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11. Eigenvalues, I: Bound State of Atoms

This is the second part of a two-part article. There is one picture on p. 21 in this
part and four pictures in Part 1. The reader should be sure to read the notational
warnings near the end of Sec. 1 in Part 1. Just before those warnings is a summary
of the organization of the full paper which includes the following about Part 2.

Part 2 begins with two pioneering works on the aspects of bound states — his
result on non-existence of positive energy bound states in certain two body systems
and his paper on the infinity of bound states for Helium, at least for infinite nuclear
mass.

Next, four sections on scattering and spectral theory which discuss the Kato–
Birman theory (trace class scattering), Kato smoothness, Kato–Kuroda eigenfunc-
tion expansions and the Jensen–Kato paper on threshold behavior.

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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Last is a set of three miscellaneous gems: his work on the adiabatic theorem, on
the Trotter product formula and his pioneering look at eigenfunction regularity.

In a short companion paper [302] to his famous 1951 paper [301], Kato proved
the following theorem.

Theorem 11.1 ([302]). The non-relativistic Helium atom with infinite nuclear
mass has infinitely many bound states. With the physical masses, it has at least
25,585 bound states.

The number 25,585 seems unusual but it is just
∑42

j=1 j
2 corresponding to the

number of bound states in the first 42 complete shells of a Hydrogenic atom.
An operator like the Helium atom, Hamiltonian typically has an essential spec-

trum, [Σ,∞) (for an arbitrary self-adjoint operator, A, we define Σ(A) = inf{λ |λ ∈
σess(A)}, where, we recall, σess(A) = σ(A)\σd(A) and σd(A), the discrete spectrum,
is the isolated points of σ(A), the spectrum, for which the spectral projection is
finite dimensional (see Sec. 2 in Part 1).

There may be one or more eigenvalues of A below Σ, i.e. counting multiplic-
ity, {Ek}Nk=1, N ∈ {0, 1, 2, . . .} ∪ {∞}, where Ej−1 ≤ Ej < Σ. If N = ∞, then
limk→∞ Ek = Σ.

Most modern approaches to results like Theorem 11.1 rely on the min–max
principle [587, Theorem 3.14.5] which says that if A is self-adjoint and bounded
from below, and if one defines

µn(A) = sup
ψ1,...,ψn−1

 inf
ϕ∈D(A), ‖ϕ‖=1
ϕ⊥ψ1,...,ψn−1

〈ϕ,Aϕ〉

, (11.1)

then µj(A) = Ej(A) for j ≤ N and if N < ∞, then for j > N , µj(A) = Σ(A).
Instead, Kato notes the following.

Lemma 11.2. Let A be a self-adjoint operator which is bounded from below and
W ⊂ D(A) a subspace of dimension k so that

sup
ϕ∈W, ‖ϕ‖=1

〈ϕ,Aϕ〉 = J, (11.2)

then

dim ranP(−∞,J](A) ≥ k. (11.3)

Remarks. (1) PΩ(A) are the spectral projections of A, see [587, Sec. 5.1].
(2) While Kato uses this lemma instead of the min–max principle, it should be

emphasized that this lemma can be used to prove that principle!

Proof. Suppose that dim ranP(−∞,J](A) < k. Then we can find ϕ ∈ W so
ϕ ⊥ ranP(−∞,J](A). Thus, by the spectral theorem, 〈ϕ,Aϕ〉 > J contrary to (11.2).
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For Kato, Σ is defined not in terms of essential spectrum but by

Σ = inf{λ | dim ranP(−∞,λ)(A) = ∞} (11.4)

although it is the same. His strategy is simple.
(1) Get a lower bound, Σ0, on Σ.
(2) Find a k-dimensional subspace, W , and a J given by (11.2) which obeys

J < Σ0. By (11.4), dim ranP(∞,J](A) < ∞ and by the lemma, it is at least k so
there must be at least k discrete eigenvalues, counting multiplicity in (−∞, J ].

Let us discuss first the case where the nuclear mass is infinite. The Hamiltonian
in suitable units is

H = −∆1 − ∆2 −
2
r1

− 2
r2

+
1

|r1 − r2|
(11.5)

on L2(R6, d6x), where x = (r1, r2), rj ∈ R3. Kato then considers

H̃ = H − 1
|r1 − r2|

= h⊗ 1 + 1⊗ h, (11.6)

where

h = −∆ − 2
r
. (11.7)

He talks about “two independent Hydrogen-like atoms” rather than tensor prod-
ucts, but it is the same thing. Thus the spectrum of H̃ is {λ1 + λ2 |λ1, λ2 ∈ σ(h)}.
Since σ(h) = {−1/n2}∞n=1 ∪ [0,∞), we see that Σ(H̃) = −1. Since H ≥ H̃ , we
conclude that

Σ(H) ≥ −1 ≡ Σ0 (11.8)

(we will eventually see that this is actually equality). This concludes Step 1 in this
infinite nuclear mass case.

Kato next picked the subspace, W , of trial functions. Let ϕ0 be the ground state
of h, i.e.

hϕ0 = −ϕ0. (11.9)

Kato notes the explicit formula, ϕ0(x) = π−1/2e−|x| but other than that, it is
spherically symmetric, the exact formula plays no role. He picks W = {ϕ0 ⊗ η | η ∈
W1}, where W1 will be a suitable subspace of L2(R3), i.e. ϕ(x1,x2) = ϕ0(x1)η(x2).

One easily computes that

〈ϕ,Hϕ〉 = −1 + 〈η, (−∆ +Q(x))η〉, (11.10)

where

Q(x) = − 2
|x| +

∫
|ϕ0(y)|2

1
|x− y| d

3y. (11.11)

The second term in (11.11) is the gravitational potential of a spherically symmetric
“mass distribution” |ϕ0(y)|2d3y and this has been computed by Newton who showed
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that ∫
S2

dω

|rω − x| =
1

max(|x|, r) , (11.12)

(where dω is normalized measure on the unit 2-sphere). Thus

Q(x) = − 2
|x| +

∫
|ϕ0(y)|2

1
max(|x|, |y|) d

3y

≤ − 1
|x| (11.13)

since max(|x|, |y|) ≥ |x|. Thus

〈ϕ,Hϕ〉 ≤ −1 + 〈η, (−∆ − 1/r)η〉. (11.14)

Picking η in the space of dimension 1
6k(k + 1)(2k + 1) of linear combinations of

eigenfunctions of −∆ − 1/r of energies {− 1
4j2 }kj=1, we see that the J of (11.2) is

−1 − (1/4k2) < Σ0, so there are infinitely many eigenvalues below Σ0 (which also
shows that Σ = Σ0).

If one now considers a nucleus of mass M and electrons of mass m, the Hamil-
tonian with the center of mass motion removed becomes (instead of (11.5))

H = −∆1 − ∆2 − 2α∇1 · ∇2 − 2
r1

− 2
r2

+
1

|r1 − r2|
, (11.15)

where

α =
m

M +m
. (11.16)

The extra 2α∇1 ·∇2 term, called the Hughes–Eckart term (after [248]), is present
if one uses atomic coordinates, rj = xj − x3; j = 1, 2, where xj is the coordinate
of electron j and r3 is the nuclear position (we will say a lot about such N -body
kinematics as follows).

The second step in the proof is unchanged. Since 〈ϕ0,∇ϕ0〉 = 0 (by either the
reality of ϕ or its spherical symmetry), the Hughes–Eckart terms contribute nothing
to the calculation of 〈ϕ,Hϕ〉 and we get a subspace of trial functions of dimension
1
6k(k + 1)(2k + 1) with Jk = −1 − 1/4k2.

Here is how Kato estimated Σ in this case. With pj = −i∇j, one can write

p2
1 + p2

2 + 2αp1 · p2 = α(p1 + p2)
2 + (1 − α)(p2

1 + p2
2). (11.17)

Since |r1 − r2|−1 ≥ 0 and α(p1 + p2)
2 ≥ 0, we see that

H ≥ (1 − α)(−∆1 − ∆2) −
2
r1

− 2
r2

≡ HKato. (11.18)

As in the infinite mass case, HKato is a sum of independent Hydrogen-like atoms,
so one finds that

Σ ≥ Σ0 = Σ(HKato) = − 1
1 − α

. (11.19)
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Putting in the physical value of α (i.e. (11.16) with M = Helium nuclear mass and
m = electron mass), one finds that

Σ0 ≥ −1 − 1/4k2 if k ≤ 42, (11.20)

so Kato concluded that there were at least 42 shells and obtained the number 25,585
of Theorem 11.1.

Remarks. (1) As Kato emphasized, before his work, it was not proven that the
Helium Hamiltonian had any bound states!

(2) Kato ignored both spin (the Hamiltonian is spin-independent but each elec-
tron has two spin states, so on L2(R3N ; C2 ⊗ C2, d3Nx), there are four times as
many states) and statistics (the Pauli principle, which, as interpreted by Fermi
and Dirac, says that the total wave function is antisymmetric under interchange of
a pair of particles in both spin and space). H is symmetric under interchange of
the two electrons in space alone, so its eigenfunctions can be chosen to be either
symmetric or antisymmetric under spatial interchange. Kato’s trial functions are
neither but the lower bound, NKato that he gets a lower bound on NS + NA,
the sum of the spatially symmetric and spatially antisymmetric functions. To
get a state totally antisymmetric under interchange of space and spin, each spa-
tially symmetric wave function is multiplied by a spin 0 state (multiplicity 1) and
each spatially antisymmetric state is multiplied by a spin 1 state (multiplicity
3). So taking into account both spin and statistics, the total number of states is
NS + 3NA, so

NS +NA ≤ NS + 3NA ≤ 3(NS +NA). (11.21)

In particular, NKato is a lower bound on NS + 3NA, so Kato’s estimates are lower
bounds even if one properly takes into account spin and statistics.

(3) Even in the infinite mass case, Kato’s method does not work for three elec-
tron atoms. The problem is with his estimate of Σ. If one drops the repulsion of
electron 3 from both 1 and 2, one gets an independent sum of an ion and a charge
3 Hydrogen-like atom. The bottom of the essential spectrum of such a system is
actually twice the ground state energy of two of the charge 3 Hydrogen-like atoms
which is below the energy of the ion where one expects (and we actually know) the
bottom of the essential spectrum really is.

This completes our description of Kato’s paper. To go beyond it, one realizes
the weak point of his analysis (as seen in Remark 3 above) is not an efficient
way of estimating the bottom of the continuous spectrum. As a preliminary to
discussing this bottom, we pause to present some N -body kinematics, an issue
that already entered when we discussed the Hughes–Eckart term above. We will be
more expansive than absolutely necessary, in part, because we will need this when
we briefly turn to N -body scattering in Secs. 13–15 and, in part, because the elegant
formalism, which I learned from Sigalov–Sigal [539] (see also [251]), deserves to be
better known.
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Given N particles (r1, . . . , rN ) with masses m1, . . . ,mN , we consider the inner
product

〈r(1), r(2)〉 =
N∑
j=1

mjr
(1)

j · r(2)
j (11.22)

on x-space, X = R
νN . This is natural because the free Hamiltonian

H0 = −
N∑
j=1

(2mj)−1∆rj
(11.23)

is precisely one half the Laplace–Beltrami operator for the Riemann metric associ-
ated to (11.22).

We let X∗ be the dual to X , which we think of as momentum space. If p ∈ X∗

and x ∈ X , they are paired as

〈p,x〉 =
N∑
j=1

pj · xj (11.24)

as occurs in the Fourier transform. This induces an inner product on X∗

〈p(1), p(2)〉X∗ =
N∑
j=1

(mj)−1p(1)
j · p(2)

j (11.25)

consistent with (11.23).
A coordinate change is associated to a linear basis, e1, . . . , eN of RN via

ρj(x1, . . . ,xN ) =
N∑
r=1

ejrxr. (11.26)

(The ejr ∈ R and xr ∈ Rν .)
To be a trifle pedantic, we note that X and X∗ depend on N and ν. We will

use Y for the case ν = 1 so that X = Y ⊗R
ν and the X inner product is the tensor

product of the Y inner product and the Euclidean inner product on Rν which we
denoted with · in (11.22) and (11.26). Since the e’s act on Y , we think of them as
lying in Y ∗ (acting isotropically on the Rν piece). The dual basis fj is defined by

〈fj , e�〉 = δj�, i.e.
N∑
r=1

fjre�r = δj�. (11.27)

If we think of E,F as the N ×N matrices with Fjr = (fj)r, Ejr = (ej)r , then
(11.27) says that FET = 1. Since 1T = 1 and for finite matrices AB = 1 ⇒ BA =
1, we conclude that EFT = ETF = FTE = 1, i.e.∑

j

frjesj =
∑
j

fjrejs =
∑
j

fsjerj =
∑
j

fjsejr = δrs. (11.28)
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First this implies that if

kj(p1, . . . ,pN ) =
N∑
q=1

fjqpq, (11.29)

then by (11.28)

N∑
j=1

kj · ρj =
N∑
j=1

N∑
q=1

N∑
r=1

fjqejrpq · xr =
N∑
q=1

pq · rq, (11.30)

so the k’s are the Fourier duals to the ρ’s and (11.28) describes the transformation
of momenta.

Moreover, we claim that 〈ej , ek〉Y ∗ and 〈fj , fk〉Y are inverse matrices to each
other, i.e.

〈e, e〉Y ∗〈f, f〉Y = 1. (11.31)

If e(0)j = δj , then f0
j = δj and 〈e(0)j , e

(0)
k 〉Y ∗ = m−1

j δjk is indeed the inverse to 〈f (0)
j ,

f
(0)
k 〉Y = mjδjk. Since er =

∑N
q=1 Erqe

(0)
q and fj =

∑N
k=1 Fjkf

(0)
K , we see that

〈e, e〉Y ∗〈f, f〉Y = ET 〈e(0), e(0)〉Y ∗EFT 〈f (0), f (0)〉Y F = 1 by (11.28) and (11.27)
for the e(0), f (0) special case just proven.

Finally by (11.26) and (11.27), we see that

N∑
j=1

mjr
2
j =

N∑
r,s=1

〈fr, fs〉Y ρr · ρs, (11.32)

N∑
j=1

m−1
j p2

j =
N∑

r,s=1

〈er, es〉Y ∗kr · ks. (11.33)

Example 11.3 (Removing the center of mass). First consider N = 2. Since
we have V (r1 − r2), we want r1 − r2 to be one coordinate, i.e. e1 = (1,−1). The
natural second coordinate should be orthogonal in Y ∗, i.e. 1

m1
e21 − 1

m2
e22 = 0 so

(m1,m2) will work but it is more usual to take e2 = 1
M (m1,m2), M = m1 + m2

the total mass. That is, the second coordinate is (m1r1 +m2r2)/M , the center of
mass. One computes

〈e1, e1〉Y ∗ =
1
m1

+
1
m2

≡ 1
µ
, 〈e1, e2〉Y ∗ = 0,

〈e2, e2〉Y ∗ =
1
M2

(
m2

1

m1
+
m2

2

m2

)
=

1
M
.

(11.34)

We compute

f1 =
(m2

M
,−m2

M

)
, f2 = (1, 1). (11.35)
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By either direct calculation or (11.31),

〈f1, f1〉Y =
m1m

2
2 +m2

1m2

M2
=
m1m2

M
= µ, 〈f1, f2〉Y = 0,

〈f2, f2〉Y = m1 +m2 = M.

(11.36)

Thus

r12 = r1 − r2, R =
1
M

(m1r1 +m2r2), (11.37)

k12 =
m2p1 −m1p2

M
, K = p1 + p2 (11.38)

and we see that

m1r
2
1 +m2r

2
2 = µr2

12 +MR2; H0 = − 1
2M

∆R − 1
2µ

∆r12 . (11.39)

For N bodies, motivated by the above, we want to take fN = (1, . . . , 1) and
f1, . . . , fN−1 all orthogonal to it. Then 〈f, f〉Y will be the direct sum of an (N −
1) × (N − 1) matrix and 〈fN , fN 〉Y = M . Thus 〈e, e〉Y ∗ with be the direct sum of
an (N − 1) × (N − 1) matrix and 〈eN , eN〉Y ∗ = 1/M . Moreover, we claim that

〈eN , f〉 = 〈fN , f〉/〈fN , fN 〉 (11.40)

since this holds for each fj . Putting f = δj , we conclude that eN =
M−1(m1, . . . ,mN ). We summarize in this Proposition.

Proposition 11.4. In any coordinate system, ρ1, . . . ,ρN , where ρj , j = 1, . . . ,
N − 1 is a linear combination of rk − r� and

ρN =
1
M

N∑
j=1

mjrj , (11.41)

we have that

H0 = −
N∑
j=1

1
2mj

∆rj
= h0 ⊗ 1 + 1⊗ T0, (11.42)

where h0 = −(2M)−1∆ρN
and T0 is a quadratic form in −i∇ρj

, j = 1, . . . , N − 1.

Example 11.5 (Atomic coordinates). This is named for the natural coordinates
when there is a heavy nucleus, rN and N − 1 electrons. We take (with mj = m for
j = 1, . . . , N − 1)

ρj = rj − rN , j = 1, . . . , N − 1; ρN =
1
M

N∑
j=1

mjrj . (11.43)

Thus, by (11.26),

ej = δj − δN ; eN =
1
M
. (11.44)
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Since 〈a, a〉Y ∗ =
∑N
j=1m

−1
j a2

j , we see that

〈eN , ej〉Y ∗ = M−1δNj, (11.45)

〈ej , ej〉Y ∗ =
1
m

+
1
mN

≡ 1
µ
, j = 1, . . . , N − 1, (11.46)

〈ej , ek〉 =
1
mN

, 1 ≤ j, k ≤ N − 1; j �= k. (11.47)

Thus, by (11.33),

T0 = −
N−1∑
j,k=1

1
2
〈ej , ek〉Y ∗∇j · ∇k

= −
N−1∑
j=1

1
2µ

∆j −
1
mN

∑
j<k

∇j · ∇k (11.48)

(there is no 2 in front of mN because we have changed from a sum over j �= k to
j ≤ k). Noting that

µ

mN
=

mmn

m+mn

1
mn

=
m

mn +m

which is (11.15)/(11.16) (taking into account a changed meaning for the symbol M
there and here!).

Example 11.6 (Jacobi coordinates). These coordinates changes go back to
classical mechanics. Jacobi noted that one could avoid cross-terms in the kinetic
energy changing first from r1 and r2 to r1,2 and the center of mass, R12, of the first
two particles. Then one goes from R12 and r3 to r3 − R12 and the center of mass
of the first three particles. After N − 1 steps, one has R, the total center of mass
as one of the coordinates, and N − 1 “internal” coordinates.

Example 11.7 (Clustered Jacobi coordinates). Given {1, . . . , N}, a cluster
decomposition or clustering, C = {C�}k�=1, is a partition, i.e. a family of disjoint
subsets whose union is {1, . . . , N}. We set #(C�) to be the number of parti-
cles in C�. A coordinate, ρ, is said to be internal to C� if it is a function only
of {rm}m∈C�

and is invariant under rm → rm + a, equivalently, it is a lin-
ear combination of {rm − rq}m,q∈C�

. A clustered Jacobi coordinate system is a
set of #(C�) − 1 independent internal coordinates for each cluster together with
R� = (

∑
q∈C�

mqrq)/(
∑
q∈C�

mq). If we write H(C�) to be L2 of the internal coor-

dinates and H(C) to be L2 of the internal coordinates, then

H = H(C) ⊗
k⊗
�=1

H(C�), (11.49)

H0 = T̃ (C) ⊗ 1 · · · ⊗ 1 +
k∑
�=1

1⊗ · · · ⊗ T (C�) ⊗ · · · ⊗ 1, (11.50)
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where T̃ (C) = −
∑k
�=1(2M(C�))−1∆R�

and T (C�) is a quadratic form in the deriva-
tives of the internal coordinates.

As noted, the big limitation in Kato’s work on Helium bound states concerns his
estimate of Σ, the bottom of the essential spectrum of H . We turn to understanding
that. In the two-body case, H = −∆ + V , one expects that σess(H) = [0,∞). This
requires that V goes to zero at spatial infinity in some sense. If one is looking at V ’s
for which D(H) = D(−∆), the natural condition is that V (−∆+1)−1 is a compact
operator (see [587, Sec. 3.14]). To be explicit, we introduce Lp(Rν) + L∞(Rν)ε
to be the set of V so that for any ε > 0, one can decompose V = V1,ε + V2,ε

with V1,ε ∈ Lp(Rν) and ‖V2,ε‖∞ ≤ ε. If p is ν-canonical, one can prove that if
V ∈ Lp(Rν)+L∞(Rν)ε, then V (−∆+1)−1 is compact and σess(H) = [0,∞). If one
wishes, there are Stummel-type conditions to replace this, but we will make such
Lp assumptions below for simplicity of exposition.

We also want to remove the total center of mass motion if all masses are
finite. That is, we let R = (

∑N
j=1mjrj)/(

∑N
j=1mj) and pick some set of inter-

nal coordinates so that Hfull = HCM ⊗H, Hfull = L2(RνN ),HCM = functions of R,
H = functions of the internal coordinates. If H full = H0 +

∑
j<k Vjk , then under

this tensor product decomposition

H full = H0,CM ⊗ 1 + 1⊗H, (11.51)

where H0,CM = −(2
∑N
j=1mj)−1∆R. We will consider H as follows.

In (11.50), the operator T̃ (C) has a decomposition like (11.51), where H is
replaced by H(C), the functions of the differences of the centers of mass of the
Cj . We write

T̃ (C) = H0,CM ⊗ 1 + 1⊗ T (C). (11.52)

Given a cluster decomposition, C = {C�}k�=1, we write (jq) ⊂ C if j and q are in
the same cluster of C and (jq) �⊂ C if they are in different clusters. We define

V (C�) =
∑
j,q∈C�
j<q

Vjq , (11.53)

V (C) =
k∑
�=1

V (C�) =
∑

(jq)⊂C
j<q

Vjq , (11.54)

I(C) =
∑
j<q

Vjq − V (C) =
∑

(jq) �⊂C
j<q

Vjq . (11.55)

V (C) is the intracluster interaction and I(C) the intercluster interaction. We define
on H(C�)

h(C�) = T (C�) + V (C�). (11.56)
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H(C) = T (C) ⊗ 1 · · · ⊗ 1 +
k∑
�=1

1⊗ · · · ⊗ h(C�) ⊗ · · · ⊗ 1

= H − I(C), (11.57)

Σ(C) =
k∑
�=1

inf σ(H(C�)). (11.58)

We let Cmin be the one cluster decomposition of {1, . . . , N} so H(Cmin) = H . We
note that

C �= Cmin ⇒ σ(T (C)) = [0,∞). (11.59)

By (11.57), we have that σ(H(C)) = σ(T (C)) + σ(H(C1)) + · · · + σ(H(Ck)). By
(11.59),

C �= Cmin ⇒ σ(H(C)) = [Σ(C),∞). (11.60)

When we discuss N -body spectral and scattering theory briefly in Secs. 12–14, we
will be interested in thresholds. A threshold, t, is a decomposition C = {C�}k�=1 �=
Cmin and an eigenvalue, E� of h(C�) for each � = 1, . . . , k. The threshold energy is
E(t) =

∑k
�=1E�. Of course, E(t) ≥ Σ(C).

Fix C �= Cmin. Pick distinct vectors, X1, . . . , Xk ∈ Rν . For λ ∈ R, let U(λ)
be the unitary implementing xj �→ xj + λXp if j ∈ Cq. It is easy to see that
U(λ)H(C)U(λ)−1 = H(C) and if each Vjq ∈ Lp(Rν) + L∞(Rν)ε, then for all ϕ ∈
D(−∆), one has that

lim
λ→∞

[U(λ)HU(λ)−1 −H(C)]ϕ = 0 (11.61)

which implies [587, Problem 3.14.5] that σ(H(C)) = [Σ(C),∞) ⊂ σ(H). In particu-
lar, if

Σ = inf
C�=Cmin

Σ(C), (11.62)

then

[Σ,∞) ⊂ σ(H). (11.63)

The celebrated HVZ theorem says that.

Theorem 11.8 (HVZ Theorem). For N -body Hamiltonians with Vjq ∈ Lp(Rν)+
L∞(Rν)ε (with p ν-canonical), one has that

σess(H) = [Σ,∞). (11.64)

Remarks . (1) There is a variant where there are infinite mass particles, i.e.
some Vj terms, and the center of mass is not removed. Decompositions are now
of {0, 1, . . . , N}. One says that (j) ⊂ C if 0 and j are in the same cluster.

(2) The result is named after Hunziker [249], van Winter [628] and Zhislin [676].

1950005-11

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

B. Simon

(3) There are essentially three generations of proofs of this theorem. The initial
proofs of Hunziker and van Winter relied on integral equations (what are now called
the Weinberg–van Winter equations). van Winter restricted her work to L2(R3)
potentials since she only considered Hilbert–Schmidt operators while Hunziker’s
independent work handled the general case above. This work was independent of
the earlier work of Zhislin who only considered and proved results for atomic Hamil-
tonians. His methods were geometric.

(4) The second wave concerns geometric proofs by Enss [135], Simon [556],
Agmon [5], G̊arding [176] and Sigal [527]. In one variant, the key is a geometric fact
that there exists a partition of unity {JC}C�=Cmin indexed non-minimal partitions so
that

∑
C JC = 1 and so that on suppJC ∩{x | |x| > 1}, one has that, for some Q > 0,

|xj − xk| ≥ Q|x| if (jk) �⊂ C. One proves that [f(H) − f(H(C))]JC is a compact
operator for continuous functions, f of compact support. This, in turn, implies
that when suppf ⊂ (−∞,Σ), then f(H) is compact. For details, see [98, Sec. 3.3].
Agmon’s version [5] looks at limits as one translates in an arbitrary direction and
is especially intuitive. In this regard, Agmon considered a class of potentials that
generalize N -body systems. {πj} is a family of nontrivial projections in RνN and
V =

∑
Vj(πjx), where Vj is a functions on Rdim ranπj . This setup has been used by

many authors since.
(5) The third generation works in cases where σess(A) can have gaps. This

approach appeared (more or less independently) in [83, 84, 180, 394, 395, 423, 471].
Perhaps, the cleanest result from [395] defines the notion of right limits and proves
that σess(H) is the union over all right limits of σ(Hr). See also [581, Sec. 7.2].

With the HVZ theorem in hand, one can easily carry Kato’s argument to its
logical conclusion.

Theorem 11.9 ([542]). Let H be an N -body Hamiltonian with center of
mass removed. Suppose that Σ is a two-body threshold, i.e. there is a cluster
decomposition, C = {C1, C2} and vectors, ϕj ∈ H(Cj), j = 1, 2 so that H(Cj)ϕj =
Ejϕj , ‖ϕj‖ = 1 and E1 + E2 = Σ. Define W on Rν as follows : y ∈ Rν is the
difference of the centers of mass of C1 and C2 and let xk(y, ζ1, ζ2) be the position
of particle k in terms of y and the internal coordinates ζj of Cj. Then

W (y) =
∑
q∈C1
k∈C2

∫
Vqk(xq(y, ζj) − xk(y, ζj))|ϕ1(ζ1)|2|ϕ2(ζ2)|2dζ1dζ2. (11.65)

Let µ be the reduced mass of the two clusters and suppose that

−(2µ)−1∆y +W (y) (11.66)

has an infinite number of eigenvalues below 0 as an operator on L2(Rν). Then H

has an infinite number of eigenvalues below Σ.

Remarks. (1) Thus, with M(Cj) =
∑

k∈Cj
mk, we have that µ−1 = M(C1)−1 +

M(C2)−1.
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(2) One might think that if j ∈ C1, then xj(y, ζ1, ζ2) is independent of ζ2 but
that is wrong for the total center of mass, R, enters in xj and that causes a ζ2
dependence.

(3) The proof is essentially unchanged from the ideas in Kato [302]. If
ψ(y, ζ1, ζ2) = ϕ1(ζ1)ϕ2(ζ2)η(y), then 〈ψ,Hψ〉 = Σ + 〈η, (−(2µ)−1∆ +W )η〉.

(4) This result is from Simon [542] who revisited Kato’s paper after the discovery
of the HVZ theorem.

Now fix Z,N > 0. N is an integer but Z need not be. We define on L2(R3N ):

H(Z,N) =
N∑
j=1

(
−∆j −

Z

|xj |

)
+

∑
1≤j,k≤N

1
|xj − xk|

, (11.67)

E(Z,N) = inf σ(H(Z,N)). (11.68)

One can accommodate Hughes–Eckart terms in much of the discussion but we will
not include them.

By the arguments before (11.60), σ(H(Z,N − 1)) ⊂ σ(H(Z,N)) so the HVZ
theorem implies that

Σ(H(Z,N)) = E(Z,N − 1), (11.69)

so we are interested in

δ(Z,N) = −E(Z,N) + E(Z,N − 1), (11.70)

the ionization energy to remove electron N from a nucleus of charge Z. Put differ-
ently, δ ≥ 0 and δ > 0 if and only if N electrons bind to a charge Z nucleus.

Corollary 11.10 ([676]). If Z > N − 1, then H(Z,N) has infinitely many bound
states below Σ. In particular, δ(Z,N) > 0.

Remarks . (1) This is because by induction, Σ is determined by a two-cluster
breakup into N − 1 particles (in the same cluster as 0) and one particle and then
that W (y) = [Z − (N − 1)]|y|−1 +o(1/|y|) and such a potential has infinitely many
bound states.

(2) This result was first proved by Zhislin using arguments somewhat more
involved than Kato’s argument (and before Simon noted that Kato’s arguments
work).

This completes the summary of the direct extensions of Kato’s work. We will
end this section with a brief discussion of results on bound states of H(Z,N) which
are a direct descendent of Kato’s consideration. There is an enormous literature
not only on this subject but also on bounds on the number of bound states when
finite and on moments of the eigenvalues. We refer the reader to the forthcoming
book of Frank et al. [155].

The other side of Corollary 11.10 is as follows.

Theorem 11.11. If Z ≤ N−1, then H(Z,N) has only finitely many bound states.
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Remarks. (1) This theorem is due to Zhislin [677]. There were earlier results of
Uchiyama [625] (for N = 2, Z < 1), and by Vugal’ter–Zhislin [633] and Yafaev
[660, 661] (for Z = N − 1).

(2) The intuition is that the leftover Coulomb repulsion (if Z < N − 1) or
residual Coulomb attraction (if Z = N − 1) is such that an effective −∆ +W has
only finitely many states. Of course, one needs techniques to conclude that when an
effective two-body problem has that property, the full N -body does — one of the
most effective methods is due to Sigal [527]. I note in passing that there are three
particle systems with short-range interactions that surprisingly have an infinite
number of bound states, {Ej}∞j=1 with asymptotic geometric sequence placement,
i.e. Ej+1/Ej → α < 1. At least two of the three two body clusters must have zero
energy resonances (what this means is discussed in Sec. 16) so the bottom of the
essential spectrum is 0. The discovery on a formal level is due to Efimov [132] after
whom the effect is named. For mathematical proofs, see [659, 604, 605, 592, 455].
Wang [636, 637] discussed this for N -body systems. For popular science treatments
of experimental verification of the geometric progression (even for small j!) see
[454, 652].

(3) This theorem is stated for systems with no statistics. For Z < N − 1, the
result extends without much trouble to Fermi statistics [677]. For Z = N − 1, one
needs to assume that there is not an atomic ground state with a dipole moment
(for there to be such a state, there would need to be a degeneracy of states with
different parity) because −∆ + λê · r/(1 + r)3 has an infinity of bound states when
λ is large enough. In fact, in [556], it is claimed (quoting Lieb) that a molecule with
two centers, Z1 = 1/3, Z2 = 2/3, N = 2 (so Z = N − 1) and |R1 − R2| large will
have an infinity of bound states (although a proof has never been published to my
knowledge). In any event, under an assumption about no atomic ground state with
dipole moment, the theorem does extend to N = Z + 1 [633].

For most of the discussion as follows, we look at E(Z,N) with Fermi statistics.
One might expect that for Z fixed, one has that δ(Z,N) = 0 for all sufficiently
large N , i.e. there is an Nc(Z) so that δ(Z,N) = 0 if N ≥ Nc(Z) and so that
δ(Z,Nc(Z) − 1) > 0. Ruskai [506] and Sigal [527, 529] proved that for every Z,
there is such an Nc(Z) and Lieb [410] found a simple, elegant argument that
Nc(Z) ≤ 2Z+1 which, in particular, implies that H−− does not exist although H−

does.
In nature, there is no known example for δ(Z,N) > 0 if N ≥ Z+2, that is, there

are once negatively charged ions in nature, but no twice negatively charged ions.
So it might even be that Nc(Z) is always bounded by Z + 1. In any event, there
is a conjecture [580] that Nc(Z) ≤ Z + k for some finite k. It is known [413] that
for fermion electrons, one has that limZ→∞Nc(Z)/Z = 1 but Benguria–Lieb [49]
have proven that the lim inf is strictly bigger than 1 for bosonic electrons. There
is considerable literature since these two basic papers, but since this is already
removed from Kato’s work, we will not try to summarize it.
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12. Eigenvalues, II: Lack of Embedded Eigenvalues

Consider on Rν , the equation (−∆ + V )ϕ = λϕ with V (x) → 0 as |x| → ∞ and
λ > 0. Naively, one might expect that no solution, ϕ, can be in L2(Rν , dνx). The
intuition is clear: classically, if the particle is in the region {x | |x| > R}, where R is
picked so large that |x| > R ⇒ V (x) < λ/2 and if the velocity is pointing outwards,
the particle is not captured and so not bound. Due to tunneling, in quantum theory,
a particle will always reach this region so there should not be positive energy bound
states. This intuition of no embedded eigenvalues is incomplete due to the fact that
bumps can cause reflections even when the bumps are smaller than the energy,
so an infinite number of small bumps which do not decay too rapidly might be
able to trap a particle. Indeed, in 1929, near the birth of modern quantum theory,
von Neumann–Wigner [632] presented an example with an embedded eigenvalue
of energy 1 (in fact they picked V (x) → −1 at infinity and λ = 0; we will shift
energies by 1 and also pick their arbitrary constant A to be 1). They had the idea
of guessing the wave function, ψ, and setting V (x) = 1 + ψ−1∆ψ(x). They picked
ψ so that it had oscillations that cancelled the +1 at infinity. Their choice as a
function of r = |x| in three dimensions was

ψ(x) =
sin r
r

[1 + g(r)2]−1; g(r) = 2r − 2 sin(2r) (12.1)

and they claimed that (where g̃(r) = 2r + 2 sin(2r))

V (x) = −32 cos4 r
1 − 3g̃(r)2

[1 + g̃(r)2]2
. (12.2)

With slow enough decay, one can have much more than a single embedded eigen-
value. It is known (see [570, 373]) that if 0 < β < 1/2 and qω(x) is a random poten-
tial in one dimension with uniformly spaced independent, identically distributed
random bumps, then − d2

dx2 + (1 + x2)−β/2qω(x) has only dense pure point spec-
trum, i.e. the essential spectrum is [0,∞) and there is a complete orthonormal set
of L2 eigenvectors!

In 1959, Kato proved the first strong result on the non-existence of positive
eigenvalues.

Theorem 12.1 ([317], announced in [316]). Let V (x) be continuous on Rν and
obey

lim
r→∞ r sup

|y|>r
|V (y)| = 0. (12.3)

Then (−∆ + V )ϕ = λϕ with λ > 0 has no (nonzero) L2 solutions.

Remarks . (1) ODE techniques easily prove in one dimension and in arbitrary
dimension if V is spherically symmetric, that there are no positive eigenvalues if∫∞
1

|V (r)| dr < ∞. This goes back at least to Weyl [644] who quotes the results of
Kneser [363]. In modern parlance, it follows from the existence of Jost solutions.
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(2) Earlier, Brownell [71, Theorem 6.7] proved the absence of such eigenvalues
under bounds of the form |V (x)| ≤ C1 exp(−C2|x|).

(3) There is both earlier and illuminating later work in the one-dimensional
(equivalently spherical symmetric) case. Let

K ≡ lim sup
|x|→∞

[|x||V (x)|]. (12.4)

Kato proved in general dimension that there are no eigenvalues, E, with E ≥ K2.
The (corrected) Wigner–von Neumann example has K = 8, E = 1 so one knows
from that one cannot do better than K2/64 and it is easy to modify this example
to show that one cannot do better than K2/4. In 1948, Wallach [634] proved the
E ≤ K2 in one dimension (extended by Borg [63] and Eastham [126]) and provided
an example showing that one could not do better thanK2/4. A breakthrough in this
one-dimensional case was made by Atkinson–Everitt [22] who proved that there is
no eigenvalue if E ≥ 4K2/π2 and that there are examples with eigenvalues arbitrar-
ily close to this bound. Note that 4/π2 = 0.405 . . . lies in (1/4, 1). Their example is a
relative of the Wigner–von Neumann example but uses sgn(sin(r)) in place of sin(r).
Their method using Prüfer transforms is much of one-dimensional. Eastham–Kalf
[128] give a textbook presentation of this work and mention that Halvorsen (unpub-
lished) also found the optimal 4K2/π2. Remling [489] extended the Atkinson–
Everitt result to prove no singular continuous spectrum in [4K2/π2,∞).

(4) Kato proved results about more than L2 solutions. For example, he proved
that if |V (x)| ≤ (1 + |x|)−α near infinity with α > 1, and if (−∆ + V )ϕ = λϕ with
λ > 0 with ϕ(x) → 0 as x → ∞, then ϕ vanishes near infinity (and depending on
the structure of the singularities of V , one can often use unique continuation (see
below) to conclude that ϕ ≡ 0). This will be useful in Sec. 15.

The observant reader may have noted that since g(r)/r → 1 as r → ∞, the
potential, V (x), given by (12.2) is O(r−2) so it seems to be a counterexample
to Theorem 12.1! In fact, von Neumann–Wigner had a calculational error: in the
middle, they used cos r/sin r = tan r(!) and this error produces a remarkable can-
cellation. Doing the calculation correctly yields

V (r) = −32 sin r
g(r)3 cos r − 3g(r)2 sin3 r + g(r) cos r + sin3 r

[1 + g(r)2]2
(12.5)

so that V (r) = −8 sin(2r)/r+ O(r−2) consistent with Kato’s theorem. I once
pointed out this error to Wigner, who thought for a moment and then said to
me: “Oh, Johnny did that calculation”.

Kato proved some differential inequalities on M(r) = rν−1
∫
|ϕ(rω)|2dω (where

dω is surface measure on the unit sphere) and used them to prove that if∫∞
M(r)dr < ∞ (i.e. ϕ ∈ L2(Rν)), then M(r) = 0 for r > R0 for some R0.

The final step in his proof needs a result that any solution of (−∆ + W )ϕ = 0
that vanishes on an open set is identically zero. This is called a unique continuation
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theorem (we note the analog fails for hyperbolic equations). Such theorems go back
to Carleman [80] in 1939. He only treated ν = 2 and required that V ∈ L∞. The
kind of estimates he used, now called Carleman estimates, have been a staple, not
only of later work on unique continuation, but for many other topics in the theory
of elliptic PDEs. Unique continuation when V ∈ L∞ and ν ≥ 3 was proven by
Müller [432] in 1954 (see also [17]). So when Kato did his work, there was only
unique continuation for bounded V ′s. Thus, in the final step, one needs to know
there is a compact set, S, of measure zero so that Rν\S is connected and so that
V is locally bounded on this connected set.

Starting in 1980, there were a number of unique continuation results with Lploc

conditions on V culminating in the classic 1985 paper of Jerison–Kenig [278] who
require (for ν ≥ 3; for ν = 2, the condition is more complicated) that V ∈ L

ν/2
loc

which is known to be optimal.
In fact, one only needs something weaker than unique continuation, namely that

there are no eigenfunctions of compact support. We will discuss this shortly.
Ikebe–Uchiyama [256] extended Kato’s result to allow magnetic fields which are

o(x−1) at infinity and Roze [505] allowed suitable non-constant coefficient second-
order elliptic term.

Froese et al. [172] proved a variant of Kato’s result. They first proved that
if V is −∆-bounded and (−∆ + 1)−1/2(|x|V )(−∆ + 1)−1 is a compact opera-
tor, and if (−∆ + V )ϕ = λϕ, ϕ ∈ D(H) and λ > 0, then eα|x|ϕ ∈ L2 for all
α > 0. They then prove (and this also shows no compact support eigenfunc-
tions) that if V (−∆ + 1)−3/4 is bounded, limγ→∞, ‖V (−∆ + γ)−3/4‖ = 0 and
limR→∞‖χR(1 + |x|)V (−∆ + 1)−3/4‖ = 0 (where χR is the characteristic function
of {x | |x| > R}), then (−∆ + V )ϕ = λϕ and eα|x|ϕ ∈ L2 for all α > 0 ⇒ ϕ = 0.
This provides a proof of a variant of Kato’s theorem without a need for pointwise
bounds on V .

A very interesting alternate proof to a theorem very close to Kato is due to
Vakulenko [626]. While Vakulenko and Yafaev [668] (who have a clear exposition
of Vakulenko’s work) say that he recovers Kato’s result, instead he has a condition
for a class of V ’s with lots of overlap to, but distinct from, Kato’s condition (12.3).
A Vakulenko bounding function, η(r), is a function on (0,∞) obeying

∀r∈(0,∞)η(r) > 0; lim
r↓0

rη(r) = 0;
∫ ∞

0

η(r)dr <∞. (12.6)

A Vakulenko potential, V (x), on Rν is a measurable function for which there exists
a Vakulenko bounding function, η(r) with

|V (x)| ≤ η(|x|). (12.7)

If η(x) = (1 + |x|)−1−ε and V obeys (12.7), then V obeys both Vakulenko’s
condition and Kato’s (12.3). If we consider V (x) = (1 + |x|)−1[log(2 + |x|)]−α, then
V obeys (12.3) if α > 0 but is only a Vakulenko potential if α > 1. On the other
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hand, if

V (x) =

{
|x|−β if for some n = 1, 2, . . . , n2 < |x| < n2 + 1,

0 otherwise,
(12.8)

then V (x) obeys Kato’s (12.3) only if β > 1 but is a Vakulenko potential if β > 1/2.
So neither class is contained in the other, although they are very close. There is,
of course, a connection to his condition and the fact that in one dimension, it has
been long known that if the potential is in L1, then the positive spectrum is purely
absolutely continuous (as mentioned in Remark 1 after Theorem 12.1).

Theorem 12.2 ([626]). Let V (x) be a Vakulenko potential with (12.7) for some
η. Let H = −∆ + V and let B be multiplication by

√
η. Then for any 0 < a <

b <∞, there is a relatively H-bounded operator, A, so that for all λ ∈ [a, b] and all
ϕ ∈ D(H), we have that

Re〈(H − λ)ϕ,Aϕ〉 ≥ ‖Bϕ‖2. (12.9)

In Sec. 15, we will see that (12.9) has implications for local smoothness of B and
implies strong spectral properties of H . We will also prove the theorem when ν = 1
and say something about the proof for general ν. For now, we note the following.

Corollary 12.3 ([626]). If V is a Vakulenko potential and H = −∆ + V, then H

has no positive eigenvalues.

Proof. Let λ > 0. Pick a, b with 0 < a < λ < b <∞. If Hϕ = λϕ for ϕ ∈ D(H), by
(12.9), we have that ‖Bϕ‖ = 0. Since η is everywhere non-vanishing, we conclude
that ϕ = 0.

The Wigner–von Neumann example has oscillations and one expects that if
such oscillations are absent, then there should also be no positive eigenvalues. For
example, if V (x) looks like r−α, 0 < α ≤ 1, one expects that there should also be no
positive eigenvalues. Odeh [451] proved that if x ·∇V ≤ 0 for all large x, then Kato’s
method could be modified to show that there are no positive eigenvalues. Shortly
thereafter, Agmon [2] and Simon [540], using Kato’s methods, independently proved
(with enough local regularity to apply a unique continuation theorem) that there
are no positive eigenvalues if V (x) = V1(x) + V2(x) so long as when x → ∞, one
has that |x||V1(x)| → 0, V2(x) → 0 and x · ∇V2(x) → 0. Most later works and,
in particular, both Froese et al. [172] and Vakulenko [626], also considered such
sums. Khosrovshahi–Levine–Payne [354] and Kalf–Krishna Kumar [288] allow a
third highly oscillatory piece and prove no positive eigenvalues (so for example,
they allow r−1 sin(rβ) for β > 1 and Agmon–Simon allow β < 1).

Another way of extending Odeh’s result proves the absence of positive eigen-
values using the virial theorem as discussed as follows (see also the discussion of
Lavine’s work in Sec. 15).

Before discussing more results on the absence of positive energy eigenvalues, we
pause for some other examples, motivated by the Wigner–von Neumann example,
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where there are positive energy eigenvalues. By taking suitable sums of bj sin(αjr)/r
(cutoff away from infinity), Naboko [434] and Simon [579] constructed, for each
δ > 0, V (x), bounded by r−1+δ near infinity with dense point spectrum. In what
follows is one such result (taken from [579]).

Theorem 12.4. For any countable subset {Ek}∞k=1 of (0,∞) and any ε, δ > 0, there

is V (x) on (0,∞) so that − d2

dx2 + V (x) on L2(0,∞; dx) with ϕ(0) = 0 boundary
conditions has ϕk ∈ L2 ∩ C2(0,∞), so ϕk(0) = 0 and −ϕ′′

k + V ϕk = Ekϕk and so
that

|V (x)| ≤ ε(1 + |x|)−1+δ. (12.10)

Remark. If 0 < δ < 1/2, it is known [90, 489, 105, 356] that − d2

dx2 + V (x) has
a.c. spectrum on all of [0,∞) so this is point spectrum embedded in continuous
spectrum. As noted already, if δ > 1/2, one can find V ’s with only point spectrum.

The Wigner–von Neumann and Naboko–Simon examples are spherically sym-
metric. Ionescu–Jerison [257] found examples where the slow O(r−1) decay is only
in a parabolic tube about a single direction.

Theorem 12.5 ([257]). Fix ν ≥ 2. There exists C > 0 and for each n = 1, 2, . . . ,
a potential obeying

|V (x1, . . . , xν)| ≤
C

n+ |x1| + |x2|2 + · · · + |xν |2
(12.11)

and so that (−∆ + V )ϕ = ϕ has a nonzero L2 solution.

Frank–Simon [160] have simplified the Ionescu–Jerison construction by hewing
more closely to the Wigner–von Neumann method. They use the wave function

ϕn(x) = sinx1(n2 + g(x1)2 + (x2
2 + · · · + x2

ν)
2)−α, (12.12)

where α > ν/4 (which implies that ψn ∈ L2) and g is given by (12.1). Vn is then
defined by

Vn(x) =
∆ψn + ψn

ψn
(12.13)

which is seen to obey (12.11). [160] also has versions of the central Wigner–von
Neumann potentials for dimensions different from 1 and 3.

Note that (12.11) implies that Vn ∈ Lp(Rν) for any p > 1
2 (ν + 1). That says

that the value of p in the following is optimal.

Theorem 12.6 ([370]). Let ν ≥ 2. If V ∈ Lp1(Rν) + Lp2(Rν), where p1 = 1
2ν <

p2 = 1
2 (ν+1) (if ν = 2, one needs to take p1 > 1), then −∆+V has no eigenvalues

in (0,∞).

Remarks. (1) Earlier Ionescu–Jerison [257] proved the weaker result where p2 =
1
2 (ν + 1) is replaced by p2 = 1

2ν.
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(2) As we noted above, by Theorem 12.5, p2 = 1
2 (ν + 1) is optimal. The lower

bound on p is needed to assure esa-ν.
(3) The proof relies on Lp Carleman estimates and the machinery of [369].

In many ways, the subtlest results on the absence of positive eigenvalues con-
cern N -body systems. After all, we saw in Secs. 3 and 4 in Part 1 (Example 3.2
and Example 3.2 revisited) that N -body systems can have eigenvalues embedded in
negative continua without carefully tuned potentials due to either non-interacting
clusters or due to an eigenvalue of one symmetry embedded in a continuum of
another symmetry. The earliest N -body results involve the Virial Theorem and
showed no positive eigenvalues under specialized circumstances, for example, repul-
sive potentials and also V ’s homogeneous of degree β (i.e. V (λ−→x ) = λβV (−→x ), 0 >
β > −2) which includes the physically important Coulomb case. This is discussed
in [639, 8, 285] (or [479, Theorems XIII.59 and XIII.60]).

Undoubtedly, the deepest results on lack of positive eigenvalues for N -body
systems are in Froese–Herbst [170]. They assume that the Vij(r) = vij(ri − rj),
where vij as functions on Rν obey vij(−∆ + 1)−1 and (−∆ + 1)−1(y · ∇yvij)(y)
(−∆+1)−1 are compact (here ∆ is the Laplacian and all operators act on Rν). These
hypotheses are made so that Mourre theory applies (see [431, 465, 171, 12, 507]).

One takes N particles (x1, . . . , xN ), xj ∈ Rν and defines

|x| =

2
N∑
j=1

mj|xj −R|2
1/2

, (12.14)

where R = (
∑N

j=1mj)−1(
∑N

j=1mjxj). If we are looking at a Hamiltonian on
L2(Rν(N−1)) with center of mass motion removed or if we have some vj repre-
senting interactions with infinite mass particles, then we act on L2(RνN ), and set
R = 0. What Froese–Herbst found is the following.

Theorem 12.7 ([170]). Under the above hypotheses, if Hψ = λψ, ψ ∈ L2(Rκ),
then

β ≡ sup
α≥0

{α2 + λ | eα|x|ψ ∈ L2} ∈ T ∪ {∞}, (12.15)

where T is the set of thresholds of the system (see Sec. 11 for a discussion of
thresholds).

If there are no positive thresholds (which one can prove inductively if there is
a way to prove no positive eigenvalues), then if λ > 0, the β in (12.15) must be
∞. For suitable two-body systems, we saw above that eigenfunctions cannot obey
eα|x|ψ ∈ L2 for all α > 0. Froese et al. [173] proved the same for suitable N -body

1950005-20

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

Tosio Kato’s work

systems (see the paper for precise conditions); see also [571, Theorem C.3.8]. In this
way, one proves that certain N -body systems have no positive eigenvalues.

The above touched on L2 isotropic exponential bounds (and as we will see in
Sec. 19 that implies pointwise exponential bounds). There is a huge and beautiful lit-
erature on this subject and on non-isotropic bounds. We refer the reader to the book
of Agmon [5] and the review article of Simon [571] which contains many references.

13. Scattering and Spectral Theory, I: Trace Class Perturbations

This is the first of four sections on spectral and scattering theory. For the 15 years
between 1957 and 1972, this area was a major focus of Kato. When Kato was invited
to give a plenary lecture at the 1970 International Congress of Mathematicians, his
talk [326] was entitled “Scattering Theory and Perturbation of Continuous Spectra”
(interestingly enough, Agmon and Kuroda gave invited talks at the same congress
and spoke on closely related subjects). This section and the next two have brief
introductory remarks introducing this subject. This section’s introduction has much
of the background we will give on scattering theory, the next section discusses
the basics of spectral theory and something about the connection between time-
independent and time-dependent scattering theory and Sec. 15 will say more about
the background behind the time-independent approach.

Birmingham, AL, Meeting on Differential Equations, 1983.
Back row: Fröhlich, Yajima, Simon, Temam, Enss, Kato, Schechter, Brezis, Carroll,
Rabinowitz.
Front row: Crandall, Ekeland, Agmon, Morawetz, Smoller, Lieb, Lax.
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Starting with Rutherford’s 1911 discovery of the atomic nucleus, scattering has
been a central tool in fundamental physics, so it is not surprising that one of
the first papers in the new quantum theory was by Born [64] on scattering. At
its root, scattering is a time-dependent phenomenon: something comes in, inter-
acts and moves off. But since it relied on eigenfunctions, Born’s work used time-
independent objects. He assumed that one could construct non-L2 eigenfunctions,
(−∆ + V )ϕ = k2ϕ, (

−→
k ∈ R3, k = |−→k |) which as r → ∞ looks like

ϕ(−→x ) ∼ ei
−→
k ·−→x + f(θ)

eikr

r
; r = |−→x |, −→

k · −→x = kr cos(θ). (13.1)

The time dependence gives e−itHϕ(x) a ei
−→
k ·(−→x−−→

k t) term which is a usual plane
wave with velocity

−→
k and a scattered wave f(θ)r−1eik(r−kt). One expects such a

term to live near points, where r = kt. So if t < 0, that term should not contribute
(since r > 0) while for t positive and large, we have an outgoing spherical wave rep-
resenting the scattering. We will say a little more about making mathematical sense
of this formal argument in Sec. 15. |f(θ)|2 was then interpreted as a scattering differ-
ential cross-section. Born also found a leading-order perturbation formula for f(θ):

f(θ) = −(2π)
∫
ei(

−→
k′−−→

k )·−→x V (−→x )d−→x , (13.2)

where k′ = k and
−→
k′ · −→k = k2 cos θ. This Born approximation turns out to be

leading order not only in V , but also for V fixed as k → ∞.
In the early 1940s, the theoretical physics community first considered time-

dependent approaches to scattering. Wheeler [646] and Heisenberg [219] defined the
S-matrix and Møller [429] introduced wave operators as limits (with no precision
as to what kind of limit).

It was Friedrichs in a prescient 1948 paper [166] who first considered the invari-
ance of the absolutely continuous spectrum under sufficiently regular perturbations.
Friedrichs was Rellich’s slightly older contemporary. Both were students of Courant
at Göttingen in the late 1920s (in 1925 and 1929, respectively). By 1948, Friedrichs
was a professor at Courant’s institute at NYU. Friedrichs considered two classes of
examples in this paper. One was the model mentioned in Example 3.1 of a pertur-
bation of an embedded point eigenvalue. The other was H = H0 +λK, where H0 is
multiplication by x on L2([0, 1], dx) and K is a Hermitian integral operator with an
integral kernel K(x, y) assumed to vanish on the boundary (i.e. if x or y is 0 or 1)
and to be Hölder continuous in x and y. Using what we would call time-independent
methods, Friedrichs constructed unitary operators, Uλ, for λ sufficiently small, so
that

H0 + λK = UλH0U
−1
λ . (13.3)

While Friedrichs neither quoted Møller nor ever wrote down the explicit formulae

Ω±(H,H0) = s- lim
t→∓∞ eitHe−itH0 (13.4)
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(we remind the reader that the strange ± versus ∓ convention that we use is uni-
versal in the theoretical physics community and uncommon among mathematicians
and is not the convention that Kato used), he did prove something equivalent to
showing that the limit Ω+ existed and was Uλ and that the limit Ω− existed and
was equal to SλΩ+. Here Sλ was an operator he constructed and identified with the
S-matrix (although it differs slightly with what is currently called the S-matrix).

Motivated in part by Friedrichs, in 1957, Kato published two papers [313, 314]
that set out the basics of the theory we will discuss in this section. In the first, he
had the important idea of defining

Ω±(A,B) = s − lim
t→∓∞ eitAe−itBPac(B), (13.5)

where Pac(B) is the projection onto Hac(B), the set of all ϕ ∈ H for which the
spectral measure of B and ϕ is absolutely continuous with respect to Lebesgue
measure (see [587, Sec. 5.1] or the discussion at the start of Sec. 14). If these strong
limits exist, we say that the wave operators Ω±(A,B) exist.

By replacing t by t + s, one sees that if Ω±(A,B) exist, then eisAΩ± =
Ω±eisB. Since Ω± are unitary maps, U±, of Hac(B) to their ranges, we see that
U±B �Hac(B)(U±)−1 = A � ranΩ±. In particular, ranΩ± are invariant subspaces
for A and lie in Hac(A). It is thus natural to define: Ω±(A,B) are said to be com-
plete if

ranΩ+(A,B) = ranΩ−(A,B) = Hac(A). (13.6)

Remarks. (1) Kato also noted the relation

Ω±(A,B)Ω±(B,C) = Ω±(A,C) (13.7)

in that if both wave operators on the left exist, so does the one on the right and
one has the equality.

(2) The wisdom of taking Pac(B) in the definition of wave operator is shown by
the fact that it follows from the results of Aronszajn [18] and Donoghue [120] (see
also [564]) that if A − B = 〈ϕ, ·〉ϕ with ϕ a cyclic vector for B, then eitAe−itBψ
has a limit if and only if ψ ∈ Hac(B).

In [313], Kato proved the following.

Theorem 13.1 ([313]). Let Ω±(A,B) exist. Then they are complete if and only
if Ω±(B,A) exist.

The proof is almost trivial. It depends on noting that

ψ = lim
t→∞ eiAte−itBϕ⇔ ϕ = lim

t→∞ eitBe−itAψ (13.8)

since

‖ψ − eiAte−itBϕ‖ = ‖eitBe−itAψ − ϕ‖. (13.9)

That said, it is a critical realization because it reduces a completeness result to an
existence theorem. In particular, it implies that symmetric conditions which imply
existence also imply completeness. We will say more about this as follows.
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To show the importance of this idea, motivated by it in [107], Deift and
Simon proved that completeness of multichannel scattering for N -body scattering
was equivalent to the existence (using the N -body language of Sec. 11) of
s− limt→±∞ eitH(C)JCe−itHPac(H) for the partition of unity {JC}C�=Cmin discussed
in Remark 4 after Theorem 11.8. All proofs of asymptotic completeness for N -body
systems prove it by showing the existence of these Deift–Simon wave operators in
support of Kato’s Theorem 13.1.

In [313], Kato proved the following.

Theorem 13.2 ([313]). Let H0 be a self-adjoint operator and V a (bounded) self-
adjoint, finite rank operator. Then H = H0 + V is a self-adjoint operator and the
wave operators Ω±(H,H0) exist and are complete.

This implies the unitary equivalence of H0 �Hac(H0) and H �Hac(H). Remark-
ably, in the same year, Aronszajn [18] proved that this invariance holds for finite
rank perturbations of boundary conditions for Sturm–Liouville operators (extended
later using similar ideas by Donoghue [120] to general finite rank perturbations).
Their methods are totally different from Kato’s and do not involve wave operators.

Later in 1957, Kato [314] proved the following.

Theorem 13.3 (Kato–Rosenblum Theorem). The conclusions of Theo-
rem 13.2 remain true if V is a (bounded) trace class operator.

In a sense this theorem is optimal. It is a result of Weyl–von Neumann [643, 631]
(see [587, Theorem 5.9.2]) that if A is a self-adjoint operator, one can find a Hilbert–
Schmidt operator, C, so that B = A + C has only pure point spectrum. Kato’s
student, Kuroda [380], shortly after Kato proved Theorem 13.3, extended this result
of Weyl–von Neumann to any trace ideal strictly bigger than trace class. So within
trace ideal perturbations, one cannot do better than Theorem 13.3.

The name given to this theorem comes from the fact that before Kato proved
Theorem 13.3, Rosenblum [503] proved a special case that motivated Kato: namely,
if A and B have purely a.c. spectrum and A−B is trace class, then Ω±(A,B) exist
and are unitary (so complete).

I had always assumed that Rosenblum’s paper was a rapid reaction to Kato’s
finite rank paper which, in turn, motivated Kato’s trace class paper. But I recently
learned that this assumption is not correct. Rosenblum was a graduate student of
Wolf at Berkeley who submitted his thesis in March 1955. It contained his trace
class result with some additional technical hypotheses; a December 1955 Berkeley
technical report had the result as eventually published without the extra technical
assumption. Rosenblum submitted a paper to the American Journal of Mathematics
which took a long time refereeing it before rejecting it. In April 1956, Rosenblum
submitted a revised paper to the Pacific Journal in which it eventually appeared
(this version dropped the technical condition; I have no idea what the original
journal submission had).
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Kato’s finite rank paper was submitted to J. Math. Soc. Japan on March 15,
1957 and was published in the issue dated April, 1957(!). The full trace class result
was submitted to Proc. Japan Acad. on May 15, 1957. Kato’s first paper quotes an
abstract of a talk Rosenblum gave to an Amer. Math. Soc. meeting but I do not
think that abstract contained many details. This finite rank paper has a note added
in proof thanking Rosenblum for sending the technical report to Kato, quoting its
main result and saying that Kato had found the full trace class results (“Details
will be published elsewhere.”). That second paper used some technical ideas from
Rosenblum’s paper.

I have heard that Rosenblum always felt that he had not received sufficient
credit for his trace class paper. There is some justice to this. The realization that
trace class is the natural class is important. As I have discussed, trace class is
maximal in a certain sense. Kato was at Berkeley in 1954 when Rosenblum was
a student (albeit some time before his thesis was completed) and Kato was in
contact with Wolf. However, there is no indication that Kato knew anything about
Rosenblum’s work until shortly before he wrote up his finite rank paper when he
became aware of Rosenblum’s abstract. My surmise is that both, motivated by
Friedrichs, independently became interested in scattering.

It should be emphasized that 1956–1957 was a year that (time-dependent) scat-
tering theory seemed to be in the air. Cook [93] found a simple, later often used,
method for proving that Ω±(A,B) exists: if

∫∞
−∞‖(A−B)e−iuBϕ‖du <∞, then by

integrating a derivative

lim sup
t,s→∞

or t,s→−∞
‖eitAe−itBϕ− eisAe−isBϕ‖ ≤ lim

∫ t

s

‖(A−B)e−iuBϕ‖du = 0

(13.10)

so it suffices that ∫ ∞

−∞
‖(A−B)e−iuBϕ‖du <∞ (13.11)

for a dense set of ϕ for Ω±(A,B) to exist. Cook applied this to B = −∆; A =
−∆ + V ; V ∈ L2(R3) (which translates to O(|x|−3/2−ε) decay). Hack [206] and
Kuroda [381] extended this to allow O(|x|−1−ε) decay.

Since, for the free dynamics, x ∼ ct, one expects and can prove that if α ≤ 1,
then

∫∞
−∞‖(1 + |x|)−αeiu∆ϕ‖du = ∞ for all ϕ. Indeed, Dollard [118] showed that

one needs modified wave operators for Coulomb potentials (again, there is a large
literature on the subject of Coulomb or slower decay of which we mention [90, 113]).

Extensions of Cook’s ideas and other scattering theory notions to quadratic
form perturbations can be found in [383, 511, 557, 337]. Kato states his results in
a two-Hilbert space setting (see as follows). J is a bounded linear operator from
H1 to H2 and Hj are self-adjoint operators on Hj ; j = 1, 2. For z ∈ C\R, let
C(z) = (H2−z)−1J−J(H1−z)−1. Kato proves that if for some z and ϕ ∈ H1, one
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has that ∫ ∞

0

‖C(z)e−itH1ϕ‖2 dt <∞, (13.12)

then

lim
t→∞ eitH2Je−itH1ϕ exists. (13.13)

He then shows that this allows some cases where H2 is only defined as a quadratic
form, e.g. H1 = −∆, H2 = −∆ + V with V ≥ 0, V ∈ L1(R3, (1 + |x|)1−ε dx).

For many years, it was thought that this simple idea of Cook was limited to
existence but not useful for completeness or spectral theory. This was overturned
by a brilliant paper of Enss [136] (see also [464, 478, Sec. XI.17] or [562]), a subject
we will not pursue here.

In 1958–1959, there were also several influential papers by Jauch [269, 270] that
discussed scattering in a general framework.

In considering extensions of the Kato–Rosenblum, I begin with four issues that
involve work by Kato himself. First, we discuss proofs. Like Friedrichs, both Kato
and Rosenblum proved that a time-dependent limit exists by first constructing
objects with time-independent methods which they prove is the required limit. The
first fully time-dependent proof of Theorem 13.3 is in Japanese language paper by
Kato [315] also published in 1957. His argument was repeated with permission in
a paper by his student Kuroda [382]. The slickest version of this time-dependent
proof is in Kato’s 1966 book [332]. It is a variant of this argument that Pearson
used in his proof of Theorem 13.4.

The second concerns Kato’s paper [321] on what is called the invariance princi-
ple: for suitable functions Φ, one shows that A−B trace class ⇒ Ω±(Φ(A),Φ(B))
exist and are complete. In case that Φ is strictly monotone increasing (respectively,
decreasing), one has that Ω±(Φ(A),Φ(B)) = Ω±(A,B) (respectively, Ω∓(A,B)).
The first examples of this phenomenon are due to Birman [54, 55]. Kato focused
on the general form of the principle. There is a considerable literature on non-trace
class versions of an invariance principle; see [478, Notes to Sec. XI.3] for references.

The third involves two-Hilbert space scattering theory [323]. This came out of
a set of concrete problems. In Sec. 8 in Part 1 (see the discussion beginning with
(8.6)), we saw that the equation ∂2u

∂t2 = (∆− V )u had a unitary propagation in the
norm [‖u̇‖2

2 + 〈u, (−∆+V )u〉]1/2. This means to compare solutions of this equation
to, say, the one with V = 0, one needs to consider two different Hilbert space
norms. If for some 0 < α < β <∞, one has for all x that α ≤ V (x) ≤ β, then there
is a natural map, J between the two spaces so that J is bounded with bounded
inverse which takes ϕ viewed as an element of one Hilbert space into itself but
viewed in other Hilbert space. One is interested in the limit in (13.13) (and also the
limit as t → −∞). A similar setup applies to other hyperbolic systems, especially
to the physically significant Maxwell’s equation. Long after Kato’s work on the
subject, Isozaki–Kitada [261] discovered that one could use a J operator to discuss
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long-range scattering where ordinary wave operators do not exist. Before [323],
several authors [512, 525, 614, 649] discussed scattering theory for some concrete
examples of such systems. Kato [323] looked at the theory systematically, focusing,
for example, on J ’s with s- limt→±∞(J∗J − 1)e−itH1 = 0 which implies that the
wave operators are isometries if they exist. Under certain invertibility hypotheses
on J , Kato could carry over the usual trace class scattering theory to get some two
Hilbert space results. Stronger results were subsequently obtained by Belopol’skii–
Birman [43], Birman [57] and then Pearson [459] who proved the following.

Theorem 13.4 (Pearson’s Theorem [459]). Let A,B be self-adjoint operators
on Hilbert spaces H1 and H2. Let J be a bounded operator from H1 to H2 so that
C = AJ − JB is trace class (in the sense that there is a bounded operator C from
H1 to H2 with

√
C∗C trace class and for ϕ ∈ D(B) and ψ ∈ D(A) we have that

〈Aψ, Jϕ〉 − 〈ψ, JBϕ〉 = 〈ψ,Cϕ〉). Then

Ω±(A,B; J) = s- lim
t→∓∞ eitAJe−itBPac(B) (13.14)

exists.

No completeness is claimed (e.g. consider J = 0) but one can sometimes get
completeness. For example, if H1 = H2 = H and A,B ≥ 0 are two positive operators
on H so that (A + 1)−1 − (B + 1)−1 is trace class, then one can pick J = (A +
1)−1(B + 1)−1. C is trace class, so Ω±(A,B; J) exist. Apply this to (B + 1)ϕ to
see that Ω±(A,B; (A + 1)−1) exists. Since (A + 1)−1 − (B + 1)−1 is compact, the
Riemann–Lebesgue lemma shows that Ω±(A,B; (A + 1)−1 − (B + 1)−1) = 0. It
follows that Ω±(A,B; (B + 1)−1) exists. Applying this to (B + 1)ϕ, we see that
Ω±(A,B) exists. By symmetry, it is complete. We thus recover Birman’s result (see
as follows) that (A+ 1)−1 − (B+ 1)−1 trace class implies that Ω±(A,B) exists and
is complete. Pearson’s proof is a clever variant of Kato’s time-dependent proof from
[332]; see [478, pp. 33–38] for details and further applications.

Example 13.5. The fourth of Kato’s applications/extensions of the trace class
theory is an example in a joint paper with Kuroda [348]. They consider three
Hamiltonians on L2(R2, d2x):

H0 = − ∂2

∂x2
1

− ∂2

∂x2
2

; H1 = H0 + V (x2); H = H1 +K, (13.15)

where V ∈ L1(R) ∩ L2(R) and K is a rank 1 operator, Ku = c〈ϕ, u〉ϕ with ϕ

a norm 1 function in L2(R2) and c is a constant. Moreover, they pick V so that
h1 = − d2

dx2 +V (x), as an operator on L2(R), has exactly one eigenvalue in (−∞, 0].
Let h0 = − d2

dx2 . By results of Kuroda [381], using the trace class theory,
Ω±(h1, h0) exist and are complete. Since H0, H1 are of the form Hj = 1 ⊗ hj +
h0 ⊗ 1, one sees that Ω±(H1, H0) exist with ranΩ+(H1, H0) = ranΩ−(H1, H0).
But they are not complete because Hac(H1) has vectors of the form ψ⊗ ϕ0, where
ψ ∈ L2(R) and ϕ0 is the bound state of h1.
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Since K is rank 1, Ω±(H,H1) exist and so by the chain rule Ω±(H,H0) exist.
But by a calculation, K links the two parts of the a.c. spectrum of H1, at least for
c small. Thus they claim that, for c small, ranΩ+(H,H0) �= ranΩ−(H,H0) and the
S-matrix is non-unitary. Hence the title of their paper “A Remark on the Unitarity
Property of the Scattering Operator”.

However, as Kuroda [379] subsequently noted, this analysis leaves something
out. The S-matrix is unitary if one looks at the right S-matrix! This is a multi-
channel system and if one includes also the channel for {ψ ⊗ ϕ0}, the arguments
do imply unitarity. So rather than finding a non-unitary S-matrix, they found the
first example of a multichannel scattering system with asymptotic completeness!

We conclude this section with some brief remarks on developments in the trace
class scattering theory subsequent to Kato’s original work. Many of the significant
results are due to Birman so much so that the theory has taken the name Kato–
Birman theory.

(1) A first key issue was making the theory apply to Schrödinger operators,
H0 = −∆, H = −∆ + V on L2(Rν). The pioneer was Kato’s student, Kuroda, who
first proved an extension of the Kato–Rosenblum theorem. If V is H0-bounded with
relative bound less than 1 and |V |1/2(H0 + 1)−1 is Hilbert–Schmidt, then Kuroda
proved that Ω±(H,H0) exist and are complete. He used this to prove existence and
completeness if ν ≤ 3 and V ∈ L1(Rν) ∩ L2(Rν). In terms of V ’s with

|V (x)| ≤ C(1 + |x|)−α, (13.16)

this requires α > ν whereas the existence by Cook’s method only needs α > 1, so
for ν ≥ 2, there is a gap that we will discuss much more in the next two sections.
Kuroda also noted that if V (−→x ) = V (|−→x |) is a central potential, then, for any ν, one
can do a partial wave expansion (see [586, Theorem 3.5.8]) and reduce the problem
to half-line problems. Since it is known that when (13.16) holds for any α > 0,
that the essential spectrum for the half-line problem is [0,∞) and the spectrum is
simple, one can see that the existence implies completeness without needing the
trace class theory.

(2) Birman is responsible for a wide variety of extensions and applications of
the trace class theory. First, he proved with Krein [58] an extension to the situa-
tion where U and V are two unitaries for which V − U is trace class. In that case,
s- limn→±∞(V ∗)nUnPac(U) exists, has range ranPac(V ) and is a unitary equiva-
lence of the a.c. parts of U and V . Second [54, 55], he proved that if A,B are
self-adjoint and (A − z)−1 − (B − z)−1 is trace class for some z /∈ σ(A) ∪ σ(B),
then Ω±(A,B) exist and are complete (deBranges [104] proved the same result).
Kuroda’s result on |V |1/2(H0 + 1)−1 Hilbert Schmidt follows from this. Later Bir-
man [56] proved that if PI(A)(A−B)PI(B) is trace class for all bounded intervals,
I, and if a technical condition called mutual subordinacy holds, then Ω±(A,B)
exist and are complete. His proof was involved but using Pearson’s Theorem (The-
orem 13.4), one can easily prove this result of Birman (see [478, Theorem XI.10]).
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With this result, one can prove existence and completeness of Ω±(H,H0) for
H0 = −∆, H = −∆ + V on L2(Rν) if V ∈ Lν/2(Rν) ∩ L1(Rν), so α > ν in
(13.16) leaving quite a gap from the expected α > 1 (see the next two sections).

(3) One can apply the trace class theory to the changes of boundary condition.
The pioneer here is Birman [52, 53]; see also [106, Appendix].

(4) When A and B are bounded and A − B is trace class, one can define an
L1(R, dx) function, ξ(x), called the Krein spectral shift so that for f a C2 function
of compact support, one has that f(A) − f(B) is trace class and

Tr(f(A) − f(B)) = −
∫
f ′(x)ξ(x)dx (13.17)

(see [564, Sec. 11.4] or [663, Chap. 8] for more on the spectral shift function).
Birman–Krein [58] prove the beautiful Birman–Krein formula:

det(S(λ)) = e−2πiξ(λ) (13.18)

when A− B is trace class. Here S = Ω−(A,B)∗Ω+(A,B) is a unitary operator on
Hac(B) which commutes with B, so according to the spectral multiplicity theory
[587, Sec. 5.4], B has a direct integral decomposition Hac(B) =

∫ ⊕
σac(B)

Hλ dλ, B =∫ ⊕
σac(B)

and S =
∫ ⊕
σac(B)

S(λ) dλ, where S(λ) is a unitary operator on Hλ. Birman–
Krein prove that S(λ) − 1 is a trace class operator on Hλ and (13.18) holds where
det is the Fredholm determinant [587, Sec. 3.10].

14. Scattering and Spectral Theory, II: Kato Smoothness

This is the second section on spectral and scattering theory. We begin with a quick
primer on spectral theory that will assume familiarity with the spectral theorem
and spectral measures (see [587, Secs. 5.1 and 7.2]). For a self-adjoint operator, H ,
on a (complex, separable) Hilbert space, H, the most basic questions are connected
to the Lebesgue decomposition theorem [583, Theorem 4.7.3] that says that any
measure, dµ on R can be uniquely decomposed dµ = dµac + dµsc + dµpp, where
dµpp is pure point, dµac is dx-absolutely continuous and dµsc has no pure points and
is singular with respect to dx (so “singular continuous”). There is a corresponding
decomposition H = Hac(H) ⊕ Hsc(H) ⊕ Hpp(H), where Hy is the set of those
vectors, ϕ, whose H-spectral measure is purely of type y.

In simple quantum mechanical systems, Hac spectrum is often associated with
scattering theory as we have seen, and Hpp is associated with bound states. As
my advisor, Arthur Wightman, told me that there is no reasonable interpretation
for states in Hsc, so he called the idea that Hsc = {0} the “no goo hypothesis”.
A major concern of quantum theoretic spectral theorists in the period from 1960
to 1985, and, in particular, of Kato, was the proof that Hsc = {0} for two-(and
N -)body quantum systems whose potentials obey (13.16) for α > 1.

Ironically, after Kato became less active in NRQM, it was discovered that, in
some ways, singular continuous spectrum is ubiquitous. As I have remarked: “I seem

1950005-29

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

B. Simon

to have spent the first part of my career proving that singular continuous spectrum
never occurs and the second proving that it always does”. A key breakthrough was
the discovery by Pearson [460] that sparse potentials with slow decay have purely
s.c. spectrum. I explored this in a series of papers [576, 110, 279, 109, 599, 577, 578]
of which a typical result concerns h on �2(Z) given by (hu)n = un+1 +un−1 + bnun.
Fix α > 0 and let Qα be the Banach space of b′s with supn[(1 + |n|)α|bn|] ≡
‖b‖α < ∞ with |n|α|bn| → 0 as |n| → ∞. Then (see [576]), if α < 1/2, for a dense
Gδ in Qα, the associated h has purely s.c. spectrum (i.e. Hsc(h) = H).

A main tool in the quest to prove that Hsc = {0} is the fact that Stone’s formula
[587, Eq. (5.7.30)]

lim
ε↓0

∫ b

a

Im〈ϕ,R(x+ iε)ϕ〉dx =
〈
ϕ,

1
2
[P(a,b)(H) + P[a,b](H)]ϕ

〉
, (14.1)

(where R(z) = (H − z)−1 for z ∈ C\R) immediately implies that for any p > 1, we
have that

sup
0<ε<1

∫ b

a

|Im〈ϕ,R(x + iε)ϕ〉|p dx <∞ ⇒ P(a,b)(H)ϕ ∈ Hac(H). (14.2)

Thus, the most common way of proving that Hsing = {0} is showing that for a
dense set of ϕ, and enough intervals (a, b), we have that

sup
ε>0

a<x<b

|〈ϕ,R(x + iε)ϕ〉| <∞

(stronger than needed, but what one often gets).
We will say a lot more about time-independent scattering in the next section,

but we note that in some sense, the key notion of that theory is that control of
〈ϕ,R(x + iε)ϕ〉 as ε ↓ 0 also says something about long time behavior of dynamics
as seen in ∫ ∞

0

e−εteitλe−itHϕdt = −iR(λ+ iε)ϕ (14.3)

for any ϕ ∈ H because
∫∞
0 e−εtei(λ−x)t dt = −i(x− λ− iε)−1.

We turn now to the theory of Kato smoothness which is based primarily on two
papers of Kato [322, 324]. The first is the basic one with four important results:
the equivalence of many conditions giving the definition, the connection to spectral
analysis, the implications for existence and completeness of wave operators and,
finally, a perturbation result. The second paper concerns the Putnam–Kato theorem
on positive commutators.

To me, the 1951 self-adjointness paper is Kato’s most significant work (with
the adiabatic theorem paper a close second), Kato’s inequality his deepest and the
subject of this section his most beautiful. One of the things that is so beautiful is
that there is not just a relation between the time-independent and time-dependent
objects — there is an equivalence! Here is the set of equivalent definitions.

1950005-30

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

Tosio Kato’s work

Theorem 14.1 ([322]). Let H be a self-adjoint operator and A a closed operator.
The following are all equal (R(µ) = (H − µ)−1):

sup
‖ϕ‖=1
ε>0

1
4π2

∫ ∞

−∞
(‖AR(λ+ iε)ϕ‖2 + ‖AR(λ− iε)ϕ‖2)dλ, (14.4)

sup
‖ϕ‖=1

1
2π

∫ ∞

−∞
‖Ae−itHϕ‖2 dt, (14.5)

sup
‖ϕ‖=1, ϕ∈D(A∗)
−∞<a<b<∞

‖P(a,b)(H)A∗ϕ‖2

b− a
, (14.6)

sup
µ/∈R, ϕ∈D(A∗)

‖ϕ‖=1

1
2π

|〈A∗ϕ, [R(µ) −R(µ̄)]A∗ϕ〉|, (14.7)

sup
µ/∈R, ϕ∈D(A∗)

‖ϕ‖=1

1
π
‖R(µ)A∗ϕ‖2 |Imµ|. (14.8)

In particular, if one is finite (respectively, infinite), then all are.

Remarks. (1) In (14.4)/(14.5), we set ‖Aψ‖ = ∞ if ψ /∈ D(A), so, for example,
to say that (14.5) is finite implies that for each ϕ, we have that e−itHϕ ∈ D(A) for
Lebesgue a.e. t ∈ R.

(2) If one and so all of the above quantities are finite we say that A is H-smooth.
The common value of these quantities is called ‖A‖2

H .
(3) The proof is not hard. If the integral in (14.5) has a factor of e−2εt put

inside it, the equality of the integrals in (14.4) and (14.5) follows from (14.3) and
the Plancherel theorem. By monotone convergence, the sup of the time integral
with the e−2εt factor is the integral without that factor.

(4) The equivalence of (14.7) and (14.8) is just R(µ)−R(µ̄) = (µ− µ̄)R(µ)R(µ̄).
(5) If dνA∗ϕ is the H-spectral measure for A∗ϕ (so

∫
f(λ)dνA∗ϕ(λ) =

〈A∗ϕ, f(H)A∗ϕ〉), then the equivalence of (14.6) and (14.7) involves the relation of
ε
π

∫ dν(λ)
(λ−x)2+ε2 and ν((a,b))

b−a . A bound like (14.6) implies a.e. in dλ a bound on dν(λ)
dλ .

Since ε
π

∫
dλ

(λ−x)2+ε2 = 1, we get (14.7). Conversely (14.7) implies (14.6) via Stone’s
formula.

(6) To see that (14.6) ≤ (14.4), it suffices by taking limits to consider the case
where a and b are not eigenvalues of H . One writes P(a,b)(H) by Stone’s formula
to see that

|〈A∗ϕ, P(a,b)(H)ψ〉| ≤ 1
2π

‖ϕ‖ lim sup
ε↓0

∫ b

a

‖A[R(λ+ iε) −R(λ− iε)]ψ‖dλ

≤ ‖ϕ‖
(∫ b

a

1 dλ

)1/2(
1

4π2

∫ b

a

Integrand in (14.4)dλ

)1/2

proving that ‖P(a,b)(H)A∗ϕ‖ ≤ ‖ϕ‖[right-hand side of (14.4)]1/2|b− a|1/2.
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(7) To see that (14.4) ≤ (14.7), thereby completing the proof of all the equiva-
lences, let α be the sup in (14.7). For z ∈ C+, let K(z) be the positive square root
of (2πi)−1(R(z) −R(z̄)). Then ‖AK(z)‖2 ≤ α, so

Quantity whose sup is taken in (14.4) =
∫ ∞

−∞
‖AK(λ+ iε)2ϕ‖2 dλ

≤ α

∫ ∞

−∞
‖K(λ+ iε)ϕ‖2 dλ = α‖ϕ‖2.

(8) By (14.3), if A is H-smooth, then

‖AR(λ+ iµ)ϕ‖ ≤
∫ ∞

0

e−µt‖Ae−itHϕ‖dt

≤
(∫ ∞

0

e−2µt dt

)1/2(∫ ∞

0

‖Ae−itHϕ‖2 dt

)1/2

≤ (2µ)−1/2(2π)1/2‖A‖H
so A H-smooth ⇒ A is H-bounded with relative bound zero.

(9) In [322], Kato states this equivalence in stages since, as the title of the paper
indicates, his focus is on controlling certain non-self-adjoint operators (we focus on
the self-adjoint case of greatest interest in NRQM). He first considers generalH with
σ(H) ⊂ R and proves a version of Theorem 14.6 and then (following Friedrichs [166])
constructs similarity operators using a stationary replacement for wave operators.
He next adds to H a condition that it generates a group {U(t)}t∈R of bounded
operators with ‖U(t)‖ = O(eεt) for all ε > 0. Then (14.3) holds with e−itH replaced
by U(t) and Kato proves the equality of (14.4) and (14.5) in that case. Finally, he
proves the full Theorem 14.1 when H is self-adjoint.

Example 14.2. Let H = −i ddx on L2(R) and let A be multiplication by f(x).
Since e−itHϕ(x) = ϕ(x − t), we compute∫ ∞

−∞
‖Ae−itHϕ‖2 dt =

∫
R2
f(x)2ϕ(x− t)2 dx dt = ‖f‖2

2‖ϕ‖2
2

so, if f ∈ L2(R), then A is H-smooth.

Example 14.3. If H0 is −∆ on L2(R3), it is known [583, (6.9.48)] that (H0+κ2)−1

with Reκ > 0 has integral kernel 1
4π|x−y|e

−κ|x−y|. Suppose that

1
4π

∫ |V (x)| |V (y)|
|x− y|2 d3xd3y ≡ ‖V ‖2

R <∞

called the Rollnik class in [543] after [501]. Then the Hilbert–Schmidt norm
‖|V |1/2(H0 + κ2)−1|V |1/2‖HS ≤ ‖V ‖R, so, by (14.7) |V |1/2 is H0-smooth with
‖|V |1/2‖H0 ≤ π−1‖V ‖1/2

R . If V ∈ L3/2(R3), the HLS inequality [586, Theorem 6.2.1,
409, 156] implies that V is Rollnik.

Smoothness has an immediate consequence for the spectral type of H .
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Theorem 14.4 ([322]). Let H be a self-adjoint operator and let A be H-smooth.
Then ran(A∗) ⊂ Hac(H). In particular, if ker(A) = {0}, then H has purely a.c.
spectrum.

The proof is very easy. If dν is the H-spectral measure for A∗ϕ, then (14.6) says
that

ν(I) ≤ ‖A‖H‖ϕ‖2|I| (14.9)

(where | · | is Lebesgue measure) for open intervals, I. By taking unions and using
outer regularity, (14.9) holds for all sets, so ν is absolutely continuous.

Smoothness also implies existence and completeness of wave operators.

Theorem 14.5 ([322]). Let H,H0 be two self-adjoint operators. Let A,B be closed
operators so that A is H-smooth and B is H0-smooth and so that

H −H0 = A∗B (14.10)

in the sense that for ψ ∈ D(H) and ϕ ∈ D(H0), we have that

〈Hψ,ϕ〉 − 〈ψ,H0ϕ〉 = 〈Aψ,Bϕ〉. (14.11)

Then Ω±(H,H0) exist and are complete.

Remarks. (1) Since smoothness implies relative boundedness, if ψ ∈ D(H) and
ϕ ∈ D(H0), then the right side of (14.11) makes sense.

(2) In some applications, one assumes that H −H0 =
∑n
j=1 A

∗
jBj with each Aj

H-smooth and each Bj is H0-smooth. The proof in Remark 3 extends to this case
or, alternatively, one can define smoothness for closed operators, A, from H, the
space on which H is defined to K, a perhaps distinct Hilbert space, and then pick
K = ⊕nj=1H, B = ⊕nj=1Bj , A = ⊕nj=1Aj so A∗B =

∑n
j=1 A

∗
jBj .

(3) The proof is again easy (indeed, one of the beauties of Kato smoothness
theory is how much one gets with simple proofs). If ψ ∈ D(H) and ϕ ∈ D(H0),
W (t) = e+itHe−itH0 , then for s < t,

|〈ψ, (W (t) −W (s))ϕ〉| =
∣∣∣∣∫ t

s

〈Ae−iuHψ,Be−iuH0ϕ〉du
∣∣∣∣

≤
(∫ ∞

−∞
‖Ae−iuHψ‖2 du

)1/2(∫ t

−s
‖Be−iuH0ϕ‖2 du

)1/2

≤
√

2π‖A‖H‖ψ‖
(∫ t

−s
‖Be−iuH0ϕ‖2 du

)1/2

so

‖(W (t) −W (s))ϕ‖ ≤
√

2π‖A‖H
(∫ t

−s
‖Be−iuH0ϕ‖2 du

)1/2

(14.12)

is Cauchy. Therefore, Ω±(H,H0) exists. Since H0 −H = −B∗A, we conclude that
they are also complete by Theorem 13.1.

1950005-33

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

B. Simon

We say that a closed operator, A is H-supersmooth if and only if

‖A‖2
H,SS ≡ sup

z∈C\R

‖A(H − z)−1A∗‖ <∞. (14.13)

The notion is in [322] and the name is from [352] in 1989. The name has not stuck
but I like it, so I will use it. The fourth important result in [322] is the following.

Theorem 14.6 ([322]). Let H0 be a self-adjoint operator. Let A be H0-
supersmooth and C a bounded self-adjoint operator so that

α ≡ ‖C‖‖A‖2
H0,SS < 1. (14.14)

Let B = A∗CA. Then B is relatively form bounded with relative form bound at most
α. If H = H0 +B, then A is also H-supersmooth with

‖A‖H,SS ≤ ‖A‖H0,SS(1 − α)−1/2. (14.15)

In particular, Ω±(H,H0) exist and are complete.

Remarks. (1) Once again, the proofs are simple. The key is a formal geometric
series:

A(H − z)−1A∗ = A(H0 − z)−1A∗ +
∞∑
j=0

(−1)j+1A(H0 − z)−1A∗

× [CA(H0 − z)−1A∗]jCA(H0 − z)−1A∗. (14.16)

One proves the form boundedness and uses that to justify a formula like (14.16)
but with an error term. Since ‖CA(H0 − z)−1A∗‖ ≤ α, the error goes to zero and
the series converges. The final assertion then comes from Theorem 14.5.

(2) By the same analysis, the analog of Remark (2) after Theorem 14.5 holds.
If H = H0 +

∑n
j=1 A

∗
jBj and γjk = supz∈C\R‖Bj(H0 − z)−1A∗

k‖ is finite and
Γ = {γjk}1≤j,k≤n is a matrix of norm α < 1, and if each Aj and Bj is supersmooth,
then Ω±(H,H0) exist and are complete.

(3) We repeat that in [322], Kato considers cases where H0 and C need not be
self-adjoint. He assumes that σ(H0) ⊂ R and ‖C‖ supz‖A(H0 − z)−1A∗‖ < 1 and
then defines an operator H which is formally H0 + A∗CA with a resolvent that
obeys (14.16). He then uses ideas going back to Friedrichs [166] to define (in terms
of resolvents, not time limits) invertible operatorsW± so that W±H0(W±)−1 = H .

That completes our discussion of [322]. The main result of [324] is the following.

Theorem 14.7 (Putnam–Kato Theorem [470, 324]). Let A and B be bounded
self-adjoint operators so that D ≡ i[A,B] is strictly positive in the sense that for
all ϕ �= 0, we have that

〈ϕ,Dϕ〉 > 0. (14.17)

Then A and B have purely a.c. spectrum.
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Remarks. (1) The result is due to Putnam. Kato found the real simple proof in
the next remark.

(2) The proof is easy. For let C be the square root of i[A,B]. Then
d
dt〈e−itAϕ,Be−itAϕ〉2 = ‖Ce−itAϕ‖2 so the integral of ‖Ce−itAϕ‖2 from s to t

is bounded by 2‖B‖‖ϕ‖, Thus C is A-smooth and A has only a.c. spectrum on the
closure of ran(C) which is all of H.

Example 14.8 (Weak coupling 2-body). In [322], Kato applied smoothness
ideas to Schrödinger operators. If ν = 3, as we have seen in Example 14.3, if
V ∈ L3/2 (indeed, if V is Rollnik), then |V |1/2 is −∆-supersmooth, so for small
real λ, the wave operators, Ω±(−∆ + λV,−∆) exist and are unitary. On (0,∞),
if h0 = − d2

dx2 with u(0) = 0, then (h0 − z)−1 has an integral kernel dominated by
min(x, y) (see [587, (7.9.53)]) for all z ∈ C\R, so if

∫∞
0
x|V (x)|dx <∞, then |V |1/2

is h0-supersmooth and one knows that for λ small, that Ω±(h0 +λV, h0) exists and
are unitary.

One knows that if ν = 1 or 2 and V ∈ C∞
0 (Rν);V �≡ 0, then for all λ �= 0, either

−∆ + λV or −∆− λV (or both) have a negative energy bound state [554] so there
cannot be −∆-supersmoothness.

By interpolating between ‖eit∆ϕ‖∞ ≤ (4πt)−ν/2‖ϕ‖1 and ‖eit∆ϕ‖2 = ‖ϕ‖2,
Kato [322] showed that if ν ≥ 4 and V ∈ Lν/2+ε ∩ Lν/2−ε, then |V |1/2 is
−∆-supersmooth and he conjectured that this held for ε = 0. Indeed, the next
theorem is true.

Theorem 14.9. Let ν ≥ 3 and V ∈ Lν/2(Rν). Then V is supersmooth. In
particular, for |λ| small and H = −∆ + λV,H0 = −∆, we have that Ω±(H,H0)
exist and are unitary so that H has purely a.c. spectrum.

Remarks. (1) This result appeared in [352]. As they added in a “Note added in
proof”, shortly before their paper, Kenig–Ruiz–Sogge [353] proved estimates that
imply Theorem 14.9.

(2) In [259], Iorio–O’Carroll used supersmoothness to show thatN -body systems
with weak coupling (and ν ≥ 3) have unitary wave operators (so no bound states,
no nontrivial scattering channels and purely a.c. spectrum). They required that the
two body potentials lie in Lν/2+ε ∩ Lν/2−ε, but given Theorem 14.9, their method
works for two body potentials in Lν/2.

Kato–Yajima [352] also proved that (1+ |x|2)−1/2(1−∆)1/4 is −∆-supersmooth
(which says something about V (x) = |x|−2 on L2(Rν); ν ≥ 3). Further developments
are due to Ben et al. [44] and Simon [575]. In particular, Simon obtained optimal
constants in the associated smoothness estimates; for ν ≥ 3,∫ ∞

−∞
‖(x2 + 1)−1/2(−∆)1/4eit∆ϕ‖2 dt ≤ π

2
‖ϕ‖2, (14.18)∫ ∞

−∞
‖|x|−1eit∆ϕ‖2 dt ≤ π

ν − 2
‖ϕ‖2. (14.19)
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Next, having completed our discussion of Kato’s contributions to smoothness,
we turn some applications beginning with repulsive potentials. In this (and other)
regard, it is useful to have the notion of local smoothness due to Lavine [398]. Let
Ω ⊂ R be a bounded Borel set. We say that A is locally H-smooth on Ω if APΩ(H) is
H-smooth (where PX(H) is a spectral projection for H and set X [587, Sec. 5.1]). It
is easy to see [479, Theorem XIII.30] that ifA is an operator withD(H) ⊂ D(A) and
either sup0<±ε<1;λ∈Ω ε ‖AR(λ+ iε)‖ < ∞ or sup0<ε<1;λ∈Ω‖AR(λ+ iε)A∗‖ < ∞,
then A is locally H-smooth on Ω. It is also obvious that if ran(A∗) is dense, then, if
A is locallyH-smooth,H � ranPΩ(H) is purely absolutely continuous. The following
is what makes local H-smoothness so useful.

Theorem 14.10 ([398]). Let H and H0 be self-adjoint and Ω ⊂ R a bounded open
set. Suppose that H = H0 + A∗B, where B is H0-bounded and locally H0-smooth
on Ω and A is H-bounded and locally H-smooth on Ω. Then

Ω±(H,H0;PΩ(H0)) = s- lim
t→∓∞ eitHe−itH0PΩ(H0) (14.20)

exist and have range PΩ(H).

Remarks. (1) For complete proofs, see [398] or [479, Theorem XIII.31].
(2) The same proof as Theorem 14.5 shows that s- limt→∓∞ PΩ(H)eitHe−itH0

PΩ(H0) exists.
(3) Since Be−itH0PΩ(H0)(H0−z)−1ϕ is in L2 with an L2 derivative, we conclude

that for any z ∈ C\R,

s- lim
t→∓∞Be−itH0PΩ(H0)(H0 − z)−1 = 0.

(4) Writing (H − z)−1 − (H0 − z)−1 = [A(H − z̄)−1]∗B(H0 − z)−1 and
using the assumed boundedness of A(H − z̄)−1, we conclude by Remark (3) that
s-limt→∓∞[(H−z)−1−(H0−z)−1]e−itH0PΩ(H0) = 0 and then by [98, Appendix to
Chap. 3] that s- limt→∓∞[f(H)−f(H0)]e−itH0PΩ(H0) = 0 for any continuous func-
tion, f , so that 1−f has compact support. Using this, one sees if I ⊂ Ω is a compact
set with dist(I,R\Ω) > 0, then s- limt→∓∞ PR\ΩeitHe−itH0PI(H0) = 0. This implies
that the limits in (14.20) exist and that ranΩ±(H,H0;PΩ(H0)) ⊂ ranPΩ(H). This
plus symmetry between H and H0 plus the idea behind Theorem 13.1 imply that
ranΩ±(H,H0;PΩ(H0)) = ranPΩ(H).

A potential, V , on Rν is called repulsive if and only if x · ∇V ≤ 0 (e.g. V (x) =
(1 + |x|)−α, any α > 0). If V (x) → 0 at infinity, then V (x) ≥ 0. If
A = i

2 (x · ∇ + ∇ · x) is the generator of dilations and V is repulsive, then i[A,H0 +
V ] = 2H0 − x · ∇V ≥ 0. One cannot use the Putnam–Kato theorem since neither
A nor H is bounded. If you look at the above proof of the Putnam–Kato theorem,
that H is unbounded is not a problem if our goal is to find a C which is H-smooth.
But the unbounded A is. Lavine’s idea was to cutoff x in the definition of A and
get an Ã which is H-bounded and so that i[Ã,H ] ≥ c(1+ |x|2)−β for suitable β and
as in the Putnam–Kato argument, get that (1 + |x|2)−β/2(H + 1)−1 is H-smooth.
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In this way (he used local smoothness to get wave operators), Lavine proved the
following.

Theorem 14.11 ([396–399]). Let H be an N -body Hamiltonian with cen-
ter of mass removed on L2(R(N−1)ν) whose two body potentials Vij lie in
Lp(Rν)+L∞(Rν) (with p ν-canonical) and are repulsive. Then H has purely
absolutely continuous spectrum. If moreover, for some β > 5/2, we have that
|Vij(x)| ≤ C(1 + |x|)−β , then Ω±(H,H0) exist and are complete.

Remark. 5/2 is an artifact of the proof and when the Vij are spherically symmetric,
it has been improved to β > 1 in [399].

Our final major topic concerns ideas of Vakulenko [626]; the reader should first
look at the discussion around Eq. (12.6) for definitions of Vakulenko bounding
function and Vakulenko potential.

Lemma 14.12 ([626]). Let H be self-adjoint and A a closed H-bounded operator.
Let [a, b] be a bounded closed interval in R and B a closed operator with D(H) ⊂
D(B) so that for all ϕ ∈ D(H) and λ ∈ [a, b], we have that

Re〈(H − λ)ϕ,Aϕ〉 ≥ ‖Bϕ‖2. (14.21)

Then B is H-smooth on [a, b].

Remarks. (1) As a preliminary, we note that since |x−λ|
|x−(λ+iε)| ≤ 1, we have that

‖(H − λ)R(λ+ iε)‖ ≤ 1. (14.22)

(2) As a second preliminary, if

‖Aϕ‖ ≤ α‖Hϕ‖ + β‖ϕ‖, (14.23)

then

‖AR(λ+ iε)ψ‖ ≤ α‖[(H − λ) + λ]R(λ+ iε)ψ‖ + β‖R(λ+ iε)ψ‖

≤ (α+ α|λ|ε−1 + βε−1)‖ψ‖. (14.24)

(3) Letting ϕ = R(λ+ iε)ψ in (14.21), we see that

‖BR(λ+ iε)ψ‖2 ≤ ‖(H − λ)R(λ+ iε)‖‖AR(λ+ iε)‖‖ψ‖2

≤ Cε−1‖ψ‖2 (14.25)

(by (14.22)/(14.24)) for 0 < ε < 1 and all λ ∈ [a, b], where C is a constant depending
on α, β, a and b. This implies local smoothness by the discussion prior to Theorem
14.10.

(4) Vakulenko’s A is close to i times a cutoff dilation generator, so the left
side of (14.21) is like an expectation of a commutator and thus this is a variant
of a Mourre estimate but unlike the Mourre estimate, there is no (compact) error
term.
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In Theorem 12.2, we stated a bound of the form (14.21) which immediately
implies (given the lemma) the following.

Theorem 14.13 ([626]). Let V (x) be a Vakulenko potential with (12.7) for some
Vakulenko bounding function η. Then

√
η is −∆ + V locally smooth on (0,∞). In

particular, the spectrum of −∆ + V is purely absolutely continuous on (0,∞) and
the wave operators exist and are complete.

Remarks. (1) Since η is everywhere non-vanishing, ran
√
η is dense and this implies

the absolute continuity on (0,∞).
(2)

√
η is locally smooth for both −∆ + V and −∆ (since the zero potential is

a Vakulenko potential with bounding function η). Since |V |1/2 ≤ √
η, we see that

|V |1/2 is locally smooth which implies that wave operators exist and are complete.
(3) The proof of Theorem 12.2 is particularly easy when ν = 1. Fix λ0 > 0 and

let

ω(x) = exp
[

2√
λ0

∫ x

−∞
η(y)dy

]
(14.26)

and

A = 2ω
d

dx
. (14.27)

Since η ∈ L1(R), ω is bounded so since d
dx(−∆ + V + i)−1 is bounded, we see that

A is H-bounded. It is easy to see (since η and V are real) that it suffices to prove
(14.21) when ϕ is real in which case

〈(H − λ)ϕ,Aϕ〉 =
∫ ∞

−∞
[ω′[(ϕ′)2 + λ(ϕ)2] + 2ωV ϕϕ′]dx (14.28)

which we get by integration by parts in

2
∫ ∞

−∞
(−ϕ′′ − λϕ)ωϕ′ dx = −

∫ ∞

−∞
ω[(ϕ′)2 + λ(ϕ)2]′dx.

Since (|ϕ′| −
√
λϕ)2 = (ϕ′)2 + λ(ϕ)2 − 2

√
λ|ϕ′||ϕ| we see that

Right-hand side of (14.28) ≥
∫ ∞

−∞

(
ω′ − |V (x)|√

λ
ω

)
[(ϕ′)2 + λ(ϕ)2]′dx.

(14.29)

By construction of ω, |V | ≤ η, ω ≥ 1 and λ > λ0, we have that

ω′ − |V (x)|√
λ

ω ≥ 1√
λ0

ωη ≥ η√
λ0

. (14.30)

Thus

Right-hand side of (14.29) ≥
∫ ∞

−∞

λ√
λ0

η(x)(ϕ)2 dx

≥
√
λ0‖

√
ηϕ‖2 (14.31)

which is (14.21). The higher-dimensional case needs a carefully constructed ω but
is along similar lines.

1950005-38

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

Tosio Kato’s work

(4) Since η(x) = (1 + |x|)−α, α > 1 is a Vakulenko bounding function, we get
the Corollary as follows.

Corollary 14.14. If

|V (x)| ≤ C(1 + |x|)−α (14.32)

for some α > 1, then H = −∆ + V has purely a.c. spectrum on (0,∞) and with
H0 = −∆, Ω±(H,H0) exist and are complete.

Thus Vakulenko obtained a new and beautiful proof of an Agmon–Kato–
Kuroda-type theorem of the kind we discuss in the next section (albeit 15 years
after their work). Unlike their method, this one seems to require pointwise bounds
and does not allow for local singularities.

Yafaev [665] has an approach to long-range two-body scattering that exploits
some ideas from the theory of smooth perturbations.

We note that the earliest proofs of N -body asymptotic completeness for
0(|x|−1−ε) potentials (at least when N ≥ 4) were by Sigal–Soffer [537, 538] and
then by Graf [190] and Dereziński [112]. [112] and [538] have results on long-range
results. In [664], Yafaev found a proof that exploits smoothness ideas (as well as
some of the tools — Mourre estimates [431, 465, 171], Deift–Simon wave operators
[107], Enss-type phase space analysis [136, 137] — of the earlier approaches). Kato
never considered N -body scattering, which is quite involved, so we refer the reader
to Yafaev’s original paper [664] or lecture notes [667] for details.

15. Scattering and Spectral Theory, III: Kato–Kuroda Theory

This is the third section on spectral and scattering theory; it focuses on stationary,
aka time-independent, methods. As with the prior two sections, we will include an
overview portion but we want to begin by describing the problem we will discuss
and the contributions of Agmon, Kato and Kuroda. While it is significant that local
singularities can be accommodated, we will mainly discuss the case (13.16), i.e.

|V (x)| ≤ C(1 + |x|)−α. (15.1)

We consider H0 = −∆, H = −∆ + V (x) on L2(Rν , dνx). These are the questions
that will concern us:

(A) Existence and Completeness of Ω±(H,H0).
(B) Absence of singular continuous spectrum.

As a sidelight of the methods, one also gets continuum eigenfunction expansions
of a type I will discuss as follows. There is also the issue of positive eigenvalues which
except for the work of Vakulenko (as discussed in Secs. 12 and 14) was studied using
very different methods from those used in this section; see Sec. 12.

As we explained in Sec. 13, it follows from Cook’s method that Ω±(H,H0) exist
if α > 1 while they may not if α ≤ 1. It is known (see Sec. 20) that (B) can fail if
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α < 1 (although this was not known in the 1970s), so in the 15 years after 1957,
a lot of effort was made on studying problems (A) and (B) when α > 1. We will
say a lot more about the detailed history later but start with the best results of
Kato–Kuroda on the subject and on the optimal result.

In 1969, Kato [325] using, in part, ideas of Kato–Kuroda (of which we will say
a lot more below) proved the following.

Theorem 15.1 ([325]). Let V obey (15.1) and H,H0 as above. Then

(a) If α > 1, the wave operators exist and are complete.
(b) If α > 5/4, H has no singular continuous spectrum.

In 1970, Agmon [3] announced the following.

Theorem 15.2 ([3, 4]). Let V obey (15.1) and H as above. If α > 1, H has no
singular continuous spectrum.

While Agmon did not discuss scattering in his announcement, Lavine [400] noted
that his estimates and Lavine’s theory of local smoothness implied existence and
completeness of wave operators (and later, both Agmon and Hörmander presented
other approaches to get completeness). We also note that as discussed, for example,
in [479, Sec. XIII.8], one can accommodate local singularities; in place of assuming
(1+ |x|)αV (x) is bounded, one needs only to assume that it is a relatively compact
perturbation of −∆.

Agmon was able to go from 5/4 to 1 by an astute observation (Step 8 in the
scheme at the end of the section). By using the same idea, Kuroda could extend
that Kato–Kuroda argument up to α > 1. Later we will say more about work of
others on these problems.

Our goal in this section is to explain the machinery behind certain proofs of
Theorems 15.1 and 15.2. We begin with some general overview of the stationary
approach to scattering. The earliest mathematical approach to stationary scattering
is in [166] but we will focus on a slightly later one of Povzner [468] in 1953 and
Kato’s student, Ikebe [252], in 1960 that discusses eigenfunction expansion. Their
expansions are to be distinguished from what [571] calls BGK expansions after
Berezanskii, Browder, G̊arding, Gel’fand and Kac (see references in [571]). The
BGK expansion is essentially a variant of the spectral theorem when an operator A
on L2(Rν , dνx) has local trace class properties (i.e. f(x)P[a,b](A)f(x) is trace class
for f ∈ C∞

0 (Rν)). This expansion is stated in terms of the spectral measures and so
has no implications for the spectral properties. The advantage of BGK expansions
is that they are always applicable for Schrödinger operators (see [571]) while the
Povzner–Ikebe expansion only works in special situations, but when it does, it
provides a lot of additional information.

The IP expansion of Povzner–Ikebe involves not spectral measures but dνk which
is why it has important spectral consequences. The model is the Fourier transform
for H0 = −∆ which in this introductory discussion, we will denote as f̂0 (since we
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will use f̂ for something else) defined on Rν by

f̂0(k) = (2π)−ν/2
∫
ϕ0(x,k)f(x)dνx, (15.2)

ϕ0(x,k) = eik·x (15.3)

(see [583, Sec. 6.5] for the meaning of (15.2) when f is only in L2 and not in L1).
This provides an eigenfunction expansion of H0 in that (except for places where we
want to emphasize the vector nature of x and k, we will start using non-boldface)

f(x) = (2π)−ν/2
∫
ϕ0(x, k)f̂0(k)dνk, (15.4)

Ĥ0f0(k) = |k|2f̂0(k), (15.5)

so that formally (and much more), H0ϕ(·, k) = |k|2ϕ(·, k).
For suitable V and H = H0 + V , what Povzner and Ikebe found are functions,

ϕ(x,k), so that if f̂ is defined by

f̂(k) = (2π)−ν/2
∫
ϕ(x, k)f(x)dνx (15.6)

and if {ϕn(x)}Nn=1 is an orthonormal basis of L2 eigenfunctions for Hpp(H) with
Hϕn = Enϕn, then

f(x) =
N∑
n=1

〈ϕn, f〉ϕn(x) + (2π)−ν/2
∫
ϕ(x, k)f̂ (k)dνk (15.7)

and

Ĥf(k) = |k|2f̂(k). (15.8)

This implies that H has point spectrum plus a.c. spectrum solving problem (B).
They also proved a connection to scattering

Ω̂+f = f̂0, (15.9)

so that formally

Ω+ϕ = ϕ0 (15.10)

(we will say more about this shortly). This implies that ranΩ+ = Hac(H) and then,
since Ω+f̄ = Ω−f (where is complex conjugate), we have that ranΩ+ = Hac(H)
solving problem (A).

In the physics literature, Gell’Mann and Goldberger, [179] appealing to sta-
tionary phase arguments [585, Sec. 15.3], considered the meaning of (15.10) and
formally proved that pointwise it held if the limit in the definition of wave operator
is an abelian limit (i.e. an e−εt is added to the quantity in the limit and then one
takes ε ↓ 0). Indeed, Ikebe proved (15.9) in terms of abelian limits and then used
the existence of the ordinary limit proven by other means.
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Of course, one has to find suitable continuum eigenfunctions, ϕ(x,k), so that
(15.9) holds. Some thought about Born’s ideas suggests that one wants ϕ to have the
asymptotics (13.1) near x = ∞. We will explain that ϕ obeys an integral equation
called the Lippmann–Schwinger equation introduced by two physicists [415] in 1950.
Following Lippmann–Schwinger, Povzner and Ikebe, we only consider ν = 3 where
the integral kernel for (H0 − k2)−1 is especially simple.

Since formally (H0 + V − k2)ϕ = 0, we might expect that ϕ obeys ϕ = −(H0 −
k2)−1V ϕ. There are two problems with this. First, since k2 is in the spectrum of
H0, we cannot use (H0 − k2)−1 as a bounded operator on L2. If Im(k) > 0 (so
k2 /∈ R), then (H0 − k2)−1 has an integral kernel, G0(x,y; k2), given by

G0(x, y; k2) =
eik|x−y|

4π|x− y| . (15.11)

This has a pointwise limit as k2 → R, indeed two different limits if one takes ε ↓ 0
for k2 ± iε. We thus define for k > 0,

G0(x, y, k2 ± i0) =
e±ik|x−y|

4π|x− y| . (15.12)

As we will see, to get (15.9), we want to pick +i0, not −i0. It is the use of plus
here that led physicists to use Ω+ for the limit as t→ −∞. This gives meaning to
−(H0 − k2)−1V ϕ.

The second problem with ϕ = −(H0 − k2)−1V ϕ is that if V has rapid decay
(e.g. V has compact support), it is not hard to see that −(H0 − k2)−1V ϕ looks like
the second term in (13.1), so it is tempting to try ϕ = eik.x− (H0− k2)−1V ϕ. Note
that since (H0 − k2) has a kernel (among “reasonable” functions), we are allowed
to add elements of the kernel when inverting; put differently (H0 − k2)[eik.x −
(H0 − k2)−1V ϕ = −V ϕ and thus our formal eigenfunctions will be solutions of the
Lippmann–Schwinger equation

ϕ(x,k) = eik·x − 1
4π

∫
ei|k||x−y|

|x − y| V (y)ϕ(y)d3y. (15.13)

The pioneer in using the Lippmann–Schwinger equation to prove mathematical
results about eigenfunction expansions was Povzner [468, 469]. In [468], published in
1953, he considered C∞ potentials, V , obeying (15.1) for ν = 3, α > 7/2 and solved
problem (B) affirmatively for such α. In 1955, in [469], for V ’s of compact support,
he solved problem (A) (when ν = 3). Bear in mind that the results of Cook, Hack
and Kuroda on existence (via Cook’s method) did not exist when Povzner wrote
[469]. As we will see, Ikebe’s approach to solving problem (A) uses these a priori
existence results.

In 1960, Ikebe [252] used eigenfunction expansions to solve problems (A) and
(B) when ν = 3 and V obeys (15.1) near infinity for α > 2 and moreover, V is
Hölder continuous away from a finite number of points where it is locally L2. Let
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us sketch the ideas that he used:
(i) Let B be the Banach space, C∞(R3), of bounded functions vanishing at ∞

with ‖·‖∞. For Im(κ) ≥ 0, define

(Tκg)(x) = − 1
4π

∫
eiκ|x−y|

|x− y| V (y)g(y)d3y. (15.14)

Then if V obeys (15.1) with α > 2, Tκ is a bounded, indeed a compact, operator
of B to B which is analytic in κ on C+ and Hölder continuous on C+\{0}.

(ii) One shows that Tκψ = ψ has no nonzero solution for Im(κ) > 0 (since ψ
is then exponentially decreasing and so in L2 violating self-adjointness) and then
also for Im(κ) = 0, κ �= 0 since one can use Kato’s result mentioned in Remark 4
after Theorem 12.1. In this analysis, Ikebe shows that if κ ∈ R\{0} and ψ solves
Tκψ = ψ, then ϕ ≡ ψ ∈ L2(R3) obeys∫

|k|=κ
|ϕ̂(k)|2 dω = 0 (15.15)

suitably interpreted. This result, also found by Povzner, is important as we will see
later.

(iii) By Fredholm theory, since Tκψ = ψ has no solutions, 1 − Tκ is invertible.
One defines ϕ(·,k) to be (1−T|k|)−1ϕ0(·,k) with ϕ0 given by (15.3) (ϕ0 /∈ B since
it does not vanish at infinity but if η = ϕ−ϕ0, then ϕ = ϕ0 + T|k|ϕ⇔ η = T|k|ϕ+
T|k|η. Note that η and T|k|ϕ0 are in B). In this way, one gets solutions of the
Lippmann–Schwinger equation.

(iv) One also solves G = G0 + TκG (where G0 is the free Green’s function
(15.12)) and uses this plus Stone’s theorem to verify the expansion (15.7).

(v) By following arguments of Gell’Mann–Goldberger [179], one proves (15.9)
where Ω+ is an abelian limit. By the results of Cook–Hack–Kuroda, this abelian
limit is equal to the ordinary limit.

(vi) (15.7) solves problem (B) and (15.9) solves problem (A) as noted above.
(vii) There is a gap in [252] found and filled in Simon [543] and also filled by

Ikebe [253].
We should briefly mention two variants of Ikebe’s work. First, Thoe [615]

extended the result to R
ν for general ν. Second, for Rollnik potentials (any V

obeying (15.1) for α > 2 is in L3/2 and so Rollnik but Rollnik allows L3/2 local
singularities), following Rollnik [501] and Grossman–Wu [202], one can rewrite the
Lippmann–Schwinger equation in an equivalent form:

ξ(x) = ξ0(x) −
1
4π

∫
|V (x)|1/2 e

ik|x−y|

|x− y| V
1/2(y)ξ(y)

≡ ξ0(x) + (W|k|ξ)(x), (15.16)

where V 1/2(y) = |V (y)|1/2sgn(V (y)) and ξ(x) = |V (x)|1/2ϕ(x). The point is that
the integral kernel in (15.16) is Hilbert–Schmidt for Im(k) ≥ 0 if V is Rollnik. This
was used by Simon [543] to carry over Ikebe’s arguments. One big difference is that

1950005-43

B
ul

l. 
M

at
h.

 S
ci

. 2
01

9.
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
0.

93
.2

49
.1

55
 o

n 
11

/1
1/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 4, 2019 9:38 WSPC/1664-3607 319-BMS 1950005

B. Simon

there is no Kato argument to eliminate solutions of the homogeneous equations. But
by Fredholm theory, in any event, the set of points where 1−W|k| is not invertible
is the set of zeros of a function analytic on C+ and continuous on its closure, so a
subset of R with real Lebesgue measures zero. This allows a proof of completeness
but not a solution of problem (B). We will say more about this issue as follows.
We note that this factorization idea is used in several of the approaches to the
Agmon–Kato–Kuroda theory and, in particular, an option in the work of Kato and
Kuroda. We will not discuss this further.

Subsequent to Ikebe solving problem (B) if α > 2, the search for the general
α> 1 result was solved in stages: Jäger [264] did it for α > 3/2, Rejto [481] for α >
4/3, Kato [325] using Kato–Kuroda theory did α > 5/4 as we have seen, Rejto [484]
did α > 6/5 and finally Agmon [4] (and shortly afterwards, independently Saito
[508]) handled α > 1. As we will explain using one simple idea from Agmon, Kuroda
and Rejto could extend their methods to handle α > 1. Howland [241] had earlier
work on this problem and Schechter [510] used Kato–Kuroda theory to study higher-
order elliptic operators (as we will see Agmon, Hörmander and Kuroda also did).

In two papers [350, 349], Kato and Kuroda developed what they called an
abstract theory of scattering. As Kuroda told me “it was too abstract to become
popular” (blaming himself for this). In recognition of the history, Reed–Simon
dubbed the basic result for α > 1 the Agmon–Kato–Kuroda Theorem but it is
Agmon’s approach that has stuck around. And this is not only due to the abstrac-
tion but also to the elegance and simplicity of Agmon’s approach and its flex-
ibility. Moreover, two early, widely used monograph presentations (Reed–Simon
[479, Sec. XIII.8] and Hörmander [239, 240]) exposed the Agmon approach. All this
said that, while Agmon’s technicalities are distinct from Kato–Kuroda, the under-
lying conceptual framework is similar. We will describe this scheme using Agmon’s
approach to explicitly implement the steps.

Agmon uses the spaces L2
β(R

ν) defined by

‖ϕ‖2
β =

∫
(1 + |x|2)β |ϕ(x)|2 dνx <∞. (15.17)

These are Hilbert spaces. One suppresses the natural duality of Hilbert spaces and
associates the dual of L2

β with L2
−β so that ψ ∈ L2

−β is associated with the linear
functional ϕ �→

∫
ψ(x)ϕ(x)dνx. Here are the basic facts about Fourier transform on

L2
β that we will need. For proofs, see [477, Sec. IX.9]; basically, one proves things

for ν = 1 and uses spherical coordinates for the other variables. We return to using
f �→ f̂ for the Fourier transform.

(1) Let β > 1/2. There is for each λ ∈ (0,∞), a bounded map, Tλ : L2
β(R

ν) →
L2(Sν−1, dω) (where dω is unnormalized measure on the unit sphere in Rν), so that
if f ∈ S(Rν), then

(Tλf)(ω) = f̂(λω). (15.18)

(2) Tλ is norm Hölder continuous in λ of order β − 1/2 if 1/2 < β < 3/2.
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(3) Fix β > 1/2. As maps of L2
β to L2

−β, (−∆ − κ2)−1 defined initially for
Imκ > 0 has a continuous extension to κ ∈ R\{0}.

(4) If ϕ ∈ L2
β, β > 1/2 and κ > 0, then

lim
ε↓0

Im〈ϕ, (−∆ − (κ2 + iε))−1ϕ〉 =
πκν−2

2
‖Tκϕ‖2

2. (15.19)

(This is just a version of limε↓0 1
x−iε = P( 1

x ) + iπδ(x)).

(5) Let β > 1/2. Fix κ > 0 and suppose that ϕ ∈ L2
β with Tκϕ = 0. Define

Qκϕ by

Q̂κϕ(k) = (k2 − κ2)−1ϕ̂(k). (15.20)

Then for each ε > 0, Qκϕ ∈ L2
β−1−ε and

‖Qκϕ‖β−1−ε ≤ Cε,κ,ν,β‖ϕ‖β , (15.21)

where C depends continuously on its parameters in the region ε, κ > 0, β > 1/2.
The point here is that without Tκϕ = 0, we can define the limit as ε ↓ 0 of
(k2 − κ2 − iε)−1ϕ̂(k) which for ϕ ∈ L2

β with β > 1/2 lies in L2
−β but we can never

get better than L2
−1/2. When Tκϕ = 0, by having β large, we can get ϕ into a

suitable L2
γ and, in particular, into L2.

We can now describe the basic strategy of solving problems (A) and (B) for any
α > 1.

Step 1. Find a triple of spaces X ⊂ L2(Rν , dνx) ⊂ X∗, where X is a dense
subspace of L2 and which is a Banach space in a norm, ‖·‖X , so that for ψ ∈ X ,
we have that ‖ψ‖2 ≤ ‖ψ‖X . Any ϕ ∈ L2 acts as a bounded linear functional on X
via �ϕ(ψ) = 〈ϕ̄, ψ〉 so L2 ⊂ X∗ which can be shown to be dense. Note that when
ϕ ∈ L2, we have that ‖ϕ‖X∗ ≤ ‖ϕ‖2. In the Agmon approach, X = L2

β(R
ν) for

some β > 1/2 and X∗ = L2
−β(R

ν). Let H0 be a self-adjoint operator which in the
Agmon setup is a constant coefficient elliptic partial differential operator although
we will mainly be interested in the case H0 = −∆. By the norm inequalities, for
any z ∈ C\[E0,∞) (where E0 is the bottom of the spectrum of H0), (H0 − z)−1 is
bounded fromX to X∗. One must pickX so that (H0−z)−1, as bounded maps from
X to X∗ has a continuous extension to [E0,∞) with a finite set of points removed.
The extension is from above or below the real axis and the two limits need not be
equal. In our case where E0 = 0, the finite set is only E0. In the general elliptic
case, it is the set of critical points of the defining symbol. As explained above, in
the Agmon setup, where X = L2

β , β > 1/2, we have the required continuity of the
boundary values. In the Kato–Kuroda theory, X is an abstract space which can be
chosen in various ways.

Step 2. Restrict acceptable potentials, V , to functions V : X∗ → X or, more
generally so that V (H0 −E0 +1)−1 is bounded from X to itself. In fact, we require
this to be a compact operator from X to itself. In the Agmon L2

β case, for H0 =
−∆, one needs that (1 + |x|2)βV (−∆ + 1)−1 is compact as an operator on L2. In
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particular, if (15.1) holds, we need that α > 2β, so if α > 1, we can pick β with
1/2 < β < α/2. Thus, the following results will solve problems (A) and (B) when
α > 1.

Step 3. For simplicity, we henceforth suppose E0 = 0 and that E0 is the only
critical point as happens for the Schrödinger case. Under these assumptions, B(z) =
−(H0−κ2)−1V for z = κ2; Imκ ≥ 0, κ �= 0 is compact operator on X∗, continuous
in κ and analytic for κ ∈ C+. By a version of the analytic Fredholm theorem (see
[476, Theorem VI.14]), there is a set E ⊂ (0,∞), so that E is a closed set (i.e. its
only limit points are in E or are 0 or ∞) of (real) Lebesgue measure 0 and so that
if z /∈ E , then (1 − B(z))−1 exists and is continuous in z there. One proves that
(H− z)−1 = (1−B(z))−1(H0 − z)−1 originally for Im z �= 0 and then as maps from
X to X∗ for z /∈ E .

Step 4. This suffices to get existence and completeness of wave operators. Kato–
Kuroda [350, 349] have arguments to get this. In his original announcement, Agmon
[3] did not mention scattering. If one can decompose V = A∗B so that A,B : X∗ →
L2 (perhaps after multiplication by (H0 + 1)−1/2), then one can show that A,B
are locally smooth for both H and H0 on (0,∞)\E and so by Theorem 14.10, one
gets existence and completeness (ideas due to [398, 400]). In later publications,
Agmon and Hörmander have other ways of proving existence and completeness by
exploiting a radiation condition.

Step 5. In general, from this, one gets purely a.c. on (0,∞)\E so any singular
spectrum on (0,∞) lies in E .

Step 6. Suppose we show that any λ0 ∈ E is an L2 eigenvalue of H . Then E ∪
{0,∞} is a countable closed subset of R which cannot support a singular continuous
measure. In this way, one solves problem (B).

Step 7. If ϕ ∈ L2
−β and B(λ0 + i0)ϕ = ϕ, λ0 = κ2, then

0 = Im〈V ϕ, ϕ〉 = Im〈V ϕ, (H0 − λ0 − i0)−1V ϕ〉

=
πκν−2

2
‖TκV ϕ‖2

so TκV ϕ = 0. Therefore by (15.21), QκV ϕ = B(κ)ϕ ∈ L2
α−β−1−ε for all ε > 0.

For example, if α > 3/2, we can pick β > 1/2 but close to it and ε small so that
α − β − 1 − ε ≥ 0. Thus ϕ ∈ L2 and is an eigenfunction. By invoking Step 6,
we see that when α > 3/2, we can solve problem (B). The restriction α > 5/4 in
Theorem 15.1 comes from a consideration like this — what is needed to deduce
that ϕ ∈ L2.

Step 8. Agmon had the idea of iterating the argument in Step 7! If we know that
ϕ ∈ L2

γ , since TκV ϕ = 0, we have that ϕ ∈ L2
α+γ−1−ε, so if α > 1, we can increase

γ by an arbitrary amount less than α − 1. If α − 1 > 1/2m starting in L2
−β with
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β very close to 1/2, we see by iterating m times that ϕ is an L2 eigenfunction. In
this way, one solves problem (B) for all α > 1.

Step 9. Once one controls the resolvent, one can obtain eigenfunctions via the
Lippmann–Schwinger equation. Knowing that E is countable shows that the expan-
sion only has a.c. spectrum and point spectrum.

This completes our sketch of the scheme behind the work of Kato–Kuroda and
Agmon; see [479, Sec. XIII.8] for more details. After Agmon’s argument appeared,
various authors realized that the iteration idea in Step 8 could improve their results.
In particular, Kuroda [384, 385] was able to extend the proof of Theorem 15.1 to
α > 1. He extended this work to fairly general elliptic operators.

The ideas in the Agmon et al. work have been extended to long-range potentials
(where (15.1) holds for suitable α ∈ (0, 1] but we also have (1 + |x|)−1−α decay of
∇V ). One needs to use modified wave operators following Dollard [118]. There is a
vast literature and we will not try to summarize it — see the books of Dereziński–
Gérard [113] and Yafaev [663, 668].

The above approach uses the fact that for L2
β , β > 1/2, there is a map restricting

ϕ̂ to the sphere. One proves this by essentially flattening the sphere. If we replaced
L2
β by Lp, we cannot restrict to hyperplanes but remarkably, one can sometimes

restrict to curved hypersurfaces like the spheres we needed above. The associated
bounds are known as the Tomas–Stein Theorem (see [586, Sec. 6.8]). Ionescu–Schlag
[258] have developed a theory of scattering and spectral theory under suitable Lp

conditions on V using the Tomas–Stein bounds.

16. Scattering and Spectral Theory, IV: Jensen–Kato Theory

This is the last section on “scattering and spectral” theory although it involves
something closer to diffusion than scattering and the connection to spectral theory
is weak. Still, since it involves large time behavior of e−itH , it belongs in this set of
ideas. In any event, we will discuss a lovely paper of Jensen and Kato [275] involving
Schrödinger operators, H = −∆ + V , on R3.

One issue that they discuss is the large time behavior of e−itH and its rate of
decay. At first sight, speaking of decay seems puzzling since for ϕ ∈ L2, we have
that ‖e−itHϕ‖2 = ‖ϕ‖2 has no decay. But consider the integral kernel when V = 0
on R

ν

eit∆(x, y) = (4πit)−ν/2ei|x−y|
2/4t (16.1)

which shows that

sup
x,y

|eit∆(x, y)| = (4π|t|)−ν/2 (16.2)

so

‖eit∆ϕ‖∞ ≤ (4π|t|)−ν/2‖ϕ‖1 (16.3)

(16.3) is, in fact, equivalent to (16.2). Since Jensen and Kato use Hilbert space
methods, instead of maps from L1 to L∞, they consider maps between weighted
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L2 spaces, specifically from L2
s to L2−s, where L2

s is given by (15.17). For example,
(16.3) immediately implies that ‖eit∆ϕ‖2,−s ≤ Cν,st

−ν/2‖ϕ‖2,s so long as s ≥ ν/2.
If H0 = −∆ is replaced by H = H0 + V , there is a new issue that arises. If

Hϕ = Eϕ for ϕ ∈ L2, then e−itHϕ = e−itEϕ has no decay in any norm. Thus one
must only try to prove decay of e−itHPc(H), where Pc(H) (“c” is for continuous
spectrum; if there is no singular continuous spectrum, it is the same as Pac) is the
projection onto the orthogonal complement of the eigenvectors. Jensen–Kato do
not use e−itHPc(H) but the equivalent

e−itH −
N∑
j=1

e−iEjtPj , (16.4)

where {Ej}Nj=1 are the eigenvalues and Pj the projections onto the associated
eigenspace ker(H − Ej).

In the free case, we note that it is easy to see [478, Corollary to Theorem XI.14]
that if 0 /∈ supp(ϕ̂) for ϕ ∈ S(Rν), then sup|x|≤R |eit∆ϕ(x)| is O(t−N ) for all N .
That is the diffusive term t−ν/2 is connected to low energies. A critical realization
of Jensen–Kato is that large t asymptotics as maps of L2

s to L2−s is connected to
the behavior of the resolvent (H − z)−1 near z = 0.

For a while now we return to ν = 3, the only case considered by Jensen–Kato.
As we will see, ν = 3 is perhaps the simplest case with a rich structure. Roughly
speaking, Jensen–Kato consider V ′s obeying

|V (x)| ≤ C(1 + |x|)−β . (16.5)

They always require β > 2 and often need β > 3 or even larger. In fact, for some
of their results, they only need (1 + |x|)βV ∈ L

3/2
unif , but for simplicity, we will only

quote the following results where the pointwise bound (16.5) holds. Prior to their
paper, there was work of Rauch [472] which motivated them. He supposed |V (x)| ≤
C1e

−C2|x| and instead of L2-operator norms of (1 + |x|)−se−itHPc(H)(1 + |x|)−s,
he considered norms e−ε|x|e−itHPc(H)e−ε|x|. He found for all but a discrete set of
ξ ∈ R, with H(ξ) = −∆ + ξV , one has t−3/2 decay for the relevant norms of e−itH(ξ)

and, for a discrete set of ξ’s, t−1/2 decay. Jensen–Kato extended this result for L2
s

to L2−s with s > 5/2 and β > 3. Several years earlier, Yafaev [662], in connection
with his work on the Efimov effect [659], had studied low energy behavior of the
resolvent (but not high energy asymptotics of the unitary group) in the case of a
zero energy resonance (case (1) in the language of Jensen–Kato).

It is natural to restrict at least to β > 2 for small energy behavior. The Birman–
Schwinger kernel [587, Sec. 7.9], |V (x)|1/2V (y)1/2/4π|x− y|, is Hilbert–Schmidt if
(16.5) holds for β > 2 and in general may not even be a bounded operator if β < 2
(and if β = 2, it can be bounded but not compact). Thus, β > 2 implies that
−∆ + V has only finitely many negative eigenvalues, each of finite multiplicity.

As we have mentioned, the key input for the Jensen–Kato large time results is
an analysis of the resolvent, R(z) = (H − z)−1 for z near zero. The free resolvent
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R0(z) = (H0 − z)−1 has integral kernel

G0(x, y; z) =
eiκ|x−y|

4π|x− y| , (16.6)

where κ obeys κ2 = z with Im(κ) > 0 for z ∈ C\[0,∞) (with obvious limits if z
approaches R from either C+ or C−). It is only in dimension 3 (and 1) that G0

is so simple; in other dimensions, it is a more complicated Bessel function. For
z ∈ C\[0,∞), one has that

R(z) = (1 +R0(z)V )−1R0(z). (16.7)

Following Agmon and Kuroda (see Sec. 15), Jensen–Kato use the weighted
Sobolev spaces, Hm,s(R3) of those ϕ which obey

‖ϕ‖m,s = ‖(1 + |x|2)s/2(1 − ∆)m/2ϕ‖2 <∞. (16.8)

For example, we can take the completion of S(R3) in this norm or, since (1 +
|x|2)s/2(1 − ∆)m/2 is a map of tempered distribution to themselves, we can take
those tempered distributions for which the quantity in the norm on the right of
(16.8) is in L2.

LetK0 be the operator with integral kernel (4π|x−y|)−1, i.e. G0(x, y; 0). Jensen–
Kato prove that if V obeys (16.5) with β > 2, then K0V is a compact operator on
L2
−s if 1/2 < s < β−1/2, indeed it is compact on H1,s. It is also true that extended

from κ ∈ C+ to κ ∈ C+ ∪ R, V R0(κ2) is Hölder continuous (and compact). While
Jensen–Kato do not prove it that way, we note that this follows from the generalized
Stein–Weiss inequalities [586, Theorem 6.2.5].

Thus, to understand the small z behavior of R(z), we need to know about
(1 +K0V )−1. By compactness, this inverse exists if and only if

(1 +K0V )ϕ = 0 (16.9)

has no nonzero solutions, ϕ ∈ H1,−s. If ϕ obeys (16.9), it is a distributional solution
of (−∆ +V )ϕ = 0. Let M be the set of all solutions of (16.9) in H1,−s; Jensen–Kato
prove that it is independent of which s is chosen in (1/2, β−1/2). By compactness,
dimM <∞. It is important to know if ϕ ∈ L2, (16.9) says that

ϕ(x) = − 1
4π

∫
1

|x− y|V (y)ϕ(y)d3y, (16.10)

so that

ϕ(x) = − 1
4π|x|

∫
V (y)ϕ(y)d3y + o

(
1
|x|

)
. (16.11)

Thus, if
∫
V (y)ϕ(y) d3y �= 0, then ϕ /∈ L2. One can show that if

∫
V (y)ϕ(y) d3y = 0,

then ϕ ∈ L2. Thus, in M, the set of L2 solutions is either all of M or a space
of codimension 1. If M has non-L2–solutions, we say that there is a zero energy
resonance. Jensen–Kato thus consider four cases:

(0) (regular case) M = {0} so (1+K0V )−1 exists. Since K0V is compact, the
set of ξ ∈ R for which ξV is not regular is a discrete set.
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(1) (pure resonant case) M �= {0} but there are no L2 functions in M. This
implies that dimM = 1.

(2) (pure eigenvalue case) M �= {0} and M ⊂ L2. Thus 0 is an eigenvalue
but there is no resonance.

(3) (mixed case) M �= {0} and M contains both L2 and non-L2 functions.
Then dimM ≥ 2 and the set of L2 solutions has codimension 1.

Later, we will see that in a sense, case (1) is generic among the singular cases.
We will see similar qualitative behavior in the three singular cases but the detailed
expressions for coefficients depend on the case.

Jensen–Kato start by noting the expansion in κ =
√
z when V = 0. Given

(16.6), we see that

R0(κ2) =
∞∑
j=0

(iκ)jKj, (16.12)

where Kj has the integral kernel

Kj(x, y) = |x− y|j−1/4πj!. (16.13)

Then, for j ≥ 1, Kj is bounded from H−1,s to H1,−s if and only if s > j + 1/2.
That means if we fix s, we have an asymptotic series only to any order J < s−1/2.
Since V obeying (16.5) maps L2

−s to L2
s if and only if s < β/2, we see that for fixed

β, we can only expect to get an expansion including κj terms if j < 1
2 (β − 1). This

explains the conditions on β in the following theorems. Jensen–Kato prove, with
explicit formulae for B(0)

j , j = 0, 1, the following.

Theorem 16.1 ([275]). Assume that V is regular at κ = 0, β > 3 and s > 3/2.
Then for explicit operators B(0)

0 �= 0 and B(0)
1 from L2

s to L2−s as operators between
those spaces and Imκ ≥ 0,

R(κ2) = B
(0)
0 + iκB

(0)
1 + o(κ). (16.14)

If β > 5 and s > 5/2, then o(κ) can be replaced by O(κ2).

They also prove (with explicit formula for B(k)
j ) the following.

Theorem 16.2 ([275]). Assume that V is not regular at κ = 0, β > 5 and s > 5/2.
Then for explicit operators B(k)

−2 and B(k)
−1 , k = 1, 2, 3 from L2

s to L2
−s as operators

between those spaces and Imκ ≥ 0, one has that

R(κ2) = −κ−2B
(k)
−2 − iκ−1B

(k)
−1 + O(1) (16.15)

if the singular point is of type k. Moreover, if k = 1, B(1)
−2 = 0, B(1)

−1 �= 0 and if
k = 2, 3, then B

(k)
−2 �= 0.

Remarks. (1) The explicit formulae have B(k)
j of finite rank for k = −2,−1. If β

and s are large enough, there should be asymptotic series of any prescribed order
and the coefficients are all finite rank [433, 276, Proposition 7.1].
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(2) Rauch [472] says that B(k)
−1 �= 0 for all k but Jensen–Kato have an explicit

example, where B(2)
−1 = 0.

(3) Using ideas from Klaus–Simon [361] (discussed further as follows), one can
prove not only that regular V ’s are generic but among the irregular V ’s, type (1)
is generic and among those not of type (1), type (3) is generic. For example, one
can prove that for any β > 5, if Xβ = {V | ‖V ‖β = supx |(1 + |x|)β |V (x)| < ∞},
then the regular V ’s are a dense open set and, in the set, X̃β of not regular V ’s
(which is closed and so a complete metric space), the set of type (1) V ’s is a dense
open set. Klaus–Simon only discuss V ∈ C∞

0 (R3) but that is for simplicity and
their ideas work in this broader context. These genericity results are not true for
spherically symmetric V ’s. In that case, the space M, if nonzero, generically has a
single angular momentum, �, and always has a finite number of them. For each �,
the set of V ’s with only that � is a relatively open subset of the closed subset of
spherically symmetric elements of X̃β , so none is generic in the singular V ’s. � = 0
is type (1), � �= 0 is of type (2). Cases of more than one � are of type (3) or (1)
depending only on whether one of the � values is 0.

Jensen–Kato also studied low energy asymptotics of the S-matrix, and, impor-
tantly for the study of asymptotics of e−itH , the low energy behavior of the deriva-
tive of the spectral measure

d

dλ
P(−∞,λ)(H) ≡ P ′

H(λ). (16.16)

A little thought about Stone’s formula shows that if R(z) has a limit R(λ + i0)
uniformly for λ ∈ (a, b) ⊂ R, then

P ′
H(λ) = π−1ImR(λ+ i0), (16.17)

where, for an operator, A, one writes ImA = (A−A∗)/2i.
Since z = κ(z)2 with Imκ > 0 has that κ(z̄) = −κ(z), we see that by (16.17)

that if

R(κ2) =
J∑

j=−2

(iκ)jQj + o(|κ|J), (16.18)

then Q∗
j = Qj and so, with L = [J−1

2 ],

P ′(λ) = π−1
L∑

�=−1

(−1)�
√
λ

2�+1
Q2�+1 + o(

√
λ
J
). (16.19)

In particular, if (16.14) holds (with an O(κ2) term), then

P ′(λ) = π−1B
(0)
1 λ1/2 + O(λ) (16.20)

and if (16.15) holds, then

P ′(λ) = π−1B
(k)
−1λ

−1/2 + O(1). (16.21)

In this way, Jensen–Kato control P ′(λ) for small λ.
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They also find a large λ result. They prove that for k = 1, 2, . . . and s >

k + 1/2, β > 2k + 1, then as maps from L2
s to L2

−s, one has that(
d

dλ

)k
P ′(λ) = O(λ−(k+1)/2) (16.22)

as λ→ ∞.
With these in hand, they can estimate

e−itHPc(H) =
∫ ∞

0

e−itλP ′(λ)dλ. (16.23)

The large λ contribution as t → ∞ can be controlled by using the repeated inte-
gration by parts and the decay estimates in (16.22) on derivatives of P ′(λ). One
sees that the integral on the right side of (16.23) is dominated by the small λ con-
tributions. Using the fact that the Fourier transform of λ(j−1)/2χ(0,∞)(λ) is the
distribution (−it)−(j+1)/2 regularized at t = 0, one sees the following.

Theorem 16.3 ([275]). Let V obeys (16.5) with β > 3, s > 5/2. Suppose that V
is regular at zero energy. As a map from L2

s to L2
−s, we have that as t→ ∞, (16.4)

is asymptotic in norm to

−(4πi)−1B
(0)
1 t−3/2 + o(t−3/2) (16.24)

Theorem 16.4 ([275]). Let V obeys (16.5) with β > 3, s > 5/2. Suppose that V
has an exceptional point of type (1) at zero energy. Then, for a suitably normalized
solution ψ ∈ M, we have that as a map from L2

s to L2
−s, as t → ∞, (16.4) is

asymptotic in norm to

(πi)1/2t−1/2〈ψ, ·〉ψ + o(t−1/2). (16.25)

Remark. ψ is normalized by
∫
V (x)ψ(x) d3x =

√
4π.

That completes our discussion of the Jensen–Kato paper. One obvious question
left open by this work is what happens when ν �= 3. This was answered for ν ≥ 5
by Jensen [273] and for ν = 4 by Jensen [274] and Murata [433] (who also had
results for more general elliptic operators); see also [9, 10]. The case ν = 2 with∫
V (x)d2x �= 0 was treated by Bollé et al. [59] and the general case by Jensen–

Nenciu [276]. For ν = 1 with exponentially decaying potentials, the behavior was
analyzed by Bollé et al. [60, 61] and, in general, by Jensen–Nenciu [276]. Ito–Jensen
[262] discuss Jacobi matrices (discrete ν = 1).

For ν ≥ 5, an important observation is that there are no resonances at zero
energy. This is because functions ϕ ∈ M obey

ϕ(x) = −cν
∫

|x− y|−(ν−2)V (y)ϕ(y) dνy (16.26)

and so are O(|x|−(ν−2)) at infinity and thus are in L2 if ν ≥ 5.
There is a difference between odd ν and even ν, so we begin with ν ≥ 5, odd.

In that case, for there to be t−ν/2 decay for e−itH0 from L2
s to L2

−s, we need that
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P ′
0(λ) ∼ λ−(ν−2)/2 for small λ. At first sight, this seems surprising since R0(κ2) has

O(1) terms, so we might guess also O(κ) terms. In fact, only even powers of κ occur
until κν−2. This can be seen by analyzing the integral kernel for G0(x, y;κ2) which
is a modified Bessel function of the second kind (see [583, discussion following
(6.9.35)]) which is how Jensen [273] does it or by looking at (15.19). (It is an
interesting exercise to write Tκϕ in terms of Taylor coefficients of ϕ̂ at k = 0 and
so recover the kernels Kj of (16.13) for j odd.)

If 0 is not an eigenvalue of H , it is easy to prove that as maps from L2
s to

L2
−s, for suitable s and β, one has an asymptotic series for R(κ2) whose first odd

term is (iκ)ν−2 and then that e−itHPc(H) as a map between suitable L2
r spaces is

O(t−ν/2). If zero is an eigenvalue and β and s are large enough, one can have any
of O(t−

1
2ν+2), O(t−

1
2 ν+1) or O(t−

1
2 ν) and all three possibilities can occur.

Looking at the odd ν situation, it seems surprising that one can have O(t−m)
for m ∈ Z but it happens when ν is even for the free case. In fact, if there were an
asymptotic series in powers of κ, the imaginary part cannot have even powers of κ
as we have seen. The point is that in even dimensions, the Bessel functions have log
terms and for m ∈ Z, we have that Im[λm log(−λ+ i0)] = πλm. Because of this, all
the above odd ν ≥ 5 results extend to even ν ≥ 5.

For ν = 4, there can be a resonance and/or bound state as when ν = 3, so there
are three types of singular points. In the regular case, the leading term is O(t−2),
but when β and s are sufficiently large, the next term is O(t−3 log(t)) (unlike ν = 3
where the term after O(t−3/2) is O(t−5/2)). If there is a singular point with only
bound states, the leading term is O(t−1) but when there are resonances, there is
only a bound by O(1/ log t).

Jensen–Nenciu [276] analyze ν = 1, 2 with a new method that also works in
general dimension. These dimensions are special in that there is a zero energy
resonance for H0 = −∆ — this is especially clear in the coupling constant threshold
point of view discussed soon. For ν = 1, if

∫∞
−∞ |x| |V (x)| dx <∞, it is known that

every nonzero solution of −ϕ′′ + V ϕ = 0 is either asymptotic to a±x + o(x) as
x → ±∞ with a± �= 0 or is asymptotic to b± + o(1) with b± �= 0 (in which case
we say that a± = 0). Thus, 0 is never an eigenvalue and is a resonance if and only
if there is ϕ with a+ = a− = 0. For suitable s and β in the right norm, e−itH is
O(t−3/2) in the regular case, while in the resonance case, one can have O(t−1/2)
behavior. ν = 2 is very much involved. The resonant subspace can be of dimension
up to 3 and the small κ expansion is jointly in κ and log(κ).

Next, we want to mention the connection between resonances and coupling
constant behavior. Simon [558] considered A+ξB for general self-adjoint operators,
A and B, where A ≥ 0, |B|1/2(A + 1)−1/2 is compact and 0 ∈ σess(A) so that
N(ξ) ≡ dim ranP(−∞,0)(A + ξB) < ∞ for all ξ ∈ (0,Ξ). Then N is increasing and
there is a discrete set 0 ≤ ξ1 ≤ ξ2 ≤ · · · so that N(ξ) ≥ j ⇔ ξ > ξj . That is, the
ξj are coupling constant thresholds, where, depending on whether you think of ξ as
increasing or decreasing, new eigenvalues are born out of 0 or old ones are absorbed.
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Simon proves that

lim
ξ↓ξj

−Ej(ξ)
ξ − ξj

always exists and is nonzero if and only if 0 is an eigenvalue of A + ξjB (with a
more complicated statement if ξk = ξj for some k �= j).

This links up to the Kato–Jensen work in that the ξ’s, where M(H0 + ξV ) �= {0}
are exactly the coupling constant thresholds. If there are eigenvaluesEj(ξ) for ξ > ξj
with Ej(ξj) = 0 and Ej(ξ) ≤ −c(ξ−ξj); c > 0, then H0 + ξjV has a zero eigenvalue.
If instead Ej = o(ξ− ξj), then there is a resonance. For Schrödinger operators, this
was explored by Rauch [473] and by Klaus–Simon [361]. In particular, Klaus–Simon
show for sufficiently large β, −Ej(ξ) = O((ξ − ξj)2) and, in that case, if V has
compact support, Ej(ξ) is analytic at ξ = ξj . In the bound state case, they prove
that Ej(ξ) is not analytic at ξj (as we will discuss as follows, typically, Ej has a
nonzero imaginary part for ξ < ξj and real). These ideas also explain why if ν = 1
or ν = 2, H0 has a resonance at zero energy since it is known [554] that if V obeys
(16.5) for ν = 1, 2 and β > 3 and

∫
V (x) dνx ≤ 0, then for all ξ > 0, H0 + ξV has

a bound state.
Simon [568, 569] discusses large time behavior of the L∞ to L∞ norm of e−tH

(note −t, not −it) when there is and when there is not a zero energy resonance.
If there is a zero-energy eigenvalue at a threshold ξj , then it turns into a negative

eigenvalue for ξ > ξj . If ξ < ξj , on the basis of the discussion in Sec. 4 in Part 1,
one expects that this half-embedded eigenvalue turns into a resonance (in the sense
discussed in that section, not the notion earlier in this section). Its imaginary part
is not O((ξ − ξj)2) as it is in the normal Fermi golden rule situation discussed in
Sec. 4; rather, as shown in [277], one typically has that it is O(|ξ − ξj |3/2). For
related results, see [115, 116].

Jensen–Kato discussed dispersive decay in terms of L2
s spaces but there has

been considerable interest in Lp estimates, where for −∆ +V on L2(Rν), one hopes,
based on the case V = 0, that for 1 ≤ p ≤ 2,

‖e−itHPc(H)ϕ‖Lp′(Rν) ≤ C|t|−ν( 1
p− 1

2 )‖ϕ‖Lp(Rν), (16.27)

where p′ = p/p−1 is the dual index to p. Lp norms are translation invariant making
(16.27) much more suitable for use in the theory of nonlinear evolution equations
so there is a large literature on such estimates.

The first estimates of the type (16.27) were found by Schonbek [516] in 1979
who considered ν = 3, p = 1 and V small. The first general result for ν ≥ 3 and V
so that H has neither an eigenvalue nor resonance at zero energy were in a classic
paper of Journé et al. [281] (see also [517]).

An interesting approach to (16.27) is due to Yajima [669–672] who asked about
when the wave operators are bounded from Lp to Lp. You might think that this has
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nothing to do with (16.27) but since (Ω±)∗ are then bounded from Lp
′
to Lp

′
and

e−itHPac(H) = (Ω±)∗e−itH0(Ω±), Lp estimates on Ω± and (16.27) for H0 imply it
for H .

There is a considerable literature on Lp dispersive estimates when 0 is an eigen-
value of resonance. We refer the reader to [673] which includes many references.

Finally, we note that [153] and [591] have results on low energy behavior of
the resolvent of −∆ + V when asymptotically V (x) ∼ −c|x|−β with c > 0 and
β ≤ 2. Both discuss low energy resolvent behavior and [153] also discussed long
time asymptotics of e−itH .

17. The Adiabatic Theorem

In 1950, Kato published a paper in a physics journal (denoted as based on a pre-
sentation in 1948) on the quantum adiabatic theorem. It is his only paper on the
subject but has strongly impacted virtually all the huge literature on the subject
and related subjects ever since (there are more Google Scholar citations of this
paper than of [301]). We will begin by describing his theorem and its proof which
introduced what he called adiabatic dynamics and I will call the Kato dynamics.
We will see that the Kato dynamics defines a notion of parallel transport on the
natural vector bundle over the manifold of all k-dimensional subspaces of a Hilbert
space, H, and so a connection. This connection is called the Berry connection and
its holonomy is the Berry phase (when k = 1). All this Berry stuff was certainly
not even hinted at in Kato’s work but it is implicit in the framework. Then I will
say something about the history before Kato and finally a few brief words about
some of the other later developments.

To start, we need a basic result about linear ODEs on Banach spaces.

Proposition 17.1. Let X be a Banach space and {Mt}0≤t≤T a family of norm
continuous (in t) linear maps on X.

(a) For each x0 ∈ X, there is a function t �→ x(t;x0); 0 ≤ t ≤ T which is C1 in
t which is the unique solution of

d

dt
x(t) = Mt(x(t)); x(0) = x0. (17.1)

Moreover, for each t, the map W (t) : x0 �→ x(t;x0) is a bounded linear map on X

and t �→W (t) is C1 and is the unique solution of (17.1) when the map M acts on
the bounded operators on L(X) by left operator multiplication by Mt with initial
condition that W (0) = 1.

(b) Let H be a (separable, complex) Hilbert space and take either X = H or
X = L(H) and suppose that

Mt(x) = iA(t)x, (17.2)

where A(t) is a norm continuous map to the bounded self-adjoint operators on H.
Then there is a C1 family of unitary maps, U(t), with U(0) = 1 so the solution of
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(17.1) is

t �→ U(t)x0. (17.3)

Remarks. (1) In (17.2), A(t)x is either interpreted as applying A(t) to a vector
x ∈ H or as left multiplication if x ∈ L(H).

(2) The U(t) in (17.3) depend only on {A(s)}0≤s≤T (indeed only on s ≤ t) and
not on x0.

(3) The proof is elementary. For (a), one shows that the differential equation
with initial condition (17.1) is equivalent to the integral equation

x(t) = x0 +
∫ t

0

Ms(x(s))ds (17.4)

on C([0, T ];X), the X-valued norm continuous functions on [0, T ]. One then either
uses a contraction mapping theorem (if necessary shrinking T to get a contrac-
tion and piecing together unique solutions on several intervals) or else one iterates
the integral equation proving an estimate that the nth new term in the iteration
is bounded by T n[sup0≤t≤T ‖Mt‖]n/n! to prove that the iteration converges to a
convergent sum.

(4) For (b), one sees that if U(t) solves the equation on L(H) for x0 = 1, then
U(t)x0 solves the equation in general. Moreover, by a simple calculation,

d

dt
U∗(t)U(t) = 0;

d

dt
U(t)U∗(t) = i[A,U(t)U∗(t)]. (17.5)

The first equation and U(0) = 1 imply immediately that U∗(t)U(t) = 1. The second
equation with initial condition U(0)U∗(0) = 1 is clearly solved by U(t)U∗(t) = 1
so by uniqueness of solutions, we see that U(t)U∗(t) = 1. Thus U(t) is unitary.

The adiabatic theorem considers a family of time-dependent Hamiltonians,
H(s), 0 ≤ s ≤ 1 and imagines changing them slowly, i.e. looking at H(s/T ), 0 ≤
s ≤ T for T very large. Thus, we look for ŨT (s) solving

d

ds
ŨT (s) = −iH(s/T )ŨT (s), 0 ≤ s ≤ T ; ŨT (0) = 1. (17.6)

Letting UT (s) = ŨT (sT ), 0 ≤ s ≤ 1, we see that UT (s), 0 ≤ s ≤ 1 solves

d

ds
UT (s) = −iTH(s)UT (s), 0 ≤ s ≤ 1; UT (0) = 1. (17.7)

Here is Kato’s adiabatic theorem

Theorem 17.2 ([300]). Let H(s) be a C2 family of bounded self-adjoint operators
on a (complex, separable) Hilbert space, H. Suppose there is a C2 function, λ(s),
so that for all s, λ(s) is an isolated point in the spectrum of H(s) and so that

α ≡ inf
0≤s≤1

dist(λ(s), σ(H(s))\{λ(s)}) > 0. (17.8)
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Let P (s) be the projection onto the eigenspace for λ(s) as an eigenvalue of H(s).
Then

lim
T→∞

(1 − P (s))UT (s)P (0) = 0 (17.9)

uniformly in s in [0, 1].

Remarks. (1) Thus if ϕ0 ∈ ranP (0), this says that when T is large, UT (s)ϕ0 is
close to lying in ranP (s). That is as T → ∞, the solution gets very close to the
“curve” {ranP (s)}0≤s≤1.

(2) If there is an eigenvalue of constant multiplicity near λ(0) for s small, it
follows from (2.1) that P (s) and λ(s) are C2.

(3) It is easy to see that dim ranP (s) is constant. It can even be infinite dimen-
sional.

(4) This result is even interesting if dim ranP (s) is 1 and/or dimH <∞.
(5) Kato made no explicit assumptions on regularity in s saying “Our proof

given below is rather formal and not faultless from the mathematical point of view.
Of course it is possible to retain mathematical rigour by detailed argument based
on clearly defined assumptions, but it would take us too far into unnecessary com-
plication and obscure the essentials of the problem”. It is hard to imagine the Kato
of 1960 using such language! In any event, the proof requires that P (s) be C2.

(6) We will discuss history more later but Kato notes that his work has two
advantages over the earlier work of Born–Fock [65]: (1) They assume complete sets
of eigenvectors and do not allow continuous spectrum. (2) They assume that λ(s)
is simple, i.e. dim ranP (s) = 1 while Kato can handle degenerate eigenvalues.

(7) As we will see, the size estimate for (17.9) is O(1/T ).

Kato’s wonderful realization is that there is an explicit dynamics, W (s) for
which (17.9) is exact, i.e.

(1 − P (s))W (s)P (0) = 0. (17.10)

He not only constructs it but proves the theorem by showing that (this formula
only holds in case λ(s) ≡ 0)

lim
T→∞

[UT (s) −W (s)]P (0) = 0. (17.11)

The W (s) that Kato constructs is called the adiabatic dynamics. It is sometimes
called Kato’s adiabatic dynamics. We call it the Kato dynamics. Here is the basic
result.

Theorem 17.3 (Kato dynamics [300]). Let W (s) solve

d

ds
W (s) = iA(s)W (s), 0 ≤ s ≤ 1; W (0) = 1, (17.12)

iA(s) ≡ [P ′(s), P (s)]. (17.13)
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Then W (s) is unitary and obeys

W (s)P (0)W (s)−1 = P (s). (17.14)

Proof. That W (s) is unitary follows from Proposition 17.1. Note that since
P (s)2 = P (s), we have that

P ′(s) = P ′(s)P (s) + P (s)P ′(s) ⇒ P (s)P ′(s)P (s) = 0 (17.15)

since the first equation and P 2 = P imply that PP ′P = 2PP ′P . Expanding the
commutator defining A(s) and using PP ′P = 0 yields

iP (s)A(s) = −P (s)P ′(s), (17.16)

iA(s)P (s) = P ′(s)P (s), (17.17)

so by the first equation in (17.15), we have that

P ′(s) = i[A(s), P (s)]. (17.18)

By (17.12),

(P (s)W (s))′ = (P ′(s) + iP (s)A(s))W (s) (17.19)

= iA(s)P (s)W (s) (17.20)

by (17.18). Taking adjoints,

(W (s)−1P (s))′ = −iW (s)−1P (s)A(s). (17.21)

Since W (s)−1P (s)W (s) = (W (s)−1P (s))(P (s)W (s)), we see that

(W (s)−1P (s)W (s))′ = iW (s)−1P (s)A(s)P (s)W (s)

− iW (s)−1P (s)A(s)P (s)W (s) = 0. (17.22)

At s = 0, this is P (0) so

W (s)−1P (s)W (s) = P (0) (17.23)

which is equivalent to (17.14).

Proof of Theorem 17.2. By replacing H(s) by H(s) − λ(s)1, we can suppose
that λ(s) ≡ 0 (doing this changes some formulae, particularly the critical (17.25) —
we will address this after the proof). We will prove that

‖UT (s)∗W (s)P (0) − P (0)‖ = O(1/T ). (17.24)

Since UT is unitary, this implies that

‖W (s)P (0) − UT (s)P (0)‖ = O(1/T ). (17.25)

Since (1 − P (s))W (s)P (0) = (1 − P (s))P (s)W (s) = 0, this implies (17.9) with an
explicit O(1/T ) error estimate.
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Thus we define

G(s) = U∗
T (s)W (s)P (0) (17.26)

and compute

G′(s) = (U∗
T (s))′W (s)P (0) + U∗

T (s)W ′(s)P (0). (17.27)

Applying ∗ to (17.7) implies that

(U∗
T (s))′ = iTU∗

T (s)H(s) (17.28)

so, using (17.14), the first term in (17.27) is

iTU∗
T (s)H(s)W (s)P (0) = iTU∗

T (s)H(s)P (s)W (s) = 0 (17.29)

since λ(s) ≡ 0 ⇒ H(s)P (s) = 0. This is useful because it says that a potential
O(T ) term is zero!

Next note that since PP ′P = 0, we have that PAP = 0 and thus

P (s)W ′(s)P (0) = iP (s)A(s)W (s)P (0)

= iP (s)A(s)P (s)W (s)

= 0. (17.30)

If now S(s) is the reduced resolvent ofH(s) (see (2.8)) S(s) ≡ (1 − P (s))H(s)−1,
then on account of (17.30), we have that

W ′(s)P (0) = (1 − P (s))W ′(s)P (0) = H(s)S(s)W ′(s)P (0) (17.31)

so by (17.21),

G′(s) = U∗
T (s)H(s)S(s)W ′(s)P (0) (17.32)

= (iT )−1[U∗
T (s)]′S(s)W ′(s)P (0) (17.33)

by (17.28). Thus

G(s) − P (0) = (iT )−1

∫ s

0

[U∗
T (w)]′S(w)W ′(w)P (0)dw. (17.34)

As we have seen that U ′
T is O(T ) but we can integrate by parts. Since UT (w) has

norm one and S(w) and W ′(s) are bounded, the boundary terms in the integration
by parts are O(1/T ). Since we assumed that P (s) is C2, one has that S′(s) and
W ′′(s) are bounded so the integrand after integration by parts is bounded and we
have proven that ‖G(s) − P (0)‖ = O(1/T ), i.e. (17.24) holds.

This completes our discussion of what was in this influential paper of Kato.
Kato left at least two important items “on the table”. One is the possibility of
better estimates than O(1/T ). We discuss this further as follows.

The other item concerns the fact that (17.25) says a lot more than (17.9). (17.9)
says that as T → ∞, UT (s) maps ranP (0) to ranP (s). (17.25) actually tells you
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what the precise limiting map is! One should note that if λ(s) is not identically
zero, the proper form of (17.25) is

‖UT (s)P (0) − e−iT
R s
0 λ(s) dsW (s)P (0)‖ = O(1/T ). (17.35)

One fancy pants way of describing this is as follows. Fix k ≥ 1 in Z. Let M
be the manifold of all k-dimensional subspaces of some Hilbert space, H. We want
dim(H) ≥ k, but it could be finite. Or M might be a smooth submanifold of the
set of all such subspaces. For each ω ∈ M, we have the projection P (ω). There is
a natural vector bundle of k-dimensional spaces over M, namely, we associate to
ω ∈ M, the space ranP (ω). If k = 1, we get a complex line bundle.

The Kato dynamics, W (s), tells you how to “parallel transport” a vector
v ∈ ranP (γ(0)) along a curve γ(s); 0 ≤ s ≤ 1 in M. In the language of differential
geometry, it defines a connection and such a connection has a holonomy and a curva-
ture. In less fancy terms, consider the case k = 1. Suppose γ is a closed curve. Then
W (1) is a unitary map of ranP (0) to itself, so multiplication by eiΓB(γ). Returning
to UT , it says that the phase change over a closed curve is not what one might
naively expect, namely exp(−i

∫ T
0 λ(s/T )ds) = exp(−iT

∫ 1

0 λ(s)ds). There is an
additional term, exp(iΓB). This is the Berry phase discovered by Berry [50] in 1983
(it was discovered in 1956 by Pancharatnam [457] but then forgotten). Simon [573]
realized that this was just the holonomy of a natural bundle connection and that,
moreover, this bundle and connection is precisely the one whose Chern integers are
the TKN2 integers of Thouless et al. [616] (as discussed by Avron et al. [27]). Thou-
less got a recent physics Nobel prize in part for the discovery of the TKN2 integers.
The holonomy, i.e. Berry’s phase, is an integral of the Kato connection [P, dP ]. As
usual, this line integral over a closed curve is the integral of its differential [dP, dP ]
over a bounding surface. This quantity is the curvature of the bundle and has come
to be called the Berry curvature (even though Berry did not use the differential geo-
metric language). Naively [dP, dP ] would seem to be zero but it is shorthand for the
two-form ∑

i�=j

[
∂P

∂si
,
∂P

∂sj

]
dsi ∧ dsj . (17.36)

This formula of Avron et al. [27] for the Berry curvature is a direct descendant of
formulae in Kato’s paper, although, of course, he did not consider the questions
that lead to Berry’s phase.

Now, a short excursion into the history of adiabatic theorems. “Adiabatic” first
entered into physics as a term in thermodynamics meaning a process with no heat
exchange. In 1916, Ehrenfest [133] discussed the “adiabatic principle” in classi-
cal mechanics. The basic example is the realization (earlier than Ehrenfest) that
while the energy of a harmonic oscillator is not conserved under time-dependent
change of the underlying parameters, the action (energy divided by frequency) is
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fixed in the limit that the parameters are slowly changed (the reader should figure
out what Kato’s adiabatic theorem says about a harmonic oscillator with slowly
varying frequency). See [225] for discussion of applications of the classical adiabatic
invariant. Interestingly enough, many adiabatic processes in the thermodynamic
sense are quite rapid, so the Ehrenfest use has, at best, a very weak connection to
the initial meaning of the term!

Ehrenfest used these ideas by asserting that in old quantum theory, the natural
quantum numbers were precisely these adiabatic invariants. Once new quantum
mechanics was discovered, Born and Fock [65] in 1928 discussed what they called
the quantum adiabatic theorem, essentially Theorem 17.2 for simple eigenvalues
with a complete set of (normalizable) eigenfunctions. It was 20 years before Kato
found his wonderful extension (and then more than 30 years before Berry made the
next breakthrough).

Next, we turn to error estimates. The error on the right side of (17.34) is a
sum of two terms after an integration by parts: the boundary term and an integral.
For the integral, one can reuse (17.29) as we did to get (17.34) and see that the
integral is O(1/T 2). The boundary term is O(1/T ) but the coefficients will vanish if
P (s)−P (0) and P (t)−P (s) vanish sufficiently fast as s ↓ 0 and s ↑ t. The natural
setup is to take s ∈ (−∞,∞) rather than [0, 1] and to require that H(±∞) =
lims→±∞H(s) exist with approach O(1/|s|k) for all k. If one does this, one gets
an adiabatic theorem with O(1/T k) errors for all k. Under suitable analyticity
conditions on H(s), one can even prove exponential approach, see [447] for an early
paper on this subject and [134, 265, 266, 283, 448] for additional discussion. In
particular, Joye–Pfister [283] uses arguments very close to Kato’s.

The occurrence of the reduced resolvent, S, in Kato’s approach suggests that
an eigenvalue gap is an important ingredient. Nevertheless, there are results on
adiabatic theorems without gaps, see [26, 208] for some special situations and [22]
for a very general result. Teufel [611] has an alternate proof for this Avron–Elgart
result and he has a book [612] on the subject. Avron et al. [23] and Joye [282] have
Banach space versions.

For other approaches to adiabatic evolution, see [267, 217]. For some applica-
tions, see [29, 362, 31].

18. Kato’s Ultimate Trotter Product Formula

We begin this section by describing what is called the Lie product formula. Let
A,B be two finite matrices over C

n. Fix T > 0 and for 0 ≤ s ≤ T , define

g(s) = es(A+B) − esAesB. (18.1)

Then g(0) = g′(0) = 0 so, by Taylor’s theorem with remainder

‖g(s)‖ ≤ Cs2; 0 ≤ s ≤ T. (18.2)
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Writing

es(A+B) − [esA/nesB/n]n = [es(A+B)/n]n − [esA/nesB/n]n

=
n∑
j=1

[es(A+B)/n]j−1g
( s
n

)
[esA/nesB/n]n−j

has norm bounded by n exp(s(‖A‖ + ‖B‖))‖g( sn )‖ → 0 by (18.2) Thus, for finite
matrices, we have that

es(A+B) = lim
n→∞[esA/nesB/n]n. (18.3)

This is called the Lie product formula. Although it seems he never wrote it
down explicitly, Lie did consider differential equation results on groups close to
(18.3). In 1959, Trotter [622] proved a version of the Lie product formula for certain
semigroups on Banach spaces.

Theorem 18.1 (Trotter product formula). Let X be a Banach space and
S(t) = e−tA, t > 0 and T (t) = e−tB, t > 0 two strongly continuous semigroups on
X that obey

s − lim
t↓0

S(t) = s − lim
t↓0

T (t) = 1; ‖S(t)‖ + ‖T (t)‖ ≤ CeDt. (18.4)

Suppose that the operator closure of A + B on D(A) ∩D(B) generates a strongly
continuous semigroup, W (t) “=” e−t(A+B) obeying (18.4), Then

s-limn→∞

[
S

(
t

n

)
T

(
t

n

)]n
= W (t). (18.5)

Remarks. (1) If S(t) is a semigroup obeying (18.4), then one defines

D(A) =
{
ϕ | lim

t↓0

(
1− S(t)

t

)
ϕ exists

}
and sets Aϕ to be the limit. One then writes S(t) = e−tA.

(2) If X is a Hilbert space, S(t) is self-adjoint and a contraction, then S(t) =
e−tA for a positive (possibly unbounded) self-adjoint operator, A. This sets up a
1 − 1 correspondence between such semigroups and positive self-adjoint operators.

(3) It is a famous theorem of Stone [587, Sec. 7.3] that when X is a Hilbert
space, then S(t) is unitary for all t and strongly continuous at 0 (with S(0) = 1) if
and only if S(t) = e−itA for a self-adjoint operator A.

For a very simple proof when X is a Hilbert space, A and B are self-adjoint and
A + B is self-adjoint (rather than only esa) on D(A) ∩ D(B), see [476, Theorem
VIII.30]. The proof is due to Nelson [443] and looks like the finite matrix proof plus
one use of the uniform boundedness principle.

The limitation that A + B has a closure that is a semigroup generator is
quite strong. For example, there are cases where D(A) ∩ D(B) = {0} but for-
mally A + B makes sense. Remarkably, Kato proved a result that, at least for
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self-adjoint contraction semigroups, always holds. Let A and B be self-adjoint
operators and qA, qB their closed quadratic forms as discussed in Example 10.3.
Their form sum qC = qA + qB is always a closed form but VqC may not be dense.
We will write C = A +̇B. We need to define e−tC for C’s which are associated
to closed quadratic forms where Vq might not be dense. We follow the philoso-
phy discussed in Sec. 10 of Part 1 in the discussion of monotone convergence.
If q is a closed quadratic form and C is the self-adjoint operator on Vq with
Vq = D(C1/2) and q(ϕ) = 〈C1/2ϕ,C1/2ϕ〉 for ϕ ∈ Vq , then we define e−tĊ to be the
operator

e−tĊ = e−tCP, (18.6)

where P is the orthogonal projection onto Vq. Here is Kato’s result.

Theorem 18.2 (Kato’s ultimate Trotter product formula [334]). Let q1, q2
be two closed quadratic forms on a Hilbert space, H, with associated semigroups
e−tȦ, e−tḂ. Let e−tĊ be the semigroup associated to the closed form sum q1 + q2.
Then

s − lim
n→∞[e−tȦ/ne−tḂ/n]n = e−tĊ . (18.7)

Remarks. (1) The proof is somewhat technical; we refer the reader to [334] or to
[476, Theorem S.21]. The proof relies on a general result of Chernoff [85] (see also
[476, Theorem S.19]).

(2) Earlier results on Trotter product formula for form sums include Chernoff
[85, 86, 88], Faris [143] and Kato himself [331].

(3) It would be nice to have some kind of result for e−itĊ but it is unlikely there
is one when the approximation is applied to a vector not in Vq. That said, (18.7)
holds for all t ∈ C with |arg(t)| < π/2 and, as explained by Kato in a Note to his
paper [334], by an argument that he got from me, one can extend the result from
positive self-adjoint A,B, to generators of holomorphic contraction semigroups.

(4) It could be argued with some justice that this paper does not so much belong
in Kato’s work on NRQM but to his work on linear semigroups. But, as found by
Nelson [443] (see also [563]), the Trotter product formula is central to the proof of
the Feynman–Kac formula and also to interpreting Feynman integrals for e−itH .
Moreover, we saw its appearance in Sec. 9 in Part 1 — see Theorem 9.3.

(5) Kato–Masuda [351] found an extension to nonlinear semigroups. Their paper
also has a new result in the linear case, namely instead of A +̇B, one can consider
k positive, self-adjoint operators, A1, . . . , Ak and their form sum A1+̇ · · · +̇Ak.

Example 18.3. Let P and Q be two orthogonal projections on a Hilbert space.
Define

q1(ϕ) =

{
0 if ϕ ∈ ranP

∞ if ϕ /∈ ranP
, (18.8)
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and similarly for q2 and Q. Then e−tȦ = P, e−tḂ = Q for all t. It is easy to see that
the form sum q1 + q2 has the same structure as (18.8) but with ranP replaced by
ranP ∩ ranQ. If R is the projection onto this intersection, then Kato’s result says
that

s − lim
n→∞(PQ)n = R. (18.9)

It is interesting that this geometrically well-known fact is a special case of Kato’s
result (18.7).

19. Regularity of Eigenfunctions and the Kato Cusp Condition

If one wants to understand the wider impact of Kato’s work, a good place to
get insight is to look at citations at Google Scholar (https://scholar.google.co.il/
scholar?hl=en&q=tosio+kato). Of course, the publication with the most references
by far is Kato’s book [332] with over 20,000 citations. In second place (with over
1700 citations) is the 1957 paper [312] discussed in this section. This may be sur-
prising to some, but it reflects its importance to quantum chemists and atomic
physicists.

In this paper, Kato begins by saying that he regards this paper as a continuation
of [301]. In that earlier paper, he stated “If V is the Coulomb potential as in the
case of real atoms, it follows that the eigenfunctions satisfy the wave equation
everywhere except at singular points of the potential (they are even analytic since
the Coulomb potential is an analytic function). Regarding their behavior at these
singular points, we can derive no conclusion from the above theorem. A detailed
study shows, however, that they are bounded even at such points”. He is interested
in the properties of L2-eigenfunctions and what he calls generalized eigenfunctions
or wave packets by which he means ψ ∈ H with ψ ∈ ranEΩ(H), where H is
a quantum Hamiltonian, Ω = [a, b], a bounded interval, and EΩ(H) is a spectral
projection [587, Sec. 5.1]. In fact, we will soon see that ψ ∈ ran(e−sH) for some s > 0
suffices for some of the results that Kato proved. Kato focused on local regularity
of ψ with some global estimates (like on ‖∇ψ‖∞). In particular, he delivered on
the boundedness result he claimed in 1951.

There is a huge literature on other aspects of eigenfunctions which we will not
discuss except for a few words now. First, there is the issue of exponential decay
which we mentioned briefly at the end of Sec. 12; in what follows all we will discuss,
in the context of proving pointwise bounds, is how to go from L2 exponential decay
to pointwise exponential decay. Second, there is the literature on the structure
of nodes (i.e. the zero set); see, for example, [674]. Finally, there are the issues
of continuum eigenfunction expansions and the related theorem that σ(H) is the
closure of the set of E for which Hψ = Eψ has a polynomially bounded solution;
see [571, Corollary C.5.5].

Kato considers two classes of Hamiltonians. The first, which we will call general
H , acts on L2(RνN ) with x = (x1, . . . , xN ); xj ∈ Rν (Kato only considers the case
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ν = 3, but we will discuss the more general case as follows). H then has the form

H = −∆ +
N∑
j=1

Vj(xj) +
∑

1≤j<k≤N
Vjk(xj − xk) (19.1)

with each Vj , Vjk ∈ Lp(Rν) + L∞(Rν), where p is ν-canonical (see just prior to
Theorem 7.9) so that H is esa-ν (see Sec. 7 of Part 1). −∆ assumes equal masses of
the light particle and an infinite mass heavy particle but one easily accommodates
general masses using the formalism in Sec. 11.

Kato also considered what we will call atomic Hamiltonians

H = −∆ −
N∑
j=1

Z

|xj |
+

∑
1≤j<k≤N

1
|xj − xk|

(19.2)

on L2(R3N ). Kato allows Hughes–Eckart terms, allows Z to be j-dependent and
allows zjk

|xj−xk| rather than 1
|xj−xk| . All these are easy to accommodate as is the

molecular case where Z
|xj| is replaced by

L∑
�=1

Z�
|xj −R�|

. (19.3)

Most of the time, for simplicity of exposition, we will discuss the atomic case.
In the atomic case, we will be especially interested in the set of singularities

where some |xj | or |xj − xk| vanish, i.e.

Σ =

x = (x1, . . . , xN )
∣∣∣∣ N∏
j=1

|xj |
∏

1≤j<k≤N
|xj − xk| = 0

. (19.4)

In [312], Kato proved three main theorems. For the first two, we need a defini-
tion. Let 0 < α ≤ 1 and j = 0 or 1. Then

Cj,α = {ψ |ψ is Cj and obeys (19.5)},
∃C ∀x,y | |x−y|≤1|D(j)ψ(x) −D(j)ψ(y)| ≤ C|x− y|α

(19.5)

(α = 1 is called Lipschitz; otherwise, we are saying the derivative is Hölder contin-
uous). If the constant C in (19.5) is allowed to depend on a compact K requiring
x, y ∈ K ⊂ Rν , we say that ψ ∈ Cj,αloc .

Theorem 19.1 ([312]). Let ν = 3 and let Vj , Vjk ∈ Lσ(R3) + L∞(R3) for some
σ ≥ 2. Let ψ be an eigenfunction or wave packet. Then

(a) For all α with α ≤ 1 and α < 2 − 3
σ , we have that

ψ ∈ C0,α. (19.6)

(b) If σ > 3, we have that for all α < 1 − 3
σ that

ψ ∈ C1,α. (19.7)
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The Coulomb case allows any σ with σ < 3 but not σ = 3 so it is borderline for
ψ being Lipschitz. Nevertheless, Kato proved the following.

Theorem 19.2 ([312]). Let ν = 3 and let H be an atomic Hamiltonian. Let ψ be
an eigenfunction or wave packet. Then ψ ∈ C0,1 (i.e. is Lipschitz). Indeed ψ is C1

on R3n\Σ with ∇ψ ∈ L∞.

Remarks. (1) It is easy to see by the fact that Σ is closed of measure zero, that
the C1 result with bounded derivative implies the C0,1 result.

(2) As Kato remarks, in the atomic case, there were no previous positive results
on regularity of eigenfunctions if N ≥ 2 although it was known that certain series
expansions did not work.

(3) Since the potentials are real analytic on R3N\Σ, it is known by elliptic
regularity [466, 165, 184] that genuine eigenfunctions are real analytic on R3N\Σ.
So the point of the theorem is control on Σ and the uniformity of the bounds.

Kato’s third result concerns the exact behavior at the two particle coincidences.
To understand why he states the theorem as he does, consider Hydrogen-like Hamil-
tonians where the eigenfunctions are exactly known.

Example 19.3. Let h = −∆ − 2
|x| on L2(R3). It is known [201] that the unnor-

malized ground (1s) state is given by

ϕ0(r) = e−r; r = |r| (19.8)

obeying hϕ0 = −ϕ0. Note that ϕ0 is not C1 at r = 0 but has a cusp there, i.e.

∇ϕ0(r) = −r

r
e−r (19.9)

so that the limit of the derivative ar r = 0 is directionally dependent.
The 2p state (with m = 0) is given by

ϕ1(r) = ze−r/2; r = (x, y, z) ∈ R
3 (19.10)

obeying hϕ1 = − 1
4ϕ1. Thus

∇ϕ1(r) = −1
2
z
r

r
e−r/2 + (0, 0, 1)e−r/2. (19.11)

This derivative is continuous at r = 0 and nonzero at r = 0. Kato had the reali-
zation that by taking a spherical average of ψ, one captures (at least in the one
electron case) exactly the s states which have cusps. That explains why he took the
average in the next theorem.

Theorem 19.4 (Kato Cusp condition [312]). Let H be an atomic Hamiltonian
and let ψ be an L2 eigenfunction for H. Let x = (x1, . . . , xN ). Define on (0,∞) ×
R3(N−1)

ψ̃(r, x2, . . . , xN ) =
1
4π

∫
S2
ψ(rω, x2, . . . , xN )dω, (19.12)
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where dω is the surface measure on the two-dimensional sphere, so ψ̃ is a spherical
average. Then except for (x2, . . . , xN ) in a set of lower dimension (i.e. less than
3N − 3), one has that

∂ψ̃

∂r

∣∣∣∣∣
r=0

= −Z
2
ψ(0, x2, . . . , xN ). (19.13)

Remarks. (1) (19.13) is the celebrated Kato cusp condition.
(2) There is a similar result at xj − xk = 0; −Z

2 is replaced by + 1
2 .

(3) In (19.13), the left side means to compute the derivative for r > 0 (using that
ψ is C1 there ⇒ ψ̃ is C1) and then take r ↓ 0. (19.13) says that ψ̃(r, x2, . . . , xN ) =
−Z

2 rψ(0, x2, . . . , xN )+o(r) so that, if ψ(0, x2, . . . , xN ) �= 0, ψ̃ has a cusp as it does
for Hydrogen.

(4) Most modern variational calculations for atoms and molecules use basis
elements that have the cusp condition, so this theorem is very influential.

Kato’s proofs depend on rewriting the time-independent Schrödinger equation
as an integral equation and analyzing that equation. This completes what we want
to say about Kato’s paper itself. We turn to later work, first concerning general
Hamiltonians and Theorem 19.1. The most powerful results use path integral meth-
ods (pioneered by Herbst–Sloan [232], Carmona [81] and Aizenman–Simon [7]; two
comprehensive references are [563, 571]) and are expressed in terms of a class of
spaces K(α)

ν ; ν = 1, 2, . . . ; α ∈ [0, 2) defined by (we suppose ν ≥ 2 and when α = 0
that ν ≥ 3; we refer the reader to [571] for the other cases) the following.

Definition. K(α)
ν is defined by

(a) for α ∈ (0, 1) ∪ (1, 2) and ν ≥ 2 as those V with

sup
x

∫
|x−y|≤1

|x− y|−(ν−2+α)|V (y)|dy <∞; (19.14)

(b) if α = 0 or α = 1 and ν ≥ 3 by

lim
r↓0

sup
x

∫
|x−y|≤r

|x− y|−(ν−2+α)|V (y)|dy = 0. (19.15)

Remarks. (1) If α = 0, K(0)
ν = Kν as defined in (9.32).

(2) If α1 > α, then K(α1)
ν ⊂ K

(α)
ν .

(3) If p > ν/(2 − α), then Lpunif ⊂ K
(α)
ν by Hölder’s inequality. In particular

v ∈ Lσ(R3) + L∞(R3) ⇒ v ∈ K
(α)
3 so long as α < 2 − 3/σ.

(4) As with Kν , v(x) ∈ K
(α)
ν for x ∈ Rν implies that V (x, y) ≡ v(x), x ∈ Rν , y ∈

Rµ−ν ⇒ V ∈ K
(α)
µ . Thus in the context of Theorem 19.1, Vj(xj) and Vjk(xj − xk)

on R3N will lie in K
(α)
3N if the V ’s, α and σ are as in Remark 2. This means that

Theorem 19.1 follows from Theorem 19.6.
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(5) As with Kν , these spaces are special cases of a class of spaces of [509]. In
this context, they were introduced by Simon [571].

(6) K(α)
ν,loc is those V whose restriction to each ball in Rν lies in K(α)

ν .

One of Kato’s realizations is that eigenfunctions are bounded and continuous.
In this regard, the following is useful.

Theorem 19.5 (Subsolution estimate). Let V be a function on Rν with V ∈
Kν . Let ψ ∈ L2

loc solve (−∆ + V )ψ = 0 in distributional sense. Then ψ is a
continuous function and for any r > 0, there is C depending only on the Kν-norm
of V− ≡ max(V (x), 0) (and, in particular, not on ψ) so that

|ψ(x)| ≤ C

∫
|x−y|≤r

|ψ(y)|dy. (19.16)

Remarks. (1) Such estimates go back to Stampacchia [594] and Trudinger [623]
who had stronger hypotheses on V . For V ∈ Kν , Agmon [5, Chap. 5] has an analytic
proof and Aizenman–Simon [7] a path integral proof; see also [571].

(2) It is enough to have V− ∈ Kν and V+ ≡ V + V− ∈ Kν,loc.
(3) The name comes from the fact that it is a result proven for positive functions,

u with (−∆ + V )u ≤ 0 (so subsolutions rather than solutions as in subharmonic
rather than harmonic). Kato’s inequality shows that if (−∆+V )ψ = 0, then u = |ψ|
is a subsolution. In this form, the inequality is intimately connected to Harnack’s
inequality [7, 571].

Subsolution estimates are important because they say that ψ ∈ L2 ⇒ ψ ∈
L∞ (with, in fact, the function going pointwise to zero at ∞) and so they give
the bounded continuous part of Kato’s Theorem 19.1 (for eigenfunctions; for wave
packets, see below). They also show that earψ ∈ L2 ⇒ earψ ∈ L∞ and so the L2

exponential decay estimates discussed in Theorem 12.7 imply pointwise exponential
decay.

The following has Theorem 19.1 as a special case.

Theorem 19.6. Let 0 < α < 2. Let V− ∈ K
(α)
ν , V+ ∈ K

(α)
ν,loc. Let f ∈ L2(Rν).

Then, for each t > 0, e−tHf lies in

(a) C0,α if α ∈ (0, 1),
(b) Is C1 and in C0,1 if α = 1,
(c) C1,α−1 if α ∈ (1, 2)

and the norms only depend on t, the L2-norm of f and the Kν norm of V−.

Remarks. (1) The proof using functional integration can be found in Simon [571,
Theorem B.3.5].

(2) For eigenfunctions, there are subsolution-type estimates for the constants in
Hölder estimates; see [571, Theorem C.2.5].
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(3) To control ∇ψ, one needs α = 1. The Coulomb potentials in atomic and
molecular Hamiltonians are in K

(α)
3N for α ∈ [0, 1) but not for α = 1. Nevertheless,

Hoffmann–Ostenhof et al. [237] have proven for such potentials and L2 eigenfunc-
tions, one has that

sup
|y−x|≤R

|∇ψ(y)| ≤ C sup
|y−x|≤2R

|ψ(y)| (19.17)

for any x, where C is a universal constant depending only on R andH . This includes
and improves Kato’s theorem 19.2; one improvement is that exponential decay of
ψ implies exponential decay of its first derivatives.

There has been considerable literature dealing with the questions discussed in
Kato’s Theorems 19.2 and 19.4; a substantial fraction of this literature is by Maria
and Thomas Hoffmann–Ostenhof and their collaborators. We want to discuss some
of the highlights.

The first result sheds additional light on the behavior near pair singularities.
We define

Σj = {x | |xj | = 0}; Σjk = {x | |xj − xk| = 0}, j < k (19.18)

so Σ = (
⋃N
j=1 Σj) ∪ (

⋃
j<k Σjk).

Theorem 19.7 ([152]). Let x(0) ∈ Σ1, x
(0) /∈ (

⋃N
j=2 Σj) ∪ (

⋃
j<k Σjk). Let ψ be

an L2 eigenfunction of H. Then there are two functions, ϕ1 and ϕ2, defined and
analytic in a neighborhood, Q, of x(0) ∈ R

3N , so that in Q,

ψ(x) = ϕ1(x) + |x1|ϕ2(x). (19.19)

Remarks. (1) Near x(0),

ψ(x) = ϕ1(x(0)) + |x1|ϕ2(x(0)) + ∇ϕ1(x(0)) · (x− x(0)) + O((x− x(0))2)

clearly showing the cusp.
(2) Similar results hold for each Σj and each Σjk.
(3) For a proof, see [152]. They were motivated by earlier work of Hill [235].
(4) This shows a cusp, but supplements rather than proves the Kato cusp equal-

ity (19.13). Indeed, that equality implies that ϕ2(x(0)) = −Z
2 ϕ1(x(0)).

The cusp condition only holds at simple singular points where only a single
pair among {0, x1, . . . , xN} coincides (in the atomic case). In 1954, Fock [148] (the
same Fock of Born–Fock 26 years earlier and the Hartree–Fock approximation 24
years earlier and of Fock space 22 years earlier!) gave arguments that there are
〈xj , xk〉 log(|xj |2 + |xk|2) terms at points where both |xj | and |xk| go to zero. These
are called Fock terms.

The following includes and improves the Kato cusp condition, Theorem 19.4.
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Theorem 19.8 ([151]). On R3N , let

F2(x) = −Z
2

N∑
j=1

|xj | +
1
4

∑
1≤j<k≤N

|xj − xk|, (19.20)

F3(x) =
2 − π

12π

∑
1≤j<k≤N

〈xj , xk〉 log(|xj |2 + |xk|2). (19.21)

For any ϕ, write

ψ = eF2+F3ϕ. (19.22)

Then, if ψ solves Hψ = Eψ on a bounded set, Ω, we have that

ϕ ∈ C1,1. (19.23)

Remarks . (1) Writing ψ in the form eFϕ is often called a Jastrow trial func-
tion after Jastrow [268] who had the idea of modifying Slater determinants, ϕ by
multiplying by eF with F a simple rational function of the |xj | and |xj − xk|.

(2) The weaker result where F3 is not included and ϕ ∈ C1,α was proven earlier
by Hoffmann-Ostenhof et al. [237]. The above theorem is from Fournais et al. [151]
where the reader can find a proof that depends on looking at the PDE that ϕ obeys
and standard elliptic estimates. All depend on noting that

∆F2 = V. (19.24)

(3) The reader may be puzzled by −Z
2 but 1

4 rather than 1
2 (since the effective

Z for the jk pair is +1). But ∇F2 has only one ∇j acting non-trivially on |xj | but
both ∇j and ∇k act non-trivially on |xj − xk| turning the 1

4 into a 1
2 which is also

why we get (19.24).
(4) [237] noted that their result implies that

∇ψ − ψ∇F2 ∈ C1,α, α ∈ (0, 1) (19.25)

while [151] note that their results imply that

∇ψ − ψ∇(F2 + F3) ∈ C1,1. (19.26)

The first is a strong form of the Kato cusp condition (which follows from the conti-
nuity of ∇ψ−ψ∇F2) and unlike Kato, they prove results at multiple coincidences.
The second result implies that second derivatives of ψ are bounded at simple coin-
cidences and have a logarithmic blow up at points where |xj | and |xk| go to zero.

(5) The obvious extensions hold for molecular Hamiltonians.
(6) A interesting alternate approach to understanding the Kato cusp conditions

in terms of singularities at corners is found in [11].

That completes what we want to say about regularity of eigenfunctions; we end
this section with a few remarks on the closely related subject of regularity of the
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one electron density defined by

ρψ(x) = N

∫
|ψ(x,x2, . . . , xN )|2 d3x2 · · · d3xn (19.27)

(this is the formula if ψ is symmetric or antisymmetric; otherwise the “N” in front
is replaced by summing against putting x in each of the N slots). It measures the
electron density.

Theorem 19.9 ([150]). For any atomic or molecular eigenfunction, the density,
ρψ is real analytic away from the nuclei (x = 0 in the atomic case and x = Rj , j =
1, . . . ,K in the molecular case).

This was proven in [150]. Earlier, the same authors had proven that ρψ is C∞

[149]. Jecko [271] has an alternate proof of Theorem 19.9.

20. Two Conjectures

I thought it would be appropriate to end this paper with two open questions in the
areas that interested Kato. One dates from 1971 when Kato was still active and
the other from 2000, the year after he died.

Conjecture 20.1 (Jörgens’ Conjecture). Let Ω ⊂ Rν be open. Let V ∈ L2
loc(Ω),

so that −∆ + V is bounded from below and esa on C∞
0 (Ω). Suppose that V1 ≥ V is

also in L2
loc(Ω). Then −∆ + V1 is also esa on C∞

0 (Ω).

This result would be interesting even for Ω = R
ν , where, of course when V ≡ 0,

this is just the famous result of Kato in Sec. 9 of Part 1. The case where Ω = R
ν ;

ν ≥ 5 and V (x) = −ν(ν − 4)|x|−2 (results of Kalf–Walter and Simon) is mentioned
in Sec. 9.

In the early 1970s, there were a set of almost annual meetings at Oberwolfach
on spectral and scattering theory and frequent PDE meetings. They were quite
important. For example, Agmon announced his result Theorem 15.2 in 1970 [3] but
only published the full paper [4] in 1975. In between, the standard source for his
work were personal notes some people took of a series of lectures that he gave at
one of these Oberwolfach meetings. In connection with the 1971 PDE conference
(organized by Haack, Heinz and Hellwig), Konrad Jörgens (1926–1974), who died
tragically of a brain tumor less than three years later, made the above conjecture.
At the conference, Kalf discussed his work with Walter [289] mentioned in Sec. 9.

Here is the story that Kalf told me:

Before the talks of the conference started Hellwig introduced me to Jörgens
and Weidmann (then Jörgens’s assistant) and proudly mentioned the result
Walter and I had proved. Jörgens’s immediate reaction was, “This is false,
because the Laplacian is not e.s.a. on R

n\{0}”. Weidmann interfered with
the remark that this depended on the dimension. Jörgens thought for a
moment, and then he said “The result is trivial because an e.s.a. oper-
ator remains e.s.a. when the potential is increased ”. Fortunately, I had
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the presence of mind to say that there are examples where LPC and LCC
alternate when a parameter is increased. Jörgens was astonished to hear
that. After dinner I showed him the corresponding paper by Sears. After a
while he said “This is a case where the operator is not bounded from below ;
it cannot happen for semibounded operators”.

Note that Simon’s and Kato’s papers discussed in the historical part of Sec. 9
were both preprinted in early 1972 after this conjecture, so the original conjecture
was made for a local Stummel space rather than L2

loc but eventually, it was updated
to L2

loc.
In one dimension, this is related to a result of Kurss [387] who proved the result

for continuous V although his argument does not need continuity (essentially it
follows from a simple comparison argument for positive solutions and limit point-
limit circle methods). In 1966, in [596], Stetkaer–Hansen extended Theorem 8.6 to
the case where V is locally Stummel. Since, if ν ≤ 3, L2

loc is the same as locally
Stummel, this implies Jörgen’s conjecture for Ω = ∅ and these ν (indeed without
the need of a comparison potential!).

Many people, especially in the various German groups studying Schrödinger
operators worked hard on this problem. In 1980, Cycon [96] proved a result when
there was an additional technical condition on −∆ + V . He remarked that given
the failure to find a proof, some researchers began to suspect that it might be false.

Conjecture 20.2 (Simon’s Conjecture). Let V be a measurable function on
R
ν , ν ≥ 2 obeying ∫

|x|−ν+1|V (x)|2 dνx <∞. (20.1)

Then −∆ + V has a.c. spectrum of infinite multiplicity on [0,∞).

This was made by Simon [580]. While not explicit, there is a presumption that
−∆ + V is esa-ν. If V obeys (16.5), one needs β > 1/2. It would be interesting to
prove the conjecture for all V ’s obeying (16.5) for any fixed β ∈ (1, 1

2 ).
Here is some background on the conjecture. Kato-Kuroda-Agmon studied V ’s

obeying (16.5) for any β > 1 and found (much more than) σac(−∆ + V ) = [0,∞).
As noted in Sec. 14, when ν = 1, if it is known that for any β < 1/2, there are
V ’s with no a.c. spectrum; in fact, in a sense, this is generic. In the mid-1990s, I
realized that determining what happened when 1 > β > 1/2 was a natural problem
and alerted my graduate student advisees to this fact. Kiselev [359] proved that
when ν = 1 and β > 3/4, one could prove that σac(−∆ + V ) = [0,∞). (It was
eventually realized that this regime differed from β > 1 in that one could also have
singular continuous spectrum mixed in). This was then pushed, again when ν = 1
to β > 1/2 by Christ–Kiselev [90] and Remling [489]. It seemed natural that the
precise borderline was V ∈ L2 and in 1999, Deift and Killip (then my PhD. student)
[105] proved the following.
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Theorem 20.3 ([105]). Let V ∈ L2(R, dx). Then H = − d2

dx2 + V on L2 has a.c.
spectrum [0,∞) with multiplicity 2.

If V (x) = V (|x|) is spherically symmetric on Rν , then (20.1)⇒∫∞
0 |V (r)|2 dr <∞, so the Deift–Killip result implies and is essentially equivalent

to Conjecture 20.2 for spherically symmetric V .
Several people have worked quite hard on this conjecture without success

(although sometimes they found weaker results that they published). The reader
trying to understand the Deift–Killip result should also consult Killip–Simon
[355, 356].

Appendix A. Kato’s Proof of his x−1 Inequality

Kato [332, Remark V.5.12] states, without a full proof, that for each ϕ ∈ C∞
0 (R3),

one has that ∫
|x|−1|ϕ(x)|2d3x ≤ π

2

∫
|k||ϕ̂(k)|2d3k. (A.1)

He does say that this is equivalent to bounding the integral operator (A.5), but
he does not explain how to go further. When Hubert visited Kato in Berkeley in
1975, he asked Kato for the proof. Hubert shared what Kato showed him and gave
me permission to include it here. Recall that, as we explained after (10.30), this
is a special case of a result of Herbst getting the optimal constant for all these
scale-invariant inequalities.

Lemma A.1. Let C be an integral operator on L2(X, dµ) with integral kernel

C(x, y) = A(x, y)B(x, y). (A.2)

Suppose that

sup
y

∫
|A(x, y)|2dµ(x) = M2

1 ; sup
x

∫
|B(x, y)|2dµ(y) = M2

2 . (A.3)

Then

‖C‖ ≤M1M2. (A.4)

Proof. Let ϕ, ψ ∈ L2(M,dµ). Then

|〈ϕ,Cψ〉| =
∣∣∣∣∫ A(x, y)B(x, y)ϕ(x)ψ(y)dµ(x)dµ(y)

∣∣∣∣
≤
(∫

|A(x, y)|2|ψ(y)|2 dµ(x)dµ(y)
)1/2

×
(∫

|B(x, y)|2|ϕ(y)|2 dµ(x)dµ(y)
)1/2

by the Schwarz inequality. By (A.3), the first integral (integrating first over x) is
bounded by M2

1 ‖ψ‖2, so |〈ϕ,Cψ|〉| ≤M1M2‖ϕ‖‖ψ‖.
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Next, we include the part that was in Kato’s book. (A.1) is equivalent to
‖|p|−1/2|x|−1|p|−1/2‖ ≤ π/2, where |p| is the operator |̂p|ϕ(p) = |p|ϕ̂(p). In
“p-space”, x−1 is convolution with the function (2π)−3/2x̂−1 (see [583, (6.2.45)])

and, by [583, Theorem 6.8.1], x̂−1(k) =
√

2
π |k|−2. Thus (A.1) is equivalent to a

bound on an integral operator

‖C‖ ≤ π

2
; C(k, p) =

1
2π2

1
k1/2

1
|k − p|2

1
p1/2

. (A.5)

We can write 2π2C in the form of (A.2), where

A(k, p) =
p1/2

k|k − p| ; B(k, p) =
k1/2

p|k − p| . (A.6)

This factorization is not what one might guess but has the naive expectation multi-
plied/divided by (k/p)1/2 (without doing this the integral in (A.7) would diverge).
Frank pointed out that a similar idea was used in [213, Sec. 9.3] for not unrelated
(but one-dimensional) integral operators. It might have motivated Kato. By the
Lemma, we need to compute∫

p

k2|k − p|2 d
3k =

∫ ∞

0

2πp
[∫ 1

−1

dω

k2 + p2 − 2kpω

]
dk (A.7)

= 2π
∫ ∞

0

1
k

log
[
k + p

|k − p|

]
dk, (A.8)

where (A.7) comes from shifting to polar coordinates with d3k = (k2dk)dϕd(cos θ)
and ω = cos θ. The inner integral gives 1

2pk log (k+p)2

(k−p)2 yielding (A.8).
Using ∫ a

0

1
x

log
(
a+ x

a− x

)
dx =

∫ ∞

a

1
x

log
(
x+ a

x− a

)
dx =

π2

4
(A.9)

(we defer this calculation) and Lemma A.1, we see that

‖C‖ ≤ 1
2π2

(2π)2
π2

4
=
π

2
(A.10)

proving (A.1).
By scaling and changing x to 1/x, one sees that the integrals in (A.9) are equal

and a independent, so we can take a = 1 in the first integral. Using first u = 1+x
1−x

and then y = log u, one sees that∫ 1

0

1
x

log
(

1 + x

1 − x

)
dx = 2

∫ ∞

1

1
u2 − 1

log u du (A.11)

= 2
∞∑
n=1

∫ ∞

1

u−2n log u du
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= 2
∞∑
n=1

∫ ∞

0

ye−(2n−1)y dy

= 2
∞∑
n=1

1
(2n− 1)2

= 2
[
π2

8

]
(A.12)

since if Q =
∑∞
n=1 1/n2, then Q = 1

4Q+
∑∞
n=1(2n− 1)−2 so that

Q =
π2

6
⇒

∞∑
n=1

1
(2n− 1)2

=
3Q
4

=
π2

8

by the Euler sum. Alternatively (and this is a remark I got from Martin Klaus), one
can evaluate the right side, I, of (A.11) by the method of contour integrals. First,
using that the integral is unchanged by u → u−1 coordinate changes, note that I
is
∫∞
0

(u2 − 1)−1 log u du. This integral is unchanged under rotating the contour by
90◦. Since, for y > 0, we have that log(iy) = log(y) + iπ/2, and, under u = iy, we
have that du/(u2 − 1) = −i dy/(1 + y2), we see that

I = −i
∫ ∞

0

log(y)
y2 + 1

dy +
π

2

∫ ∞

0

dy

y2 + 1
=
π

2
π

2
=
π2

4
.

The first integral is 0 by y �→ y−1.
It might be surprising that (A.1) has equality in the norm since the proof has

some inequalities. But the integrals in (A.3) are independent of the variable one is
taking a sup over so the only inequality is the Schwarz inequality. It is believable
that one can come close to saturating that.

Having completed our exposition of Kato’s proof, we note that one standard
proof (see e.g. [477, p. 169]) of the classical Hardy’s inequality in R

3 uses

‖∇ϕ‖2
2 −

1
4
‖r−1ϕ‖2

2 = ‖r−1/2∇(r1/2ϕ)‖2
2. (A.13)

Frank et al. [157] have found an analogous formula that proves (A.1) (they also do
this for other fractional powers)〈

ψ,

(√
−∆ − 2

π|x|

)
ψ

〉
=

1
2π2

∫∫
R3×R3

||x|ψ(x) − |y|ψ(y)|2
|x− y|4

dx

|x|
dy

|y| . (A.14)

This proves strict positivity for any function ψ and, by taking ψ(x) to be |x|−1 cutoff
near the origin and near infinity, one sees that the constant in (A.1) is optimal.
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Ann. Inst. Fourier. Grenoble 10 (1960) 61–150.

[248] D. S. Hughes and C. Eckart, The effect of the motion of the nucleus on the spectra
of Li I and Li II, Phys. Rev. 36 (1930) 694–698.

[249] W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys.
Acta 39 (1966) 451–462.

[250] W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. H.
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[581] B. Simon, Szegő’s Theorem and its Descendants: Spectral Theory for L2 Perturba-
tions of Orthogonal Polynomials (Princeton University Press, Princeton, NJ, 2011).

[582] B. Simon, Convexity : An Analytical Viewpoint (Cambridge University Press,
Cambridge, 2011).

[583] B. Simon, A Comprehensive Course in Analysis, Part 1: Real Analysis (American
Mathematical Society, Providence, RI, 2015).

[584] B. Simon, A Comprehensive Course in Analysis, Part 2A: Basic Complex Analysis
(American Mathematical Society, Providence, RI, 2015).

[585] B. Simon, A Comprehensive Course in Analysis, Part 2B : Advanced Complex Anal-
ysis (American Mathematical Society, Providence, RI, 2015).

[586] B. Simon, A Comprehensive Course in Analysis, Part 3: Harmonic Analysis
(American Mathematical Society, Providence, RI, 2015).

[587] B. Simon, A Comprehensive Course in Analysis, Part 4: Operator Theory (American
Mathematical Society, Providence, RI, 2015).

[588] B. Simon, Unitaries permuting two orthogonal projections, to appear in Linear
Algebra Appl.

[589] B. Simon and R. Høegh-Krohn, Hypercontractive semi-groups and two dimensional
self-coupled Bose fields, J. Funct. Anal. 9 (1972) 121–180.
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