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Abstract We present the highpoints of Tosio Kato’s work on the mathematics
behind Non-relativistic Quantum Mechanics.

1 Introduction

In 2017, we celebrated the 100th anniversary of the birth of Tosio Kato (August 25,
1917–October 2, 1999), the founding father of the theory of Schrödinger operators.
There was a centennial held in Tokyo in his memory and honor in September. I
decided to write a review article on his work in non-relativistic quantum mechanics
(NRQM), which, as well see, was only part of his opus. I originally guessed it would
be about 80 pages but it turned out to be more than 210! It will appear in Bull. Math.
Sci. [83]. Evans Harrell, the Editor of the IAMP newsletter asked if I could produce
a Reader’s Digest version and that is what this is. I was asked by the Editors of
the current volume to also supply that version for this book and I am doing so with
the permission of the Editors of Bull. Math. Sci. and the IAMP newsletter. Since
the longer article has an over 600-item bibliography, there were no references in
the newsletter version, but I decided to include a limited bibliography in the current
version. That is the main difference from the IAMP newsletter version. The rest of
this introduction will say a little about Kato’s life, while the next will summarize
some major themes in his work. I will then describe in some depth (but less detail
than in my Bull. Math. Sci. article) five topics that were among the most important
of Kato’s contributions to NRQM.
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Kato’smost significant paper [27] was on self-adjointness of atomicHamiltonians
andwas published in 1951 inTrans.A.M.S. (see Section3). I note that hewas 34when
it was published (it was submitted a few years earlier as we’ll discuss in Section3).
Before it, his most important work was his thesis, awarded in 1951 and published
[23, 24, 26] in 1949–51. One might be surprised at his age when this work was
published but not if one understands the impact of the war. Kato got his BS from the
University of Tokyo in 1941, a year in which he published two (not mathematical)
papers in theoretical physics. But during thewar, hewas evacuated to the countryside.
We were at a conference together one evening and Kato described rather harrowing
experiences in the camp he was assigned to, especially an evacuation of the camp
down a steep wet hill. He contracted TB in the camp. In his acceptance for theWiener
Prize [1], Kato says that his work on essential self-adjointness and on perturbation
theory was essentially complete by the end of the war.

Kato at Berkeley

In 1946, Kato returned to the Uni-
versity of Tokyo as an Assistant (a
position common for students progress-
ing toward their degrees) in physics,
was appointed Assistant Professor of
Physics in 1951 and Full Professor in
1958. I’ve sometimes wondered what
his colleagues in physics made of him.
He was perhaps influenced by the dis-
tinguished Japanese algebraic geometer,
Kunihiko Kodaira (1915–1997) 2 years
his senior and a 1954 Fields medal-
ist. Kodaira got a BS in physics after
his BA in mathematics and was given
a joint appointment in 1944, so there
was clearly some sympathy toward pure
mathematics in the physics department.

Beginning in 1954, Kato started vis-
iting the United States. This bland state-
ment masks some drama. In 1954, Kato
was invited to visit Berkeley for a year, I
presume arranged by F.Wolf. Of course,
Kato needed a visa and it is likely it

would have been denied due to his history ofTB. Fortunately, just at the time (andonly
for a period of about a year), the scientific attaché at the US embassy in Tokyo was
Otto Laporte (1902–1971) on leave from a professorship in Physics at the University
of Michigan. Charles Dolph (1919–1994), a mathematician at Michigan, learned of
the problem and contacted Laporte who intervened to get Kato a visa. Dolph once
told me that he thought his most important contribution to American mathematics
was his helping to allow Kato to come to the US. In 1987, in honor of Kato’s 70th
birthday, there was a special issue [14] of the Journal of Mathematical Analysis and
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Applications and the issue was jointly dedicated to Laporte (he passed away in 1971)
and Kato and edited by Dolph and Kato’s student Jim Howland.

František Wolf (1904–1989) was important in bringing Kato to Berkeley both
as a visitor and later, a regular faculty member. He was a Czech mathematician
who had a junior position at Charles University in Prague. Wolf had spent time in
Cambridge and did some significant work on trigonometric series under the influence
of Littlewood. When the Germans invaded Czechoslovakia in March 1938, he was
able to get an invitation to Mittag-Leffler. He got permission from the Germans for
a 3-week visa but stayed in Sweden! He was then able to get an instructorship at
Macalester College in Minnesota. He made what turned out to be a fateful decision
in terms of later developments. Because travel across the Atlantic was difficult, he
took the trans-Siberian railroad across the Soviet Union and then through Japan and
across the Pacific to the US. This was mid-1941 before the US entered the war and
made travel across the Pacific difficult.

Kato as a student

Wolf stopped in Berkeley to talk
with G. C. Evans (known for his
work on potential theory), who was
then department chair. Evans knew of
Wolf’s work and offered him a posi-
tion on the spot!! After the year he
promised to Macalester, Wolf returned
to Berkeley and worked his way up
the ranks. In 1952, Wolf [91] extended
Sz.-Nagy’s work [62] to the Banach
space case. At about the same time
Nagyhimself did similarwork [63] and
in so did Kato [28]. While Wolf and
Kato didn’t know of each other’s work,
Wolf learned of Kato’s work and that
led to his invitation for Kato to visit
Berkeley.

During the mid-1950s, Kato spent
close to 3 years visiting US institu-
tions, mainly Berkeley, but also the
Courant Institute, American Univer-
sity, National Bureau of Standards, and Caltech. In 1962, he accepted a professorship
in Mathematics from Berkeley where he spent the rest of his career and remained
after his retirement. One should not underestimate the courage it takes for a 45-year
old to move to a very different culture because of a scientific opportunity. That said,
I’m told that when he retired and some of his students urged him to live in Japan,
he said he liked the weather in Northern California too much to consider it. The
reader can consult the Mathematics Genealogy Project (for a list of Kato’s students
(24 listed there, 3 from Tokyo and 21 from Berkeley; the best known are Ikebe and
Kuroda from Tokyo and Balslev and Howland from Berkeley). Notices A.M.S. 47
(2000), 650–657 is a memorial article with lots of reminiscences.
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The pictures here are all from the estate of Mizue Kato, Tosio’s wife who passed
away in 2011. Her will gave control of the pictures to H. Fujita, M. Ishiguro, and
S. T. Kuroda. I thank them for permission to use the pictures and H. Okamoto for
providing digital versions.

2 Overview

While this review will cover a huge array of work, it is important to realize it is only
a fraction, albeit a substantial fraction, of Kato’s opus. I’d classify his work into four
broad areas, NRQM, nonlinear PDEs, linear semigroup theory, and miscellaneous
contributions to functional analysis. We will not give references to all this work. The
reader can get an (almost) complete bibliography from MathSciNet or, for papers
up to 1987, the dedication of the special issue of JMAA on the occasion of Kato’s
70th birthday has a bibliography.

Around 1980, one can detect a clear shift in Kato’s interest. Before 1980, the
bulk of his papers are on NRQMwith a sprinkling in the other three areas while after
1980, the bulk are onnonlinear equationswith a sprinkling in the other areas including
NRQM. Kato’s nonlinear work includes looking at the Euler, Navier–Stokes, KdV,
and nonlinear Schrödinger equations. Hewas a pioneer in existence results—we note
that his famous 1951 paper can be viewed as a result on the existence of solutions
for the time-dependent linear Schrödinger equation! It is almost that when NRQM
became too crowded with workers drawn by his work, he moved to a new area which
took some time to become popular.

The basic results on generators of semigroups on Banach spaces date back to
the early 1950s going under the name Feller-Miyadera-Phillips and Hille–Yosida
theorems (with a later 1961 paper of Lumer–Phillips). A basic book with references
to this work is by Pazy [65]. This is a subject that Kato returned to often, especially
in the 1960s. Pazy lists 19 papers by Kato on the subject. Perhaps the most important
of these results are the Trotter–Kato theorems and the definition of fractional powers
for generators of (not necessarily self-adjoint) contraction semigroups.

Given this work on the theory on a Banach space, it is interesting to see a quote
that his friend Cordes attributes to Kato: “there is no decent Banach space, except
Hilbert space.” It is likely Kato had in mind the spectral theorem and the theory
of quadratic forms of operators, a subject where he made important contributions,
especially the monotone convergence theorems for forms.

The fourth area is a catchall for a variety of results that don’t fit into the other
bins.Among these results is an improvement of the celebratedCalderón–Vaillancourt
bounds on pseudodifferential operators. Also, Kato [40] proved the absolute value
for operators is not Lipschitz continuous even restricted to the self-adjoint operators
but for any pair of bounded, even non-self-adjoint, operators one has that

‖|S| − |T |‖ ≤ 2

π
‖S − T ‖

(
2 + log

‖S‖ + ‖T ‖
‖S − T ‖

)
(1)
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He was also a key player [29] in variants of Loewner’s result [60] that the square root
is a monotone function on positive operators on a Hilbert space, a result rediscovered
by Heinz [17]. It and its variants have been called the Heinz–Loewner or Heinz–Kato
inequality. Kato returned several times to this subject, most notably [34] finding a
version of the Heinz–Loewner inequality (with an extra constant depending on s) for
maximal accretive operators on a Hilbert space.

One can get a feel for Kato’s impact by considering the number of theorems,
theories, and inequalities with his name on them. Here are some: Kato’s theorem
(which usually refers to his result on self-adjointness of atomic Hamiltonians), the
Kato–Rellich theorem (which Rellich had first), the Kato–Rosenblum theorem and
the Kato–Birman theory (where Kato had the most significant results although, as
we’ll see, Rosenblum should get more credit than he does), the Kato projection
lemma and Kato dynamics (used in the adiabatic theorem), the Putnam–Kato theo-
rem, the Trotter–Kato theorem, the Kato cusp condition, Kato smoothness theory, the
Kato class of potentials, and Kato–Kuroda eigenfunction expansions. To me, Kato’s
inequality refers to the self-adjointness technique discussed in Section5, but the term
has also been used for the Hardy-like inequality with best constant for r−1 in three
dimensions, for a result on hyponormal operators that follows fromKato smoothness
theory (there is a book with a section called “Kato’s inequality” on it) and for the
above-mentioned variant of the Heinz–Loewner inequality for maximal accretive
operators. There are also Heinz–Kato, Ponce–Kato, and Kato–Temple inequalities.
Erhard Seiler and I [72] proved that if f, g ∈ L p(Rν), p ≥ 2, then f (X)g(−i∇) is
in the trace idealIp. At the time, Kato and I had correspondence about the issue and
about some results for p < 2. In Reed–SimonVolume 3, wementioned that Kato had
this result independently. Although Kato never published anything on the subject, in
recent times, it has come to be called the Kato–Seiler–Simon inequality.

Of course, when discussing the impact of Kato’s work, one must emphasize the
importance of his book Perturbation Theory for Linear Operators [42] which has
been a bible for several generations of mathematicians. One of its virtues is its
comprehensive nature. Percy Deift told me that Peter Lax told him that Friedrichs
remarked on the book: “Oh, its easy to write a book when you put everything in it!”

Wewill not discuss every piece of work that Kato did in NRQM—for example, he
wrote several papers on variational bounds on scattering phase shifts whose lasting
impact was limited.

Kato was a key figure in eigenvalue perturbation theory, the subject of his thesis,
which was codified in his book [42]. For the regular case, the basic results were
by Rellich [69] and later Sz.-Nagy [62] but refined by Kato. He was the pioneer in
the asymptotic case, originally using his extension of Temple’s inequality but later
operator techniques. The full article has 5 sections on eigenvalue perturbation theory,
but I’be chosen other areas for this shorter version.

Ever since the work of von Neumann about 1930, it has been clear that self-
adjointness of quantum Hamiltonians is crucial. In this regard, Kato has been a,
indeed, the key figure. His contributions include

1. Self-adjointness of atomic Hamiltonians (see Section3).
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2. His work with Ikebe [20] on V (x) > −cx2 − d, an area where Weinholtz was
the pioneer.

3. Kato’s inequality, including his theorem that if V ∈ L2
loc(R

ν) and V ≥ 0, then
−Δ + V is essentially self-adjoint on C∞

0 (Rν) (see Section5).
4. Hewas a pioneer on the use of quadratic forms including hiswork on perturbations

(KLMN theorem) and monotone convergence for forms.

Scattering and Spectral Theory was a major thread in Kato’s work from 1955 to
1980, so much so that when he gave a plenary talk at the 1970 ICM [38], it was on
this subject. One can identify four areas:

1. Trace class scattering. (see Section6)
2. Kato Smoothness. (see Section7)
3. Eigenfunction expansions (Kato–Kuroda theory [37, 49, 50]).
4. Jensen–Kato [22] on low energy and large times.

Three isolated but important contributions:

1. His 1948 paper on the adiabatic theorem. (Section4)
2. His ultimate Trotter product formula [45]: if A and B are arbitrary positive self-

adjoint operators, if C is the self-adjoint form sum on Q(A) ∩ Q(B) ≡ K , and
if P is the projection onto K , then

s − lim
n→∞

[
e−t A/ne−t B/n

]n = e−tC P

3. His 1957 paper [30] on properties of eigenfunctions of general Schrödinger oper-
ators and especially of Coulomb Hamiltonians. For the Coulomb case, he proved
that eigenfunctions were globally Lipschitz but not generallyC1; instead he found
the celebrated Kato cusp condition—at coincidence points, radial averages have
well defined jumps (like e−|x | for the hydrogen ground state). Trial function cal-
culations for atoms and molecules use the Kato cusp condition making this paper
his most quoted one on Google Scholar (with over 1,700 citations!)

3 Foundations of Atomic Physics

Ever since von Neumann’s work [87] around 1930, it has been clear that a funda-
mental mathematical problem in quantum theory, indeed the fundamental question in
atomic physics, is the self-adjointness of atomic Hamiltonians so Kato’s 1951 paper
[27] is a pathbreaking contribution of great significance. He considered N–body
Hamiltonians on L2(RνN ) of the formal form

H = −
N∑

j=1

1

2m j
Δ j +

∑
i< j

Vi j (xi − x j ) (1)
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where x ∈ R
νN is written x = (x1, . . . , xN ) with x j ∈ R

ν , Δ j is the ν-dimensional
Laplacian in x j and each Vi j is a real-valued function onRν . In 1951, Kato considered
only the physically relevant case ν = 3.

If there are N + k particles in the limit where the masses of particles N +
1, . . . , N + k are infinite, one considers an operator like H but adds terms

N∑
j=1

Vj (x j ), Vj (x) =
N+k∑

�=N+1

Vj�(x − x�) (2)

where xN+1, . . . , xN+k are fixed points in Rν .
More generally, one wants to consider (as Kato did) Hamiltonians with the center

of mass removed. We note that the self-adjointness results on the Hamiltonians of
the form (1) easily imply results on Hamiltonians (on L2(R(N−1)ν)) with the center
of mass motion removed. Of especial interest is the Hamiltonian of the form (2) with
N = 1, i.e.,

H = −Δ + W (x) (3)

on L2(Rν) which we’ll call reduced two-body Hamiltonians (since, except for a
factor of (2μ)−1 in front of −Δ, it is the two-body Hamiltonian with the center of
mass removed).

Kato’s big 1951 resultwas (Iwill use “esa” as shorthand for essentially self-adjoint
and “esaν” for esa on C∞

0 (Rν)).

Theorem 1 (Kato’s Theorem, First Form [27]) Let ν = 3. Let each Vi j in (1) lie in
L2(R3) + L∞(R3). Then, the Hamiltonian of (1) is self-adjoint on D(H) = D(−Δ)

and esa–(3N ).

Remarks

1. The same results holds with the terms in (2) added so long as each Vj lies in
L2(R3) + L∞(R3).

2. Kato didn’t assume thatV ∈ L2(R3) + L∞(R3) but rather the stronger hypothesis
that for some R < ∞, one has that

∫
|x |<R |V (x)|2d3x < ∞ and sup|x |≥R |V (x)| <

∞, but his proof extends to L2(R3) + L∞(R3).

3. Kato didn’t state thatC∞
0 (R3N ) is a core but rather thatψ’s of the form P(x)e− 1

2 x2

with P a polynomial in the coordinates of x is a core (He included the 1
2 so the set

was invariant under Fourier transform.) His result is now usually stated in terms
of C∞

0 .

If v(x) = 1/|x | on R3, then v ∈ L2(R3) + L∞(R3), so Theorem 1 has the impor-
tant Corollary, which includes the Hamiltonians of atoms and molecules:

Theorem 2 (Kato’s Theorem, Second Form [27]) The Hamiltonian, H, of (1) with
ν = 3 and each

Vi j (x) = zi j

|x | (4)



360 B. Simon

and the Hamiltonian with terms of the form (2) where

Vj (x) =
N+k∑

�=N+1

z j�

|x − x�| (5)

are self-adjoint on D(−Δ) and esa-3N.

Remark This result assures that the time-dependent Schrödinger equation ψ̇t =
−i Hψt has solutions (since self-adjointness means that e−i t H exists as a unitary
operator). The analogous problem for Coulomb Newton’s equation (i.e., solvability
for a.e. initial condition) is open for N ≥ 5!

As Kato remarks in hisWiener prize acceptance, “the proof turned out to be rather
easy.” It has three steps:

(1) The Kato–Rellich theorem [82, Theorem 7.1.14] which reduces the proof to
showing that each Vi j is relatively bounded for Laplacian on R

3 with relative
bound 0.

(2) A proof that any function in L2(R3) + L∞(R3), as an operator on L2(R3), is
−Δ-bounded with relative bound 0. This relies on the simple Sobolev estimate
[81, Section6.3] that on R

3 any function in D(−Δ) is bounded. Alternatively,
for the atomic case, Hardy’s inequality [81, Theorem 4.1.3] (that (4r2)−1 ≤ −Δ)
implies this fact.

(3) A piece of simple kinematics that says that the two-body estimate in step 2
extends to one for vi j (xi − x j ) as an operator on L2(R3N ).

Kato states in the paper that he had found the results by 1944. Kato originally
submitted the paper to Physical Review. Physical Review transferred the manuscript
to the Transactions of the AMS, where it eventually appeared. They had trouble
finding a referee and, in the process, the manuscript was lost (a serious problem in
pre-Xerox days!). Eventually, von Neumann got involved and helped get the paper
accepted. I’ve always thought that given how important he knew the paper was, von
Neumann should have suggested Annals of Mathematics and used his influence to
get it published there. The receipt date of October 15, 1948 on the version published
in the Transactions shows a long lag compared to the other papers in the same
issue of the Transactions which have receipt dates of Dec. 1949 through June, 1950.
Recently, after Kato’s widow died and left his papers to some mathematicians (see
the end of Section1) and some fascinating correspondence of Kato with Kemble and
von Neumann came to light. There are plans by Kato’s students to publish an edited
version of these letters.

It is a puzzle why it took so long for this theorem to be found. One factor may have
been von Neumann’s attitude. Bargmann told me of a conversation several young
mathematicians had with von Neumann around 1948 in which von Neumann told
them that self-adjointness for atomic Hamiltonians was an impossibly hard problem
and that even for the Hydrogen atom, the problem was difficult and open. This is a
little strange since, using spherical symmetry, Hydrogen can be reduced to a direct
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sum of one-dimensional problems. For such ODEs, there is a powerful limit point–
limit circlemethod [82, Theorem7.4.12] named afterWeyl andTitchmarsh (although
it was Stone, in his 1932 book, who first made it explicit). Using this, it is easy to
see (there is one subtlety for � = 0 since the operator then is limit point at 0) that
the Hydrogen Hamiltonian is self-adjoint and this appears at least as early as Rellich
[70] in 1944. Of course, this method doesn’t work for multielectron atoms. In any
event, it is possible that von Neumann’s attitude may have discouraged some from
working on the problem.

Still, it is surprising that neither Friedrichs nor Rellich found this result. Rellich
used Hardy’s inequality in his perturbation theory papers [69] in a closely related
context. Namely, he used Hardy’s inequality to show that r−1 ≤ 4ε(−Δ) + 1

4ε
−1 to

note the semi-boundedness of the Hydrogen Hamiltonian. Since Rellich certainly
knew the Kato–Rellich theorem, it appears that he knew steps 1 and 2.

In a sense, it is pointless to speculate why Rellich didn’t find Theorem2, but it
is difficult to resist. It is possible that he never considered the problem of esa of
atomic Hamiltonians, settling for a presumption that using the Friedrichs extension
suffices (as Kato suggests in his Wiener prize acceptance) but I think that unlikely.
It is possible that he thought about the problem but dismissed it as too difficult and
never thought hard about it. Perhaps the most likely explanation involves Step 3:
once you understand it, it is trivial, but until you conceive that it might be true, it
might elude you.

Later authors considered the analogs for dimension ν �= 3—Stummel [84] was a
big hero here. For our discussion in Section5, we’ll need the following: We call p,
ν-canonical if p = 2 for ν ≤ 3, p > 2 if ν = 4 and p = ν/2 if p ≥ 5. The optimal
L p extension of Theorem1 is (see [82, Theorem 7.1.19] for a proof):

Theorem 3 Let p be ν-canonical. Then V ∈ L p(Rν) + L∞(Rν) is −Δ-bounded
with relative bound zero. If ν ≥ 5, V ∈ L p

w(Rν) + L∞(Rν) is −Δ-bounded on
L2(Rν).

It is known that this is optimal since when ν > 5 limit point, limit circle methods
show that for C sufficiently large −Δ − Cr−2 is not essentially self-adjoint on C∞

0
and r−2 lies in all L p + L∞ with p < ν/2. The longer paper includes further dis-
cussion of these higher dimensional analogs and also discusses Kato’s application
in his 1951 paper to the Coulomb-Dirac-Hamiltonian.

4 The Adiabatic Theorem

In 1950, Kato published a paper [25] in a physics journal (denoted as based on a
presentation in 1948) on the quantum adiabatic theorem. It is his only paper on the
subject but has strongly impacted virtually all the huge literature on the subject and
related subjects ever since (there are more Google Scholar citations of this paper than
of the one on self-adjointness of atomic Hamiltonians). We will begin by describing
his theorem and its proof which introduced what he called adiabatic dynamics and
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I’ll call the Kato dynamics. We’ll see that the Kato dynamics defines a notion of
parallel transport on the natural vector bundle over the manifold of all k-dimensional
subspaces of a Hilbert space, H , and so a connection. This connection is called
the Berry connection and its holonomy is the Berry phase (when k = 1). All this
Berry stuff was certainly not even hinted at in Kato’s work but it is implicit in the
framework. Then I’ll say something about the history before Kato.

The adiabatic theorem considers a family of time-dependent Hamiltonians,
H(s), 0 ≤ s ≤ 1 and imagines changing them slowly, i.e., looking at H(s/T ), 0 ≤
s ≤ T for T very large. Thus, we look for ŨT (s) solving

d

ds
ŨT (s) = −i H(s/T )ŨT (s), 0 ≤ s ≤ T ; ŨT (0) = 1 (1)

Letting UT (s) = ŨT (sT ), 0 ≤ s ≤ 1, we see that UT (s), 0 ≤ s ≤ 1 solves

d

ds
UT (s) = −iT H(s)UT (s), 0 ≤ s ≤ 1; UT (0) = 1 (2)

Here is Kato’s adiabatic theorem

Theorem 4 (Kato [25]) Let H(s) be a C2 family of bounded self-adjoint operators
on a (complex, separable) Hilbert space, H . Suppose there is a C2 function, λ(s),
so that for all s, λ(s) is an isolated point in the spectrum of H(s) and so that

α ≡ inf
0≤s≤1

dist(λ(s), σ (H(s)) \ {λ(s)}) > 0 (3)

Let P(s) be the projection onto the eigenspace for λ(s) as an eigenvalue of H(s).
Then

lim
T →∞(1 − P(s))UT (s)P(0) = 0 (4)

uniformly in s in [0, 1].
Remarks

1. Thus if ϕ0 ∈ ran P(0), this says that when T is large, UT (s)ϕ0 is close to lying
in ran P(s). That is as T → ∞, the solution gets very close to the “curve”
{ran P(s)}0≤s≤1.

2. If there is an eigenvalue of constant multiplicity near λ(0) for s small, it follows
from the contour representation of P(s) that P(s) and λ(s) are C2.

3. Kato made no explicit assumptions on regularity in s saying “Our proof given
below is rather formal and not faultless from the mathematical point of view. Of
course, it is possible to retain mathematical rigor by a detailed argument based
on clearly defined assumptions, but it would take us too far into an unnecessary
complication and obscure the essentials of the problem.” It is hard to imagine the
Kato of 1960 using such language! In any event, the proof requires that P(s) be
C2.



Tosio Kato’s Work on Non-relativistic Quantum Mechanics: A Brief Report 363

4. As we’ll see, the size estimate for (4) is O(1/T ).

Kato’s wonderful realization is that there is an explicit dynamics, W (s) for which
(4) is exact, i.e.,

(1 − P(s))W (s)P(0) = 0 (5)

He not only constructs it but proves the theorem by showing that (this formula only
holds in case λ(s) ≡ 0; see (10) below)

lim
T →∞[UT (s) − W (s)]P(0) = 0 (6)

The W (s) that Kato constructs, he called the adiabatic dynamics. It is sometimes
called Kato’s adiabatic dynamics. We call it the Kato dynamics. Here is the basic
result:

Theorem 5 (Kato dynamics [25]) Let W (s) solve

d

ds
W (s) = i A(s)W (s), 0 ≤ s ≤ 1; W (0) = 1 (7)

i A(s) ≡ [P ′(s), P(s)] (8)

Then W (s) is unitary and obeys

W (s)P(0)W (s)−1 = P(s) (9)

The proof is not hard (see the longer paper for details). Using P(s)2 = P(s) and
its derivative, one shows that W (s)−1P(s)W (s) has zero derivative.

The proof of Theorem4 depends on proving that

‖UT (s)P(0) − e−iT
∫ s
0 λ(s) ds W (s)P(0)‖ = O(1/T ) (10)

Equation (10) says a lot more than (4). Equation (4) says that as T → ∞, UT (s)
maps ran P(0) to ran P(s). Equation (4) actually tells you what the precise limiting
map is! One fancy pants way of describing this is as follows. Fix k ≥ 1 in Z. Let
M be the manifold of all k-dimensional subspaces of some Hilbert space, H . We
want dim(H ) ≥ k, but it could be finite. Or M might be a smooth submanifold of
the set of all such subspaces. For each ω ∈ M , we have the projection P(ω). There
is a natural vector bundle of k-dimensional spaces overM , namely, we associate to
ω ∈ M , the space ran P(ω). If k = 1, we get a complex line bundle.

The Kato dynamics, W (s), tells you how to “parallel transport” a vector v ∈
ran P(γ (0)) along a curve γ (s); 0 ≤ s ≤ 1 in M . In the language of differential
geometry, it defines a connection and such a connection has a holonomy and a cur-
vature. In less fancy terms, consider the case k = 1. Suppose γ is a closed curve.
Then W (1) is a unitary map of ran P(0) to itself, so multiplication by ei�B (γ ). Return-
ing to UT , it says that the phase change over a closed curve isn’t what one might
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naively expect, namely exp(−i
∫ T
0 λ(s/T ) ds) = exp(−iT

∫ 1
0 λ(s) ds). There is an

additional term, exp(i�B). This is the Berry phase discovered by Berry [4] in 1983
(it was discovered in 1956 by Pancharatnam [64], but then forgotten). I realized [80]
that this was just the holonomy of a natural bundle connection and that, moreover,
this bundle and connection is precisely the one whose Chern integers are the TKN2

integers of Thouless et al. [85] (as discussed by Avron–Seiler–Simon [3]). Thouless
got a recent physics Nobel Prize in part for the discovery of the TKN2 integers. The
holonomy, i.e. Berry’s phase, is an integral of the Kato connection [P, d P]. As usual,
this line integral over a closed curve is the integral of its differential [d P, d P] over
a bounding surface. This quantity is the curvature of the bundle and has come to be
called the Berry curvature (even though Berry did not use the differential geomet-
ric language). Naively [d P, d P] would seem to be zero but it is shorthand for the
two-form ∑

i �= j

[
∂ P

∂si
,
∂ P

∂s j

]
dsi ∧ ds j (11)

This formula of Avron–Seiler–Simon for the Berry curvature is a direct descendant
of formulae in Kato’s paper, although, of course, he did not consider the questions
that lead to Berry’s phase.

Finally, a short excursion into the history of adiabatic theorems. “Adiabatic” first
entered into physics as a term in thermodynamics meaning a process with no heat
exchange. In 1916, Ehrenfest [15] discussed the “adiabatic principle” in classical
mechanics. The basic example is the realization (earlier than Ehrenfest) that while
the energy of a harmonic oscillator is not conserved under time dependent change of
the underlying parameters, the action (energy divided by frequency) is fixed in the
limit that the parameters are slowly changed (the reader should figure out what Kato’s
adiabatic theorem says about a harmonic oscillator with slowly varying frequency).
Interestingly enough, many adiabatic processes in the thermodynamic sense are quite
rapid, so the Ehrenfest use has, at best, a very weak connection to the initial meaning
of the term!

Ehrenfest used these ideas by asserting that in old quantum theory, the natu-
ral quantum numbers were precisely these adiabatic invariants. Once new quantum
mechanics was discovered, Born and Fock [11] in 1928 discussed what they called
the quantum adiabatic theorem, essentially Theorem4 for simple eigenvalues with
a complete set of (normalizable) eigenfunctions. It was 20 years before Kato found
his wonderful extension (and then more than 30 years before Berry made the next
breakthrough). The longer article has a discussion on the considerable further math-
ematical literature of the quantum adiabatic theorem.
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5 Kato’s Inequality

This section will discuss a self-adjointness method that appeared in a 1972 paper
[39] of Kato based on a remarkable distributional inequality. Its consequences are a
subject to which Kato returned often with at least seven additional papers [12, 41,
43, 44, 46–48]. It is also his work that most intersected my own—I [73] motivated
his initial paper and it, in turn, motivated several of my later papers [74–79].

To explain the background, recall that in Section3, we defined p to be ν-canonical
(ν is dimension) if p = 2 for ν ≤ 3, p > 2 for ν = 4 and p = ν/2 for ν ≥ 5. For
now, we focus on ν ≥ 5 so that p = ν/2. As we saw, if V ∈ L p(Rν) + L∞(Rν), then
−Δ + V is esa-ν. The example V (x) = −C |x |−2 for C sufficiently large shows that
p = ν/2 is sharp. That is, for any 2 ≤ q ≤ ν/2, there is a V ∈ Lq(Rν) + L∞(Rν),
so that −Δ + V is defined on but not esa on C∞

0 (Rν).
In these counterexamples, though, V is negative. It was known since the late

1950s that while the negative part of V requires some global hypothesis for esa-
ν, the positive part does not (e.g., −Δ − x4 is not esa-ν while −Δ + x4 is esa-ν).
But when I started looking at these issues around 1970, there was presumption that
for local singularities, there was no difference between the positive and negative
parts. In retrospect, this shouldn’t have been the belief! After all, limit point–limit
circle methods show that if V (x) = |x |−α with α < ν/2 (to make V ∈ L2

loc so that
−Δ + V is defined on C∞

0 (Rν)) then −Δ + V is esa-ν although, if α > 2, −Δ − V
is not. (Limit point–limit circle methods apply for −Δ + V for any α if we look
at C∞

0 (Rν \ {0}) but then only when α < ν/2, we can extend the conclusion to
C∞
0 (Rν).) This example shows that the conventional wisdom was faulty but people

didn’t think about separate local conditions on

V+(x) ≡ max(V (x), 0); V−(x) = max(−V (x), 0) (1)

Kato’s result shattered the then conventional wisdom:

Theorem 6 (Kato [39]) If V ≥ 0 and V ∈ L2
loc(R

ν), then −Δ + V is esa-ν.

Kato’s result was actually a conjecture that I made on the basis of a slightly weaker
result that I had proven:

Theorem 7 (Simon [73]) If V ≥ 0 and V ∈ L2(Rν, e−cx2
dνx) for some c > 0, then

−Δ + V is esa-ν.

Of course, this covers pretty wild growth at infinity but Theorem6 is the definitive
result since one needs that V ∈ L2

loc(R
ν) for −Δ + V to be defined on all functions

inC∞
0 (Rν). I found Theorem7 because I was also working at the time in constructive

quantum field theory which was then studying the simplest interacting field models
ϕ4
2 and P(ϕ)2 (the subscript 2 means two space–time dimensions). I was able to

use results in the theory of hypercontractive semigroups that seemed very different
from what Kato used although connections were later found as well as a semigroup
proof of Theorem6. In my preprint proving Theorem7, I conjectured Theorem6 and
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Kato’s response was sent within a few weeks of my mailing him my preprint. The
longer paper describes both my proof and these later developements but I want to
focus here on Kato’s arguments. Kato proved:

Theorem 8 (Kato’s inequality [39]) Let u ∈ L1
loc(R

ν) be such that its distributional
Laplacian, Δu is also in L1

loc(R
ν). Define

sgn(u)(x) =
{

u(x)/|u(x |), if u(x) �= 0
0, if u(x) = 0

(2)

(so u sgn(u) = |u|). Then as distributions

Δ|u| ≥ Re
[
sgn(u)Δu

]
(3)

Remarks

1. What we call sgn(u), Kato calls sgn(ū).
2. We should pause to emphasize what a surprise this was. Kato was a long-

established master of operator theory. He was 55 years old. Seemingly from
left field, he pulled a distributional inequality out of his hat. It is true, like other
analysts, that he’d been introduced to distributional ideas in the study of PDEs,
but no one had ever used them in this way. Truly a remarkable discovery.

The proof is not hard. By replacing u by u ∗ hn with hn a smooth approximate
identity and taking limits (using sgn(u ∗ hn)(x) → sgn(u)(x) for a.e. x and using a
suitable dominated convergence theorem), we can suppose that u is a C∞ function.
In that case, for ε > 0, let uε = (ūu + ε2)1/2. From u2

ε = ūu + ε2, we get that

2uε

−→∇ uε = 2Re(ū
−→∇ u) (4)

which implies (since |ū| ≤ uε) that

|−→∇ uε| ≤ |−→∇ u| (5)

Applying 1
2

−→∇ · to (4), we get that

uεΔuε + |−→∇ uε|2 = Re(ūΔ(u)) + |−→∇ u|2 (6)

Using (5) and letting sgnε(u) = ū/uε, we get that

Δuε ≥ Re(sgnε(u)Δu) (7)

Taking ε ↓ 0 yields (3).
Oncewe have (3), here isKato’s proof [39] of Theorem6.Consider T , the operator

closure of−Δ + V on C∞
0 (Rν). T ≥ 0, so, by a simple argument, it suffices to show
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that ran(T + 1) = H or equivalently, that T ∗u = −u ⇒ u = 0. So suppose that
u ∈ L2(Rν) and that

T ∗u = −u (8)

Since T ∗ is defined via distributions, (3) implies that

Δu = (V + 1)u (9)

Since u and V + 1 are both in L2
loc, we conclude thatΔu ∈ L1

loc so byKato’s inequal-
ity

Δ|u| ≥ (sgn(u))(V + 1)u = |u|(V + 1) ≥ |u| (10)

Convolution with nonnegative functions preserves positivity of distributions, so for
any non-negative h ∈ C∞

0 (Rν), we have that

Δ(h ∗ |u|) = h ∗ Δ|u| ≥ h ∗ |u| (11)

Since u ∈ L2, h ∗ |u| is a C∞ function with classical Laplacian in L2, so h ∗ |u| ∈
D(−Δ). (−Δ + 1)−1 has a positive integral kernel, so (11)⇒ (−Δ + 1)(h ∗ |u|) ≤
0 ⇒ h ∗ |u| ≤ 0 ⇒ h ∗ |u| = 0. Taking hn to be an approximate identity, we have
that hn ∗ u → u in L2, so u = 0 completing the proof.

At first sight, Kato’s proof seems to have nothing to do with the semigroup ideas
used in the proof of Theorem7 and the proof of Theorem6 that I found using semi-
group methods. But in trying to understand Kato’s work, I found the following
abstract result:

Theorem 9 (Simon [77]) Let A be a positive self-adjoint operator on L2(M, dμ) for
a σ -finite, separable measure space (M, �, dμ). Then the following are equivalent:

(a) (e−t A is positivity preserving)

∀u ∈ L2, u ≥ 0, t ≥ 0 ⇒ e−t Au ≥ 0

(b) (Beurling–Deny criterion) u ∈ Q(A) ⇒ |u| ∈ Q(A) and

qA(|u|) ≤ qA(u) (12)

(c) (Abstract Kato Inequality) u ∈ D(A) ⇒ |u| ∈ Q(A) and for all ϕ ∈ Q(A) with
ϕ ≥ 0, one has that

〈A1/2ϕ, A1/2|u|〉 ≥ Re〈ϕ, sgn(u)Au〉 (13)

In his original paper [39], Kato proved more than (3). He showed that

Δ|u| ≥ Re
[
sgn(u)(

−→∇ − i−→a )2u
]

(14)
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In his initial paper, he required that −→a to be C1(Rν) and he then followed his
arguments to get Theorem6 with −Δ + V replaced by −(∇ − ia)2 + V when a ∈
C1(Rν), V ∈ L2

loc(R
ν), V ≥ 0. But there was a more important consequence of (14)

than a self-adjointness result. I noted [76] that (14) implies, by approximating |u| by
positive ϕ ∈ C∞

0 (Rν), that

〈|u|,Δ|u|〉 ≥ 〈u, D2u〉

which implies that

〈u, (−D2 + V )u〉 ≥ 〈|u|, (−Δ + V )|u|〉 (15)

This, in turn, implies that turning on any, even non-constant, magnetic field always
increases the ground-state energy (for spinless bosons), something I called universal
diamagnetism.

If one thinks of this as a zero temperature result, it is natural to expect a finite tem-
perature result (that is, for, say, finitematrices, one has that limβ→∞ −β−1Tr(e−β A) =
inf σ(A) which in statistical mechanical terms is saying that as the temperature goes
to zero, the free energy approaches a ground-state energy).

Tr(e−t H(a,V )) ≤ Tr(e−t H(a=0,V )) (16)

where
H(a, V ) = −(∇ − ia)2 + V (17)

This suggested to me the inequality

|e−t H(a,V )ϕ| ≤ e−t H(a=0,V )|ϕ| (18)

I mentioned this conjecture at a brown bag lunch seminar when I was in Prince-
ton. Ed Nelson remarked that formally, it followed from the Feynman–Kac–Ito for-
mula for semigroups in magnetic fields, which says that adding a magnetic field
with gauge, −→a , adds a factor exp(i

∫ −→a (ω(s)) · dω) to the Feynman–Kac for-
mula (the integral is an Ito stochastic integral). Equation (18) is immediate from
| exp(i ∫ −→a (ω(s)) · dω)| = 1 and the positivity of the rest of the Feynman–Kac
integrand. Some have called (18) the Nelson–Simon inequality but the name I gave
it, namely diamagnetic inequality, has stuck.

The issue with Nelson’s proof is that at the time, the Feynman–Kac–Ito was only
known for smooth a’s. One can obtain the Feynman–Kac–Ito for more general a’s
by independently proving a suitable core result. After successive improvements by
me and then Kato, I proved that

Theorem 10 (Simon [78]) Equation (18) holds for V ≥ 0, V ∈ L1
loc(R

ν) and −→a ∈
L2

loc.
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The optimal self-adjointness result (V ≥ 0, V ∈ L2
loc, a ∈ L4

loc, div a ∈ L2
loc) was

proven by Leinfelder–Simader [59].
As with Theorem9, there is an abstract two-operator Kato inequality result (orig-

inally conjectured in Simon), which was proven by Hess–Schader-Uhlenbrock [19]
and Simon [79]. For more details as well as a discussion of the Kato class which
Kato introduced in his original Kato inequality note [39], see the longer paper.

6 Kato–Rosenblum and Kato–Birman

The Kato group, late 1950s.
S.T. Kuroda (standing), T. Kato, T. Ikebe, H. Fujita, Y.

Nakata

Starting with
Rutherford’s 1911
discovery of the
atomic nucleus,
scattering has
been a central tool
in fundamental
physics, so it isn’t
surprising that one
of the first papers
in the new quan-
tum theory was
by Born [10] in
1926 on scatter-
ing. While scat-
tering is at a
deep level a
time-dependent
phenomenon,
Born used eigen-

functions and time-independent ideas. In the early 1940s, the theoretical physics
community first considered time-dependent approaches to scattering. Wheeler [90]
and Heisenberg [18] defined the S-matrix andMøller [61] introduced wave operators
as limits (with no precision as to what kind of limit).

It was Friedrichs in a prescient 1948 paper [16], who first considered the invari-
ance of the absolutely continuous spectrum under sufficiently regular perturbations.
Friedrichs was Rellich’s slightly older contemporary. Both were students of Courant
at Göttingen in the late 1920s (in 1925 and 1929 respectively). By 1948, Friedrichs
was a professor at Courant’s Institute at NYU. He looked at several simple models
and for one with purely a.c. spectrum, he could prove the perturbed models were
unitarily equivalent to unperturbed models. While Friedrichs neither quoted Møller
nor ever wrote down the explicit formulae

Ω±(H, H0) = s − limt→∓∞eit H e−i t H0 (1)
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(the strange± versus∓ convention that we use is universal in the theoretical physics
community and uncommon among mathematicians and is not the convention that
Kato used), he did prove something equivalent to showing that the limit Ω+ existed
and was the unitary he constructed with time-independent methods.

Motivated in part by Friedrichs, in 1957, Kato published two papers [31, 32] that
set out the basics of the theory we will discuss in this section. In the first, he had the
important idea of defining

Ω±(A, B) = s − limt→∓∞eit Ae−i t B Pac(B) (2)

where Pac(B) is the projection onto Hac(B), the set of all ϕ ∈ H for which the
spectral measure of B and ϕ is absolutely continuous with respect to Lebesgue
measure. If these strong limits exist, we say that the wave operators Ω±(A, B) exist.

By replacing t by t + s, one sees that if Ω±(A, B) exist then eis AΩ± = Ω±eis B .
Since Ω± are unitary maps, U±, of Hac(B) to their ranges, we see that U± B �
Hac(B)(U±)−1 = A � ranΩ±. In particular, ranΩ± are invariant subspaces for A
and lie inHac(A). It is thus natural to define: Ω±(A, B) are said to be complete if

ranΩ+(A, B) = ranΩ−(A, B) = Hac(A) (3)

In the first of the 1957 papers, Kato proved the following.

Theorem 11 (Kato [31]) Let Ω±(A, B) exist. Then they are complete if and only
if Ω±(B, A) exist.

The proof is almost trivial. It depends on noting that

ψ = lim
t→∞ ei At e−i t Bϕ ⇐⇒ ϕ = lim

t→∞ eit Be−i t Aψ (4)

since ‖ψ − ei At e−i t Bϕ‖ = ‖eit Be−i t Aψ − ϕ‖. That said, it is a critical realization
because it reduces a completeness result to an existence theorem. In particular, it
implies that symmetric conditions which imply existence also imply completeness.
We’ll say more about this below.

To show the importance of this idea, motivated by it in 1977, Deift and Simon
[13] proved that completeness of multichannel scattering for N -body scattering was
equivalent to the existence of geometrically define “inverse” wave operators. All
proofs of asymptotic completeness for N -body systems prove it by showing the
existence of these Deift–Simon wave operators in support of Kato’s Theorem11.

One consequence of Theorem11 is that a symmetric condition for existence
implies completeness also. Using this idea, in his first 1957 paper, Kato proved

Theorem 12 (Kato [31]) Let H0 be a self-adjoint operator and V a (bounded)
self-adjoint finite rank operator. Then,H = H0 + V is a self-adjoint operator and
the wave operators Ω±(H, H0) exist and are complete.

Later in 1957, Kato proved
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Theorem 13 (Kato–Rosenblum Theorem [32, 71]) The conclusions of Theorem12
remain true if V is a (bounded) trace class operator.

In a sense this theorem is optimal. It is a result of Weyl [89]–von Neumann [88] that
if A is a self-adjoint operator, one can find a Hilbert–Schmidt operator, C, so that
B = A + C has only pure point spectrum. Kato’s student, S. T. Kuroda [52], shortly
after Kato proved Theorem13, extended this result of Weyl–von Neumann to any
trace ideal strictly bigger than trace class. So within trace ideal perturbations, one
cannot do better than Theorem13.

S. Kuroda, T. Ikebe, H. Fujita
recently

The name given to this
theorem comes from the
fact that before Kato proved
Theorem13,Rosenblum[71]
proved a special case that
motivated Kato: namely, if
A and B have purely a.c.
spectrum and A − B is
trace class, then Ω±(A, B)

exist and are unitary (so
complete).

I’d always assumed that
Rosenblum’s paper [71]
was a rapid reaction to
Kato’s finite rank paper [31]
which, in turn, motivated
Kato’s trace class paper
[32]. But I recently learned
that this assumption is not
correct. Rosenblum was a
graduate student of Wolf at Berkeley, who submitted his thesis in March 1955. It
contained his trace class result under some additional technical hypotheses; a Dec.
1955 Berkeley technical report had the result as eventually published without the
extra technical assumption. Rosenblum submitted a paper to the American Journal
ofMathematics which took a long time refereeing it before rejecting it. In April 1956,
Rosenblum submitted a revised paper to the Pacific Journal in which it eventually
appeared (this version dropped the technical condition; I’ve no idea what the original
journal submission had).

Kato’s finite rank paper was submitted to J. Math. Soc. Japan on March 15,
1957 and was published in the issue dated April 1957(!). The full trace class result
was submitted to Proc. Japan Acad. on May 15, 1957. Kato’s first paper quotes
an abstract of a talk Rosenblum gave to an A.M.S. meeting, but I don’t think that
abstract contained many details. This finite rank paper has a note added in proof
thanking Rosenblum for sending the technical report to Kato, quoting its main result
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and saying that Kato had found the full trace class results (“Details will be published
elsewhere.”). That second paper used some technical ideas from Rosenblum’s paper.

I’ve heard that Rosenblum always felt that he’d not received sufficient credit for
his trace class paper. There is some justice to this. The realization that trace class is
the natural class is important. As I’ve discussed, trace class is maximal in a certain
sense. Kato was at Berkeley in 1954 when Rosenblum was a student (albeit some
time before his thesis was completed) and Kato was in contact with Wolf. However,
there is no indication that Kato knew anything about Rosenblum’s work until shortly
before he wrote up his finite rank paper when he became aware of Rosenblum’s
abstract. My surmise is that both, motivated by Friedrichs, independently became
interested in scattering.

The longer paper describes further developments and some applications of the
trace class theory, some of them due to Kato himself. To me, the heroes of this later
work are Kuroda [53], Pearson [66] and especially Birman [5–9].

7 Kato Smoothness

In this final section, we discuss the theory of Kato smoothness which is based pri-
marily on two papers of Kato published in 1966 [35] (when Kato was 49) and 1968
[36]. The first is the basic one with four important results: the equivalence of many
conditions giving the definition, the connection to spectral analysis, the implications
for existence and completeness of wave operators and, finally, a perturbation result.
The second paper concerns the Putnam–Kato theorem on positive commutators.

To me, the 1951 self-adjointness paper is Kato’s most significant work (with the
adiabatic theorem paper a close second), Kato’s inequality his deepest and the subject
of this section his most beautiful. One of the things that is so beautiful is that there
isn’t just a relation between the time-independent and time-dependent objects—
there is an equivalence! Part of the equivalence depends on the simple formula that
holds when H is a self-adjoint operator on a (complex) Hilbert space H (where
R(μ) = (H − μ)−1)

∫ ∞

0
e−εt eitλe−i t Hϕ dt = −i R(λ + iε)ϕ (1)

for any ϕ ∈ H because
∫ ∞
0 e−εt ei(λ−x)t dt = −i(x − λ − iε)−1.

Here, is the set of equivalent definitions:

Theorem 14 (Kato (1966) [35]) Let H be a self-adjoint operator and A a closed
operator. The following are all equal:

sup
‖ϕ‖=1
ε>0

1

4π2

∫ ∞

−∞

(‖AR(λ + iε)ϕ‖2 + ‖AR(λ − iε)ϕ‖2) dλ (2)
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sup
‖ϕ‖=1

1

2π

∫ ∞

−∞
‖Ae−i t H ϕ‖2 dt (3)

sup
‖ϕ‖=1, ϕ∈D(A∗)
−∞<a<b<∞

‖P(a,b)(H)A∗ϕ‖2
b − a

(4)

sup
μ/∈R, ϕ∈D(A∗)

‖ϕ‖=1

1

2π
|〈A∗ϕ, [R(μ) − R(μ̄)]A∗ϕ〉| (5)

sup
μ/∈R, ϕ∈D(A∗)

‖ϕ‖=1

1

π
‖R(μ)A∗ϕ‖2 |Imμ| (6)

In particular, if one is finite (resp. infinite), then all are.

Remarks

1. In (2)/(3), we set ‖Aψ‖ = ∞ if ψ /∈ D(A), so, for example, to say that (3) is
finite implies that for each ϕ, we have that e−i t H ϕ ∈ D(A) for Lebesgue a.e.
t ∈ R.

2. If one and so all of the above quantities are finite we say that A is H-smooth. The
common value of these quantities is called ‖A‖2H .

3. The proof is not hard. For example, If the integral in (3) has a factor of e−2εt

put inside it, the equality of the integrals in (2) and (3) follows from (1) and the
Plancherel theorem. By monotone convergence, the sup of the time integral with
the e−2εt factor is the integral without that factor.

Smoothness has an immediate consequence for the spectral type of H :

Theorem 15 (Kato [35]) Let H be a self-adjoint operator and let A be H-smooth.
Then ran(A∗) ⊂ Hac(H). In particular, if ker(A) = {0}, then Hhas purely a.c. spec-
trum.

The proof is very easy. If dν is the H -spectral measure for A∗ϕ, then (4) says that

ν(I ) ≤ ‖A‖H‖ϕ‖2|I | (7)

(where | · | is Lebesgue measure) for open intervals, I . By taking unions and using
outer regularity, (7) holds for all sets, so ν is absolutely continuous.

Smoothness also implies existence and completeness of wave operators.

Theorem 16 (Kato [35]) Let H, H0 be two self-adjoint operators. Let A, B be
closed operators so that A is H-smooth and B is H0-smooth and so that

H − H0 = A∗ B (8)

Then Ω±(H, H0) exist and are complete.
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Remark The proof is again easy (indeed, one of the beauties of Kato smoothness
theory is how much one gets with simple proofs). The key is to use

|〈ψ, (W (t) − W (s))ϕ〉| =
∣∣∣∣
∫ t

s
〈Ae−iu Hψ, Be−iu H0ϕ〉 du

∣∣∣∣
≤

(∫ ∞

−∞
‖Ae−iu Hψ‖2 du

)1/2 (∫ t

−s
‖Be−iu H0ϕ‖2 du

)1/2

≤ √
2π‖A‖H‖ψ‖

(∫ t

−s
‖Be−iu H0ϕ‖2 du

)1/2

which implies that

‖(W (t) − W (s))ϕ‖ ≤ √
2π‖A‖H

(∫ t

−s
‖Be−iu H0ϕ‖2 du

)1/2

(9)

We say that a closed operator, A is H -supersmooth if and only if

‖A‖2H,SS ≡ sup
z∈C\R

‖A(H − z)−1A∗‖ < ∞ (10)

The notion is in Kato’s basic 1966 paper [35] and the name is from a 1989 paper
of Kato–Yajima [51]. The name hasn’t stuck but I like it, so I’ll use it. The fourth
important result in Kato’s 1966 paper is

Theorem 17 (Kato [35]) Let H0 be a self-adjoint operator. Let A be H0-supersmooth
and C a bounded self-adjoint operator so that

α ≡ ‖C‖‖A‖2H0,SS < 1 (11)

Let B = A∗C A. Then B is relatively form bounded with relative form bound at
most α. If H = H0 + B, then A is also H-supersmooth with

‖A‖H,SS ≤ ‖A‖H0,SS(1 − α)−1/2 (12)

In particular, Ω±(H, H0) exist and are complete.

Remark Once again, the proofs are simple. The key is a formal geometric series:

A(H − z)−1A∗ = A(H0 − z)−1A∗

+
∞∑
j=0

(−1) j+1 A(H0 − z)−1A∗ [
C A(H0 − z)−1A∗] j

C A(H0 − z)−1A∗ (13)

In his original paper [35], Kato proved for ν ≥ 3, any V ∈ L
1
2 ν−ε ∩ L

1
2 ν+ε is super-

smooth and Kato–Yajima [51] improved that to Lν/2. Iorio–O’Carroll [21] used
supersmooth ideas to get a weak coupling result for N -body systems. If one has an
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N -body system on Rν with two-body potentials in Lν/2 and if ν > 2, then for small
coupling, H is purely a.c. with spectrum [0,∞).

In his 1968 paper [36], Kato used smoothness ideas to prove that if A and B
are bounded self-adjoint operators so that i[A, B] > 0, then A and B have purely
a.c. spectrum (a result proven the year before by very different methods by Putnam
[67]). If A is the generator of dilations and B an N -body potential with repulsive
potentials one has positivity of the commutator but neither operator is bounded so
Kato’s argument doesn’t apply. In a series of papers, Lavine [54–58] was able to use
smoothness ideas to prove suitably N -body systems with repulsive potentials have
purely a.c. spectrum and, with sufficiently fast decay, have complete wave operators.
To do this, he introduced the important notion of local smoothness [56]. For details,
the reader can consult the longer paper or, better, the relevant section of Reed–Simon
[68, Section XIII.8].

The longer paper also discusses a paper of Vakulenko [86] that should be better
known. For two-body systems, he proved that if |V (x)| ≤ C(1 + |x |)−1−ε ≡ g(x)2,
then g is −Δ + V locally smooth on [0,∞) which recovers the results of Agmon–
Kato–Kuroda [2, 37] on completeness of wave operators and absence of singular
continuous spectrum in this case and also the result of Kato [33] on the absence
of positive eigenvalues. The longer paper also has references to work of Yafaev on
long range [93] and on N -body systems [92] that uses smoothness as one tool in the
analysis of such problems.
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