue perturbation theory are usually
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badly divergent but, fortunately, there are some methods that work even in that case.
Two that have been shown to work for suitable eigenvalue problems are Padé and
Borel summability.

The ordinary approximates for a power series are by the polynomials obtained by
truncating the power series. If instead, one uses rational functions, one gets Padé,
aka Hermite–Padé, approximates (they were formally introduced by Padé [473] in
his thesis—Hermite, who was Padé’s advisor, introduced them earlier in the special
case of the exponential function [246]). Specifically, given a formal power series,∑∞

n=0 anzn , the Padé approximates, f [N ,M], are given by

f [N ,M](z) = P [N ,M](z)
Q[N ,M](z)

; deg P [N ,M] = M, deg Q[N ,M] = N (3.36)

f [N ,M](z) −
N+M∑
n=0

anzn = O
(

zN+M+1
)

(3.37)

In (3.37), f [N ,M] has (N + 1 + M + 1) − 1 parameters as does the sum. Thus
(3.36)/(3.37) is (N + M + 1) equations in the coefficients of P and Q. So long as
certain determinants formed from {an}N+M

n=0 are non-zero, there is a unique solution,
f [N ,M](z). For more on Padé approximates, see Baker [35–37].
The othermethod is calledBorel summability, introduced byBorel [65]. Themethod

requires that
|an| ≤ ABnn! (3.38)

for some A, B and all n. If that is so, one forms the Borel transform

g(w) =
∞∑

n=0

an

n! w
n (3.39)

which defines an analytic function in {w | |w| < B−1}. One supposes that g has an
analytic continuation to a neighborhood of [0,∞) and defines for z real and positive

f (z) =
∫ ∞

0
e−ag(az)da (3.40)

Since
∫∞
0 e−aanda = n!, formally f (z) is

∑∞
n=0 anzn . For this method to work, g

has to have an analytic continuation so that the integral in (3.40) converges.
As far as Padé is concerned, a major result involves sequences, {an}∞n=0, called

series of Stieltjes which have the form

an = (−1)n
∫ ∞

0
xndμ(x) (3.41)
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for some positive measure dμ on [0,∞) with all moments finite. The associated
Stieltjes transform of μ

f (z) =
∫ ∞

0

dμ(x)

1 + xz
(3.42)

is defined and analytic in z ∈ C\(−∞, 0]. Expanding (1 + xz)−1 in a geometric
series with remainder, one sees that in every sector {z | | arg z| < π − ε} with ε > 0,∑∞

0 anzn is an asymptotic series for f . Here is the big theorem for such series:

Theorem 3.10 If {an}∞n=0 is a series of Stieltjes, then for each j ∈ Z, the diagonal
Padé approximates, f [N ,N+ j](z), converge as N → ∞ for all z ∈ C\[0,∞) to
a function f j (z) given by (3.42) with μ replaced by μ j which obeys (3.41) (with
μ = μ j ). The f j are either all equal or all different depending on whether (3.41) has
a unique solution, μ, or not.

The result is due to Stieltjes [626,627]who discussed solutions of themoment prob-
lem (3.40) but not Padé approximates. Rather following ideas of Jacobi, Chebyshev
and Markov, he discussed continued fractions expansions

α1

z + β1 + α2

z + β3 + α3

. . .

for the Stieltjes transform. These are the f [N+1,N ](z) and his convergence results
imply the theorem. For details, see Baker [36] or Simon [616, Section 7.7].

It follows from results of Loeffel et al. [434,435] that if Em(β) is an eigenvalue of
p2 + x2 + βx4 for β ∈ [0,∞), then Em(β) has an analytic continuation to C\[0,∞)

with a positive imaginary part in the upper half plane. Results of Simon [568] imply
that |Em(β)| ≤ C(1+|β|)1/3. A Cauchy integral formula then implies that (Em(0)−
Em(β))/β has a representation of the form (3.42). Thus, by [435], the diagonal Padé
approximates converge. Moreover, it is a fact (related to the above mentioned theorem
of Carleman) that if {an}∞n=0 is the set of moments of a measure on [0,∞) with
|an| ≤ C Dn(kn)!with k ≤ 2, then the solution to the moment problem is unique [612,
Problem 5.6.2]. This implies that for the x4 anharmonic oscillator, the diagonal Padé
approximates converge to the eigenvalues. The same is true for the x6 oscillator but
for the x8 oscillator, it is known (Graffi–Grecchi [200]) that, while the diagonal Padé
approximates converge, they have different limits and none is the actual eigenvalue!

The key convergence result for Borel sums is a theorem ofWatson [673]; see Hardy
[219] for a proof:

Theorem 3.11 Let � ∈ (π
2 , 3π

2

)
and B > 0. Define

� = {z | 0 < |z| < B, | arg z| < �} (3.43)

�̃ = {z | 0 < |z| < B, | arg z| < � − π
2 } (3.44)

� = {w | w �= 0, | argw| < � − π
2 } (3.45)
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Suppose that {an}∞n=0 is given and that f is analytic in � and obeys

∣∣∣∣∣ f (z) −
N∑

n=0

anzn

∣∣∣∣∣ ≤ AC N+1(N + 1)! (3.46)

on � for all N . Define

g(w) =
∞∑

n=0

an

n! w
n; |w| < C−1 (3.47)

Then g(w) has an analytic continuation to � and for all z ∈ �̃, we have that

f (z) =
∫ ∞

0
e−ag(az)da (3.48)

Graffi–Grecchi–Simon [204] proved that this theorem is applicable to the x4 anhar-
monic oscillator. They did numeric calculations making an unjustified use of Padé
approximation to analytically continue g to all of [0,∞) and found more rapid con-
vergence than Padé on the original series. By conformally mapping a subset of the
union ofD and� containing [0,∞) onto the disk, one can do the analytic continuation
by summing a mapped power series and so do numerics without an unjustified Padé;
see Hirsbrunner and Loeffel [249].

There is a higher order Borel summation where one picks m = 2, 3, . . ., � ∈(mπ
2 , 3mπ

2

)
and replaces � − π

2 in (3.44) by � − mπ
2 , (N + 1)! in (3.46) is replaced

by [m(N + 1)]!, n! in (3.47) by (mn)! and (3.48) by

f (z) =
∫ ∞

0
e−a1/m

g(za)a

(
1
m −1

)
da (3.49)

They showed [204] that the x2(m+1) oscillator is modified m-Borel summable.
Avron–Herbst–Simon [25–28, Part III] proved that for theZeeman effect in arbitrary

atoms, the perturbation series of the discrete eigenvalues is Borel summable. The
Schwinger functions of various quantum field theories have been proven to have Borel
summable Feynman perturbation series: P(φ)2 [133], φ4

3 [438], Y2 [513,514], Y3
[439].

In general, Padé summability is hard to prove because it requires global informa-
tion, so it has been proven to work only in very limited situations (for example a
higher dimensional quartic anharmonic oscillator is known to be Borel summable but
nothing about Padé is known). Clearly, when it can be proven, Borel summability is
an important improvement over the mere asymptotic series that concerned Kato.

Before leaving asymptotic perturbation theory, we mention a striking example of
Herbst–Simon [243]

A(β) = − d2

dx2
+ x2 − 1 + β2x4 + 2βx3 − 2βx
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If E0(β) is the lowest eigenvalue, they prove that for all small, non-zero positive β

0 < E0(β) < C exp(−Dβ−2)

Thus E0(β) has
∑∞

n=0 anβn as asymptotic series where an ≡ 0. The asymptotic series
converges but, since E0 is strictly positive, it converges to the wrong answer!

4 Eigenvalue perturbation theory, III: spectral concentration

Starting around 1950, Kato [316] and Titchmarsh [647–651,654] considered what the
perturbation series might mean for a problem like the Stark problem where a discrete
eigenvalue is swallowed by continuous spectrum as soon as the perturbation is turned
on. Titchmarsh looked mainly at ODEs; in particular, he looked at what has come to
be called the Titchmarsh problem, (g ≥ − 1

4 , z > 0)

h(g, z, f ) = − d2

dx2
+ g

x2
− z

x
− f x (4.1)

(for some values of g, one needs a boundary condition at x = 0). Kato used operator
theory techniques and studied Examples 3.3 and 3.5.

Titchmarsh proved that the Green’s kernel for h, originally defined for energies
in C+, had a continuation onto the lower half plane with a pole near the discrete
eigenvalues of h(g, z, f ) and he identified the real part of the pole with perturbation
theory up to second order. He conjectured that the imaginary part of the pole was
exponentially small in 1/ f . He then showed in a certain sense that the spectrum of
h(g, z, f �= 0) as f ↓ 0 concentrated near the real parts of his poles [647–651, Part
V].

Kato discussed things in terms of what he called pseudo-eigenvalues and pseudo-
eigenvectors.He later realized that these notions imply a concentration of spectrum like
that used by Titchmarsh. In his book [345], he emphasized what he formally defined
as spectral concentration and linked the two approaches. In this section, I’ll begin by
defining spectral concentration and then prove, following Kato, that it is implied by
the existence of pseudo-eigenvectors. Finally, I’ll discuss the complex scaling theory
of resonances and how it extends and illuminates the theory of spectral concentration.

Consider first the case where A(β) converges to A0 as β ↓ 0 in srs and E0 is a
discrete simple eigenvalue of A0. Let T be a closed interval with σ(A0) ∩ T = {E0}.
By Theorem 3.7, for any ε > 0, we have that PT \(E0−ε,E0+ε)(A(β))

s→ 0. Thus, in a
sense, the spectrum of A(β) in T is concentrated near E0. In the above, if we could
replace (E0−ε, E0+ε) by (E0+a1β −β3/2, E0+a1β +β3/2), we’d be able to claim
that the spectrum was concentrated near E0 + a1β in a way that would determine a1.

Taking into account that we may want to also have T shrink in cases like Example
3.2, we make the following definition. Let T (β), S(β) be Borel sets in R given for
0 < β < B so that if 0 < β ′ < β, then T (β ′) ⊂ T (β), S(β ′) ⊂ S(β) and so that
for all β, S(β) ⊂ T (β). We say that the spectrum of A(β) in T (β) is asymptotically

concentrated in S(β) if and only if PT (β)\S(β)
s→ 0.
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If E0 is a simple eigenvalue of A0 and {a j }N
j=1 are real numbers,we say the spectrum

near E0 is asymptotically concentrated near E0 +∑N
j=0 a jβ

j if there exist positive

functions f and g obeying f (β) → 0, f (β)/β → ∞, g(β)/βN → 0 as β ↓ 0 so
that the spectrum of A(β) in (E0 − f (β), E0 + f (β)) is asymptotically concentrated
in (E0+∑N

j=0 a jβ
j −g(β), E0+∑N

j=0 a jβ
j +g(β)). It is easy to see if that happens,

it determines the a j , j = 1, . . . , n.
Kato’s thesis [316] introduced the notion of N th order pseudo-eigenvectors and

pseudo-eigenvalues. In later usage, this is a pair of functions, ϕ(β) and λ(β), on
(0, B) with values inH and R so that

ϕ(β) ∈ D(A(β)), ‖ϕ(β)‖ = 1, λ(β) → E0 (4.2)

‖(A(β) − λ(β))ϕ(β)‖ = o(βN ) (4.3)

Conley–Rejto [95] and Riddell [515] (Riddell was a student of Kato and this paper
was based on his PhD. thesis) proved the following

Theorem 4.1 If E0 is a simple isolated eigenvalue of A0 and (ϕ(β), λ(β)) are an Nth
order pseudo-eigenvector and pseudo-eigenvalue so that as β ↓ 0, we have that

(1 − PE0(A0))ϕ(β) → 0 (4.4)

Then there exists g(β) = o(βN ) and d > 0 so that the spectrum of A(β) in (E0 −
d, E0 + d) is concentrated in (λ(β) − g(β), λ(β) + g(β)).

Remarks 1. Riddell also has a converse.
2. Both papers consider the situation where E0 has multiplicity k < ∞ and there

are k orthonormal pairs obeying (4.3) and they prove spectral concentration on a
union of k intervals of size o(βN ) about the λ j .

3. The proof isn’t hard. One picks g(β) = o(βN ) so that ‖(A(β) − λ(β))ϕ(β)‖/
g(β) → 0. This implies that if Q(β) = P(λ(β)−g(β),λ(β)+g(β))(A(β)), then ‖(1 −
Q(β))ϕ(β)‖ → 0. By (4.4), this implies that

‖Q(β) − PE0(A0)‖ → 0 (4.5)

If d < dist(E0, σ (A)\{E0}), Theorem 3.7 implies that P(E0−d,E0+d)(A(β))ψ →
PE0(A0)ψ for anyψ . Thus by (4.5),

[
P(E0−d,E0+d)(A(β)) − Q(β)

]
ψ → 0which

is the required spectral concentration

These ideas were used by Friedrichs and Rejto [175] to prove spectral concentration
inExample 3.5 (i.e. A0 of rank 1 and B multiplication by x). They assumed the function
ψ(x) of (3.18) is strictly positive on R and Hölder continuous and prove that A(β)

has no point eigenvalues and has a weak spectral concentration (of order β p for some
0 < p < 1). Riddell [515] proved spectral concentration to all orders for the Stark
effect for Hydrogen using pseudo-eigenvectors and Rejto [501,502] proved the analog
for Helium (see below for more on spectral concentration for the Stark effect).

Veselić [661] systematized and simplified the results in Theorem 4.1 and applied it
to certainmodels (not linear inβ)where A0 has a discrete eigenvaluewhile A(β) has no
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eigenvalue due to tunnelling through a barrier. An example is A(β) = − d2

dx2
+V (x, β)

where
V (x, β) = V0(x) − (1 − e−βx ) (4.6)

V0 goes to zero at infinity and is such that A0 has a single negative eigenvalue at − 1
2 .

Thus A(β) has essential spectrum [−1,∞) and instantaneously the discrete eigenvalue
is swamped in continuous spectrum. There is a barrier of size β−1 trapping the initial
bound state. Veselić proved spectral concentration.

As noted Titchmarsh related spectral concentration to second sheet poles of Green’s
functions for certain differential operators. This theme was developed by James How-
land, a student of Kato, in 5 papers [255–259]. Howland discussed two situations. One
was where A0 was finite rank and whose non-zero eigenvalues are washed away much
like Example 3.5. The other was where A0 has eigenvalues embedded in continuous
spectrum and B is finite rank, so related to the Friedrichs model mentioned at the end
of Example 3.2.

In both cases, there is a finite dimensional space, V , where the finite rank operator
lives and Howland considered {〈ϕ, (A(β) − z)−1ψ〉, | ϕ,ψ ∈ V} and proved (under
suitable conditions) that these functions initially defined on C+ have meromorphic
continuations through R into a neighborhood of E0, a finite multiplicity eigenvalue of
A0. These continuations had second sheet poles at E j (β) converging as β ↓ 0 to E0.
The number of poles is typically the multiplicity of E0 as an eigenvalue of A0.

In the case where A0 has a discrete eigenvalue, Howland showed that Im E(β) =
O(β�) for all � and was able to use this to prove spectral concentration to all
orders. But in cases where A0 had an embedded eigenvalue, it was typically true
that Im E(β) = akβ

k + o(βk) for some k and some ak < 0; indeed Howland often
proved a Fermi golden rule with a2 �= 0. In that case, he showed there was spectral
concentration of order k − 1 but not k so spectral concentration couldn’t specify a
perturbation series to all orders.

Howland also discovered that even when A0 and B were self-adjoint, an eigenvalue
could turn into a second order pole whose perturbation series could have non-trivial
fractional power series in the asymptotic expression, i.e. Rellich’s theorem fails for
resonance energies.

Howland also introduced what I’ve called Howland’s razor (see the discussion of
Example 3.3) and he gave one possible answer: it often happened that the embedded
eigenvalue turned into a resonance, i.e. second sheet pole, for real values of β but
for suitable complex β, it was a pole in C+ and so a normal discrete eigenvalue of
A(β). Thus the resonance energy could be interpreted as the analytic continuation of
a perturbed eigenvalue.

Perhaps the most successful approach to the study of resonances, one that handles
problems in atomic physics like Examples 3.2 and 3.3, is the method of complex
scaling, initially called dilation or dilatation analyticity (the name change to complex
scaling was by quantum chemists when they took up the method for numerical calcu-
lation of molecular resonances). The idea appeared initially in a technical appendix
of a never published note by J. M. Combes who realized the potential of this idea and
then published papers with coauthors: Aguilar–Combes [6] on the two body problem
and Balslev–Combes [42] on N -body problems (Eric Balslev was Kato’s first Berke-
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ley student); see Simon [573] for extensions and simplifications and [497, Sections
XIII.10 and XII.6] for a textbook presentation. Combes and collaborators knew that
the formalism, which they used to prove the absence of singular continuous spectrum,
provided a possible definition of a resonance. It was Simon [574] who realized that the
formalism was ideal for studying eigenvalues embedded in the continuous spectrum
like autoionizing states. We will not discuss an extension needed for molecules in the
limit of infinite nuclear masses where one uses exterior complex scaling or a close
variant, see Simon [594], Hunziker [263] and Gérard [187].

We begin with the two body case. On L2(Rν, dνx), let U (θ), θ ∈ R be the set of
real scalings:

(U (θ) f )(r) = eνθ/2 f (eθ r) (4.7)

which defines a unitary group. If H = −� + V (r), then

H(θ) ≡ U (θ)HU (θ)−1 = −e−2θ� + V (eθ r) (4.8)

The first term, H0(θ), can be analytically continued and

σ(H0(θ)) = {z ∈ C\{0} | arg z = −2Im θ} ∪ {0} ≡ Sθ (4.9)

Suppose that θ �→ V (eθ r) has an analytic continuation as a compact operator from
D(−�) to L2(Rν) for |Im θ | < �0 as happens for V (r) = r−α (0 < α < 2; including
α = 1, i.e. Coulomb) for all �0 or for V (r) = e−γ r for �0 = π

2 . Such V ’s are called
dilation analytic. Then H(θ) is a type (A) analytic family on the strip of width 2�0
about R. For any θ , the essential spectrum of H(θ) is Sθ .

Discrete eigenvalues are given by analytic functions, E j (θ). Since changing Re θ

provides unitarily equivalent H ’s, E j (θ) is constant under changes of Re θ , so constant
by analyticity. We conclude that so long as discrete eigenvalues avoid Sθ , they remain
discrete eigenvalues of H(θ). In particular, negative eigenvalues of H are eigenval-
ues of H(θ) if |Im θ | < π

2 . An additional argument shows that embedded positive
eigenvalues become discrete eigenvalues of H(θ) for Im θ ∈ (0, π

2 ).
By this persistence, H(θ) for θ with Im θ ∈ (0, π

2 ), there can’t be any eigenvalues
in {z | arg z ∈ (0, 2π − 2Im θ)\{−π}} (for taking θ back to zero would result in
non-real eigenvalues of H ) but there isn’t any reason there can’t be for z with arg z ∈
(−2Im z, 0). That is, moving Im θ can uncover eigenvalues in C− which we interpret
as resonances (but see the discussion below).

Using techniques from N -body quantum theory (essentially the HVZ theorem to
be discussed in Sect. 11; we’ll use notation from that section below), one can similarly
analyze N -body Hamiltonians with center of mass removed when all the Vi j are
dilation analytic. The spectrum of H(θ) with θ not real looks like that in Fig. 1.

If C is a non-trivial cluster decomposition of {1, . . . , N }, C = {C1, . . . , Ck} and
h(C j ) is the internal Hamiltonian of C j , the set of E1 + · · · + Ek where E j is an
eigenvalue of h(C j ) is called the set of thresholds (if some C� has one particle, then
h(C�) is the zero operator on C and E� = 0). It can be shown [42,573] that the set,
�, of all thresholds (running over all non-trivial cluster decompositions) is a closed
countable set and that for 0 < Im θ < �0 < π

2 , one has that
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Fig. 1 The Spectrum of H(θ) (a) Discrete eigenvalue of H (b) Continuum-embedded eigenvalues (c)
Thresholds of H (d) Resonance eigenvalues (e) Complex thresholds

σess(H(θ)) =
⋃

λ∈�(θ)

λ + Sθ (4.10)

Here �(θ) includes some complex λ where the E j are resonance eigenvalues of
h(C j , θ).

Example 3.2 revisited. (following [574]) The thresholds are
{
− 1

4n2

}∞
n=1

so the eigen-

value at E2,2 = − 1
8 is not a threshold. Thus it is an isolated eigenvalue of A(1/Z , 0, θ)

if−iθ ∈ (0, π
2 ). It follows that theKato–Rellich theory applies so, for 1/Z small, there

is an eigenvalue, E2,2(1/Z , θ) independent of θ (although it is only an eigenvalue if
− arg(E2,2(1/Z) + 1

4 ) < Im θ . This first implies there is a convergent perturbation
series (i.e. time–dependent perturbation theory, suitably defined, converges). One can
compute the perturbation coefficients which are θ independent for −iθ ∈ (0, π

2 ) and
then take −iθ to 0. One gets a suitable limit of −(V ϕ, SV ϕ) where S is a reduced
resolvent. Using the fact that the distribution limit of 1/(x + iε) is P ( 1x ) − iπδ(x),
Simon [574] computed Im a2 as given by the Fermi golden rule.

For Stark Hamiltonians, the initial belief among mathematical physicists was that
complex scaling couldn’t work. For let

H0(θ, F) = −e−2θ� + Feθ z (4.11)

on L2(R3). Since H0(θ = 0, F �= 0) has no threshold (translating z by a constant,
adds a constant to the energy), there is no place for the spectrum (−∞,∞) to go when
θ is made imaginary. So it was assumed the theory could not make sense.

In spite of this acceptedwisdom, a quantumchemist, Bill Reinhardt, did calculations
for the Stark problem using complex scaling [498] and got sensible results. Motivated
by this, Herbst [241] was able to define complex scaling for a class of two body
Hamiltonians including the Hydrogen Stark problem. He discovered that for F �= 0,
and 0 < arg θ < π/3, H0(θ, F) has empty spectrum (!), i.e. (H0(θ, F) − z) is
invertible for all z. It is a theorem that elements in Banach algebras and, in particular,
bounded operators on any Banach space, have non-empty spectrum but that is only for
bounded operators. In some sense, H0(θ, F) has only∞ in its spectrum—specifically
σ [(H0(θ, F) − z)−1] = {0} for all z.
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Example 3.3 revisited With this in hand, Herbst [241] considered (3.11) and defined
A(F, Z , θ) by

A(F, Z , θ) = −e−2θ� − e−θ Z

r
+ eθ Fz (4.12)

and proved that for 0 < −iθ < π
3 , and F �= 0, A(F, Z , θ)has purely discrete spectrum

and if E0 ∈ (−∞, 0) is an eigenvalue of A(F = 0, Z , θ = 0) of multiplicity k, then
for F small and −iθ ∈ (0.π/3), A(F, Z , θ) has at most k eigenvalues near E0 and
their combined multiplicities is k. The Rayleigh–Schrödinger series can be proven to
be asymptotic by the method of Theorem 3.9. Since its coefficients are real, Herbst
showed that thewidth,�(F), is o(F�) for all � and, byHowland’smethod, this provided
another proof of spectral concentration for all orders for the Stark problem.

Herbst–Simon [245] studied the analytic properties of E(F, Z , θ) and proved
analyticity for −F2 ∈ {z | |z| < R} ∩ (C\(−∞, 0]) and used this to prove Borel
summability that recovers E(F, Z , θ) directly for Re (−F2) > 0 (which doesn’t
include any real F). The physical value is then determined by analytic continua-
tion. Graffi–Grecchi [198] had proven Borel summability slightly earlier using very
different methods. Graffi–Grecchi [202] and Herbst–Simon [245] also proved Borel
summability for discrete eigenvalues of general atoms.

For Hydrogen, Herbst–Simon conjectured (3.14) noting that it was implied by
their analyticity results and the then unproven Oppenheimer formula. Shortly there-
after, Harrell–Simon [222] proved the Oppenheimer formula for the complex scaled
defined Stark resonance and so also (3.14). They used similar arguments to prove
the Bender–Wu formula for the anharmonic oscillator. Later Helffer–Sjöstrand [234]
proved Bender–Wu formulae for higher dimensional oscillators.

We have not discussed in detail various subtleties that are dealt with in the quoted
papers: among them, Herbst [241] showed that A(F, Z , θ) is of type(A) with domain
D(−�) ∩ D(z) on {(F, Z , θ) | F > 0, Im θ ∈ (0, π/3)} by proving a quadratic
estimate. The proof of stability of the eigenvalues of A(F = 0, Z , θ) for Im θ ∈
(0, π/3) uses ideas from [25–28, Part I]. While the free Stark problem has scaled
Hamiltonians with empty spectrum when there is one positive charge and N particles
of equal mass and equal negative charge, there are charges and masses, where the
spectrum is not empty.

Sigal [559–562] and Herbst–Møller–Skibsted [242] have further studied Stark res-
onances in multi-electron atoms proving that the widths are strictly positive and
exponentially small in 1/F .

We end this discussion by noting that I have reason to believe that, at least at one
time, Kato had severe doubts about the physical relevance of the complex scaling
approach to resonances. [222] was rejected by the first journal it was submitted to.
The editor told me that the world’s recognized greatest expert on perturbation theory
had recommended rejection so he had no choice. I had some of the report quoted to
me. The referee said that the complex scaling definition of resonance was arbitrary
and physically unmotivated with limited significance.

There is at least one missing point in a reply to this criticism: however it is defined,
a resonance must correspond to a pole of the scattering amplitude. While this is surely
true for resonances defined via complex scaling, as of this day, it has not been proven
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for the models of greatest interest. So far, resonance poles of scattering amplitudes
in quantum systems have only been proven for two and three cluster scattering with
potentials decaying faster (often much faster) than Coulomb and not for Stark scat-
tering; see Babbitt–Balslev [33], Balslev [39–41], Hagedorn [214], Jensen [285] and
Sigal [555,558]. This is a technically difficult problem which hasn’t drawn much
attention. That said, following [222] and others, we note the following in support of
the notion that eigenvalues of H(θ) that lie in C− are resonances:

(1) Going back to Titchmarsh [647–651,654], poles of the diagonal (i.e. x = y)
Green’s function (integral kernel, G(x, y; z) of (H − z)−1) are viewed as resonances
for one dimensional problems. In dimension ν ≥ 2, G(x, y; z) diverges as x → y so
it is natural to consider poles of 〈ϕ, (H − z)−1ϕ〉. Howland’s razor implies that you
can’t look at all ϕ ∈ L2(Rν, dνx) but a special class of functions which are smooth in
x and p space would be a reasonable replacement for x = y. One can show (see [497,
Section XIII.10]) that if ϕ is a polynomial times a Gaussian, then 〈ϕ, (H − z)−1ϕ〉
has a meromorphic continuation across R between thresholds with poles exactly at
the eigenvalues of H(θ).

(2) In the autoionizing case, E is an analytic function of 1/Z and in the Stark case,
analytic for −F2 in a cut disk about 0. For the physically relevant values, 1/Z real or
F real, E has Im E < 0 and these resonances are on the second sheet and disappear at
θ = 0. But for 1/Z or F pure imaginary, the corresponding E is in C+ and so persists
when Im θ ↓ 0, i.e. E for these unphysical values of the parameters is an eigenvalue
of these corresponding H . Thus resonances can be viewed as analytic continuations
of actual eigenvalues from unphysical to physical values of the parameters.

(3) It is connected to the sum or Borel sum of a suitable perturbation series, see
[78,79].

(4) It yields information on asymptotic series and spectral concentration in a par-
ticularly clean way and, in particular, a proof of a Bender–Wu type formula for the
asymptotics of the perturbation coefficients in the Stark problem.

Whilewe’ve focused on the complex scaling approach to resonances, there are other
methods. One called distortion analyticity works sometimes for potentials which are
the sum of a dilation analytic potential and a potential with exponential decay (but
not necessarily any x-space analyticity). The basic papers include Jensen [285], Sigal
[557], Cycon [100], and Nakamura [456,457]. Some approaches for non-analytic
potentials include Cattaneo–Graf–Hunziker [85], Cancelier–Martinez–Ramond [80]
andMartinez–Ramond–Sjöstrand [443]. There is an enormous literature on the theory
of resonances from many points of view. It would be difficult to attempt a comprehen-
sive discussion of this literature and given that the subject is not central to Kato’s work,
I won’t even try. But I should mention a beautiful set of ideas about counting asymp-
totics of resonances starting with Zworski [714]; see Sjöstrand [619] for unpublished
lectures that include lots of references, a recent review of Zworski [715] and forthcom-
ing book of Dyatlov–Zworski [127]. The form of the Fermi Golden Rule at Thresholds
is discussed in Jensen–Nenciu [290] (see Sect. 16). A review of the occurrence of res-
onances in NR Quantum Electrodynamics and of the smooth Feshbach–Schur map is
Sigal [563] and a book on techniques relevant to some approaches to resonances is
Martinez [442].
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5 Eigenvalue perturbation theory, IV: pairs of projections

Recall [616, Section 2.1] that a (bounded) projection on a Banach space, X , is a
bounded operator with P2 = P . If Y = ran(P) = ker(1 − P) and Z = ran(1 −
P) = ker(P), then Y and Z are disjoint closed subspaces and Y + Z = X and that
(y, z) �→ y + z is a Banach space linear homeomorphism of Y ⊕ Z and X . There
is a one-one correspondence between such direct sum decompositions and bounded
projections.We saw inSect. 2 that the following is important in eigenvalue perturbation
theory:

Theorem 5.1 Fix a Banach space, X. For any pair of bounded projections, P, Q on
X with ‖P − Q‖ < 1, there exists an invertible map, U so that

U PU−1 = Q (5.1)

Moreover, U can be chosen so that

(a) For P fixed, U (P, Q) is analytic in Q in that it is a norm limit, uniformly in each
ball {Q | ‖P − Q‖ < 1 − ε}, of polynomials in Q.

(b) If X is a Hilbert space and P, Q are self-adjoint projections, then U is unitary.

Remarks 1. We don’t require U (P, P) = 1 which might seem natural because,
below, when P and Q are self-adjoint, we’ll find a U for which (5.19) holds and
it can be shown that is inconsistent with U (P, P) = 1. Of course, given any
U0(P, Q) obeying (5.1), U (P, Q) = U0(P, Q)U0(P, P)−1 also obeys (5.1) and
has U (P, P) = 1 so it is no great loss. Both the U ’s we construct below also obey
U (Q, P) = U (P, Q)−1.

2. U is actually jointly analytic in P, Q and the proof easily implies if P is fixed and
β �→ Q(β) is analytic (resp. continuous, Ck , C∞) in β, then so is U .

A first guess for U might be

W = Q P + (1 − Q)(1 − P) (5.2)

which obeys
W P = Q P = QW (5.3)

so if W is invertible, we get (5.1). Of course (5.3) is also true of W = Q P but it is easy
to see if ran P �= X , then Q P can’t be invertible. (5.2) isn’t invertible for an arbitrary
pair of projections, for if ϕ ∈ (ran P ∩ ker Q) ∪ (ker P ∩ ranQ), then Wϕ = 0. But
when ‖P − Q‖ < 1, this space is trivial, so under the norm condition, W might be
(and as we’ll see is) invertible.

Define

W̃ = P Q + (1 − P)(1 − Q) (5.4)

A = P − Q; B = 1 − P − Q (5.5)
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The following easy algebraic calculations are basic to the rich structure of pairs of
projections

A2 + B2 = 1; AB + B A = 0 (5.6)

(which Avron [21] calls the anticommutative Pythagorean Theorem). Moreover

P A2 = P − P Q P = A2P (5.7)

so
[P, A2] = [Q, A2] = [P, B2] = [Q, B2] = 0 (5.8)

In addition
(P Q − Q P) = B A; (P Q − Q P)2 = A4 − A2 (5.9)

Finally,
W W̃ = W̃ W = 1 − A2 (5.10)

This means that W is invertible if ‖A‖ < 1, so for (5.1), we could takeU = W but that
won’t be unitary when X is a Hilbert space and the two projections are self-adjoint,
so, following Kato, we make a slightly different choice

First Proof of Theorem 5.1 If ‖A‖ < 1, we can define

(1 − A2)−1/2 =
∞∑

n=0

(−1)n
(− 1

2
n

)
A2n (5.11)

where as usual (− 1
2

n

)
= (− 1

2 )(− 3
2 ) . . . ( 12 − n)

n! (5.12)

Since j−1| 12 − j | < 1 for j = 1, 2, . . ., we have that supn |(−1/2
n

)| < 1, so if ‖A‖ < 1,
the series in (5.11) converges and series manipulation proves that

[
(1 − A2)−1/2

]2 = (1 − A2)−1 (5.13)

which in turn implies that if we define

U = W (1 − A2)−1/2 = (1 − A2)−1/2W, Ũ = (1 − A2)−1/2W̃ (5.14)

then, by (5.9)
UŨ = ŨU = 1, U P = QU (5.15)

so U is invertible and (5.1) holds.
Since (1 − A2)−1/2 is a norm limit of polynomials in P and Q, so is U proving

(a). If X is a Hilbert space and P∗ = P, Q∗ = Q, then Ũ = U∗, so by (5.15) U is
unitary, proving (b). ��
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Theorem 5.1 for the self-adjoint Hilbert space case goes back to Sz-Nagy [454] who
was interested in the result because of its application to the convergent perturbation
theory of eigenvalues. His formula for U looks more involved than (5.2)/(5.14). Wolf
[689] then extended the result to general Banach spaces but needed ‖P‖2‖P −Q‖ < 1
and ‖1 − P‖2‖P − Q‖ < 1 which is a strictly stronger hypothesis.

In [320], Kato proved that if β �→ P(β) is a real analytic family of projections on
a Banach space for β ∈ [0, B], then there exists a real analytic family of invertible
maps, U (β) so that U (β)P(β)U (β)−1 = P(0). He did this using the same formalism
he had developed for his treatment of the adiabatic theorem (Kato [313] and Sect. 17
in Part 2). In 1955, in an unpublished report [324], Kato presented all of the algebra
above (except for AB + B A = 0) and used it to prove Theorem 5.1 exactly as we do
above.

After Avron et al [31] found and exploited AB + B A = 0 (see below), Kato told me
that he had found this relation about 1972 but didn’t have an application. Because [324]
isn’t widely available, the standard reference for his approach to pairs of projections is
his book [345]. In [324], Kato noted that his expression was equal to the object found
by Sz-Nagy [454] but in the Banach space case, one could get better estimates from
his formula for the object. In that note, he also remarked that when ‖P − Q‖ < 1,
one can find a smooth, one parameter family of projections, P(t), 0 ≤ t ≤ 1 with
P(0) = P and P(1) = Q so that the U obtained via his earlier method of solving a
differential equation was identical to the U of (5.2)/(5.14).

While this concludes Kato’s contribution to the subject of pairs of projections, I
would be remiss if I didn’t say more about the rich structure of this simple setting,
especially when ‖P − Q‖ ≥ 1 (in the self-adjoint Hilbert space setting one has that
‖P − Q‖ ≤ 1 but for non-self-adjoint projections and the general case of Banach
spaces, one often has ‖P − Q‖ > 1). There are two approaches. The one we’ll
discuss first is due to Avron–Seiler–Simon [31] and uses algebraic relations, especially
(5.6). Since AB + B A = 0 is the signature of supersymmetry, we’ll call this the
supersymmetric approach. Here is a typical use of this method:

Theorem 5.2 (Avron et. al. [31]) Let P and Q be self-adjoint projections so that
P − Q is compact. For λ ∈ [−1, 1]\{0}, let Pλ be the projection onto the eigenspace
Hλ ≡ {ϕ | Aϕ = λϕ}
(a) If λ �= ±1, then

V = (1 − λ2)−1/2B � Hλ (5.16)

is a unitary map of Hλ onto H−λ.
(b) For such λ, we have that

dimH−λ = dimHλ (5.17)

(c) If P − Q is trace class, then
Tr(P − Q) ∈ Z (5.18)

(d) If ‖P − Q‖ < 1, then U ≡ sgn(B) is a unitary operator obeying (5.1). Indeed,

U PU−1 = Q, U QU−1 = P (5.19)
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Remarks 1. By sgn(B), we mean f (B) defined by the functional calculus [616,
Section 5.1] where

f (x) =
⎧⎨
⎩

1, x > 0
−1, x < 0
0, x = 0

This is unitary because ‖A‖ < 1 and B2 = 1− A2 implies that ker B = {0}. One
can also write

U = B(1 − A2)−1/2 (5.20)

2. If we use (5.20) to define U in the general Banach space case when ‖P − Q‖ < 1,
the same proof shows that we have (5.19). Indeed, since [A2, B] = 0, we have
that U 2 = 1 so (5.1) implies U QU−1 = P . So we get another proof of Theorem
5.1 in the general Banach space case. However if P = Q, then B = 1 − 2P and
A = 0 so by (5.20)

U = 1 − 2P (5.21)

Thus, U (P, P) �= 1 but see the remarks after Theorem 5.1.
3. That Tr(P − Q) ∈ Z was first proven by Effros [134] and can also be proven

using the Krein spectral shift [616, Problem 5.9.1]. It is also true if P, Q are
not necessarily self-adjoint projections in a Hilbert space and for suitable Banach
space cases; see below.

Proof (a) If Aϕ = λϕ, then

ABϕ = −B Aϕ = −λBϕ (5.22)

so B maps Hλ toH−λ. Since

‖Bϕ‖2 = 〈ϕ, B2ϕ〉 = 〈ϕ, (1 − A2)ϕ〉 = (1 − λ2)‖ϕ‖2

we see that V is norm preserving.
If ψ ∈ H−λ, then, by the above, ϕ ≡ (1 − λ2)−1Bψ ∈ Hλ and Bϕ = ψ so

ranB � Hλ is all of H−λ and thus V is unitary.
(b) is immediate from (a)
(c) Lidskii’s Theorem for self-adjoint operators says that if C is a self-adjoint trace

class operator, and for any λ �= 0, we define Hλ = {ϕ | Cϕ = λϕ}, then

Tr(C) =
∑
λ�=0

λ dim(Hλ) (5.23)

For the self-adjoint case this is easy since Tr(C) = ∑∞
n=0〈ψn, Cψn〉 for any trace class

operator and any orthonormal basis (see [616, Theorem 3.6.7]) and any self-adjoint
compact operator has an orthonormal basis of eigenvectors (see [616, Theorem 3.2.1]).
By (b), the terms of (5.23) for λ and −λ when C = A cancel so long as λ �= ±1, so

Tr(A) = dimH1 − dimH−1 ∈ Z (5.24)
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(d) Since ‖A‖ < 1, B2 = 1− A2 ≥ ε > 0 for ε = 1−‖A‖2. Thus, |B| is invertible
and

U = B|B|−1 (5.25)

is unitary since U = U∗ and U 2 = B2|B|−2 = 1.
Moreover, since |B| commutes with A and B (since [B2, P] = [B2, Q] = 0) and

B anticommutes with A, we see that

U BU−1 = B, U AU−1 = −A (5.26)

Since
P = 1

2 (A − B + 1), Q = 1
2 (−A − B + 1) (5.27)

(5.26) implies (5.19). ��
We can also say something about non-self-adjoint projections on Hilbert spaces

and also about the general Banach space case. The spectral theory of general compact
operators, A, is more subtle than the self-adjoint case ([616, Section 3.3]). One has that
σ(A)\{0} is discrete, a notion explained in Sect. 2. Thus, if we define for λ ∈ σ(A)\{0}

Pλ = 1

2π i

∮
|z−λ|=δ

dz

z − A
(5.28)

for δ < dist(λ, σ (A)\{λ}) and Hλ = ran Pλ, then dim(Hλ) < ∞ and is called the
algebraic multiplicity of λ. Also, as explained in Sect. 2,

APλ = λPλ + N (5.29)

where N is nilpotent, indeed N dim(Hλ) = 0 so

ϕ ∈ Hλ ⇒ (A − λ)dim(Hλ)ϕ = 0 (5.30)

Lidskii’s Theorem says that for trace class Hilbert space operators, (5.23) still
holds. Its proof [616, Section 3.12] is more subtle. Lidskii’s Theorem doesn’t hold on
all Banach spaces (where there is an analog of the trace on a class known as nuclear
operators). We say that an operator, C on a Banach space, X , obeys Lidskii’s Theorem
if C is nuclear and obeys (5.23)—see [151,484] for discussions on when this holds.

Theorem 5.3 Let P, Q be two projections on a Banach space, X, so that A = P − Q
is compact. Then

(a) λ ∈ σ(A)\{1,−1} ⇒ −λ ∈ σ(A)

(b) For such λ, we have that
dimHλ = dimH−λ (5.31)

(c) If ±1 /∈ σ(A), then there exists an invertible map U so that (5.19) holds.
(d) If A obeys Lidskii’s theorem, then Tr(P − Q) ∈ Z.
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Remark (d) was proven by Kalton [304] using different methods. The results (a)–(c)
and the proof we give of (d) is new in the present paper.

Proof (a),(b) For any z ∈ C, we have that B(A−z) = −(A+z)B so, if z,−z /∈ σ(A),
we see that

B(A − z)−1 = −(A + z)−1B (5.32)

Since σ(A)\{0} is a set of isolated points, for any λ �= 0, we can find ελ > 0 so
that σ(A)∩ {z | 0 < |z − λ| ≤ ελ} = ∅. Taking into account that z �→ −z reverses the
direction of a contour, by picking 0 < δ < min(ελ, ε−λ) in (5.28) and using (5.32),
we see that

B Pλ = P−λ B (5.33)

where Pλ is defined by (5.28) with δ small even if λ /∈ σ(A) (in which case Pλ = 0).
Suppose λ �= ±1. Since A leaves Hλ invariant and σ(A � Hλ) = {λ}, we have

that (1 − A2) = (1 − A)(1 + A) restricted toHλ has an inverse R. Thus RB is a left
inverse to B as a map of Hλ → H−λ so B as a map between those spaces is 1–1.
This implies that dimHλ ≤ dimH−λ. By interchanging λ and −λ, we see that (5.31)
holds which implies (a) and (b).

(c) Since
B B = B B, B A = −AB

(5.27) implies that
B P = Q B, B Q = P B (5.34)

We can take U = B if we show that B is invertible. Since ±1 /∈ σ(A), we see that
(1 − A)−1(1 + A)−1B is a two sided inverse for B.

(d) From Lidskii’s theorem and (5.31), we see that (5.24) holds.

Our final result from the supersymmetric approach returns to the self-adjoint case.
We define for projections P, Q:

KP,Q = ran P ∩ ker Q = {ϕ | Pϕ = ϕ, Qϕ = 0} (5.35)

Theorem 5.4 Let P, Q be two self-adjoint projections on a Hilbert space, H. Then
there exists a unitary map, U, obeying (5.19) if and only if

dimKP,Q = dimK1−P,1−Q (5.36)

Moreover, if such a U exists, one can choose it so that

U = U∗, U 2 = 1 (5.37)

Remarks 1. In (5.36), both sides may be infinite.
2. If ±1 are isolated points of the spectrum of A and are discrete eigenvalues, then

K : ran P → ranQ by K = Q P � ran P is a Fredholm operator [616, Section
3.15], both sides of (5.36) are finite and their difference is the index of K . So, in this
case, the theorem says that U obeying (5.19) exists if and only if index(K ) = 0.
This special case is in [31].
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3. The general case of this theorem is due to Wang, Du and Dou [694] whose proof
used the Halmos representation discussed below. Our proof here is from Simon
[617]. Two recent papers [70,124] classify all solutions of (5.19)

4. Operators obeying (5.37) are called symmetries by Halmos–Kakutani [217]

Proof IfU exists, it is easy to see thatU must be a unitary map ofKP,Q toK1−P,1−Q ,
so (5.36) must hold.

For the converse, suppose that (5.36) holds. Clearly, P, Q leave both KP,Q and
K1−P,1−Q invariant and soH1 = KP,Q ⊕K1−P,1−Q . LetH2 = H⊥

1 soH = H1⊕H2.
Since (5.36) is assumed, there exists W : KP,Q → K1−P,1−Q unitary and onto. Define
onH1 as a direct sum

U1 =
(

0 W
W ∗ 0

)

Then U 2
1 = 1 and U∗

1 = U1 and for the restrictions of P, Q to H1, we have that
U1P1U−1

1 = Q1, U1Q1U−1
1 = P1.

So it suffices to prove the result for H2, i.e. in the special case that KP,Q =
K1−P,1−Q = {0}. If that holds, we have that ker(1 − A2) = {0}, so ker(B) = {0}
and U2 ≡ sgn(B) is unitary. Since U2A2 = −A2U2, U2B2 = B2U2, we get that
U2P2U−1

2 = Q2, U2Q2U−1
2 = P2 by (5.27). Clearly, also U 2

2 = 1, U∗
2 = U2.

Our final big topic in this section concerns the Halmos representation. As a first
step, we note that

Proposition 5.5 Let P, Q be two orthogonal projections on a Hilbert space, H and
let A, B be given by (5.5). Then:

(a) KP,Q = {ϕ | Aϕ = ϕ}, K1−P,1−Q = {ϕ | Aϕ = −ϕ}
(b) KP,1−Q = {ϕ | Bϕ = −ϕ}, K1−Q,P = {ϕ | Bϕ = ϕ}
(c) KP,1−Q ⊕ K1−Q,P = {ϕ | Aϕ = 0}

KP,Q ⊕ K1−P,1−Q = {ϕ | Bϕ = 0}
(d) These four spaces are mutually orthogonal.
(e) All four spaces are {0} if and only if ker A = ker B = {0}.
Proof (a) P ≤ 1, Q ≥ 0 so Aϕ = ϕ ⇒ ‖ϕ‖2 ≥ 〈ϕ, Pϕ〉 = ‖ϕ‖2 + 〈ϕ, Qϕ〉 ⇒

〈ϕ, Qϕ〉 = 0 ⇒ 〈Qϕ, Qϕ〉 = 0 ⇒ Qϕ = 0 ⇒ (since (P − Q)ϕ = ϕ) Pϕ =
ϕ ⇒ ϕ ∈ KP,Q . Conversely, ϕ ∈ KP,Q ⇒ Pϕ = ϕ&Qϕ = 0 ⇒ Aϕ = ϕ. The
proof of the second statement is similar.

(b) Similar to (a) using B = (1 − P) − Q.
(c) The two spaces in the first statement are orthonormal by (b) and the mutual

orthogonality of eigenspaces. Since A2ϕ = (1−B2)ϕ, that direct sum is ker A2 =
ker A. Conversely, if Aϕ = 0, then (1 − B2)ϕ = A2ϕ = 0. If ϕ± = 1

2 (1∓B)ϕ,
then ϕ± ∈ ker(1± B) and ϕ = ϕ+ + ϕ−, so by (b), ϕ ∈ KP,1−Q ⊕K1−Q,P . The
second relation has a similar proof.

(d) Immediate from the orthogonality of different eigenspaces of a self-adjoint oper-
ator.

(e) Immediate from (c). ��
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We say that two orthogonal projections are in generic position if ker A = ker B =
{0}, equivalently if KP,Q,K1−P,1−Q,KP,1−Q,K1−Q,P are all {0}. The Halmos two
projection theorem says

Theorem 5.6 (Halmos Two Projection Theorem) Let P, Q be self-adjoint projections
on a Hilbert space,Hwhich are in generic position. LetB1 = ran P, B2 = ran(1−P).
Then there exists a unitary map W from B1 onto B2 and self-adjoint operators C >

0, S > 0 on B1 with
C2 + S2 = 1, [C, S] = 0 (5.38)

so that under H = B1 ⊕ B2,

P =
(

1 0
0 0

)
(5.39)

Q =
(

C2 C SW −1

WC S W S2W −1

)
(5.40)

Remarks 1. There are alternate ways that this theorem is often expressed. Rather than
state it for pairs with generic position, the theorem says that the space is a direct sum
of six spaces, two of the form just given and the other four simultaneous eigenspaces
with Aϕ = λϕ, Bϕ = κϕ with λ, κ ∈ {0, 1}. Sometimes, (5.40) is written:

Q =
(

1 0
0 W

)(
C2 C S
C S S2

)(
1 0
0 W

)−1

where the first factor maps B1 ⊕B1 to B1 ⊕B2 and the middle factor is an operator on
B1 ⊕ B1. Some authors even implicitly use the first matrix above to identify H with
B1 ⊕ B1 and only write the middle factor above.

2. C and S stand, of course, for cosine and sine. One often defines an operator, �
with spectrum in [0, π/2] so that C = cos(�), S = sin(�). While 0 and/or 1 may lie
in the spectrum of �, they cannot be eigenvalues.

3. This result is due to Halmos [216]. There were earlier related results by Krein et.
al. [391], Dixmier [120] and Davis [106]. The proof we give here is due to Amrein–
Sinha [13].

Proof By the above
ker A = ker B = {0} (5.41)

Write the polar decompositions [616, Section 2.4]

A = UA|A|, B = UB |B| (5.42)

By (5.41), UA and UB are unitary and as functions of A and B respectively, they
commute with A and B respectively. It also holds that they each commute with both
|A| and |B| (since, for example, |B| commutes with A and so |A| and so UA =
s − lim A(|A| + ε)−1). Multiplying AB + B A by (|A| + ε)−1 and (|B| + ε)−1 and
taking ε to zero, we see that
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UAUB = −UBUA ⇒ (UAUB)2 = −1 (5.43)

We’ve already seen that · �→ UA · U−1
A interchanges P and Q. Since B is the A

when P is replaced by 1 − P , we see that · �→ UB · U−1
B interchanges Q and 1 − P

and similarly, it interchanges 1 − Q and P .
Let U = UAUB . Then we have that

U PU−1 = (1 − P), U (1 − P)U−1 = P

U QU−1 = (1 − Q), U (1 − Q)U−1 = Q (5.44)

which, in particular, implies thatU [B1] is all ofB2 (so they have the same dimension).
Define W = U � B1 which we’ve just seen is a unitary map from B1 onto B2. In

the B1 ⊕ B2 decomposition, (5.39) is obvious. Moreover the decomposition of Q is

Q =
(

P Q P � B1 P Q(1 − P) � B2
(1 − P)Q P � B1 (1 − P)Q(1 − P) � B2

)
(5.45)

By the formula for B, B P = −Q P , so P|B|2P = P B2P = P Q P . Similarly
(1 − P)|A|2(1 − P) = (1 − P)Q(1 − P), P B A(1 − P) = P Q(1 − P) and (1 −
P)AB P = (1 − P)Q P .

P|B|2P is already an operator on B1. Using [U, |A|2] = 0, we can write

(1 − P)|A|2(1 − P) = U PU−1|A|2U PU−1 = U P|A|2PU−1

Next note that U P|A|2U−1 � B2 = W (|A|2 � B1)W −1. If we define

C = |B| � B1, S = |A| � B1 (5.46)

then the above calculation and similar calculations on the off-diagonal piece implies
(5.40).

Böttcher–Spitkovsky [69] is a review article on lots of applications of the Halmos
representation.Wemention also Lenard [421] who computes the joint numerical range
(i.e. {(〈ϕ, Pϕ〉, 〈ϕ, Qϕ〉) | ‖ϕ‖ = 1}) for pairs of projections in terms of the operator
� of remark 2 to Theorem 5.6. This range is a union of certain ellipses.

Finally, we mention one result that Kato proved in 1960 [332] that turns out to be
connected to pairs of self-adjoint projections, although Kato didn’t himself mention
or exploit this connection.

Theorem 5.7 Let � be a general (i.e. not necessarily self-adjoint) projection in a
Hilbert space, H. Suppose that � �= 0, 1. Then

‖�‖ = ‖1 − �‖ (5.47)

Kato has this as a Lemma in a technical appendix to [332], but it is now regarded as
a significant enough result that Szyld [632] wrote an article to advertise it and explain
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myriad proofs ([69] also discusses proofs). Del Pasqua [111] and Ljance [433] found
proofs slightly before Kato but the methods are different and independent; indeed, for
many years, no user of the result seemed to know of more than one of these three
papers.

Ljance’s proof [433] shows a close connection to pairs of projections. Let P be the
orthogonal projection on ran(�) and Q the orthogonal projection onto ran(1 −�) (P
and Q must obey ker(P) ∩ ker(Q) = ker(1− P) ∩ ker(1− Q) = {0} and every such
pair of orthogonal projections corresponds to an oblique projection �). Then one can
show Ljance’s formula (see [69])

‖�‖ = 1

(1 − ‖P Q‖2)1/2 (5.48)

so that (5.47) follows from ‖Q P‖ = ‖(Q P)∗‖ = ‖P Q‖.
Del Pasqua [111] noted that (5.47) might fail in general Banach spaces—indeed, it

is now known [211] that if (5.47) holds for all projections in a Banach space, X, then
its norm comes from an inner product.

6 Eigenvalue perturbation theory, V: Temple–Kato inequalities

While strictly speaking the central material in this section is not so much about per-
turbation theory as variational methods, the subjects are related as Kato mentioned
in several places, so we put it here. In fact, following Kato, we’ll see the inequali-
ties proven here can be used to prove certain irregular perturbations yield asymptotic
perturbation series. Kato also had several other papers about variational methods for
scattering phase shifts [311,317,318] and for an aspect of Thomas–Fermi theory [267]
(not the energy variational principle central to TF theory but one concerning a techni-
cal issue connected to the density at the nucleus). But none of these other papers had
the impact of the work we discuss in this review, so we will not discuss them further.

Let A be a self-adjoint operator bounded from below and ‖ϕ‖ = 1 with ϕ ∈ D(A).
Then Rayleigh’s principle says that

λ ≡ inf σ(A) ≤ 〈ϕ, Aϕ〉 ≡ ηϕ (6.1)

In 1928, Temple [637,638] proved a complementary lower bound in case

σ(A) ⊂ {λ} ∪ [μ,∞) (6.2)

with μ > λ and λ a simple eigenvalue. So long as

ηϕ < μ (6.3)

we have Temple’s inequality

λ ≥ ηϕ − ε2ϕ

μ − ηϕ

(6.4)
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where εϕ ≥ 0 and

ε2ϕ ≡ ‖(A − ηϕ)ϕ‖2 = 〈ϕ, A2ϕ〉 − 〈ϕ, Aϕ〉2 (6.5)

Temple’s inequality had historical importance. Before the advent of modern com-
puters, variational calculations were difficult and estimating their accuracy was
important. If μ∗ ≤ μ (i.e. if one had a possibly crude lower bound on the second
eigenvalue), then (6.2)/(6.4) ⇒ |λ − ηϕ | ≤ ε2ϕ(μ∗ − ηϕ)−1 so long as ηϕ < μ∗.
One of the early success of perturbation theoretic quantum electrodynamics was the
calculation of the Lamb shift in Hydrogen. That was possible because the unshifted
Hydrogen ground state was known precisely. To check the Lamb shift in Helium,
one needed to know its ground state to very high order (the Lamb shift is about one
hundred thousandth of that binding energy). The necessary calculations were done by
Kinoshita [371,372] and Pekeris [478–480] using variational calculations which in
Pekeris’ case involved 1078 parameter trial functions. They used Temple’s inequal-
ity to estimate how accurately they had computed this ground state energy. In fact,
Kinoshita sketched a proof of Temple’s inequality in his paper using Kato’s method
(he quoted Kato’s paper). The result was the verification of the Lamb shift in Helium
to within experimental error.

In 1949, Kato [307] (with an announcement in Physical Review [312]) in one of his
little gems found a simple proof of Temple’s inequality and also extended the result
to any eigenvalue. Here is his theorem:

Theorem 6.1 (Temple–Kato inequality) Let A be any self-adjoint operator and let
ϕ ∈ D(A). Let (α, ζ ) ⊂ R so that

α < ηϕ < ζ (6.6)

and so that
ε2ϕ < (ηϕ − α)(ζ − ηϕ) (6.7)

Then:
(a) σ(A) ∩ (α, ζ ) �= ∅

If σ(A) ∩ (α, ζ ) contains only a single point, λ, then

(b) ηϕ − ε2ϕ

ζ − ηϕ

≤ λ ≤ ηϕ + ε2ϕ

ηϕ − α
(6.8)

If, in addition, λ is a simple eigenvalue with associated eigenvector, ψ , with ‖ψ‖ = 1
and 〈ψ, ϕ〉 ≥ 0 and if εϕ < δ ≡ min(ηϕ − α, ζ − ηϕ), then

(c) ‖ϕ − ψ‖ ≤
⎡
⎣2 − 2

(
1 − ε2ϕ

δ2

)1/2
⎤
⎦
1/2

(6.9)
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Remarks 1. As we’ll see, a version of (6.8) holds even if we don’t suppose there is
only one point in σ(A) ∩ (α, ζ ), namely if

γ0 = ηϕ − ε2ϕ

ζ − ηϕ

; κ0 = ηϕ + ε2ϕ

ηϕ − α
(6.10)

then σ(A) ∩ (α, κ0] �= ∅ and σ(A) ∩ [γ0, ζ ) �= ∅
2. If we take α → −∞ and ζ = ηϕ +1, the upper bound in (6.8) is just the Rayleigh

bound (6.1) and if we take ζ = μ, then the lower bound in (6.8) is just Temple’s
inequality (6.4).

3. If 0 < α < 1, then

2 − 2(1 − α2)1/2 =
[

4 − 4(1 − α2)

2 + 2(1 − α2)1/2

]

≤ 4α2

4(1 − α2)1/2
=
[

α

(1 − α2)1/4

]2

so (6.9) implies that

‖ϕ − ψ‖ ≤ ε

δ

(
1 − ε2

δ2

)−1/4

(6.11)

which is how Kato writes it in Kato [321] (see Knyazev [382] for refined versions
of these types of estimates).

The proof we’ll give follows Kato’s approach (see also Harrell [221]). The key to
this proof is what Temple [640] calls Kato’s Lemma:

Lemma 6.2 Let A be a self-adjoint operator and ϕ ∈ D(A) with ‖ϕ‖ = 1. Then

σ(A) ∩ (α, ζ ) = ∅ ⇒ 〈ϕ, (A − α)(A − ζ )ϕ〉 ≥ 0 (6.12)

Proof The spectral theorem (see [616, Chapter V and Section 7.2]) says that A is a
direct sum of multiplications by x on L2(R\(α, ζ ), dμ(x)). Since (x −α)(x − ζ ) ≥ 0
for x ∈ R\(α, ζ ), we see that (A − α)(A − ζ ) ≥ 0.

Remark While we use the Spectral Theorem (as Kato did), all we need is a spectral
mapping theorem, i.e. if f (x) = (x − α)(x − ζ ), then σ( f (A)) = f [σ(A)] and
the fact that an operator with spectrum in [0,∞) is positive. The spectral mapping
theorem for polynomials holds for elements of any Banach algebra and the proof in
[616, Theorem 2.2.6] extends to unbounded operators. That this lemma follows from
considerations of resolvents only was noted by Temple [640].

Taking contrapositives in (6.12), we get the following Corollary (if Lemmas are
allowed to have Corollaries):

Corollary 6.3 Let A be a self-adjoint operator and ϕ ∈ D(A) with ‖ϕ‖ = 1. Then

〈ϕ, (A − α)(A − ζ )ϕ〉 < 0 ⇒ σ(A) ∩ (α, ζ ) �= ∅ (6.13)
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The final preliminary of the proof is

Lemma 6.4 Suppose that A is self-adjoint and that λ ∈ R is an isolated simple
eigenvalue with Aψ = λψ and ‖ψ‖ = 1. If ϕ ∈ D(A) with ‖ϕ‖ = 1 and

εϕ < δ ≡ dist(ηϕ, σ (A)\{λ}) (6.14)

and if the phase of ψ is changed so that 〈ϕ,ψ〉 ≥ 0, then

‖ϕ − ψ‖2 ≤ 2 − 2

(
1 − ε2ϕ

δ2

)1/2

(6.15)

Proof Let P be the projection onto multiples of ψ . Since (A − ηϕ)2 ≥ δ2 on the
A-invariant subspace ran(1 − P) (by the spectral theorem as in the proof of Lemma
6.2), we have that

ε2ϕ = ‖(A − ηϕ)ϕ‖2 ≥ δ2‖(1 − P)ϕ‖2 (6.16)

so
‖(1 − P)ϕ‖2 ≤ ε2ϕ/δ2 < 1 (6.17)

by (6.14). Since ‖(1 − P)ϕ‖2 + ‖Pϕ‖2 = 1, we see that (if 〈ψ, ϕ〉 ≥ 0)

〈ψ, ϕ〉 = ‖Pϕ‖ ≥
(
1 − ε2ϕ

δ2

)1/2

(6.18)

Since ‖ψ − ϕ‖2 = 2 − 2〈ψ, ϕ〉, (6.15) is immediate.

Proof of Theorem 6.1 (a) We have that

〈ϕ, (A − α)(A − ζ )ϕ〉 = 〈ϕ, (A − ηϕ)2ϕ〉 + 〈ϕ,
[
η2ϕ + αζ − (α + ζ )A

]
ϕ〉

= ε2ϕ − (ηϕ − α)(ζ − ηϕ) < 0 (6.19)

by (6.7). By Corollary 6.3, we see that σ(A) ∩ (α, ζ ) �= ∅.
(b) As in the proof of (6.19), for any γ, κ , we have that

〈ϕ, (A − γ )(A − κ)ϕ〉 = ε2ϕ − (ηϕ − γ )(κ − ηϕ) (6.20)

Fix κ = ζ . Then, using ζ > ηϕ :

RHS of (6.20) < 0 ⇐⇒ γ < γ0 (6.21)

(with γ0 given by (6.10)) so by Corollary 6.3,

γ < γ0 ⇒ σ(A) ∩ (γ, ζ ) �= ∅ (6.22)
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Since σ(A) is closed, this implies that

σ(A) ∩ [γ0, ζ ) �= ∅ (6.23)

Similarly,
σ(A) ∩ (α, κ0] �= ∅ (6.24)

In particular, if there is a single point, λ, in (α, ζ ), we must have that λ ∈ (α, κ0]∩
[γ0, ζ ) = [γ0, κ0] which is (6.8).

(c) This is Lemma 6.4.
��

Kato exploited what are now called the Temple–Kato inequalities in his thesis to
prove results on asymptotic perturbation theory. Below are two typical results whose
proofs are very much in the spirit of this work of Kato—see Sect. 3 for what it means
for an eigenvalue to be stable.

Theorem 6.5 Let A0 be a self-adjoint operator on a Hilbert space, H. Let B be a
symmetric operator with D(A0)∩ D(B) ≡ D dense in H and a core for A0. For each
β > 0 (perhaps only for sufficiently small such β), let A(β) be a self-adjoint extension
of A0 + βB � D. Let E0 be a simple, discrete eigenvalue for A0 which is stable for
A(β). Let ϕ ∈ D(A0), ‖ϕ‖ = 1 and A0ϕ = E0ϕ. Suppose that ϕ ∈ D(B). Then the
eigenvalue, E(β) of A(β) near E0 obeys

E(β) = E0 + β〈ϕ, Bϕ〉 + O(β2) (6.25)

Proof SinceD is a core and for η ∈ D, z ∈ C\R, [(A(β)− z)−1 − (A0 − z)−1](A0 −
z)η = −β(A(β)−z)−1Bηwe see that A(β) → A0 in strong resolvent sense as β ↓ 0.
By the definition of stability, there is an interval (α, ζ ) containing E0, so that for small
β, A(β) has a unique eigenvalue, E(β), in (α, ζ ). Showing the operator involved in a
superscript, we see that

ηA(β)
ϕ = E0 + β〈ϕ, Bϕ〉 → E0

Since (A(β) − η
A(β)
ϕ )ϕ = β(B − 〈ϕ, Bϕ〉)ϕ, we see that
(
εA(β)
ϕ

)2 = β2(‖Bϕ‖ − 〈ϕ, Bϕ〉2) = O(β2)

so, by the Temple–Kato inequalities, E(β) − η
A(β)
ϕ = O(β2) which is (6.25)

To go to the next order, we need the reduced resolvent, S, of A0 at E0, defined
in Sect. 2 (see (2.8)). In his thesis, Kato realized that contour integrals of B(A0 −
z)−1 . . . B(A0 − z)−1ϕ could be expressed in terms of S. In particular, the first order
formal eigenvector for A(β) is

ψ1(β) = ϕ − βSBϕ (6.26)
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Since ranS ⊂ ran(1 − P) is orthogonal to ϕ, we see that

‖ψ1(β)‖2 = 1 + β2‖SBϕ‖2 (6.27)

For ψ1(β) to be in D(B), we will need to suppose that

ϕ ∈ D(B), SBϕ ∈ D(B) (6.28)

We can also write down the first three perturbation coefficients for the energy (see for
example [497, pg 7]):

E1 = 〈ϕ, Bϕ〉, E2 = −〈Bϕ, SBϕ〉 (6.29)

E3 = E1E2 + 〈Bϕ, SBSBϕ〉 (6.30)

Straightforward calculations show that

(A0 − E0)ψ1(β) = −β(1 − P)Bϕ

(A(β) − E0)ψ1(β) = βE1ϕ − β2BSBϕ

since β P Bϕ = βE1ϕ. Thus:

(A(β) − E0 − βE1)ψ1(β) = β2E1SBϕ − β2BSBϕ

From this, using (6.27), one sees easily that

〈ψ1(β), A(β)ψ1(β)〉 = (E0 + βE1 + β2E2 + β3E3)‖ψ1(β)‖2 + O(β4)(6.31)

‖
[

A(β) − (E0 + βE1 + β2E2 + β3E3)
]
ψ1(β)‖2 = O(β4) (6.32)

Thus, we have, using ψ1(β)/‖ψ1(β)‖ as a trial vector

Theorem 6.6 Under the hypotheses of Theorem 6.5 if also (6.28) holds, then

E(β) = E0 + βE1 + β2E2 + β3E3 + O(β4) (6.33)

‖ϕ(β) − ψ1(β)‖ = O(β2) (6.34)

where ϕ(β) is the normalized eigenvector for A(β) chosen so that for small β,
〈ϕ(β), ϕ〉 > 0.

As Kato noted in his thesis, this idea shows if all the terms for the nth order formal
series for the eigenvector lie inH, then one gets asymptotic series for the energy with
errors of order O(β2n), i.e. the 2n coefficients E0, . . . , E2n−1 but the method doesn’t
handle odd powers. Indeed in [316], he said: “However, there has been a serious gap
in the series of these conditions; for all of them had in common the property that they
give the expansion of the eigenvalues up to even orders of approximation, and there
was no corresponding theorem giving an expansion up to an odd order.” Personally,
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I think “serious” is a bit strong given that he handles the case of infinite order (for me
the most important) and first order results but it shows he was frustrated by a problem
he tried to solve without initial success. But in [309], he put in a Note Added in Proof
announcing he had solved the problem! The solution appeared in [322]. For example,
if A0 ≥ 0, B ≥ 0, he proved that if ϕ ∈ Q(B), then E(β) = E0 + E1β + o(β) and if
B1/2ϕ ∈ Q(B1/2A−1

0 B1/2), he proved that E(β) = E0 + E1β + E2β
2 + o(β2). Not

surprisingly, in addition to estimates of Temple–Kato type, the proofs use a variant of
quadratic form methods. I note that Kato did not put any of these results in his book
where his discussion of asymptotic series applies to general Banach space settings and
not just positive operators and the ideas are closer to what we put in Sect. 3.

Besides the original short paper on Temple–Kato inequalities, Kato returned to the
subject several times. In two papers [321,357], he considered the fact that in some
applications of interest, the natural trial vector hasϕ ∈ Q(A), not D(A). Trial functions
only in Q(A) are fine for the Rayleigh upper bound but if ϕ /∈ D(A), then εA

ϕ = ∞, so
ϕ cannot be used for Temple’s inequality or the Temple–Kato inequality. Of course,
one could look at the Temple–Kato inequality for

√
A if A ≥ 0 but calculation of

〈ϕ,
√

Aϕ〉 may not be easy for, say, a second order differential operator where
√

A
is a pseudo-differential operator. But such operators can often be written A = T ∗T
where T is a first order differential operator. Variants of the Temple–Kato inequality
for operators of this form are the subject of two papers of Kato [321,357]. Kato et al.
[359] studies an application of these ideas.

Interesting enough, while Kato’s work was 20 years after Temple, Temple was
youngwhen he did that work andwas still active in 1949 and he reacted toKato’s paper
with two of his own [639,640]. George Frederick James Temple (1901–1992) was a
mathematician with a keen interest in physics—he wrote two early books on quantum
mechanics in 1931 and 1934. He spent much of his career at King’s College, London
although for the last fifteen years of it, he held the prestigious Sedleian Chair of Natural
Philosophy at Oxford, the chair going back to 1621. He was best known in British
circles for a way of discussing distributions as equivalence classes of approximating
smooth functions, an idea that was popular because the old guard didn’t want to think
about the theory of topological vector spaces central to Schwartz’ earlier approach.
His other honors include a knighthood (CBE, for War work), a fellowship in and
the Sylvester Medal of the Royal Society. At age 82, he became a benedictine monk
and spent the last years of his life in a monastery on the Isle of Wright. The long
biographical note of his life written for the Royal Society [370] doesn’t even mention
Temple’s inequality!

Davis [105] extended what he calls “the ingenious method of Kato” by replacing
the single interval (α, ζ ) by a finite union of intervals. Thirring [643] has discussed
Temple’s inequality as a consequence of the Feshbach [149,150] projection method
(which mathematicians call the method of Schur [545] complements). Turner [658]
andHarrell [221] have extensions to the casewhere A is normal rather than self-adjoint
and Kuroda [400] to n commuting self-adjoint operators (and so including the normal
case). Cape et al. [81] apply Temple–Kato inequalities to graph Laplacians. Golub–
van der Vost [195] have a long review on eigenvalue values bounds mentioning that
by the time of their review in 2000, Temple–Kato inequalities had become a standard
part of linear algebra.
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7 Self-adjointness, I: Kato’s theorem

This is the first of four sections on self-adjointness issues.We assume the reader knows
the basic notions, including what an operator closure and an operator core are and the
meaning of essential self-adjointness. A reference for these things is [616, Section
7.1].

This section concerns the Kato–Rellich theorem and its application to prove
the essential self-adjointness of atomic and molecular Hamiltonians. The quantum
mechanical Hamiltonians typically treated by this method are bounded from below.
Section 8 discusses cases where V (x) ≥ −cx2 − d like Stark Hamiltonians. Sec-
tion 9 discusses Kato’s contribution to the realization that the positive part of V can be
more singular than the negative part without destroying essential self-adjointness and
Sect. 10 turns to Kato’s contribution to the theory of quadratic forms. To save ink, in
this article, I’ll use “esa” as an abbreviation for “essentially self-adjoint” or “essential
self-adjointness” and “esa-ν” for “essentially self-joint on C∞

0 (Rν).”.
As we’ve mentioned, Kato’s 1951 paper [314] is a pathbreaking contribution of

great significance. He considered N -body Hamiltonians on L2(RνN ) of the formal
form

H = −
N∑

j=1

1

2m j
� j +

∑
i< j

Vi j (xi − x j ) (7.1)

where x ∈ R
νN is written x = (x1, . . . , xN ) with x j ∈ R

ν , � j is the ν-dimensional
Laplacian in x j and each Vi j is a real valued function on R

ν . In 1951, Kato considered
only the physically relevant case ν = 3.

If there are N+k particles in the limitwhere themasses of particles N+1, . . . , N+k
are infinite, one considers an operator like H but adds terms

N∑
j=1

Vj (x j ), Vj (x) =
N+k∑

�=N+1

Vj�(x − x�) (7.2)

where xN+1, . . . , xN+k are fixed points in R
ν .

More generally, one wants to consider (as Kato did) Hamiltonians with the center
of mass removed. We discuss the kinematics of such removal in Sect. 11 in Part 2. We
note that the self-adjointness results on the Hamiltonians of the form (7.1) easily imply
results on Hamiltonians (on L2(R(N−1)ν)) with the center of mass motion removed.
Of especial interest is the Hamiltonian of the form (7.2) with N = 1, i.e.

H = −� + W (x) (7.3)

on L2(Rν)which we’ll call reduced two body Hamiltonians (since, except for a factor
of (2μ)−1 in front of −�, it is the two body Hamiltonian with the center of mass
removed).

Kato’s big 1951 result was
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Theorem 7.1 (Kato’sTheorem [314], First Form)Let ν = 3. Let each Vi j in (7.1) lie in
L2(R3)+ L∞(R3). Then the Hamiltonian of (7.1) is self-adjoint on D(H) = D(−�)

and esa-(3N ).

Remarks 1. The same results holds with the terms in (7.2) added so long as each Vj

lies in L2(R3) + L∞(R3).
2. Kato also notes the exact description of D(−�) on L2(Rν) in terms of the Fourier

transform (see [612, Chapter 6]) ϕ̂(k) = (2π)−ν/2
∫

e−ik·xϕ(x)dνx :

D(−�) = {ϕ ∈ L2(Rν) |
∫

(1 + k2)2|ϕ̂(k)|2dνk < ∞} (7.4)

3. The proof shows that the graph norms of H and −� on D(−�) are equivalent,
so any operator core for −� is a core for H . Since it is easy to see that C∞

0 (R3N )

is a core for −�, the esa result follows from the self-adjointness claim, so we
concentrate on the latter.

4. Kato didn’t assume that V ∈ L2(R3)+ L∞(R3) but rather the stronger hypothesis
that for some R < ∞, one has that

∫
|x |<R |V (x)|2d3x < ∞ and sup|x |≥R |V (x)| <

∞, but his proof extends to L2(R3) + L∞(R3).

5. Kato didn’t state thatC∞
0 (R3N ) is a core but rather thatψ’s of the form P(x)e− 1

2 x2

with P a polynomial in the coordinates of x is a core (He included the 1
2 so the set

was invariant under Fourier transform.) His result is now usually stated in terms
of C∞

0 .

If v(x) = 1/|x | on R
3, then v ∈ L2(R3) + L∞(R3), so Theorem 7.1 has the

important Corollary, which includes the Hamiltonians of atoms and molecules:

Theorem 7.2 (Kato’s Theorem [314], Second Form) The Hamiltonian, H, of (7.1)
with ν = 3 and each

Vi j (x) = zi j

|x | (7.5)

and this Hamiltonian with terms of the form (7.2) where

Vj (x) =
N+k∑

�=N+1

z j�

|x − x�| (7.6)

are self-adjoint on D(−�) and esa-3N

Remark This result assures that the time dependent Schrödinger equation ψ̇t =
−i Hψt has solutions (since self-adjointness means that e−i t H exists as a unitary
operator). The analogous problem for Coulomb Newton’s equation (i.e. solvability
for a.e. initial condition) is open for N ≥ 5!

As Kato remarks in [1], “the proof turned out to be rather easy”. It has three steps:

(1) The Kato–Rellich theorem which reduces the proof to showing that each Vi j is
relatively bounded for Laplacian on R

3 with relative bound 0.
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(2) A proof that any function in L2(R3) + L∞(R3), as an operator on L2(R3), is
−�-bounded with relative bound 0. This relies on a simple Sobolev estimate.

(3) A piece of simple kinematics that says that the two body estimate in step 2 extends
to one for vi j (xi − x j ) as an operator on L2(R3N ).

Step 1. The needed result (recall that A-bounded is defined in (2.14)):

Theorem 7.3 (Kato–Rellich Theorem) Let A be self-adjoint, B symmetric and let B
be A-bounded with relative bound a < 1, i.e. D(A) ⊂ D(B) and for some fixed b and
all ϕ ∈ D(A)

‖Bϕ‖ ≤ a‖Aϕ‖ + b‖ϕ‖ (7.7)

Then A + B is self-adjoint on D(A) and any operator core for A is one for A + B.

Remarks 1. This result is due to Rellich [504–508, Part III]. Kato found it in 1944,
when he was unaware of Rellich’s work, so it is independently his.

2. The proof uses von Neumann’s criteria: a closed symmetric operator, C , on D(C)

is self-adjoint if and only if for some κ ∈ (0,∞), one has that ran(C ± iκ) =
H. For C closed implies that ran(C ± iκ) are closed subspaces with ran(C ±
iκ)⊥ = ker(C∗∓iκ). Thus, if C is self-adjoint, then ker(C∗∓iκ) = {0} proving
one direction. For the other direction, suppose that ran(C ± iκ) = H. Given ψ ∈
D(C∗), find ϕ ∈ D(C) with (C + iκ)ϕ = (C∗ + iκ)ψ (since ran(C + iκ) = H).
Thus (C∗ + iκ)(ϕ − ψ) = 0. Since ran(C − iκ) = H = ker(C∗ + iκ)⊥, we have
that ϕ − ψ = 0. Thus D(C∗) = D(C) and C is self-adjoint.

3. For the rest of the proof, use ‖(C + iκ)ϕ‖2 = ‖Cϕ‖2 + |κ|2‖ϕ‖2 to see that

‖C(C ± iκ)−1‖ ≤ 1, ‖(C ± iκ)−1‖ ≤ |κ|−1 (7.8)

It follows from this (with C = A) that when (7.7) holds, one has that

‖B(A ± iκ)−1‖ ≤ a + b|κ|−1 (7.9)

Since a < 1, we can be sure that if |κ| is very large, then ‖B(A ± iκ)−1‖ < 1
so using a geometric series, we have that 1 + B(A ± iκ)−1 is invertible which
implies that it maps H onto H. Since (A ± iκ) maps D(A) onto H, we see that

(A + B ± iκ) = (1 + B(A ± iκ)−1)(A ± iκ) (7.10)

maps D(A) onto H. Thus by von Neumann’s criterion, A + B is self-adjoint on
D(A). By a simple argument, ‖A·‖+‖·‖ is an equivalent norm to ‖(A+ B)·‖+‖·‖
which proves the esa result.

4. The case B = −A shows that one can’t conclude self-adjointness of A + B on
D(A) if (7.7) holds with a = 1 but Kato [345] proved that A + B is esa on D(A)

in that case and Wüst [690] proved the stronger result of esa on D(A) if one has
for all ϕ ∈ D(A)

‖Bϕ‖2 ≤ ‖Aϕ‖2 + b‖ϕ‖2 (7.11)
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5. In some of my early papers, I called B Kato small if B was A − bounded with
relative bound less than 1 and Kato tiny if the relative bound was 0. I am pleased
to say that while many of my names (hypercontractive, almost Mathieu, Berry’s
phase, Kato class,…) have stuck, this one has not!

Step 2. Kato began by considering ϕ ∈ L2(R3) with ϕ ∈ D(−�), i.e.
∫
(1 +

k2)2|ϕ̂(k)|2d3k < ∞. He noted that this implied that

∫
|ϕ̂(k)|d3k =

∫
(1 + k2)−1(1 + k2)|ϕ̂(k)|d3k

≤ ‖(1 + k2)−1‖2‖(1 − �)ϕ‖2 (7.12)

by the Schwarz inequality and Plancherel theorem. Thus

‖ϕ‖∞ ≤ (2π)−3/2
∫

|ϕ̂(k)|d3k (7.13)

≤ C (‖�ϕ‖2 + ‖ϕ‖2) (7.14)

It follows that if V = V1 + V2 with V1 ∈ L2(R3), V2 ∈ L∞(R3), then as operators
on L2(R3)

‖V ϕ‖2 ≤ ‖V1ϕ‖2 + ‖V2ϕ‖2
≤ ‖V1‖2‖ϕ‖∞ + ‖V2‖∞‖ϕ‖2
≤ C‖V1‖2‖�ϕ‖2 + (C‖V1‖2 + ‖V2‖∞) ‖ϕ‖2 (7.15)

If f ∈ L2 and

f (n)(x) =
{

f (x), if | f (x)| > n
0, if | f (x)| ≤ n

(7.16)

then ‖ f (n)‖2 → 0 as n → ∞ by the dominated convergence theorem and for all
n, ‖ f − f (n)‖∞ < ∞. It follows from (7.15) that any V ∈ L2(R3) + L∞(R3) is
−�-bounded with relative bound zero as operators on L2(R3).

Step 3. In modern language, one shows that ifH = H1 ⊗H2 (tensor products are
defined, for example, in [612, Section 3.8]) and (7.7) holds, then

‖(B ⊗ 1)ϕ‖ ≤ a‖(A ⊗ 1)ϕ‖ + b‖ϕ‖ (7.17)

Thus, if V is a function of x1 alone, V (x1, . . . , xN ) = v(x1), v ∈ L2(R3) + L∞(R3)

so that (7.7) holds for v on L2(R3), then it also holds for B = V (x) and A = −�1 on
L2(R3N ). Since |k1|2 ≤ |k|2, we conclude that V is −�-bounded with relative bound
zero on L2(R3N ). By a coordinate change, the same is true for v(xi − x j ).

Rather than talk about tensor products, Kato used iterated Fourier transforms and
states inequalities like

sup
x1

[∫
|ϕ(x1, . . . , xN )|2d3x2 . . . d3xN

]
≤ C

∫
(1 + k21)

2|ϕ̂(k)|2d3N k (7.18)
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which is equivalent to the tensor product results. This concludes our sketch of Kato’s
proof of his great theorem.

Kato states in the paper that he had found the results by 1944. Kato originally
submitted the paper to Physical Review. Physical Review transferred the manuscript
to the Transactions of the AMSwhere it eventually appeared. They had trouble finding
a referee and in the process the manuscript was lost (a serious problem in pre-Xerox
days!). Eventually, von Neumann got involved and helped get the paper accepted. I’ve
always thought that given how important he knew the paper was, von Neumann should
have suggested Annals ofMathematics and used his influence to get it published there.
The receipt date ofOctober 15, 1948on the version published in theTransactions shows
a long lag compared to the other papers in the same issue of the Transactions which
have receipt dates of Dec., 1949 through June, 1950. Recently after Kato’s widow
died and left his papers to some mathematicians (see the end of Sect. 1) and some
fascinating correspondence of Kato with Kemble and von Neumann came to light.
There are plans to publish an edited version [181].

It is a puzzle why it took so long for this theorem to be found. One factor may have
been von Neumann’s attitude. Bargmann told me of a conversation several young
mathematicians had with von Neumann around 1948 in which von Neumann told
them that self-adjointness for atomic Hamiltonians was an impossibly hard problem
and that even for the Hydrogen atom, the problemwas difficult and open. This is a little
strange since, using spherical symmetry, Hydrogen can be reduced to a direct sum of
one dimensional problems. For such ODEs, there is a powerful limit point–limit circle
method named after Weyl and Titchmarsh (although it was Stone, in his 1932 book,
who first made it explicit). Using this, it is easy to see (there is one subtlety for � = 0
since the operator is limit circle at 0) that the Hydrogen Hamiltonian is self-adjoint
and this appears at least as early as Rellich [509]. Of course, this method doesn’t work
for multielectron atoms. In any event, it is possible that von Neumann’s attitude may
have discouraged some from working on the problem.

Still it is surprising that neither Friedrichs nor Rellich found this result. In exploring
this, it is worth noting that there is an alternate to step 2:

Step 2′. On R
3, there is the well known operator inequality (discussed further in

Sect. 10 and in [615, Section 6.2]) known as Hardy’s inequality (A ≤ B for posi-
tive operators is discussed in Sect. 10 and [616, Section 7.5]; for this case, it means
〈ϕ, Aϕ〉 ≤ 〈ϕ, Bϕ〉 for all ϕ ∈ C∞

0 (R3)):

1

4r2
≤ −� (7.19)

Since x ≤ εx2 + 1
4ε

−1 for x ∈ (0,∞), the spectral theorem implies that for any
positive, self-adjoint operator, C , we have that

C ≤ εC2 + 1
4ε

−1 (7.20)

so using this for C = −�, (7.19) implies that

1

4r2
≤ ε(−�)2 + 1

4
ε−1 (7.21)
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equivalently, for ϕ ∈ C∞
0 (R3)

‖r−1ϕ‖2 ≤ 4ε‖−�ϕ‖2 + ε−1‖ϕ‖2 (7.22)

which implies that r−1 is −�-bounded with relative bound zero.
Rellich used Hardy’s inequality in his perturbation theory papers [504–508] in a

closely related context. Namely he used (7.19) and (7.20) for C = r−1 to show that
r−1 ≤ 4ε(−�) + 1

4ε
−1 to note the semiboundedness of the Hydrogen Hamiltonian.

Since Rellich certainly knew the Kato–Rellich theorem, it appears that he knew steps
1 and 2′.

In a sense, it is pointless to speculate why Rellich didn’t find Theorem 7.2, but it is
difficult to resist. It is possible that he never considered the problem of esa of atomic
Hamiltonians, settling for a presumption that using the Friedrichs extension suffices
(as Kato suggests in [1]) but I think that unlikely. It is possible that he thought about
the problem but dismissed it as too difficult and never thought hard about it. Perhaps
the most likely explanation involves Step 3: once you understand it, it is trivial, but
until you conceive that it might be true, it might elude you.

Kato’s original paper required that the L2 piece have compact support (in the
relevant variables). While it is easy to accommodate global L2, it is true that it is
enough to be uniformly locally L2, i.e.

sup
x

∫
|x−y|≤1

|V (y)|2d3y (7.23)

denoted L2
uni f (R

3). It was Stummel [631] who first realized this. There are general
localization techniques, originally developed for form estimates by Ismagilov [273],
Morgan [447] and Sigal [554] (and discussed as the IMS localization formula in [101,
Section 3.1]) which have operator versions. For a recent paper on these techniques,
see Gesztesy et. al. [189]. For example, [616, Problem 7.1.9] proves:

Theorem 7.4 For each α ∈ Z
ν , let �α be the cube of side 3 centered at α and χα

its characteristic function. Let V be a measurable function on R
ν so that for some

positive a, b and all α and all ϕ ∈ C∞
0 (Rν)

‖V χαϕ‖2 ≤ a‖−�ϕ‖2 + b‖ϕ‖2 (7.24)

Then for any ε > 0, there is a bε so that for all ϕ ∈ C∞
0 (Rν), we have that

‖V ϕ‖2 ≤ (a + ε)‖−�ϕ‖ + bε‖ϕ‖2 (7.25)

In particular, any V ∈ L2
uni f (R

3) is −�-bounded on L2(R3) with relative bound 0.

In exploring extensions of Theorem 7.1, it is very useful to have simple self-
adjointness criteria for − d2

dx2
+ q(x) on L2(0,∞) which then translate to criteria for

−�+ V (x) if V (x) = q(|x |) is a spherically symmetric potential. If q ∈ L2
loc(0,∞),

for each z ∈ C, the set of solutions of −u′′ + qu = zu (in the sense that u is C1, u′ is
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absolutely continuous and u′′ is its L1
loc derivative) is two dimensional. If all solutions

are L2 at ∞ (resp. 0), we say that − d2

dx2
+ q(x) is limit circle at ∞ (resp. 0). If it is

not limit circle, we say it is limit point. It is a theorem that whether one is limit point
or limit circle is independent of z. However, in the limit point case, whether the set of
L2 solutions near infinity is 0 or 1 dimensional can be z dependent. One has the basic

Theorem 7.5 (Weyl limit point–limit circle theorem) Let q ∈ L2
loc(0,∞). Then

− d2

dx2
+ q(x) is esa on C∞

0 (0,∞) if and only if − d2

dx2
+ q(x) is limit point at both 0

and ∞.

Remarks 1. This result holds for any interval (a, b) ⊂ R where a can be −∞ and/or
b can be ∞.

2. If it is limit point at only one of 0 and ∞ and limit circle at the other point, the
deficiency indices (see [616, Section 7.1] for definitions) are (1, 1) and if it is limit
circle at both 0 and ∞, they are (2, 2). In particular if it is limit point at ∞ and∫ 1
0 |V (x)|dx < ∞, then the deficiency indices are (1,1) and the extensions are
described by boundary conditions cos θ u′(0) + sin θ u(0) = 0.

3. The ideas behind much of the theorem go back to Weyl [677,678,680] in 1910
and predate the notion of self-adjointness. It was Stone [630] who first realized the
implications for self-adjointness and proved Theorem 7.5. [616, Thm 7.4.12] has a
succinct proof. Titchmarsh [653] reworked the theory so much that it is sometimes
called Weyl–Titchmarsh theory. For additional literature, see [94,131,423].

Example 7.6 (x−2 on (0,∞)) Let q(x) = βx−2. Trying xα in−u′′ +βx−2u = 0, one
finds that α(α − 1) = β is solved by α± = 1

2 (1± √
1 + 4β). For β �= − 1

4 , this yields
two linearly independent solutions, so a basis. The larger solution (and sometimes
both) is not L2 at infinity, so it is always limit point there.

Forα ≥ − 1
4 , there is a positive solutionwhich implies that Hβ ≡ − d2

dx2
+βx−2 ≥ 0.

If α < − 1
4 , the solutions oscillate and the real solutions have infinitely many zeros

which implies that the operator is not positive (see [616, Section 7.4]). Thus

− d2

dx2
+ βx−2 ≥ 0 on C∞

0 (0,∞) ⇐⇒ β ≥ − 1
4 (7.26)

This is Hardy’s inequality on L2(0,∞).
xα /∈ L2(0, 1) ⇐⇒ α ≤ − 1

2 . At β = 3
4 , α− = − 1

2 . Thus Hβ is always limit
point at ∞ and is limit point at 0 if and only if β ≥ 3

4 , i.e.

− d2

dx2
+ βx−2 is esa on C∞

0 (0,∞) ⇐⇒ β ≥ 3
4 (7.27)

A comparison theorem shows that if

q(x) ≥ 3
4 x−2 − c (7.28)

for some real c, then − d2

dx2
+ q(x) is esa on C∞

0 (0,∞).
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On R
ν , one defines spherical harmonics (see [615, Section 3.5]), {Y�m}D(ν,�)

m=1;�=0,1,...

on Sν−1, the unit sphere in R
ν , to be the restriction to the unit sphere of harmonic

polynomials of degree �. These polynomials are a vector space of dimension D(ν, �) =
�+ν−2
ν−2

(
ν−3+�
ν−3

)
and Y�m are a convenient orthonormal basis. Any function f ∈ S(Rν)

can be expanded in the form (r ∈ (0,∞), ω ∈ Sν−1)

f (rω) =
∑
�,m

r−(ν−1)/2 f�m(r)Y�m(ω) (7.29)

(where for ν ≥ 2, f�m vanishes so rapidly at r = 0 that r−(ν−1)/2 f�m(r) has a limit
as r ↓ 0 which must be zero unless (�m) = (01)). Moreover, if σν is the area of the
unit sphere, then

‖ f ‖2L2(Rν ,dν x)
= σν

∑
�,m

‖ f�m‖2L2(R,dr)
(7.30)

and

(� f )�m =
[

d2

dr2
− (ν − 1)(ν − 3)

4r2
− �(� + ν − 2)

r2

]
f�m (7.31)

If V (r) = q(r), then −� + V is a direct sum of operators of the form

H�m(V ) = − d2

dr2
+ q�(r) (7.32)

q�(x) = (ν − 1)(ν − 3)

4x2
+ �(� + ν − 2)

x2
+ q(x) (7.33)

It is easy to see that such direct sums are bounded frombelow (resp. esa) onC∞
00 (R

ν) ≡
C∞
0 (Rν\{0}) if and only if each H�m is bounded from below (resp. esa) on C∞

0 (0,∞)

We conclude that

Proposition 7.7 On R
ν , H (ν)

β ≡ −� + β|x |−2 on C∞
00 (R

ν) is

(1) Bounded from below

H (ν)
β ≥ 0 ⇐⇒ β ≥ − (ν − 2)2

4
(7.34)

(2) H (ν)
β is esa on C∞

00 (R
ν) if and only if

β ≥ −ν(ν − 4)

4
(7.35)

Remarks 1. This uses− (ν−1)(ν−3)
4 − 1

4 = − (ν−2)2

4 and− (ν−1)(ν−3)
4 + 3

4 = − ν(ν−4)
4 .

2. (7.34) is the ν-dimensional Hardy inequality with optimal constant (see Sect. 10
below).
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3. By (7.28), if ν ≥ 4 and V is spherically symmetric and obeys V (x) ≥ − ν(ν−4)
4|x |2 ,

then −� + V is esa-ν (discussed further in Sect. 9).
4. In particular, C∞

00 (R
ν) is an operator core for −� if and only if ν ≥ 4 and a form

core for −� if and only if ν ≥ 2.
5. By (7.28), if γ > 2, then −� + λ|x |−γ (λ > 0) is esa on C∞

00 (R
ν). If ν ≥ 5

and 2 < γ < ν/2, we have that |x |−γ ∈ L2(Rν) + L∞(Rν), so one can define
T ≡ −�+λ|x |−γ on C∞

0 (Rν) and it is easy to see that T is symmetric. It follows
by general principles [616, Section 7.1] that T is esa-ν.

6. There is an intuition to explain why one loses self-adjointness of −� − |x |−γ

when γ > 2. If γ < 2, in classical mechanics there is an �2

|x |2 barrier which

dominates the −|x |−γ , so for almost every initial condition, the classical particle
avoids the singularity at the origin. But when γ > 2, every negative energy initial
condition will fall into the origin in finite time so in classical mechanics, one needs
to supplement with a rule about what happens when the particle is captured by the
singularity. The quantum analog is the loss of esa. There is of course a difference
at γ = 2 where classically there is a problem no matter the coupling but not in
quantum mechanics. This is associated with the uncertainty principle. In the next
section, we’ll see that this intuition is also useful to understand what happens with
V ’s going to −∞ at spatial infinity.

We summarize in

Example 7.8 (|x |−2 in R
ν ; ν ≥ 5) Rellich’s Inequality [510] (see also [616, Problem

7.4.10], Sect. 10 below, Gesztesy–Littlejohn [188] or Robinson [519] for a proof of
Rellich’s inequality via a double commutator estimate like the one before (3.33) and
Hardy’s inequality; this proof is a variant of one of Schmincke [539]) says that on
R

ν, ν ≥ 5, one has
ν(ν − 4)

4
‖|x |−2ϕ‖ ≤ ‖�ϕ‖ (7.36)

for any ϕ ∈ C∞
0 (Rν). (Of course, this also hold if ν ≤ 4 since the left side is negative

or 0 (maybe −∞) in that case.) This says that B = −|x |−2 is −�-bounded if ν ≥ 5.
When B is A-bounded with A positive, there are three natural values of λ, call them
λ1, λ2, λ3 with 0 < λ1 ≤ λ2 ≤ λ3 so that

λB is A-bounded with relative bound < 1 if and only if 0 ≤ λ < λ1.
A + λB is esa on D(A) if 0 ≤ λ < λ2 and not if λ > λ2.
A + λB is bounded from below if 0 ≤ λ < λ3 and not if λ > λ3

By (7.34), (7.35) and (7.36), we see that

λ1(ν) = λ2(ν) = ν(ν − 4)

4
, λ3(ν) = (ν − 2)2

4
(7.37)

There is no reason that λ1 has to equal λ2, i.e. esa can persist past the point where
the relative bound is 1. For example, if A = −� on R

ν with ν ≥ 5 and

B = −|x |−2 + 2|x − e|−2
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for e some fixed, non-zero vector, then one can prove that λ1 = ν(ν−4)
8 , λ2 = ν(ν−4)

2

and λ3 = (ν−2)2

4 .

We turn now to the extensions of Theorem 7.1 to ν �= 3. The first results are
due to Stummel which we’ll discuss later. In 1959, Brownell [75] proved any V ∈
L p(Rν) + L∞(Rν) is −�-bounded with relative bound zero (see also Nilsson [467])
if

p = 2 (ν ≤ 3), p > ν/2 (ν ≥ 4) (7.38)

Since |x |−2 ∈ L p + L∞ for any p < ν/2, we see that (7.38) is optimal, except
perhaps for the borderline case p = ν/2 (see remark 2 below). Brownell mimicked
Kato’s proof, except that (7.14) is replaced by

‖ϕ‖r ≤ C(‖�ϕ‖2 + ‖ϕ‖2) (7.39)

for any r > r0 where r−1
0 = 1

2 − 2
ν
when ν ≥ 4. In place of (7.13), Brownell used a

Hausdorff–Young inequality (see [612, Theorem 6.6.2]).
(7.39) is what is known as an inhomogeneous Sobolev inequality. There are now

(and even then, but not so widely known) sharper inequalities than (7.39). Recall that
L p

w(Rν), the weak L p space is defined as the measurable functions for which ‖ f ‖∗
p,w

is finite where

|{x | | f (x)| > t}| ≤ (‖ f ‖∗
p,w)p

t p
(7.40)

‖ f ‖∗
p,w is defined tobe theminimal constant so that (7.40) holds. It is not a normbut, for

p > 1, it is equivalent to one—see [615, Section 2.2]. One has that L p(Rν) ⊂ L p
w(Rν)

but for f ∈ L p
w, one can have

∫ | f (x)|pdνx logarithmically divergent, for example
f (x) = |x |−ν/p is in L p

w but not L p.
We call p, ν-canonical if p = 2 for ν ≤ 3, p > 2 if ν = 4 and p = ν/2 if p ≥ 5.

The optimal L p extension of Theorem 7.1 is

Theorem 7.9 Let p be ν-canonical. Then V ∈ L p(Rν) + L∞(Rν) is −�-bounded
with relative bound zero. If ν ≥ 5, V ∈ L p

w(Rν)+L∞(Rν) is −�-bounded on L2(Rν).

Remarks 1. In the L p
w case, the relative bound may not be zero; for example V (x) =

|x |−2 as discussed above. Since any L p function can be written as the sum of
a bounded function and an L p

w function of arbitrarily small ‖·‖∗
p,w, the second

sentence implies the first.
2. One proof of the ν ≥ 5 result uses a theorem of Stein–Weiss [624] (see [615,

Section 6.2]) that if f ∈ Lν/2
w (Rν) and g ∈ Lν/(ν−2)

w (Rν), then h �→ g∗( f h)maps
L2 to L2. Another proof uses Rellich’s inequality and Brascamp–Lieb–Luttinger
inequalities (see [71,520–522] or [611]).

3. That one can use p = ν/2 rather than p > ν/2 when ν ≥ 5 was noted first by
Faris [146].
I’m not sure to whom to attribute the use of sharp Sobolev and Stein–Weiss inequal-

ities. I learned it in about 1968 from a course of lectures of Ed Nelson and it was
popularized by Reed–Simon [495].
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When Brownell did his work, he was unaware that his results were a consequence
of a different approach of Stummel [631] (Brownell thanks the referee for telling him
about Stummel’s work). Stummel considered the class, Sν,α , of functions, V (x), on
R

ν obeying

‖ f ‖ν,α = sup
x

∫
|x−y|≤1

|V (y)| |x − y|−(ν−4+α)dν y (7.41)

is finite. Here α > 0 and α ≥ (4 − ν), so if ν ≤ 3, one has that Sν,4−ν = L2
uni f .

Stummel [631] proves that if V ∈ Sν,α with α as above, then V is −�-bounded with
relative bound 0. This has several advantages over the Kato–Brownell approach:

(a) Since
∫
|w|≤1 |w|−β+νdwκ+1 . . . dwν ∼ |(w1, . . . .wκ)|−β+κ where the tildemeans

comparable in terms of upper and lower bounds, extra variables go through directly
and there is no need for step 3 in Kato’s proof.

(b) As we’ve seen, it is uniformly local, i.e. to be in a Stummel class rather than L p,
one only needs L p

uni f .
(c) By Young’s inequality [612, Theorem 6.6.3], the Brownell L p condition implies

Stummel’s condition, so Stummel’s result is stronger.

Stummel’s proof relies on the fact that ((−�)2+1)−1 has an integral kernel diverg-
ing as |x − y|−(ν−4) for |x − y| small and decaying exponentially for |x − y| large.
As with Brownell’s paper, Stummel’s α > 0 condition isn’t needed if ν ≥ 5. The
issue is that instead of using Young’s inequality, one needs to use the stronger Hardy–
Littlewood–Sobolev inequalities [615, Theorem 6.2.1] which were not well known in
the 1950s. Motivated by Kato’s introduction of the class Kν (see Sect. 9), in [101], I
introduced the class Sν which I defined as those measurable V on R

ν with

⎧⎪⎨
⎪⎩
supx

∫
|x−y|≤1 |V (y)|2dν y < ∞, if ν ≤ 3

limα↓0 supx

∫
|x−y|≤α

log(|x − y|−1)|V (y)|2dν y = 0, if ν = 4
limα↓0 supx

∫
|x−y|≤α

|x − y|−(ν−4)|V (y)|2dν y = 0, if ν ≥ 5
(7.42)

Then one has

Theorem 7.10 ([101]; Section 1.2)A multiplication operator, V ∈ Sν is −�-bounded
with relative bound zero. Conversely, if V is a multiplication operator so that for some
a, b > 0 and some δ ∈ (0, 1) and for all ε ∈ (0, 1) and ϕ ∈ D(−�), one has that

‖V ϕ‖22 ≤ ε‖�ϕ‖22 + a exp(bε−δ)‖ϕ‖22 (7.43)

then V ∈ Sν .

One key to the proof is a simple necessary and sufficient condition

Theorem 7.11 ([101]; Section 1.2) A multiplication operator, V , is in Sν if and only
if limE→∞‖(−� + E)−2|V |2‖∞,∞ = 0 where ‖·‖p,p is the operator norm from
L p(Rν) to itself.
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For example, to get the boundedness, one uses duality and interpolation to see that

lim
E→∞‖(−� + E)−2|V |2‖∞,∞ = 0 ⇒ lim

E→∞‖|V |(−� + E)−2|V |‖2,2 = 0

⇐⇒ lim
E→∞‖|V |(−� + E)−1‖2,2 = 0

This concludes what I want to say about uses of the Kato–Rellich theorem to study
esa of Schrödinger operators. In [314], Kato also remarks on self-adjointness of Dirac
Coulomb Hamiltonians, an issue he returned to several times as we’ll see in Sect. 10.

Let α1, α2, α3, α4 = β be four 4 × 4 matrices obeying

αiα j + α jαi = 2δi j 1; i, j = 1, . . . , 4 (7.44)

Our Hilbert space isH = L2(R3; C
4, d3x) of C

4 valued L2 functions. The free Dirac
operator is

T0 =
3∑

j=1

α j p j + mβ; p j = 1

i

∂

∂x
(7.45)

One has, using (7.44), that formally

T 2
0 = −� + m2 (7.46)

Using Fourier transform, one can prove that T0 is esa on C∞
0 (R3; C

4)with the domain
of the closure being {ϕ | ∫ (1 + p2)|ϕ̂(p)|2 d3 p < ∞}. The Dirac Coulomb operator
is

T = T0 + μ

|x | (7.47)

In terms of the nuclear charge, Z , one has that μ = Zα where α is the fine structure
constant, α−1 = 137.035999139 . . ., so a givenμ corresponds to Z ∼ 137μ. In [314],
Kato notes without proof that his method proves esa of Dirac Coulomb operators on
C∞
0 (R3; C

4) for Z ≤ 68. Clearly he had the result for μ < 1
2 and 68 is the integral

part of 1
2α

−1. Raised as a physicist, Kato thought of integral Z .
In fact ∥∥∥μ

r
ϕ

∥∥∥2 ≤ ‖T0ϕ‖2 + c‖ϕ‖2 ⇐⇒ μ2

r2
≤ T 2

0 + c

Hardy’s inequality says that on R
3, (4r2)−1 ≤ p2 (with no larger constant). This and

(7.46) shows that r−1 is T0-boundedwith precise relative bound 2, so the Kato–Rellich
Theorem implies self-adjointness if and only if μ < 1

2 . But (7.47) can be essentially
self-adjoint on C∞

0 (R3; C
4) even though the Kato–Rellich theorem doesn’t work—in

the language of Example 7.8 it can happen that λ1 is strictly smaller than λ2. Indeed,
it is known that

Theorem 7.12 (7.47) is esa on C∞
0 (R3; C

4) if and only if

|μ| ≤ 1
2

√
3 (7.48)
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This result is essentially due to Rellich [509] in 1943. He proved it using spherical
symmetry and applying the Weyl limit–limit circle theory (Theorem 7.5). We say
“essentially” because at the time he did this, the Weyl theory had not been proven for
systems and (7.47) is a system. This theory for systems was established by Kodaira
[385] in 1951 (see also Weidmann [675]) so Theorem 7.12 should be regarded as due
to Rellich–Kodaira. Interestingly enough, Kato seems to have been unaware of this
result when he wrote his book (second edition was 1976).

One can also consider T0 + V where V is not necessarily spherically symmetric
and V obeys

|V (x)| ≤ μ

|x | (7.49)

By Kato’s argument, one can use the Kato–Rellich theorem to get esa when |μ| < 1
2 .

Schmincke [540] proved

Theorem 7.13 Let V obey (7.49) where μ < 1
2

√
3. Then T0 + V is esa on

C∞
0 (R3; C

4).

We’ll return to Dirac operators in Sect. 8 and at the end of Sect. 10. Having men-
tioned a result of Schmincke, I should mention that in the 1970s and early 1980s
there was a lively school founded by Günter Hellwig that produced a cornucopia of
results on esa questions for Schrödinger and Dirac operators. Among the group were
H. Cycon, H. Kalf, U.-W. Schmincke, R. Wüst and J. Walter.

This said, there is a sense in which Kato’s critical value μ = 1
2 is connected to

loss of esa. Arai [15,16] has shown that for any μ > 1
2 there is a symmetric matrix

valued potential Q(x) with ‖Q(x)‖ = μ|x |−1 for all x so that T0 + Q is not esa on
C∞
0 (R3; C

4), so Theorems 7.12 and 7.13 depend on scalar potentials.

8 Self-adjointness, II: the Kato–Ikebe paper

Kato was clearly aware that his great 1951 paper didn’t include the Stark Hamiltonian
where H isn’t bounded frombelow, and in factη(x) ≡ ∫

|x−y|≤1 |min(V (y), 0)|2dy →
∞ if one takes x → ∞ in a suitable direction. For esa, one needs restrictions on the
growth of η at infinity (whereas, we’ll see in Sect. 9, if |min(V (y), 0)| is replaced by
max(V (y), 0), no restriction is needed). To understand this, it is useful to first consider
one dimension. Suppose that V (x) → −∞ as x → ∞. In classical mechanics, if a
particle of mass m starts at x = c with zero speed, V (c) = 0 and V ′(x) < 0 on
(c,∞), the particle will move to the right. By conservation of energy, the speed when
the particle is at point x > c will be v(x) = √−V (x) if 1

2m = 1. The time to get
from c to x0 > c is thus

∫ x0
c

dx√−V (x)
. Thus the key issue is whether

∫∞
c

dx√−V (x)
is

finite or not. If it is finite, the particle gets to infinity in finite time and the motion is
incomplete. One expects that the quantum mechanical equivalent is that − d2

dx2
+ V (x)

is esa if and only if
∫∞

c
dx√−V (x)

= ∞. In particular, if V (x) = −λ|x |α , this suggests
esa if and only if α ≤ 2.

The classical/quantum intuition can fail if V (x) has severe oscillations or inter-
spersed high bumps (see Rauch–Reed [491] or Sears [547] for examples). These esa
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results for ODEs were studied in the late 1940s using limit point–limit circle methods.
Under the non-oscillation assumption (and V (x) < 0)

∫ ∞

c

(
[√−V ]′
(−V )3/2

)′
(−V )−1/4 dx < ∞

(if V (x) = −xα , the integrand is x−(5α+8)/4, so there have to be severe oscillations
for this to fail), Wintner [686] proved in 1947 that − d2

dx2
+ V (x) is limit point at ∞

if and only if
∫∞

c
dx√−V (x)

= ∞. Slightly later, in 1949, Levinson [422] proved that

it is limit point at infinity if there is a positive comparison function, M(x), so that
V (x) > −M(x) near infinity, M ′(x)/M(x)3/2 bounded and

∫∞
c

dx√
M(x)

= ∞. For

proofs, see [495].
This suggests that a good condition for esa-ν of −� + V (x) should be

V (x) ≥ −c|x |2 − d (8.1)

Indeed, in 1959, Nilsson [467] and Wienholtz [684] independently proved that

Theorem 8.1 (Nilsson–Wienholtz) If V (x) is a continuous function of R
ν obeying

(8.1), then −� + V is esa-ν.

Further developments (all later than the Ikebe–Kato paper discussed below) are due
to Hellwig [235–237], Rohde [523–525] and Walter [669,670]. In 1962, Kato and his
former student Ikebe [268] studied operators of the form

−
ν∑

j,k=1

c jk(x)

(
∂

∂x j
− ia j

)(
∂

∂xk
− iak

)
+ V (x) (8.2)

where c jk(x) and a j (x) are C2 functions and for each x , c jk(x) is a strictly positive
matrix. For quantummechanics, one only considers ci j (x) = δi j (at least if one ignores
quantum mechanics on curved manifolds) and our discussion will be limited to that
case.

Wienholtz had also considered first order terms but didn’t write it in the form (8.2)
which is the right form for quantum physics; a j (x) is the vector potential, i.e. B=da is
the magnetic field. Ikebe–Kato had the important realization that one needs no global
hypothesis on a, i.e. any growth at ∞ of a is allowed. While they had too strong a
local hypothesis on local behavior of a (see Sect. 9), their discovery on behavior at ∞
was important.

For V , they supposed that V = V1 + V2 where V2 is in a Stummel space, Sν,α, α >

0 and V1(x) ≥ −q(|x |) where q is increasing and obeys
∫∞ q(r)−1/2dr = ∞.
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Unlike Wienholtz, they could allow local singularities such as atoms in Stark fields.

Rather than discuss their techniques, I want to sketch two approaches toWienholtz’s
result which allow local singularities and are of especial elegance. For one of them,
Kato made an important contribution. The first approach is due to Chernoff [90,92]
as modified by Kato [341] and the second approach is due to Faris–Lavine [148].
Interesting enough, each utilizes a self-adjointness criterion of Ed Nelson but two dif-
ferent criteria that he developed in different contexts. Here is the criteria for Chernoff’s
method (which Nelson developed in his study of the relation between unitary group
representations and their infinitesimal generators).

Theorem 8.2 (Chernoff–Nelson Theorem) Let A be a self-adjoint operator and Ut =
eit A, t ∈ R, the induced unitary group. Suppose that D is a dense subspace of H with
D ⊂ D(A�) for some � = 1, 2, . . . and suppose that for all t , we have that Ut [D] ⊂ D.
Then D is a core for A, A2, . . . , A�.

Remarks 1. Recall that Stone’s theorem [616, Theorem 7.3.1] says there is a one-one
correspondence between one-parameter unitary groups and self-adjoint operators,
via Ut = eit A, t ∈ R.

2. Chernoff considers the case D ⊂ D∞(A) ≡ ∩� D�(A) in which case D is a core
for A� for all �.

3. Nelson [458] did the case � = 1 and Chernoff [90] noted his argument can be used
for general �.

4. The argument is simple. Let B = Ak � D for some k = 1, . . . , �. Suppose that
B∗ψ = iψ . Let ϕ ∈ D and let f (t) = 〈ψ, Utϕ〉. Then since Utϕ ∈ D(Ak), we
have that f is a Ck function and

f (k)(t) = 〈ψ, (i A)kUtϕ〉 = i k〈ψ, BUtϕ〉
= i k〈B∗ψ, Utϕ〉 = −i k+1 f (t) (8.3)

If g(t) = eiαt , then g solves (8.3) if and only if (iα)k = −i k+1, i.e. αk = −i . No
solution of this is real, so g is a linear combination of exponentials which grow
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at different rates at either +∞ or −∞, so the only bounded solution is 0. Since
| f (t)| ≤ ‖ψ‖‖ϕ‖, we conclude that f (0) = 0 so ψ ⊥ D. Since D is dense,
ψ = 0, i.e. ker(B∗ − i) = {0}. Similarly, ker(B∗ + i) = {0}, so B is esa.

Kato proved his famous self-adjointness result to be able to solve the time dependent
Schrödinger equation, ψ̇t = −i Hψt . Chernoff turned this argument around! If one
can solve the equation ψ̇t = −i Aψt for a dense set D in D∞(A) and prove that
ψt=0 ∈ D ⇒ ψt ∈ D, then by Theorem 8.2, all powers of A are esa on D. He
combined this with existence and smoothness results of Friedrichs [173] and Lax
[418] for hyperbolic equations plus finite propagation speed to show that if A is a
hyperbolic equation, then the solution map takes C∞

0 to itself.
In particular, since the Dirac equation is hyperbolic, Chernoff proved

Theorem 8.3 (Chernoff [90]) If T0 is the free Dirac operator, (7.45), and V is a
C∞(R3) function, then T = T0 + V and all its powers are esa on C∞

0 (R3; C
4).

Notice that there are no restrictions on the growth of V at ∞. This is an expression
of the fact that for the Dirac equation, no boundary condition is needed at infinity—
intuitively, this is because the particle cannot get to infinity in finite time because speeds
are bounded by the speed of light! Several years after his initial paper, Chernoff [92]
used results on solutions of singular hyperbolic equations and proved the following
version of the fact that Dirac equations have no boundary condition at infinity:

Theorem 8.4 Let T0 be the free Dirac equation and V ∈ L2
loc(R

3) (so T0 + V is
defined on C∞

0 (R3; C
4)). Suppose for each x0 ∈ R

3, there is a V (x0) equal to V in a
neighborhood of x0 and so that T0 + V (x0) is esa on C∞

0 (R3; C
4). Then T0 + V is esa

on C∞
0 (R3; C

4).
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Combining this with Schmincke’s result (Theorem 7.13) one gets

Corollary 8.5 Let T0 be a free Dirac operator. Let V be a measurable function so
that for some sequence {x j }N

j=1 (with N finite or infinite) with no finite limit point, we
have that

(a) There are constants μ j <
√
3/2 and C j so that for x near x j , say x obeys

|x − x j | ≤ 1
2 mink �= j |x j − xk |, one has that

|V (x)| ≤ μ j |x − x j |−1 + C j (8.4)

(b) V is locally bounded near any x /∈ {x j }N
j=1.

Then T0 + V is esa on C∞
0 (R3; C

4).

Other results on esa for Dirac operators which are finite sums of Coulomb potentials
include [293,305,374,408–410,463].

At first sight, this lovely idea seems to have nothing to dowith Schrödinger operators
since that equation isn’t hyperbolic; after all it has infinite propagation speed and even
for the free case, the dynamical unitary group doesn’t leave the C∞

0 functions fixed.
But the wave equation

∂2u

∂t2
= (� − V )u (8.5)

is hyperbolic (and has finite propagation speed, namely 1). It is second order in t but
can be written as a first order equation:

v = ∂u

∂t
,

∂v

∂t
= −Bu, B = −� + V (8.6)

or equivalently
∂

∂t

(
u
v

)
= −i A

(
u
u

)
; −i A =

(
0 1

−B 0

)
(8.7)

If V is in C∞(Rν), one can use hyperbolic theory to prove solutions exist for
(u(0), v(0)) ∈ C∞

0 (Rν) × C∞
0 (Rν) and the solution remains in this space. To apply

Theorem 8.2, we need this dynamics to be unitary. The energy

E(u, v) = 〈v, v〉 + 〈u, Bu〉 (8.8)

is formally conserved, so it is natural to use E as the square of a Hilbert space norm.
For this to work, one needs that B ≥ c1 with c > 0. Actually, so long as B is bounded
from below we can add a constant to B so that B ≥ 1 which we’ll assume. When
this is so, one can prove that on the Hilbert space L2(Rν) ⊕ Q(−� + V ) (where Q
is the quadratic form of the Friedrichs extension as discussed in Sect. 10), e−i t A with
A given by (8.7) is a unitary group which leaves D = C∞

0 (Rν) ⊕ C∞
0 (Rν) invariant

and with D ⊂ D∞(A). We note that

A2 = −(i A)2 =
(

B 0
0 B

)
(8.9)
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on D. We have thus related the Schrödinger equation to the square of a hyperbolic
equation so we can use Chernoff’s idea to conclude that

Theorem 8.6 If V is C∞(Rν), so that −� + V is bounded from below on C∞
0 (Rν),

i.e. for some c and all u ∈ C∞
0 (Rν)

〈u, (−� + V )u〉 ≥ c〈u, u〉 (8.10)

then −� + V is esa-ν.

Remarks 1. This proof of the result appeared in Chernoff [90], but the result itself
appeared earlier in Povzner [485] and Wienholtz [683].

2. In his second paper, Chernoff [92] handled singular V ’s and also used the idea of
Katowe’ll describe shortly and alsoKato’s inequality ideas (see Sect. 9).He proved
that−�+V is esa-ν if V = U −W withU, W ≥ 0,U ∈ L2

loc(R
ν), W ∈ L p

loc(R
ν)

(with p ν-canonical) and −� + V + cx2 bounded from below for some c > 0.

In [341], Kato showed how to modify Chernoff’s argument to extend Theorem 8.6
to replace the condition that −� + V is bounded from below by the condition that
for some c > 0, one has that −� + V + cx2 is bounded from below (and thereby
gets a Wienholtz–Ikebe–Kato type of result). Kato’s idea (when c = 1) was to solve
∂2u
∂t2

= (� − V )u − 4t2u. He was able to prove that ‖u(t)‖2 (which is bounded in the
case−�+ V is bounded below) doesn’t grow worse than |t |3 and then push through a
variant of the Chernoff–Nelson argument (since a |t |3 bound can eliminate exponential
growth).

This completes our discussion of the Chernoff approach. The underlying self-
adjointness criterion of Nelson needed for the Faris–Lavine approach is

Theorem 8.7 (Nelson’s Commutator Theorem [462]) Let A, N be two symmetric
operators so that N is self-adjoint with N ≥ 1. Suppose that D(N ) ⊂ D(A) and there
are constants c1 and c2 so that for all ϕ,ψ ∈ D(N ) we have that

|〈ϕ, Aϕ〉| ≤ c1〈ϕ, Nϕ〉 (8.11)

|〈Aϕ, Nϕ〉 − 〈Nϕ, Aϕ〉| ≤ c2〈ϕ, Nϕ〉 (8.12)

Then A is esa on any core for N.

Remarks 1. The name comes from the fact that 〈Aψ, Nϕ〉 − 〈Nψ, Aϕ〉 =
〈ψ, [N , A]ϕ〉 if Nϕ ∈ D(A) and Aϕ ∈ D(N ).

2. Nelson [462] was motivated by Glimm–Jaffe [193] which also required bounds
on [N , [N , A]] which would not apply to the Faris–Lavine choices without extra
conditions on V .

3. For a proof, see Nelson [462] or Reed–Simon [495, Theorem X.36].

To illustrate the use of this theorem, here is a special case of the Faris–Lavine
theorem (see Faris–Lavine [148] or Reed–Simon [495, Theorem X.38] for the full
theorem) that gives a V (x) ≥ −x2 type of result:
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Theorem 8.8 (Faris–Lavine [148]) Let V (x) ∈ L2
loc(R

ν) and obey:

V (x) ≥ −cx2 − d (8.13)

Then −� + V is esa-ν.

Proof By a simple argument, we can assume c = 1, d = 0. Let N = −� + V + 2x2

by which we mean the closure of that sum on C∞
0 (Rν). Let A be the operator closure

of −� + V � C∞
0 (Rν). By Theorem 9.1 below, N is self-adjoint. N − A = 2x2 ≥ 0

while N + A = −� + (2V (x) + 2x2) ≥ 0 so ±A ≤ N which is (8.10).
The same method that proved (3.33) implies an estimate ‖x2ϕ‖ ≤ a‖Nϕ‖ on

C∞
0 (Rν) so ϕ ∈ D(N ) ⇒ x2ϕ ∈ L2 ⇒ ϕ ∈ D(A). Thus D(N ) ⊂ D(A).
By (8.13) N ≥ −� + x2 ≥ ±(x · p + p · x) (by completing the square). Note that

i[N ,−� + V ] = i[2x2,−� + V ]
= 2i[x2, p2]
= −4(x · p + p · x)

so |〈Nϕ, Aϕ〉−〈Aϕ, Nϕ〉| ≤ c〈ϕ, Nϕ〉.We can applyTheorem8.7 to see that−�+V
is esa-ν. ��

9 Self-adjointness, III: Kato’s inequality

This section will discuss a self-adjointness method that appeared in Kato [340] based
on a remarkable distributional inequality. Its consequences is a subject to which Kato
returned often with at least seven additional papers [73,343,348,349,351,355,356].
It is also his work that most intersected my own—I motivated his initial paper and
it, in turn, motivated several of my later papers. Throughout this section, we’ll use
quadratic form ideas that we’ll only formally discuss in Sect. 10 (see [616, Section
7.5]).

To explain the background, recall that in Sect. 7, we defined p to be ν-canonical
(ν is dimension) if p = 2 for ν ≤ 3, p > 2 for ν = 4 and p = ν/2 for ν ≥ 5. For
now, we focus on ν ≥ 5 so that p = ν/2. As we saw, if V ∈ L p(Rν) + L∞(Rν), then
−� + V is esa-ν. The example V (x) = −λ|x |−2 for λ sufficiently large shows that
p = ν/2 is sharp. That is, for any 2 ≤ q ≤ ν/2, there is a V ∈ Lq(Rν) + L∞(Rν),
so that −� + V is defined on but not esa on C∞

0 (Rν).
In these counterexamples, though, V is negative. It was known since the late 1950s

(see Sect. 8) that while the negative part of V requires some global hypothesis for
esa-ν, the positive part does not (e.g. −� − x4 is not esa-ν while −� + x4 is esa-ν).
But when I started looking at these issues around 1970, there was presumption that for
local singularities, there was no difference between the positive and negative parts. In
retrospect, this shouldn’t have been the belief!After all, aswe’ve seen (see theRemarks
after Proposition 7.7), limit point–limit circle methods show that if V (x) = |x |−α with
α < ν/2 (to make V ∈ L2

loc so that −� + V is defined on C∞
0 (Rν)) then −� + V is

esa-ν although −� − V is not. (Limit point–limit circle methods apply for −� + V
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for any α if we look at C∞
00 (R

ν) but then only when α < ν/2, we can extend the
conclusion to C∞

0 (Rν).) This example shows that the conventional wisdomwas faulty
but people didn’t think about separate local conditions on

V+(x) ≡ max(V (x), 0); V−(x) = max(−V (x), 0) (9.1)

Kato’s result shattered the then conventional wisdom:

Theorem 9.1 (Kato [340]) If V ≥ 0 and V ∈ L2
loc(R

ν), then −� + V is esa-ν.

Remark As we’ll see later, this extends, for example, to V+ ∈ L2
loc, V− ∈ L p

uni f with
p ν-canonical

Kato’s result was actually a conjecture that I made on the basis of a slightly weaker
result that I had proven:

Theorem 9.2 (Simon [575]) If V ≥ 0 and V ∈ L2(Rν, e−cx2 dνx) for some c > 0,
then −� + V is esa-ν.

Of course this covers pretty wild growth at infinity but Theorem 9.1 is the definitive
result since one needs that V ∈ L2

loc(R
ν) for −� + V to be defined on all functions

in C∞
0 (Rν).

I found Theorem 9.2 because I was alsoworking at the time in constructive quantum
field theory which was then studying the simplest interacting field models ϕ4

2 and
P(ϕ)2 (the subscript 2 means two space–time dimensions). To start with, one wanted
to define H0 + V where H0 was a positive mass free quantum field Hamiltonian and
V a spatially cutoff interaction. Nelson [461] realized that one could view H0 as an
infinite sum of independent harmonic oscillators (shifted to have ground state energy
0) which he analyzed as follows: For a single variable oscillator on L2(R, dx), there
is a unit vector �0 with H0�0 = 0. The map U f �→ f �−1

0 maps L2(R, dx) unitarily
to L2(R,�2

0 dx) and Nelson analyzed A0 = U H0U−1 on L2(R,�2 dx) and found
(with dμ = �2 dx a probability measure on X = R) that

‖e−t A0ϕ‖p ≤ ‖ϕ‖p all ϕ ∈ L p(X, dμ), all t > 0 (9.2)

‖e−T A0ϕ‖4 ≤ B‖ϕ‖2 T large enough (9.3)

By taking products, he got similar bounds on the infinite dimensional spaces of the
field theory (he was restricted to a field theory with a periodic boundary condition but
Glimm [191] did the full theory). Eventually, semigroups, e−t A0 , obeying (9.2)/(9.3)
were called hypercontractive semigroups. [615, Section 6.6] has a lot on the general
theory and the history.

Nelson also proved that the V of the cutoff field theory wasn’t bounded below but
it did obey

V ∈ L p(X, dμ), p < ∞ and e−sV ∈ L1(X, dμ), all s > 0 (9.4)

He also showed that (9.2), (9.3), (9.4) ⇒ A0 + V is bounded from below on D(A0)∩
D(V ).
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Segal [548,549] then proved that these same hypotheses imply that A0 + V is esa
on D(A0)∩ D(V ) (for the field theory case Glimm–Jaffe [192] and Rosen [527] using
Nelson’s estimates but additional properties had earlier proven esa for this specific
situation).

Simon–Høegh Krohn [618] systematized these results and showed that if V ≥ 0,
one can replace V ∈ L p for some p > 2 by V ∈ L2(X, dμ). The Simon–Høegh
Krohn paper was written in 1970. In 1972, I realized that by looking at −� + x2 on
L2(Rν), one could prove that if V ≥ 0 and V ∈ L2(Rν, e−x2 dx), then −�+ V + x2

is esa-ν. Arguments like those that proved (3.33), using that [xi , [xi ,−� + V + x2]]
is a constant, show that one has that

‖x2ϕ‖2 ≤ ‖(−� + V + x2)ϕ‖2 + b‖ϕ‖2 (9.5)

so by Wüst’s theorem (see the discussion around (7.14)), one sees that −� + V =
−� + V + x2 − x2 is esa-ν. This idea of adding an operator C to A + B so that C is
A + C + B bounded with relative bound one so one can use Wüst theorem is called
Konrady’s trick after Konrady [386]

Within a few weeks of my sending out a preprint with Theorem 9.2 and the con-
jecture of Theorem 9.1, I received a letter from Kato proving the conjecture by what
appeared to be a totally different method. Over the next few years, I spent some effort
understanding the connection between Kato’s work and semigroups. I will begin the
discussion here by sketching a semigroup proof of Theorem 9.1, then give Kato’s
proof of this theorem, then discuss semigroup aspects of Kato’s inequality and finally
discuss some other aspects of Kato’s paper [340].

After the smoke cleared, it was apparent that my failure to get the full Theorem
9.1 in 1972 was due to my focusing on L p properties of semigroups on probability
measure spaces rather than on L p(Rν, dνx). As a warmup to the semigroup proof of
Theorem 9.1, we prove (we use quadratic form ideas only discussed in Sect. 10)

Theorem 9.3 (Simon [595]) Let V ≥ 0 be in L1
loc(R

ν, dνx) and let a ∈
L2

loc(R
ν, dνx) be an R

ν valued function. Let Q(D2
j ) = {ϕ ∈ L2(Rν, dνx) | (∇ j −

ia j )ϕ ∈ L2(Rν, dνx)} with quadratic form 〈ϕ,−D2
j ϕ〉 = ‖(∇ j − ia j )ϕ‖2. Let h be

the closed form sum
∑ν

j=1 −D2
j + V . Then C∞

0 (Rν) is a form core for h.

Remarks 1. For a = 0, this result was first proven by Kato [343], although [616]
mistakenly attributes it to Simon.

2. Kato [348] proved this result if a ∈ L2
loc is replaced by a ∈ Lν

loc and he conjectured
this theorem.

3. Since a j ∈ L2
loc, we have that a jϕ ∈ L1

loc so (∇ j − ia j )ϕ is a well defined
distribution and it makes sense to say that it is in L2.

4. Just as V ∈ L2
loc is necessary for Hϕ to lie in L2 for all ϕ ∈ C∞

0 (Rν), V ∈ L1
loc

and a ∈ L2
loc are necessary for C∞

0 ⊂ Vh .
5. There is an analog of Theorem 9.1 with magnetic field. If V ≥ 0, one needs to

have V ∈ L2
loc, a ∈ L4

loc and ∇ · −→a ∈ L2
loc for H to be defined as an operator

on C∞
0 . It is a theorem of Leinfelder–Simader [420] that this is also sufficient for
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esa-ν (see [101, Section 1.4] for a proof along the lines discussed below for the
current theorem).

6. Kato [343] has a lovely way of interpreting that C∞
0 is a form core. A natural

maximal operator domain for the operator associated with h is Hmax defined on
(here Vh = Q(V ) ∩⋂ν

j=1 Q(Dν
j ))

D(Hmax ) = Vh ∩ {ϕ |
ν∑

j=1

−D2
j ϕ + V ϕ ∈ L2(Rν)} (9.6)

Since ϕ ∈ Vh , we have that D jϕ ∈ L2 which implies that a j D jϕ ∈ L1
loc and

∇ j D jϕ makes sense as a distribution. Also ϕ ∈ Vh ⇒ V 1/2ϕ ∈ L2 ⇒ V ϕ =
V 1/2(V 1/2ϕ) ∈ L1

loc so −D2
j ϕ + V ϕ is a well defined distribution. What Kato

shows is that if H is the operator associated to the closed form, h, then Hmax

symmetric ⇐⇒ Hmax = H ⇐⇒ C∞
0 is a form core for h.

Here is a sketch of a proof of Theorem 9.3 following [595]
Step 1. Use Kato’s ultimate Trotter product formula of Sect. 18 in Part 2 (for ν + 1

rather than 2 operators, so one needs the result of Kato–Masuda [364]; we note these
results weren’t available in 1972 but they are only needed for the case a �= 0) to see
that

|(e−t H ϕ)(x)| ≤ (|et�|ϕ|) (x) (9.7)

which is implied by

|(e−tV ϕ)(x)| ≤ |ϕ|(x) (9.8)

|(et D2
j ϕ)(x)| ≤

(
|et∂2j |ϕ|

)
(x) (9.9)

(We note that (9.7) is called a diamagnetic inequality; we’ll say more about its history
below.)

Step 2. This step proves (9.9). Since V ≥ 0, (9.8) is trivial. Define

λ j (x) =
∫ x j

0
a j (x1, . . . , x j−1, s, x j+1, . . . , xν) ds

so ∂ jλ j = a j in distributional sense. One proves that D j = eiλ j ∂ j e−iλ j in the sense
that ϕ �→ e−iλ j maps D(D j ) to D(∂ j ) and the unitary map U : ϕ �→ e−iλ j ϕ obeys

et D2
j = Uet∂2j U−1. From this and the fact that et∂2j is positivity preserving, (9.9)

follows. From the point of view of physics, we exploit the fact that 1D magnetic fields
can be “gauged away”.

Step 3. Let g ∈ C∞
0 (Rν). Then ϕ �→ gϕ maps Q(H) to itself. Moreover, if

g(x) = 1 for |x | ≤ 1 and gn(x) = g(x/n), then for any ϕ ∈ Q(H) we have
that gnϕ → ϕ in the form norm of H . Since V 1/2ϕ ∈ L2 ⇒ gV 1/2ϕ ∈ L2 and
‖(gn − 1)V 1/2ϕ‖2 → 0, we see that the V pieces behave as claimed. Moreover,
D j (gϕ) = gD jϕ + (∂ j g)ϕ as distributions, so D jϕ, ϕ ∈ L2 ⇒ D j (gϕ), gϕ ∈ L2

and since ‖∂ j gn‖∞ ≤ Cn−1, we get the required convergence.
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Step 4. Since et� maps L2 to L∞, by (9.7), we have that e−H [L2], which is a form
core for H , lies in L∞. We conclude by step 3 that {ϕ ∈ Q(H) | ϕ ∈ L∞ and ϕ has
compact support} is a core for H .

Step 5.Wehaven’t yet usedV ∈ L1
loc in that the above argumentswork, for example,

if V (x) = |x |−β for any β > 0. We now want to look at k ∗ ϕ for k ∈ C∞
0 (Rν) and

for β > ν it is easy to see that ϕ �→ k ∗ ϕ does not leave Q(|x |−β) invariant (since
such functions must vanish at x = 0).

If ϕ is bounded with compact support and V ∈ L1
loc it is easy to see that for

k ∈ C∞
0 (Rν), we have that V 1/2(k ∗ϕ) ∈ L2 and if kn is an approximate identity, that

‖V 1/2(kn ∗ ϕ) − V 1/2ϕ‖ → 0. Similarly, if (∂ j − ia j )ϕ ∈ L2 and ϕ bounded with
compact support, then ∂ jϕ ∈ L2 so D j (k∗ϕ) ∈ L2 and if kn is an approximate identity,
then ‖D j (kn ∗ ϕ) − D jϕ‖ → 0. It follows thatC∞

0 (Rν) is a form core concluding this
sketch of the proof of Theorem 9.3.

Next, we provide our first proof of Theorem 9.1 following [595]. So we have,
V ≥ 0, V ∈ L2

loc and a = 0. By the just proven Theorem 9.3 and Remark 5 after the
statement of the theorem:

D(H) = {ϕ ∈ L2 | ∇ϕ ∈ L2, V 1/2ϕ ∈ L2,−�ϕ + V ϕ ∈ L2} (9.10)

where−�ϕ+V ϕ is viewed as a sum of distributions. If g ∈ C∞
0 (Rν) and ϕ ∈ D(H),

then
H(gϕ) = g(Hϕ) − 2∇g · ∇ϕ − (�g)ϕ

so ϕ �→ gϕ maps D(H) to itself with gnϕ → ϕ (gn(x) = g(x/n); g(x) ≡ 1 for x
near 0) in graph norm for any ϕ ∈ D(H). Moreover, as above, e−t H [L2] ⊂ L∞ and is
an operator core for H . It follows that the set of bounded, compact support functions
in D(H) is a core. For any such function, it is easy to see that if hn is an approximate
identity, then hn ∗ ϕ → ϕ in graph norm so we conclude esa-ν completing the first
proof of Theorem 9.1.

We next turn to Kato’s original approach to proving his theorem, Theorem 9.1. He
proved

Theorem 9.4 (Kato’s inequality) Let u ∈ L1
loc(R

ν) be such that its distributional
Laplacian, �u is also in L1

loc(R
ν). Define

sgn(u)(x) =
{

u(x)/|u(x |), if u(x) �= 0
0, if u(x) = 0

(9.11)

(so u sgn(u) = |u|). Then as distributions

�|u| ≥ Re
[
sgn(u)�u

]
(9.12)

Remarks 1. What we call sgn(u), Kato calls sgn(ū).
2. We should pause to emphasizewhat a surprise thiswas.Katowas a long established

master of operator theory. Hewas 55 years old. Seemingly from left field, he pulled
a distributional inequality out of his hat. It is true, like other analysts, that he’d
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been introduced to distributional ideas in the study of PDEs, but no one had ever
used them in this way. Truly a remarkable discovery.

The proof is not hard. By replacing u by u ∗ hn with hn a smooth approximate
identity and taking limits (using sgn(u ∗ hn)(x) → sgn(u)(x) for a.e. x and using a
suitable dominated convergence theorem), we can suppose that u is a C∞ function.
In that case, for ε > 0, let uε = (ūu + ε2)1/2. From u2

ε = ūu + ε2, we get that

2uε
−→∇ uε = 2Re(ū

−→∇ u) (9.13)

which implies (since |ū| ≤ uε) that

|−→∇ uε | ≤ |−→∇ u| (9.14)

Applying 1
2
−→∇ · to (9.13), we get that

uε�uε + |−→∇ uε |2 = Re(ū�(u)) + |−→∇ u|2 (9.15)

Using (9.14) and letting sgnε(u) = ū/uε , we get that

�uε ≥ Re(sgnε(u)�u) (9.16)

Taking ε ↓ 0 yields (9.12).
Once we have (9.12), here is Kato’s proof of Theorem 9.1 (the second proof that

we sketch). Consider T , the operator closure of −� + V on C∞
0 (Rν). T ≥ 0, so,

by a simple argument ([495, Corollary to Theorem X.1]), it suffices to show that
ran(T + 1) = H or equivalently, that T ∗u = −u ⇒ u = 0. So suppose that u ∈
L2(Rν) and that

T ∗u = −u (9.17)

Since T ∗ is defined via distributions, (9.17) implies that

�u = (V + 1)u (9.18)

Since u and V +1 are both in L2
loc, we conclude that�u ∈ L1

loc so byKato’s inequality

�|u| ≥ (sgn(u))(V + 1)u = |u|(V + 1) ≥ |u| (9.19)

Convolution with non-negative functions preserves positivity of distributions, so for
any non-negative h ∈ C∞

0 (Rν), we have that

�(h ∗ |u|) = h ∗ �|u| ≥ h ∗ |u| (9.20)

Since u ∈ L2, h∗u is aC∞ functionwith classical Laplacian in L2, so h∗u ∈ D(−�).
(−� + 1)−1 has a positive integral kernel, so (9.20)⇒ (−� + 1)(h ∗ |u|) ≤ 0 ⇒

123



196 B. Simon

h ∗ |u| ≤ 0 ⇒ h ∗ |u| = 0. Taking hn to be an approximate identity, we have that
hn ∗ u → u in L2, so u = 0 completing the proof.

At first sight, Kato’s proof seems to have nothing to do with the semigroup ideas
used in the proof of Theorem 9.2 and our first proof of Theorem 9.1. But in trying to
understand Kato’s work, I found the following abstract result:

Theorem 9.5 (Simon [582]) Let A be a positive self-adjoint operator on L2(M, dμ)

for aσ -finite, separable measure space (M, �, dμ). Then the following are equivalent:

(a) (e−t A is positivity preserving)

∀u ∈ L2, u ≥ 0, t ≥ 0 ⇒ e−t Au ≥ 0

(b) (Beurling–Deny criterion) u ∈ Q(A) ⇒ |u| ∈ Q(A) and

qA(|u|) ≤ qA(u) (9.21)

(c) (Abstract Kato Inequality) u ∈ D(A) ⇒ |u| ∈ Q(A) and for all ϕ ∈ Q(A) with
ϕ ≥ 0, one has that

〈A1/2ϕ, A1/2|u|〉 ≥ Re〈ϕ, sgn(u)Au〉 (9.22)

The equivalence of (a) and (b) for M a finite set (so A is amatrix) is due to Beurling–
Deny [54]. For a proof of the full theorem (which is not hard), see Simon [582] or
[616, Theorem 7.6.4].

In his original paper, Kato [340] proved more than (9.12). He showed that

�|u| ≥ Re
[
sgn(u)(

−→∇ − i−→a )2u
]

(9.23)

In [340], he required that−→a to beC1(Rν) but he implicitly considered less regular−→a ’s
in [348]. For smooth a’s, one gets (9.23) as we got (9.12). Since Re(ū(−ia)u) = 0,
(9.13), with D = ∇ − ia implies that

uε∇uε = Re(ū Du) (9.24)

which implies that
|∇uε | ≤ |Du| (9.25)

Note next that
∇ j (ū D j u) = [

(∇ j + ia j )ū
]

D j u + ū D2
j u

since ia j ū D j u + ū(−ia j )D j u = 0. Thus applying
−→∇ to (9.24) yields

uε�uε + |∇uε |2 = |Du|2 + Re(ū D2u) (9.26)

By (9.25), we get (9.23).
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In [340], Kato followed his arguments to get Theorem 9.1 with −� + V replaced
by −(∇ − ia)2 + V when a ∈ C1(Rν), V ∈ L2

loc(R
ν), V ≥ 0. But there was a more

important consequence of (9.23) than a self-adjointness result. In [580], I noted that
(9.23) implies, by approximating |u| by positive ϕ ∈ C∞

0 (Rν), that

〈|u|,�|u|〉 ≥ 〈u, D2u〉

which implies that

〈u, (−D2 + V )u〉 ≥ 〈|u|, (−� + V )|u|〉 (9.27)

This in turn implies that turning on a magnetic field always increases the ground state
energy (for spinless bosons), something I called universal diamagnetism.

If one thinks of this as a zero temperature result, it is natural to expect a finite tem-
perature result (that is, for, say, finitematrices, one has that limβ→∞ −β−1Tr(e−β A) =
inf σ(A) which in statistical mechanical terms is saying that as the temperature goes
to zero, the free energy approaches a ground state energy).

Tr(e−t H(a,V )) ≤ Tr(e−t H(a=0,V )) (9.28)

where
H(a, V ) = −(∇ − ia)2 + V (9.29)

This suggested to me the inequality

|e−t H(a,V )ϕ| ≤ e−t H(a=0,V )|ϕ| (9.30)

I mentioned this conjecture at a brown bag lunch seminar when I was in Princeton.
Ed Nelson remarked that formally, it followed from the Feynman–Kac–Ito formula
for semigroups in magnetic fields which says that adding a magnetic field with gauge,−→a , adds a factor exp(i

∫ −→a (ω(s)) · dω) to the Feynman–Kac formula (the integral
is an Ito stochastic integral). (9.30) is immediate from | exp(i ∫ −→a (ω(s)) · dω)| = 1
and the positivity of the rest of the Feynman–Kac integrand. Some have called (9.30)
the Nelson–Simon inequality but the name I gave it, namely diamagnetic inequality,
has stuck.

The issue with Nelson’s proof is that at the time, the Feynman–Kac–Ito was only
known for smooth a’s. One can obtain the Feynman–Kac–Ito for more general a’s
by independently proving a suitable core result. Simon [582] and then Kato [348]
obtained results for more and more singular a’s until Simon [595] proved

Theorem 9.6 (Simon [595]) (9.30) holds for V ≥ 0, V ∈ L1
loc(R

ν) and −→a ∈ L2
loc.

Indeed, our proof of (9.7) above implies this if we don’t use (9.8) but keep e−tV

(equivalently, if we just use (9.9)).
As with Theorem 9.5, there is an abstract two operator Kato inequality result (orig-

inally conjectured in Simon [582]):
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Theorem 9.7 (Hess–Schrader–Uhlenbrock [247], Simon [596]) Let A and B be two
positive self-adjoint operators on L2(M, dμ) where (M, �, dμ) is a σ -finite, sepa-
rable measure space. Suppose that ϕ ≥ 0 ⇒ e−t Aϕ ≥ 0. Then the following are
equivalent:

(a) For all ϕ ∈ L2 and all t ≥ 0, we have that

|e−t Bϕ| ≤ e−t A|ϕ|

(b) ψ ∈ D(B) ⇒ |ψ | ∈ Q(A) and for all ϕ ∈ Q(A) with ϕ ≥ 0 and all ψ ∈ D(B)

we have that
〈A1/2ϕ, A1/2|ψ |〉 ≤ Re〈ϕ, sgn(ψ)Bψ〉 (9.31)

For a proof, see the original papers or [616, Theorem 7.6.7].
As one might expect, the ideas in Kato [340] have generated an enormous liter-

ature. Going back to the original paper are two kinds of extensions: replace � by∑ν
i, j=1 ∂i ai j (x)∂ j and allowing q(x) → −∞ as |x | → ∞ with lower bounds of

the Wienholtz–Ikebe–Kato type as discussed in Sect. 8. Some papers on these ideas
includeDevinatz [117], Easthamet al. [130], Evans [132], Frehse [166],Güneysu–Post
[210], Kalf [299], Knowles [379–381], Milatovic [445] and Shubin [553]. There is a
review of Kato [351]. For applications to higher order elliptic operators, see Davies–
Hinz [104], Deng et al. [114] and Zheng–Yao [711]. There are papers on V ’s obeying
V (x) ≥ −ν(ν − 4)|x |−2; ν ≥ 5, some using Kato’s inequality by Kalf–Walter [302],
Schmincke [539], Kalf [297], Simon [576], Kalf–Walter [303] and Kalf et. al. [300].

Kato himself applied these ideas to complex valued potentials in three papers [73,
349,355]. In particular, Brézis–Kato [355] has been used extensively in the nonlinear
equation literature as part of a proof of L p regularity of eigenfunctions.

There is one final aspect of [340] which should be mentioned. In it, Kato introduced
a condition on the negative part of the potential that I dubbed Kato’s class and denoted
Kν and which has since been used extensively. Earlier, Schechter [535] had introduced
a family of spaces with several parameters which agrees with Kν for one choice of
parameters but he didn’t single it out. A function, V on R

ν is said to lie in Kν if and
only if

⎧⎪⎪⎨
⎪⎪⎩
limα↓0

[
supx

∫
|x−y|≤α

|x − y|2−ν |V (y)| dν y
]

= 0, if ν > 2

limα↓0
[
supx

∫
|x−y|≤α

log(|x − y|−1)|V (y)| dν y
]

= 0, if ν = 2

supx

∫
|x−y|≤1 |V (y)| dy < ∞, if ν = 1

(9.32)

K loc
ν is those where we demand (9.32) not for supx but rather, for each x0 for

sup|x−x0| ≤ 1. Note that the class Sν of Section 7 is an operator analog of this and was
motivated by Kato’s definition. There are analogs of Theorem 7.10 and 7.11 for Kν ,
see [101, Section 1.2].

Kato used Kν to discuss local (and global) singularities of the negative part of
V . Ironically, Kν is not maximal for such considerations. If ν ≥ 3 and V (x) =
|x |−2 log(|x |−1)−δ (for |x | < 1

2 ), then V ∈ Kν ⇐⇒ δ > 1 but V is form bounded if
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and only if δ > 0. However, Aizenman–Simon [7] have proven the following showing
the naturalness of Kato’s class for semigroup considerations:

Theorem 9.8 (Aizenman–Simon [7])Let V ≤ 0 have compact support. Then V ∈ Kν

if and only if e−t H , (H = −� + V ) maps L∞(Rν) to itself for all t > 0 and

lim
t↓0‖e−t H ‖∞,∞ = 1 (9.33)

For more on this theme, see [7,600].

10 Self-adjointness, IV: quadratic forms

Hilbert, around 1905, originally discussed operators on inner product spaces in terms
of (bounded) quadratic forms, not surprising given Hilbert’s background in number
theory. F. Riesz emphasized the operator theory point of view starting in 1913 and von
Neumann’s approach to unbounded operators in 1929 also emphasized the operator
point of view which has dominated most of the discussion since. In the 1930s and
1940s, there was work in which the quadratic form point of view was implicit but it
was only in the 1950s that forms became explicitly discussed objects and Kato was a
major player in this development. In this section, we’ll first describe the basic theory
and give a Kato–centric history and then discuss two special aspects in which Kato
had seminal contributions: first, the theory of monotone convergence for forms and
secondly, the theory of pseudo-Friedrichs extensions and its application to the Dirac
Coulomb problem, as well as some other work of Kato on theDirac Coulomb problem.

In his delightful reminisces of Kato, Cordes [97] quotes Kato as saying “there is
no decent Banach space, except Hilbert space.” While this ironic given Kato’s devel-
opment of eigenvalue perturbation theory and semigroup theory in general Banach
spaces, it is likely he had in mind the spectral theorem and the subject of this section.

LetH be a (complex, separable) Hilbert space. A quadratic form is a map q : H →
[0,∞]with∞ an allowed value that is quadratic and obeys the parallelogram law, i.e.

q(zϕ) = |z|2q(ϕ), all ϕ ∈ H, z ∈ C (10.1)

q(ϕ + ψ) + q(ϕ − ψ) = 2q(ϕ) + 2q(ψ) (10.2)

where a∞ = ∞ (for a > 0), = 0 for a = 0 and ∞ + a = a + ∞ = ∞ for any
a ∈ [0,∞]. The form domain of q is

Vq = {ϕ | q(ϕ) < ∞} (10.3)

A sesquilinear form is a pair (V, Q) of a subspace V ⊂ H (V is not necessarily a
closed and/or dense subspace. Typically V is dense inH, but as we’ll see in Sect. 18 in
Part 2, there are very interesting caseswhereV is not dense.) and amap Q : V ×V → C
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obeying

∀ψ ∈ V, ϕ �→ Q(ψ, ϕ) is linear (10.4)

∀ϕ,ψ ∈ V, Q(ψ, ϕ) = Q(ϕ, ψ) (10.5)

which imply that ∀ψ ∈ V, ϕ ∈ V �→ Q(ϕ, ψ) is antilinear. Q is called positive if and
only if ∀ϕ ∈ V one has that Q(ϕ, ϕ) ≥ 0.

An elementary fact is:

Theorem 10.1 There is a one-one correspondence between quadratic forms and pos-
itive sesquilinear forms given by

(a) If (V, Q) is a sesquilinear form, define a quadratic form, q, by

q(ϕ) =
{

Q(ϕ, ϕ) if ϕ ∈ V
∞, if ϕ /∈ V

(10.6)

(so Vq = V ).
(b) If q is a quadratic form, take V = Vq and define a map, Q on V × V by

Q(ϕ, ψ) = 1
4 [q(ϕ + ψ) − q(ϕ − ψ) + iq(ϕ − iψ) − iq(ϕ + iψ)] (10.7)

If q : H → (−∞,∞] so that there is an α so that q̃(ϕ) = q(ϕ) + α‖ϕ‖2 is a
(positive) quadratic form, we say that q is a semibounded quadratic form. Theorem
10.1 extends and we speak of semibounded sesquilinear forms (where Q(ϕ, ϕ) ≥ 0 is
replaced by Q(ϕ, ϕ) ≥ −α‖ϕ‖2). For any semibounded sesquilinear form, we define
β = infϕ∈V,ϕ �=0 Q(ϕ, ϕ)/‖ϕ‖2 to be the lower bound of Q.

Given two quadratic forms, q1 and q2, we write

q1 ≤ q2 ⇐⇒ ∀ϕ ∈ H, q1(ϕ) ≤ q2(ϕ) (10.8)

If in addition
q2(ϕ) < ∞ ⇒ q1(ϕ) = q2(ϕ) (10.9)

we say that q1 is an extension of q2. The name comes from the fact that (10.8)/(10.9)
is equivalent to Vq2 ⊂ Vq1 and Q2 = Q1 � Vq2 × Vq2 .

Given a (positive) quadratic form, q, one defines a norm, ‖·‖+1 on Vq by

‖ϕ‖2+1 = q(ϕ) + ‖ϕ‖2 (10.10)

‖·‖+1 is a norm (because of the ‖ϕ‖2, we have that ‖ϕ‖+1 �= 0 if ϕ �= 0 even if
q(ϕ) = 0) which also obeys the parallelogram law so ‖·‖+1 comes from an inner
product [612, Theorem 3.1.6]. We say that q is a closed quadratic form if and only if
V is complete in ‖·‖+1 (see Theorem 10.14 below for an important characterization
of closed forms). A subspace W ⊂ V is called a form core for q if W is dense in V in
‖·‖+1.
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We say that a quadratic form, q, is closable if and only if q has a closed extension.
One can show that there is then a smallest closed extension, q̄ (in that if t is another
closed extension of q, it is also an extension of q̄).

Example 10.2 Let H = L2(R, dx). Define q with Vq = C∞
0 (R) and for ϕ ∈ Vq

q(ϕ) = |ϕ(0)|2 (10.11)

For obvious reasons, we write q = δ(x), the Dirac delta function. One can show [616,
Example 7.5.17] that this form is not closable (see also the Remark after Theorem
10.14 below).

Example 10.3 Let K ⊂ H be a closed subspace, so K is a Hilbert space. Let A
be a self-adjoint operator on K. We recall that the spectral theorem [616, Chapters
5 and Section 7.2] lets one define f (A) as an operator on K for any real valued
measurable function, f , from the spectrum of A to [0,∞). f (A) is self-adjoint with
domain {ϕ | ∫ | f (x)|2dμA

ϕ (x) < ∞} where dμA
ϕ is the spectral measure, defined, for

example by 〈ϕ, (A − z)−1ϕ〉 = ∫
(x − z)−1dμA

ϕ (x) for all z ∈ C\R. In particular, if A
is a positive self-adjoint operator onK, we can define a positive, self-adjoint operator,
A1/2 on K. We define the quadratic form qA on H by

qA(ϕ) =
{ ‖A1/2ϕ‖2, if ϕ ∈ K and ϕ ∈ D(A1/2)

∞, otherwise
(10.12)

This definition is basic even when K = H. It is not hard to prove that this quadratic
form is closed. We call Vq the form domain of A and denote it by Q(A).

Example 10.4 Given A as in the last example and g : σ(A) → [0,∞) which is
continuous and bounded and obeys limt→∞ g(t) = 0, we define g(A) onH by setting
it to the spectral theorem g(A) on K and to 0 on K⊥. If A = 0 on K (and in some
sense ∞ on K⊥), then for any t > 0, we have that e−t A is the orthogonal projection
onto K.

What makes quadratic forms so powerful is that, in a sense, Example 10.3 has a
converse. Here are two versions of this result:

Theorem 10.5 Let q be a closed quadratic form. Let K = Vq. Then there is a unique
positive self-adjoint operator, A, on K so that q = qA.

Remark The closure in Vq means closure in the Hilbert space topology (which in
many cases is the entire Hilbert space).

Theorem 10.6 Let q be a closed quadratic form with Vq dense in H. Then, there is a
unique self-adjoint operator, A, on H so that:

(a) D(A) ⊂ Vq
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(b) If ϕ ∈ D(A), ψ ∈ Vq, then

Qq(ψ, ϕ) = 〈ψ, Aϕ〉 (10.13)

Moreover, D(A) is a form core for A.

Remarks 1. In his book [345], Kato calls Theorem 10.6 the first representation theo-
rem and Theorem 10.5 the second representation theorem. He puts Theorem 10.6
first because it is the version going back to the 1930s (see below). I put Theorem
10.5 first because I think that it is the fundamental result—indeed, it is the only
variant in Reed–Simon [494] and Simon [616].

2. For proofs, see Kato [345], Reed–Simon [494, Theorem VIII.15] or Simon [616,
Theorem 7.5.5].

Example 10.7 Let B be a densely defined symmetric operator onHwith 〈ϕ, Bϕ〉 ≥ 0
for all ϕ ∈ D(B). B might not be self-adjoint. Define a quadratic form, q̃B , (which
differs from qB if B is self-adjoint!) by

q̃B(ϕ) =
{ 〈ϕ, Bϕ〉, if ϕ ∈ D(B)

∞, if ϕ /∈ D(B)
(10.14)

If B is not bounded, one can show that q̃B is never closed but one can prove [616,
Theorem 7.5.19] that it is always closable. If q# is its closure, there is a self-adjoint A
with q# = qA. One can show (it is immediate fromTheorem 10.6) that A is an operator
extension of B so B has a natural self-adjoint extension. It is called the Friedrichs
extension, BF . Unless B is esa, there are lots of other self-adjoint extensions as we’ll
see. It can happen (but usually doesn’t) that B is not esa but has a unique positive
self-adjoint extension.

There is a form analog of the Kato–Rellich theorem:

Theorem 10.8 (KLMN theorem) Let q be a closed quadratic form. Let (VR, R) be a
(not necessarily positive or even bounded from below) sesquilinear form with Vq ⊂ VR

so that for some a ∈ (0, 1) and b > 0 and all ϕ ∈ Vq, we have that

|R(ϕ, ϕ)| ≤ aq(ϕ) + b‖ϕ‖2 (10.15)

Define a quadratic form, s, with Vs = Vq so that for ϕ ∈ Vq, we have that

s(ϕ) = q(ϕ) + R(ϕ, ϕ) + b‖ϕ‖2 (10.16)

Then s is a positive, closed quadratic form.

Remarks 1. The name comes fromKato [323], Lax–Milgram [419], Lions [431] and
Nelson [459].

2. If formally q(ϕ) = 〈ϕ, Aϕ〉, R(ψ, ϕ) = 〈ψ, Cϕ〉, then since s is closed, we have
that s = qD . Then D − b1 gives a self-adjoint meaning to the formal sum A + C .
It is called the form sum.
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3. The proof is really simple. If ‖·‖+1,q and ‖·‖+1,s are the ‖·‖+1 for q and s, then
(10.15) implies that the two norms are equivalent so one is complete if and only
if the other one is.

Example 10.9 Let q be the quadratic form, qA, for A = − d2

dx2
on L2(R, dx). The

same argument that we used to prove (7.12) shows that any ϕ ∈ Vq is a continuous
function and for some C and all ε > 0 and all ϕ ∈ Vq :

|ϕ(0)|2 ≤ C
[
εq(ϕ) + ε−1‖ϕ‖2

]
(10.17)

Thus, by the KLMN theorem, we can define A = − d2

dx2
+ λδ(x) for any λ ∈ R as the

quadratic form qλ with Vqλ = Vq and, for all ϕ ∈ Vq :

qλ(ϕ) = q(ϕ) + λ|ϕ(0)|2 (10.18)

The following is elementary to prove but useful

Theorem 10.10 The sum of two closed quadratic forms is closed

Remarks 1. This allows a definition of a self-adjoint sum of any two positive self-
adjoint operators.

2. It is obvious that Vq1+q2 = Vq1 ∩ Vq2 .
3. There is a similar result for n arbitrary closed forms.
4. The simplest proof is to use the Davies–Kato characterization (below) that closed-

ness is equivalent to lower semicontinuity.

We end our discussion of the general theory by noting some distinctions between
forms and symmetric operators.

1©. There are closed symmetric operators which are not self-adjoint but every closed
quadratic form is the form of a self-adjoint operator.

2©. Every symmetric operator has a smallest closed extension but there exist quadratic
forms with no closed extensions.

3©. If A and B are self-adjoint operators and B is an extension of A (i.e. D(A) ⊂ D(B)

and B � D(A) = A), then A = B. But there exist closed quadratic forms q1 and q2
where q2 is an extension of q1 but q1 �= q2. For example, letH = L2([0, 1], dx)

and q0 given by

q0(ϕ) =
{∫ 1

0 |ϕ′(x)|2 dx, if ϕ ∈ C∞([0, 1])
∞, otherwise

Here C∞([0, 1]) means the functions infinitely differentiable on [0, 1] with one
sided derivatives at the end points. Let q1 be the closure of the restriction of q0
to C∞

0 (0, 1) and q2 the closure of q0. Then q1 is the quadratic form of − d2

dx2

with Dirichlet boundary conditions and q2 the quadratic form of − d2

dx2
with Neu-

mann boundary conditions (see [616, Examples 7.5.25 and 7.5.26]) and q2 is an
extension of q1.
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Having completed our discussion of the general theory, we turn to a brief indication
of its history. In his original paper on self-adjoint operators [663], von Neumann noted
that if A was a closed symmetric operator with

〈ϕ, Aϕ〉 ≥ ε‖ϕ‖2 (10.19)

for some ε > 0 and all ϕ ∈ D(A), A∗ � D(A) + ker(A∗) is a self-adjoint extension
AKvN of A. By looking at (A − ε11)KvN + ε11 for any ε1 < ε, we get self-adjoint
extensions, Bε1 ≥ ε11. von Neumann conjectured there were self-adjoint extensions
with lower bound exactly ε. Many years later, Krein [390] (see also Ando–Nishio
[14]) proved that limε1↑ε Bε1 exists (this follows from the monotone convergence
theorem below). Put differently, given A ≥ 0 symmetric, there is the Krein–von
Neumann extension AKvN ≡ limε2↓0 [(A + ε21)KvN − ε21] which is a positive self-
adjoint extension. (The full theory of positive self-adjoint extensions [616, Theorem
7.5.20] shows the set of such extensions is all positive self-adjoint operators, B with
AKvN ≤ B ≤ AF .)

Friedrichs [168,169] (long before Krein) provided the first proof of von Neumann’s
conjecture (Stone [630] had a proof at about the same time) by a construction related
to the method behind Theorem 10.6. A follow-up paper of Freudenthal [167] did
Friedrichs extension in something close to form language. In the 1950s, work on
parabolic PDEs and NRQM by Kato [323], Lax–Milgram [419], Lions [431] and
Nelson [459] led to a systematic general theory. In particular, Kato’s lecture notes
[323] had considerable impact.

Next, we turn to a discussion of monotone convergence of quadratic forms. Given
a closed form, q, with K the closure of Vq , define for z ∈ C\R

( Ã − z)−1 ≡ (A − z)−1PK (10.20)

i.e. under H = K ⊕ K⊥, ( Ã − z)−1 = (A − z)−1 ⊕ 0, consistent with how we said
to define f (A).

We will need the following result of Simon [586] (see also [616, Theorem 7.5.15])

Theorem 10.11 Any quadratic form q has an associated closed quadratic form, qr ,
which is the largest closed form less than q, i.e. qr ≤ q and if t is closed with t ≤ q,
then t ≤ qr .

Remarks 1. One defines qs = q − qr . More precisely, Vqs = Vq and for ϕ ∈ Vq we
have that qs(ϕ) = q(ϕ) − qr (ϕ). “r” is for regular and “s” for singular.

2. Let μ and ν be two probability measures on a compact space, X, and dν =
f dμ + dνs with dνs singular wrt dμ the Lebesgue decomposition (see [612,
Theorem 4.7.3]). IfH = L2(X, dμ) and if qν is defined with Vqν = C(X) and for
ϕ ∈ C(X)

qν(ϕ) =
∫

|ϕ(x)|2dν(x) (10.21)
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then [616, Problem 7.5.7] (qν)r is the closure of the form (on C(X))

ϕ �→
∫

f (x)|ϕ(x)|2dμ (10.22)

whose associated operator is multiplication by f (x) (on the operator domain of
those ϕ with

∫
f (x)2|ϕ(x)|2dμ < ∞). Vqs = C(X). For ϕ ∈ C(X), qs is given

by (10.21) with dν replaced by dνs . In particular, if q is the form of (10.11), then
qr = 0.

The two monotone convergence theorems for (positive) quadratic forms are

Theorem 10.12 Let {qn}∞n=1 be an increasing family of positive closed quadratic
forms. Define

q∞(ϕ) = lim
n→∞ qn(ϕ) = sup

n
qn(ϕ) (10.23)

Then q∞ is a closed form. If Kn (resp. K∞) is the closure of Vqn (resp. Vqn ) and
An (resp. A∞) the associated self-adjoint operators on Kn (resp. K∞), then for any
z ∈ C\R, we have that

( Ãn − z)−1 s→ (̃A∞ − z)−1 (10.24)

where B̃ is given by (10.20).

Theorem 10.13 Let {qn}∞n=1 be a decreasing family of positive closed quadratic forms.
Define

q∞(ϕ) = lim
n→∞ qn(ϕ) = inf

n
qn(ϕ) (10.25)

Let A∞ be the self-adjoint operator on K∞, the closure of V(q∞)r associated to (q∞)r .
Let An be as in the last theorem. Then (10.24) holds.

Remarks 1. For proofs, see [616, Theorem 7.5.18].
2. Let qn be the form of − 1

n
d2

dx2
+ δ(x) as defined in Example 10.9. Then qn is

decreasing and q∞ is the form δ(x) so that (q∞)r = 0. This shows that in the
decreasing case, the limit need not be closed or even closable.

Theorems of this genre appeared first in Kato’s book [345] (already in the first
edition). He only considered cases where all Vqn are dense. In the increasing case, he
assumed there was a q̃ with Vq̃ dense so that for all n, one has that qn ≤ q̃ . In both
cases, he proved there was a self-adjoint operator, A∞, with An converging to A∞ in
srs. He considered the form q∞(ϕ) = limn qn(ϕ). In the decreasing case, he proved
that if q∞ is closable, its closure is the form of A∞. In the increasing case, he said it
was an open question whether q∞ was the form of A∞. This material from the 1966
first edition was unchanged from the 1976 second edition.

In 1971, Robinson [518] proved Theorem 10.12. He noted that q∞ was closed by
writing qn = ∑n

j=1 s j where s1 = q1, s j = q j − q j−1 if j ≥ 2. Then q∞ = ∑∞
j=1 s j

and he says that the proof that q∞ is closed is the same as the proof that an infinite direct
sum of Hilbert spaces is complete; see Bratteli–Robinson [72, Lemma 5.2.13] for a
detailed exposition of the proof. In 1975, Davies [102] also proved this theorem. His
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proof relied on lower semicontinuity being equivalent to q being closed (see below).
Robinson seems to have been aware of the results in Kato’s book.While Davies quotes
Kato’s book for background on quadratic forms, he may have been unaware of the
monotone convergence results which are in a later chapter (Chapter VIII) than the
basic material on forms (Chapter VI). When Kato published his second edition, he
was clearly unaware of their work.

The lower semicontinuity fits in nicely with even then well known work on varia-
tional problems that used the weak lower semicontinuity of Banach space norms so it
was not surprising. Indeed Davies mentions it in passing in his paper without proof. To
add to the historical confusion, in his 1980 book [103], when Davies quoted this result,
he seems to have forgotten that it appeared first explicitly in his paper and attributes it
to the 1966 first edition of Kato [345] where it doesn’t appear!

Shortly after this second edition, I wrote and published [586] which had the notion
of (q)r and the full versions of Theorems 10.12 and 10.13. I noted that these extended
and complemented what was in Kato’s book. At the time I wrote the preprint, I was
unaware of the relevant work of Davies and Robinson although I knew each of them
personally. In response to my preprint, Kato wrote to me that he had an alternate proof
that in the increasing case, q∞ was always closed. He stated a lovely result.

Theorem 10.14 A quadratic form is closed if and only if it is lower semicontinuous
as a function from H to [0,∞].

Remarks 1. For a proof, see [616, Theorem 7.5.2]
2. This theorem provides a quick proof that δ(x) is not closable. It is easy to find

a C∞
0 (R) function ϕ with ϕ(0) = 1 and a sequence ϕn ∈ C∞

0 with ϕn(0) =
0, ϕn ≤ ϕ and ϕn → ϕ in L2. Given this convergent sequence with lim δ(ϕn) =
0 < δ(ϕ) = 1, there cannot be a lower semicontinuous function that agrees with
δ on C∞

0 .

Given the theorem, it is immediate that q∞ is closed in the increasing case, since
an increasing limit of lower semicontinuous functions is lower semicontinuous. I note
that in precisely this context, Theorem 10.14 was also found by Davies [102]. Kato
told me that he had no plans to publish his remark and approved my writing [587]
that explores consequences of Theorem 10.14. However, in 1980, Springer published
an “enlarged and corrected” printing of the second edition of Kato’s book and one
of the few changes was a completely reworked discussion of monotone convergence
theorems! In particular, he had the full Theorem 10.12 using Theorem 10.14. In the
Supplemental Notes, he quotes [586] and [587] but neither of the papers of Davies and
Robinson, despite the fact that in response to their writing to me after the preprint, I
added a Note Added in Proof to [586] referencing their work.

The final topic of this section concerns pseudo-Friedrichs extensions and form
definitions of the Dirac Coulomb operator. Recall that in Sect. 7 we discussed the free
Dirac operator T0 = α · (−i∇) + mβ and the formal sum, (7.41):

T = T0 + μ

|x | (10.26)
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Aswe saw in Sect. 7, Kato proved that (10.26) is esa-3 (where for the rest of the section,
this means on C∞

0 (R3; C
4)) so long as |μ| < 1

2 . Moreover, one can prove esa-3 if
and only if |μ| ≤ 1

2

√
3. In his book, [345, Sections V.5 and VII.3], Kato attempted to

show that the T of (10.26) had a natural self-adjoint extension for suitable μ ∈ ( 12 , 1).
He found an extension of the KLMN theorem to cover cases where the unperturbed
operator is not semibounded. He proved the following result:

Theorem 10.15 Let A be a self-adjoint operator and B a symmetric operator with
D(B) ⊂ D(A) and so that D(B) is a core for |A|1/2. Suppose that for some a ∈ (0, 1)
and b ≥ 0 and all ϕ ∈ D(B) we have that

|〈ϕ, Bϕ〉| ≤ a〈ϕ, |A|ϕ〉 + b‖ϕ‖2 (10.27)

Then there is a unique self-adjoint operator, C, extending A + B on D(B) which also
obeys

D(C) ⊂ D(|A|1/2) (10.28)

Kato called C the pseudo-Friedrichs extension. Kato remarked that this had little
to do with quadratic forms (which for him were positive) but the constructions shared
elements of Friedrichs’ construction of his extension. Faris [147] has a presentation
that uses sesquilinear forms and makes this closer to the KLMN theorem.

In applying this to Dirac operators, Kato [345] states without proof, that for each
ϕ ∈ C∞

0 (R3), one has:
〈ϕ, |x |−1ϕ〉 ≤ π

2 〈ϕ, |p|ϕ〉 (10.29)

in the sense that ∫ |ϕ(x)|2
x

d3x ≤ π

2

∫
|k||ϕ̂(k)|2d3k (10.30)

Like Hardy’s and Rellich’s inequality, this is scale invariant. And Kato implies (but
doesn’t explicitly state) that π

2 is the optimal constant. This is often called Kato’s
inequality (of course, it has no connection to what we called Kato’s inequality in
Sect. 9). In his book, Kato states this inequality with its optimal constant and then says
that it is equivalent to |p|−1/2|x |−1|p|−1/2 as an operator on L2 having norm π

2 . He
then notes that since |x |−1 has a Fourier space kernel (2π2)−1|k − k′|−2, one has to
compute the norm of the integral operator with kernel (2π2)−1(|k| |k′|)−1/2|k − k′|−2

but he doesn’t tell the reader how to actually compute this norm. However, Kato’s
proof can be found in the appendix at the end of this paper.

So while the book is given as the source for the inequality, the standard place given
for the proof is a lovely paper of Herbst [239] who computes the norm of |x |−α|p|−α

as an operator on L p(Rν) when 1 < p < να−1 (that the operator is bounded on L p is
a theorem of Stein–Weiss [624]). This has as special cases the optimal constants for
Kato’s, Hardy’s and Rellich’s inequalities. Herbst notes that this operator commutes
with scaling, so after applying the Mellin transform, it commutes with translations
and so, it is a convolution operator in Mellin transform space. The function it is
convolution with is positive function so the norm is related to the computable integral
of this explicit function. Five later publications on the optimal constant are Beckner
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[45], Yafaev [702], Frank–Lieb–Seiringer [162], Frank–Seiringer [164] and Balinsky–
Evans [38, pgs 48–50].

In his book, Kato [345] noted that by combining his definition of the pseudo-
Friedrichs extension and his inequality, one can define a natural self-adjoint extension
of (10.26) for 1

2 ≤ μ < 2
π
. But note that 2

π
= 0.6366 . . . while 1

2

√
3 = 0.866 . . . so

2

π
<

√
3

2
(10.31)

and the regime that Kato was able to treat in his book was a subset of the region where
Kato–Rellich fails but one can still prove esa-3 by other means!

That said, Kato’s ideas stimulated later work which picked out a natural extension
for all μ with |μ| < 1. Among the papers on the subject are Schmincke [541], Wüst
[691–693], Nenciu [463], Kalf et. al. [300], Estaban–Loss [144] and Estaban–Lewin–
Séré [143]. Domain conditions motivated by Kato’s pseudo-Friedrichs extension are
common. Typical is the following result of Nenciu [463] (which is a variant of
Schmincke [541]):

Theorem 10.16 For any μ with |μ| < 1, there exists a unique self-adjoint operator,
T , with D(T ) ⊂ D(|T0|1/2) so that for all ϕ ∈ D(T ), ψ ∈ D(T 1/2

0 ) we have that

〈ψ, T ϕ〉 = 〈|T0|1/2ψ, (T0|T0|−1/2)ϕ〉 + μ〈r−1/2ψ, r−1/2ϕ〉 (10.32)

(10.32) uses the fact that, by the above mentioned inequality of Kato, if ψ ∈
D(|T0|1/2), then ψ ∈ D(r−1/2).

In 1983, Kato wrote a further paper on the Dirac Coulomb problem [353] (see also
[354]) which seems to be little known (I only learned of it while preparing this article).
To understand Kato’s idea, return to −� − βr−2 on L2(Rν), ν ≥ 5 as discussed in
Proposition 7.7 above. If 0 < β ≤ ν(ν−4)

4 , then H(β) can be defined as the operator
closure of the operator on C∞

0 (Rν). It is self-adjoint and except at the upper end,

we know the domain is that of −�. For ν(ν−4)
4 < β ≤ (ν−2)2

4 , there is a Friedrichs
extension since−�−βr−2 ≥ 0 on C∞

0 (Rν). Kato notes that the Friedrichs extension
is natural from the following point of view: H(β) is an analytic family of operators

for 0 < β <
(ν−2)2

4 and is the unique analytic family from the esa region—it is

type (A) if β ∈ (0, ν(ν−4)
4 ) and type (B) if β ∈ (0, (ν−2)2

4 ). (In fact, it can proven

that as a holomorphic family, there is a square root singularity at β = (ν−2)2

4 and in

the variable m =
√

β − (ν−2)2

4 , one has a holomorphic family in Re(m) > −1; see
Bruneau–Dereziński–Georgescu [76]).

In the same way, Kato showed that the distinguished self-adjoint extension of the
Dirac operator in (10.26) found by others for |μ| < 1 is an analytic family for μ ∈
(−1, 1) and is the unique analytic continuation from the Kato–Rellich region μ ∈
(− 1

2 ,
1
2 ).
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278. Jakšić, V., Segert, J.: Exponential approach to the adiabatic limit and the Landau–Zener formula. Rev.
Math. Phys. 4, 529–574 (1992)
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661. Veselić, K.: On spectral concentration for some classes of selfadjoint operators. Glasnik Mat. Ser. II

I(4), 213–229 (1969)
662. van Winter, C.: Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske

Vid. Selsk 2, 8 (1964)
663. vonNeumann, J.: Allgemeine EigenwerttheorieHermitescher Funktionaloperatoren.Math. Ann. 102,

49–131 (1930)
664. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press,

Princeton, NJ (1996) (German original: Mathematische Grundlagen der Quantenmechanik, 1932
(first English translation (1955))

665. von Neumann, J.: Charakterisierung des Spektrums eines Integraloperators. Actualités Sci. Ind. 229,
3–20 (1935)

666. von Neumann, J., Wigner, E.: Über merkwürdige diskrete Eigenwerte. Phys. Z. 30, 465–467 (1929)
667. Vugal’ter, S.A., Zhislin, G.M.: Finiteness of a discrete spectrum of many-particle Hamiltonians in

symmetry spaces (coordinate and momentum representations). Teoret. Mat. Fiz. 32, 70–87 (1977)
(Eng. Trans.: Theo. and Math. Phys. 32 (1977), 602–614 (1978))

668. Wallach, S.: On the location of spectra of differential equations. Am. J. Math. 70, 833–841 (1948)
669. Walter, J.: Symmetrie elliptischer Differentialoperatoren I. Math. Z. 98, 401–406 (1967)
670. Walter, J.: Symmetrie elliptischer Differentialoperatoren II. Math. Z. 106, 149–152 (1968)
671. Wang, X.P.: On the existence of the N-body Efimov effect. J. Funct. Anal. 209, 137–161 (2004)
672. Wang, X.P., Wang, Y.: Existence of two-cluster threshold resonances and the N-body Efimov effect.

J. Math. Phys. 46, 112106 (2005)
673. Watson, G.: A theory of asymptotic series. Philos. Trans. R. Soc. Lond. Ser. A 211, 279–313 (1912)
674. Weidmann, J.: The virial theorem and its application to the spectral theory of Schrödinger operators.

Bull. Am. Math. Soc. 73, 452–456 (1967)
675. Weidmann, J.: Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math. Z.

119, 349–373 (1971)
676. Weisskopf, V., Wigner, E.P.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen

Lichttheorie. Z. Phys. 63, 54–73 (1930)
677. Weyl, H.: Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigen-

funktionen I, Gött. Nachr., 37–63 (1909)
678. Weyl, H.: Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigen-

funktionen II, Gött. Nachr., 442–467 (1910)
679. Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Palermo Rend. 27,

373–392, 402 (1909)
680. Weyl,H.:Über gewöhnlicheDifferentialgleichungenmit Singularitäten unddie zugehörigenEntwick-

lungen willkürlicher Funktionen. Math. Ann. 68, 220–269 (1910)
681. Weyl, H.: The Theory of Groups andQuantumMechanics. Dover Publications, Inc., NewYork (1950)

(German original: Gruppentheorie und Quantenmechanik, 1928)
682. Wheeler, J.A.: On the mathematical description of light nuclei by the method of resonating group

structure. Phys. Rev. 52, 1107–1122 (1937)

123



Tosio Kato’s work on non-relativistic quantum mechanics: part 1 231

683. Wienholtz, E.: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen
Typus. Math. Ann. 135, 50–80 (1958)

684. Wienholtz, E.: Bemerkungen über elliptischeDifferentialoperatoren. Arch.Math. 10, 126–133 (1959)
685. Wilcox, C.H.: Wave operators and asymptotic solutions of wave propagation problems of classical

physics. Arch. Ration. Mech. Anal. 22, 37–78 (1966)
686. Wintner, A.: On the normalization of characteristic differentials in continuous spectra. Phys. Rev. 72,

516–517 (1947)
687. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)
688. Wolchover, N.: Physicists prove surprising rule of threes. Quanta Magazine (May 27, 2014). https://

www.quantamagazine.org/in-efimov-state-physicists-find-a-surprising-rule-of-threes-20140527
689. Wolf, F.: Analytic perturbation of operators in Banach spaces. Math. Ann. 124, 317–333 (1952)
690. Wüst, R.: Generalizations of Rellich’s theorem on perturbations of (essentially) self-adjoint operators.

Math. Z. 119, 276–280 (1971)
691. Wüst, R.: A convergence theorem for self-adjoint operators applicable to Dirac operators with cut-off

potentials. Math. Z. 131, 339–349 (1973)
692. Wüst, R.: Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off

potentials. Math. Z. 141, 93–98 (1975)
693. Wüst, R.: Dirac operators with strongly singular potentials. Math. Z. 152, 259–271 (1977)
694. Wang, Y., Du, H., Dou, Y.: On the index of Fredholm pairs of idempotents. Acta Math. Sin. (Engl.

Ser.) 25, 679–686 (2009)
695. Yafaev, D.R.: On the theory of the discrete spectrum of the three-particle Schrödinger operator. Mat.

Sb. 94, 567–593 (1974) (Eng. Trans.: Math. USSR-Sb. 23, 535–559 (1974))
696. Yafaev, D.R.: The discrete spectrum of the three-particle Schrödinger operator. Dokl. Akad. Nauk

SSSR 206, 68–70 (1972)
697. Yafaev, D.R.: The point spectrum in the quantum mechanical problem of many particles. Izv. Akad.

Nauk SSSR Ser. Mat. 40, 908–948 (1976) (Eng. trans.: Math. USSR-Izv. 10, 861–896 (1976))
698. Yafaev, D.R.: The virtual level of the Schrödinger equation. In:Mathematical Questions in the Theory
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