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ABSTRACT
This is an extended version of my 2018 Heineman prize lecture describing the work for which I got the prize. The citation is very broad, so
this describes virtually all my work prior to 1995 and some afterward. It discusses work in non-relativistic quantum mechanics, constructive
quantum field theory, and statistical mechanics.
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I. INTRODUCTION
The citation for my 2018 Dannie Heineman prize for Mathematical Physics reads as follows: for his fundamental contributions to the

mathematical physics of quantum mechanics, quantum field theory, and statistical mechanics, including spectral theory, phase transitions, and
geometric phases, and his many books and monographs that have deeply influenced generations of researchers. This is very broad, so I decided
to respond to the invitation to speak at the March 2018 APS, which says the talk should be preferably on the work for which the Prize is being
awarded, by discussing the areas of my most important contributions to mathematical physics. I could not say much in the 30 min allotted to
the talk so it seemed to make sense to prepare this expanded Prize Lecture.

I will discuss 12 areas in theoretical and mathematical physics. The first seven involve areas where my work was largely done during my
Princeton years, 1969–1980 (a kind of golden era in mathematical physics706) and the last four during my Caltech years, 1980–1995 (I have
remained at Caltech since 1995, but my interest shifted toward the spectral theory of long range potentials and of orthogonal polynomials
whose connection to physics is more remote). The eighth area is one where I had worked both before and after I moved to Caltech. It is a
pleasure to thank Michael Aizenman, Michael Cwikel, David Damanik, Jan Derezinski, Rupert Frank, Jürg Fröhlich, Fritz Gesztesy, Leonard
Gross, George Hagedorn, Bernard Helffer, Svetlana Jitomirskaya, Martin Klaus, Elliott Lieb, John Morgan, Derek Robinson, Israel Sigal, Alan
Sokal, and Maxim Zinchenko for feedback on drafts of this article.

Many of the topics I will discuss have spawned industries (as shown by my current Google Scholar h-index of 113); any attempt to quote
all the related literature would stretch the number of references far beyond the 776, so I will mainly settle for quoting relevant review articles
or books where they exist or perhaps limit to on a very small number of later papers that shed light on my earlier work. In particular, I focus
very much on my own work and make no pretense of doing comprehensive reviews or a serious history even of all the ideas floating around
at the time of my work and certainly not all the work after I essentially left a subject.

II. SUMMABILITY OF DIVERGENT EIGENVALUE PERTURBATION SERIES
Eigenvalue perturbation theory depends on the formal perturbation series [also known as RSPT (or just RS) for Rayleigh–Schrödinger

Perturbation Theory] introduced by Lord Rayleigh549 and Schrödinger.585 The core of the rigorous theory about 1970 when I began my
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research in this area was the results of Rellich,559 extended by Sz.-Nagy506 and Kato372 (see my review712 of Kato’s work written on the
centenary of his birth) and summarized in Kato’s magnificent 1966 book.385

The Kato–Rellich theory in its simplest form considers operator families

A(β) = A0 + βB, (2.1)

where A0 and B are typically unbounded self-adjoint operators [B need only be symmetric; see Ref. 710 (Chap. 7) for a presentation of the
language of unbounded self-adjoint operators] on a Hilbert space, H. One demands that there are a and b so that

D(B) ⊃ D(A0), ∀φ ∈ D(A0) : ∥Bφ∥ ≤ a∥A0φ∥ + b∥φ∥. (2.2)

In Kato’s language, one says that A(β) is a type A perturbation of A0. The big result of this theory is as follows:

Theorem 1.1. If A(β) is a family of type A and E0 is an isolated eigenvalue of A0 of finite multiplicity, ℓ, then there exist ℓ analytic
functions, {Ej(β)}ℓj=1, near β = 0, which are all the eigenvalues of A(β) near E0 when β is small. Moreover, there exists an analytic choice
{φj(β)}ℓj=1 of eigenvectors, orthonormal when β is real and small. The Taylor coefficients of Ej and φj are given by the Rayleigh–Schrödinger
perturbation theory.

Remarks.

1. For textbook presentations of this theorem, see the work of Kato,385 Reed–Simon,555 or Simon (Ref. 710, Secs. 1.4 and 2.3).
2. The Kato—Rellich theorem assets that for β ∈ (−a−1, a−1

), one has that A(β) is self–adjoint on D(A0).
3. The theory is more general than the self-adjoint case. It suffices that A0 is closed, that B obey (2.2), and that E0 be a point of the

discrete spectrum (isolated point of finite algebraic multiplicity). In that case, one has analyticity in the non-degenerate case (ℓ = 1),
but, in general, Ej may be one or more convergent Puiseux series (fractional powers in β). The is also a generalization that only requires
quadratic form estimates.

4. It is also not necessary that the β dependence be linear; a suitable kind of analyticity suffices.

While this is elegant mathematics, the striking thing is that it does not cover many cases of interest to physics. Perhaps, the simplest
example is

A(β) = −
d2

dx2 + x2
+ βx4, (2.3)

the quantum anharmonic oscillator. This is the usual textbook model of RSPT because the sum over intermediate states is finite and one can
compute the first few terms in the RSPT by hand.

Moreover, it can be regarded as a toy model for a φ4-field theory. Indeed, if one specializes a (φ4
)d+1 QFT in d space dimensions to d = 0,

one gets a path integral for the A(β) of (2.3) and the RSPT terms can also be written in terms of Feynman diagrams, at least for the ground
state (see, for example, the work of Simon626,692).

In this regard, a celebrated argument of Dyson171 is relevant. He noted that quantum electrodynamics (QED) is not stable if e2
< 0 since

electrons then attract. Since there is not a sensible theory for such e, he argued that the Feynman perturbation series must diverge. Similarly,
(2.3) for β < 0 is not bounded below [indeed, even worse, the operator is not self–adjoint and a boundary condition is needed at ±∞—see, for
example, Ref. 710 (Theorem 7.4.21)]. In fact, various estimates64,345,612 show that the perturbation coefficients for the Rayleigh–Schrödinger
series of (2.3) grow like n! [see the further discussion around (2.11)].

Two other standard models to which RSPT is applied are the Stark effect in hydrogen (indeed, the title of Schrödinger’s paper585 where
he introduced his version of RSPT is “Quantization as an Eigenvalue Problem, IV. Perturbation Theory with Application to the Stark Effect
of Balmer Lines”),

A(β) = −Δ −
1
r
+ βz, (2.4)

and the Zeeman effect in hydrogen,

A(β) = −
1
2
Δ −

1
r
+
β2

8
(x2
+ y2
) + βLz . (2.5)
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z in (2.4) and x2
+ y2 terms in (2.5) are clearly not bounded at infinity by A(0) [i.e., (2.2) fails], and it is known that both problems have

divergent RSPT. The Stark effect is more singular than the other two examples in that, as first noted by Oppenheimer,519 its bound states turn
into resonances, an issue that I will discuss in Sec. III.

One might think, on the basis of these three examples, that convergent RSPT is irrelevant to physics but that is wrong. First of all, the
Kato–Rellich theorem implies that in the Born–Oppenheimer limit (i.e., infinite nuclear masses), the electronic energies are real analytic in
the nuclear coordinates (at non-coincident points if the internuclear repulsion is included); see Refs. 466 and 501 for some of my work on
Born–Oppenheimer curves.

Moreover, we have the following interesting example on L2
(R3
×R3
):

A(β) = −Δ1 − Δ2 −
1
r1
−

1
r2
+ β

1
∣r1 − r2∣

, (2.6)

where the Kato–Rellich theory applies. Up to a scale factor of Z−2, when β = Z−1, this describes a two-electron system moving around a
nucleus of charge Z. This A(0) is the sum of two independent hydrogen atoms, so it has a continuous spectrum [− 1

4 ,∞) and eigenvalues

En,m = −
1

4n2 −
1

4m2 , n, m = 1, 2, . . . . (2.7)

For n or m equals 1, these are below − 1
4 , so discrete and Theorem 1.1 applies.

There is a huge literature on the discrete eigenvalues of this system, especially the ground state. Some of it is summarized in Ref. 712
(Example 2.1). I have a joint paper317 on what happens at βc, the coupling where the ground state hits the continuous spectrum.

The major theme of this section is that RSPT tells you something about the eigenvalues, even when the series diverges. Before my work,
the standard connection, where Kato377 was the pioneer, concerned asymptotic series, a notion first formalized by Poincaré539 in 1886. Given
a function, f , defined in a region R with 0 in its closure, we say that f (β) has ∑∞n=0 anβn as an asymptotic series on R if an only if, for any N,
we have that

lim
∣β∣→0, β∈R

( f (β) −
N

∑
n=0

anβn
)β−N

= 0. (2.8)

Kato’s method allows one to prove that RSPT is asymptotic when R = (0, B) for any eigenvalue of the anharmonic oscillator (2.3) and for the
Zeeman effect (2.5), and the method in his book385 allows one to take R to be suitable sectors in the complex plane.

(2.8) shows that f determines {an}
∞
n=0, but since, for example, when R = (0, B), if (2.8) holds for f , it also holds for f1(β) = f (β)

+ 106 exp(−1/106β), if we only know (2.8) and {an}
∞
n=0, we cannot say anything about the value of f (β) for any particular fixed, non-zero β.

Over the years, mathematicians have developed a number of methods for recovering a unique function among the several associated with a
given asymptotic series. Hardy296 is a discussion of many of them. Two of them—Padé and Borel summability—are relevant to our discussion
here.

Truncated Taylor series are polynomial approximations to a formal series ∑∞n=0 anβn. Padé approximation involves rational approxi-
mation (the name is after the thesis of Padé;521 his advisor, Hermite, was a great expert on rational approximation). Given a formal series,
∑
∞
n=0 anβn, we say that f [N,M]

(β) is the [N, M] Padé approximant if

f [N,M]
(β) =

P[N,M]
(β)

Q[N,M](β)
, deg P[N,M]

=M, deg Q[N,M]
= N, (2.9)

f [N,M]
(β) −

N+M

∑
n=0

anβn
= O(βN+M+1

). (2.10)

A formal power series is called a series of Stieltjes if it has the form

an = (−1)n
∫

∞

0
xndμ(x) (2.11)

for some positive measure dμ on [0,∞) with all moments finite. This is related to the Stieltjes transform of μ, which is defined by
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f (β) = ∫
∞

0

dμ(x)
1 + xβ

, (2.12)

since it is easy to see that ∑∞n=0 anβn is an asymptotic series for such an f in any region of the form {β∣ ∣arg β∣ < π − ϵ}. A basic result on
convergence of Padé approximants is as follows:

Theorem 1.2 (Stieltjes convergence theorem). If {an}
∞
n=0 is a series of Stieltjes, then for each j ∈ Z, the diagonal Padé approximants,

f [N,N+j]
(z), converge as N →∞ for all β ∈ C/[0,∞) to a function fj(β) given by (2.12) with μ replaced by μj, which obeys (2.11) (with μ = μj).

The fj are either all equal or all different depending on whether (2.11) has a unique solution, μ, or not.

Remarks.

1. For proofs, see the work of Baker53–55 or Simon710 (Sec. 7.7).
2. Stieltjes730 did not discuss Padé approximates by name but instead studied continued fractions that lead to the result for j = 0, 1 from

which one can deduce the general result.
3. There is a huge literature on convergence of Padé approximants in cases where they are not series of Stieltjes (see the work of

Lubinsky478).

In applying Theorem 1.1, it is useful to know when (2.11) has a unique solution. A sufficient (but certainly not necessary) condition is
that

∣an∣ ≤ ACn
(kn)! (2.13)

for some k ≤ 2.
The second summability method relevant to us here may work if (2.13) holds for k = 1. One forms the Borel transform

g(w) =
∞
∑
n=0

an

n!
wn, (2.14)

which defines an analytic function in {w∣ ∣w∣ < C−1
}. Under the assumption that g has an analytic continuation to a neighborhood of [0,∞),

one defines for β real and positive

f (β) = ∫
∞

0
e−ag(aβ)da (2.15)

if the integral converges. Since ∫
∞

0 e−aan da = n!, formally, f (β) = ∑∞n=0 anβn. Here, one has a theorem of Watson;757 see the work of Hardy296

for a proof.

Theorem 1.3. Let Θ ∈ ( π2 , 3π
2 ) and B > 0. Define

Ω = {z ∣ 0 < ∣z∣ < B, ∣ arg z∣ < Θ}, (2.16)

Ω̃ = {z ∣ 0 < ∣z∣ < B, ∣ arg z∣ < Θ −
π
2
}, (2.17)

Λ = {w ∣w ≠ 0, ∣ argw∣ < Θ −
π
2
}. (2.18)

Suppose that {an}
∞
n=0 is given and that f is analytic in Ω and obeys

∣ f (z) −
N

∑
n=0

anzn
∣ ≤ ACN+1

(N + 1)! (2.19)

on Ω for all N. Define
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g(w) =
∞
∑
n=0

an

n!
wn, ∣w∣ < C−1. (2.20)

Then, g(w) has an analytic continuation to Λ, and for all z ∈ Ω̃, we have that

f (z) = ∫
∞

0
e−ag(az) da. (2.21)

Remark. By writing (2.21) as f (z) = z−1
∫
∞

0 e−a/zg(a) da, one sees that the natural regions of analyticity are not sectors but regions of
the form Re(1/z) > 1/R, which are circles tangent to the imaginary axis. A few years after Watson, Nevanlinna515 proved a stronger version
of Theorem 1.3 using such regions; see also the work of Sokal.724

My own work on the anharmonic oscillator was motivated by my thesis advisor, Arthur Wightman, who had the idea of exploring this
as a way of understanding QFT perturbation theory. He wanted to exploit an idea of Symanzik to use scaling. One looks at

H(α,β) = −
d2

dx2 + αx2
+ βx4 (2.22)

and notes that if λ is positive, then

(U(λ) f )x = λ1/4 f (λ1/2x) (2.23)

is unitary and

U(λ)H(α,β)U(λ)−1
= λ−1H(αλ2,βλ3

). (2.24)

Hence, for any α,β, λ real with β, λ > 0, one has that

En(α,β) = λ−1En(αλ2,βλ3
), (2.25)

where En is the nth eigenvalue of H(α,β).
Wightman gave the problem to another graduate student, Arnie Dicke, but they came to me with a technical problem they ran into.

Then, in early 1968, I was a second year graduate student in physics, but I had been charmed by Kato’s book385 and was regarded as a local
expert on some of the material. The problem was that U(λ) was only a bounded operator if λ > 0 and so (2.24) only made sense for such
λ and they wanted (2.25) for complex λ.

I came up with the following argument. In the region R = {α,β ∈ C, β ∉ (−∞, 0]}, H(α,β) is an analytic family of type A [I proved
estimates like (2.2) for A = H(α,β),β ∉ (−∞, 0] and B = x2 or x4]. Thus, as long as the eigenvalue is simple at (α0,β0) ∈ R, we have that
En(α,β) is analytic near (α0,β0). Since (2.25) holds for λ real, it holds for small complex λ by analyticity. [There was an issue of eigenvalue
labeling—there was no guarantee that if one went around a loop starting and ending on R × (0,∞), that n could not change.]

Here, I missed a golden opportunity. I had proven an invariance of the discrete spectrum under complex scaling. It did not occur to me
to ask about an operator like − d2

dx2 − βe−μx or −Δ − 1
r , which like H(α,β) has an analytic continuation for H(λ) = U(λ)HU(λ)−1 from real

λ to complex λ. If I had, I might have found Combes great discovery of a year later (I will discuss his work in Sec. III).
After I found this, given that Dicke was bogged down in his construction of solution with the expected WKB asymptotics at infinity

(which turned into his thesis and which he asked me to publish as an the appendix to my long paper612), he and Wightman felt that I should
explore aspects of this problem beyond the existence of solutions that Dicke was looking at. I immediately noticed that (2.25) implies that

En(1,β) = β1/3En(β−2/3, 1) (2.26)

so since En(α, 1) is analytic near α = 0, En(1,β) has a convergent series near infinity, not in β−1, but in β−2/3 so that En(1,β) has a kind of
three sheeted structure.
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In some of my work, I made an assumption that En(α, 1) has no natural boundaries—this was proven to be true many years later
(Eremenko–Gabrielov185) but for ∣arg α∣ < 2π/3, as we will see shortly, it was proven that there were no singularities at all in the same time
frame as my paper.

In 1968–69, Wightman was on leave in Europe and he thought about and talked to others about the anharmonic oscillator and wrote
me letters. Andre Martin pointed out to him that the large β expansion could not converge for all β ≠ 0. For, if it were, En(α, 1) would be an
entire Herglotz function and so linear which one can easily see is not true for En(α, 1) = α1/2En(1,α−3/2

) shows that

lim
α→∞ α∈R

En(α, 1)/
√
α = En(1, 0).

I had never seen the theorem about entire Herglotz functions, which I am sure Martin got by using the Herglotz representation theorem.
While I would later often use that representation theorem heavily in my career and even find a useful extension for meromorphic Herglotz
functions on the disk,691 I had never heard of it at the time. In those pre-Google days, I could not easily find much about Herglotz functions,
which was good because it forced me to find my own unconventional proof of the entire Herglotz theorem and that allowed me to prove that
En(α, 1) could not have an isolated singularity at infinity. I had already proven using Kato’s methods that for any fixed ω = eiθ, ∣θ∣ < π, one had
that p2

+ ωx2
+ βx4 has a RS asymptotic perturbation series as β ↓ 0,β > 0, which, by scaling, implied that En(1,β) has an asymptotic series in

{β∣ ∣arg β∣ < 3π/2 − ϵ, ∣β∣ < Rϵ}. This, in turn, implied that on the three sheeted Riemann surface, there were an infinity of singularities with
limit point 0 (on the natural three sheeted surface) and asymptotic phase ±3π/2.

Around this time, I got a hold of a preprint of Bender and Wu.64 (In those days, Xeroxing was expensive so preprints were mimeographed
and of limited distribution. While I had known Carl Bender when I was a senior at Harvard and he was a graduate student and we were in
Schwinger’s QFT course together, I certainly did not know him well enough to get a preprint, but fortunately, he and Arnie Dicke were friends
and I got it from Arnie). Bender and Wu computed the first 75 coefficients, {an}

75
n=1, for the anharmonic oscillator ground state RS series and

they did a numerical analysis of an, leading to a conjecture of the large n asymptotics (I will say more about this subject in Sec. III). They
also did a mathematically unjustified WKB analysis of the analytic behavior of En(1,β), which was consistent with what I had found. (I still
remember that my first seminar outside Princeton was a physics talk at Chicago where I made reference to the “notoriously unreliable WKB
approximation.” Afterward, a kindly older gentleman came up to me and introduced himself: “I’m the W of WKB”!).

Early in 1969, I got a letter from Arthur Wightman that began “The specter of Padé is haunting Europe. . ..” Various theoretical physicists
had the idea of using diagonal Padé approximants on some field theoretic Feynman series, and Wightman suggested that I try it on the
anharmonic oscillator. I had never done any scientific computing (and have not done any since!), but with the first 41 coefficients from the
Bender–Wu preprint and explicit determinantal formulas from Baker’s book,54 it was straightforward.

In those days, one did computer calculations by writing the program in Fortran on punch cards, submiting the deck, and waiting a day
to get back the results. My initial output was nonsense, but I realized I had left out a (−1)n and fixed it, and the second time was golden! I
computed f [N,N]

(β) for N = 1, 2, . . ., 20 and β = 0.1, 0.2, . . ., 1 and got rapid convergence to answers consistent with less accurate variational
calculations already in the literature.

The approximants f [N,N]
(β) were monotone in N, suggesting that the underlying series was a series of Stieltjes. I realized that with my

methods, to prove this, one needed to show that on {β∣ ∣arg β∣ < π}, Ej(β) have no natural boundaries and no eigenvalue crossing, equivalently
the same for Ej(α, 1) within {α∣ ∣arg α∣ < 2π/3}. Nick Khuri, a physicist at Rockefeller, heard of my work and invited me to talk while Martin
was visiting there and I explained the situation to him. Loeffel and Martin,474 using a clever argument tracking the zeros of eigenfunctions,
were able to show no eigenvalue crossing, assuming one could make analytic continuation, and I could show, using their results, that one
could be sure one could analytically continue.

The four of us (Loeffel, Martin, Simon, and Wightman475) then published an announcement putting everything together. The analyticity
results implies that for a positive measure on (0,∞), one has that

Ej(β) = E0 − β∫
∞

0

dρj(x)
1 + xβ

(2.27)

for all β ∈ C/(−∞, 0]. My results on the RS series being asymptotic in the cut plane then implied that the RS series was a series of Stieltjes,
so the diagonal Padé approximants converge. Moreover, I had shown that (2.13) holds for k = 1, so the limits are the same and equal the
eigenvalues.

While this Padé result is nice, the known scope where one can prove Padé summability is very limited. Loeffel et al.475 noted that their
methods imply that for m = 2, 3, . . ., the RS series for the eigenvalues of p2

+ x2
+ βx2m are series of Stieltjes, so the diagonal Padé approximants

converge. However, (2.13) holds for k = (m − 1) so they only knew uniqueness when m = 2, 3. In fact, several years later, Graffi–Grecchi267

proved that for the x8 oscillator, the f [N,N+j] converge as N →∞ to j dependent limits, none of which is the eigenvalue! Moreover, the
Loeffel–Martin474 method tracks zeros and so is limited to ODEs and there is no rigorous Padé result known for anharmonic oscillators with
more than one degree of freedom.

Borel summability turns out to be much more widely applicable. Shortly after the four author announcement appeared, I got contacted
by Sandro Graffi and Vincenzo Grecchi whom I had not previously known. They enclosed a Xerox of the pages of Hardy’s book dealing with
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Watson’s theorem and more importantly some numerical calculations of the Borel sum of the x4 ground state [based on a not rigorously
justified use of Padé approximants of the Borel transform, g, of (2.14)], which not only converged but more rapidly than ordinary Padé
approximants. I quickly determined that my techniques showed that the hypotheses of Watson’s theorem held for x4 oscillators in any dimen-
sion and that a higher order [i.e., (kn)! instead of n!] Borel summability works for the x2m oscillator so we published a paper with these
results.273 Before leaving the issue of the perturbation series for the anharmonic oscillator, I note that using the first 60 terms in the series and
the computer power available in 1978, Seznec and Zinn-Justin,596 using modified Borel summability and large order expansions, claimed to
be able to find the ground state for all values of β to one part in 1023!

I wrote several papers on applying Borel summability in Φ4
2 cutoff field theory573,613 and other contexts.616,617 Avron–Herbst–Simon36

proved Borel summability of Zeeman Hamiltonians, and there have been proofs by others of Borel summability of various quantum field
theoretic perturbation series (Feynman diagram expansion of Schwinger functions): P(ϕ)2,176 ϕ4

3,480 Y2,564 and Y3.481 As we will see in Sec. III,
there is a sense in which the Stark series is Borel summable.

Before leaving asymptotic perturbation theory, I mention a striking example of Herbst–Simon,310

A(β) = −
d2

dx2 + x2
− 1 + β2x4

+ 2βx3
− 2βx.

If E0(β) is the lowest eigenvalue, we proved that for all small, non–zero positive β,

0 < E0(β) < C exp(−Dβ−2
).

Thus, E0(β) has ∑∞n=0 anβn as asymptotic series with an ≡ 0. The asymptotic series converges, but since E0 is strictly positive, it converges to
the wrong answer!

III. COMPLEX SCALING THEORY OF RESONANCES
Our second tale also concerns eigenvalue perturbation theory but in situations where the eigenvalue turns into a resonances. One of the

simplest real physical examples where, at the time of my work, this was expected to occur involves the 1/Z expansion of (2.6). The eigenvalues
Em,n of A(0) given by (2.7) when m, n ≥ 2 are embedded in the continuous spectrum. For example, E2,2 = −

1
8 > −

1
4 . For β ≠ 0, one expects the

bound state to dissolve into a resonance.
There is a standard physics textbook calculation called time-dependent perturbation theory (TDPT). The lifetime, τ, is by the

Wigner–Weisskopf formula τ = h /Γ with Γ = 2Im E(β). The leading order for Γ is called the Fermi golden rule and is given by
Γ = Γ2β2

+O(β3
), where

Γ2 =
d

dλ
⟨Bφ0, P̃(−∞,λ)(A0)Bφ0⟩∣

λ=E0

. (3.1)

Here, P̃ is a spectral projection for A0 with the eigenspace at E0 removed and φ0 is the eigenvector with A0φ0 = E0φ0 for the embed-
ded eigenvalue with ∥φ0∥ = 1 (this is only the correct form if the eigenvalue is simple). Usually, the right-hand side of (3.1) is written as
⟨Bφ0, δ(A0 − E0)Bφ0⟩. This version is from Simon.621 There is a subtlety here that we will not discuss in detail [but see Ref. 555 or Ref. 712
(Example 3.2)]: E2,2 is actually a degenerate eigenvalue and a subspace of the eigenspace at − 1

8 has a symmetry with a continuum only begin-
ning at − 1

16 (put differently, the continuum it is imbedded in has a different symmetry from part of the eigenspace), so only part of the
eigenspace dissolves into resonances. These resonances are observed in nature and are called autoionizing states or Auger resonances.

A second important model is the Stark Hamiltonian (2.4). If β ≠ 0, it is not hard to see that spec(A(β)) is all of R [for A0(β)]. For the
operator without Coulomb term, one can write down exp(itA0(β)) explicitly31 and show that −1/r does not change the spectrum, indeed,
wave operators exist and are complete.69,307 Thus, the discrete eigenvalues are swamped by the continuous spectrum. The theoretical physics
literature based on a formal tunneling calculation studied the leading asymptotics of the width, which is O(βn

) for all n, and found that the
leading order is

Γ(β) = (2β)−1 exp(−
1

6β
)(1 +O(

1
n
)). (3.2)

This formula, first found correctly by Lanczos,432 is called the Oppenheimer formula after Ref. 519.
There were fundamental mathematical questions discussed by Friedrichs,206 who was the first person to look mathematically at issues of

eigenvalues turning into resonances. First, in cases like the Stark effect, where there are RSPT series but no eigenvalues, what is the meaning

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

of the perturbation coefficients. Second, what exactly is a resonance? Third, in a case like autoionizing states, what exactly are the higher order
terms of TDPT (the physics literature was unclear on this point) and is the series ever convergent?

Before the complex scaling approach, there was the idea of solving the first problem by connecting the series to the asymptotics of the
spectral projections of the perturbed operators. This notion, called spectral concentration, was pioneered by Titchmarsh750 and Kato374,385

and later by others.115,565 It works well for the Stark effect where the width is o(βn
) for all n, so one can hope to prove spectral concentration

to all orders556,558 although it does not seem possible to fit a result like (3.2) into this framework. However, for the case of autoionizing states,
the widths go as cβ2, c ≠ 0, and there is only spectral concentration to first order.

Howland wrote several papers321–325 that addressed both kind of models, but they required either the perturbation or some other object
be finite rank so they did not cover either physical model mentioned above.

In two remarkable papers, Combes and co-workers Aguilar and Balslev5,56 developed a framework to study the absence of the singular
spectrum that I realized was ideal to study autoionizing states. They called it the theory of dilation analytic potentials but after the quantum
chemists started using it in calculations, the name shifted to complex scaling.

Consider first a two body potential, V(x), x ∈ Rν, and for θ ∈ R, define

(U(θ) f )(x) = eνθ/2 f (eθx), (3.3)

which is a one parameter semigroup of unitary operators. Define, again for θ ∈ R,

V(θ) = U(θ)VU(θ)−1, (3.4)

which is, of course, multiplication by V(eθx). For general V , this does not make sense for Im θ ≠ 0, e.g., let V be a square well. However, for
some V ’s, one can analytically continue. Particular examples are V(x) = ∣x∣−β, 0 < β < 2, in particular, for β = 1, where V(θ) continues to an
entire function and V(x) = e−μr

/r where V(θ) can be continued (as a relatively bounded operator) so long as ∣Im θ∣ < π/2. V is called dilation
analytic if V(θ)(−Δ + 1)−1 has an analytic continuation from R to all θ with ∣Im θ∣ < Θ for some Θ > 0.

Let H0 = −Δ and H = H0 + V . Then,

H(θ) = U(θ)HU(θ)−1 (3.5)

will have an analytic continuation to {θ∣ ∣Im θ∣ < Θ} as an analytic family of type (A).
The Kato–Rellich theory is applicable. As in Sec. II, discrete eigenvalues are θ-independent at least for Im θ small. However, since

H(θ) = −e−2θΔ + V(θ), (3.6)

we know that if V(−Δ + 1)−1 is compact, then we have that H(θ) has a continuous spectrum e−2Imθ
[0,∞), i.e., the continuous spectrum

rotates about the threshold 0.
Balslev–Combes56 analyzed the spectrum for N-body Hamiltonians and found a spectrum like that shown in Fig. 1.
Instead of the continuous spectrum rotating about zero, it rotates about each scattering threshold. By an induction argument, one can

prove that the set of thresholds is a closed countable set. An important point is that as the spectrum swings down, it can uncover eigenvalues

FIG. 1. Spectrum of a complex scaled Hamiltonian.
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that then persist until perhaps hit by another piece of continuous spectrum when they can disappear. Combes and company interpreted these
complex eigenvalues as resonances.

A key use Balslev–Combes made of their theory was to prove the absence of singular continuous spectrum (see Sec. VII). One of my later
results on complex scaling that I should mention is a quadratic form version,618 which has some significant technical simplifications, some of
them involving work with Mike Reed on the spectrum of tensor products.550,551,620

In Ref. 621, I realized that complex scaling was an ideal tool for understanding autoionizing states. One can prove that embedded
eigenvalues also do not move if Im θ is moved away from zero to positive values while the continuous spectrum does move. Thus, in studying
H + βW, one can look at H(θ) + βW(θ). While E0 might be an embedded eigenvalue of H, so long as it is not at a scattering threshold of H, it
is a discrete eigenvalue of H(θ) when θ = iϵ with ϵ small and positive. Hence, E0 will become a an eigenvalue, E0(β), of H(θ) + βW(θ) given
by a convergent power series in β (if E0 is degenerate, there are extra subtleties). In general, Im E0(β) < 0, i.e., embedded eigenvalues turn into
resonances. The Rayleigh–Schrödinger series for E0(β) provide an unambiguous higher order TDPT, which is convergent! Moreover, one
can manipulate the second order term to validate the Fermi golden rule and so get a rigorous proof of it.

For the Stark effect, the conventional wisdom among mathematical physicists was that complex scaling could not work. Because it was
known (see, e.g., Ref. 307) that −Δ + Fê ⋅ x for F ≠ 0 and ê a unit vector has no scattering thresholds, there was no place for the continuous
spectrum of

H0(θ) = −e−2θΔ + eθFê ⋅ x (3.7)

to go when Im θ is small and non-zero. However, W. Reinhardt, a quantum chemist, was fearless and found557 that calculations gave sensible
answers.

This made Herbst reconsider the conventional wisdom.308 In fact, for Im θ ∈ (0,π/3), H0(θ) defines a closed operator with empty spec-
trum! Hence, since there is no place for the continuous spectrum to go, it disappears! It is, of course, known that a bounded operator cannot
have an empty spectrum [see, e.g., Ref. 710 (Theorem 2.2.9)], but H0(θ) is not bounded and H0(θ)−1 has a single point, namely, 0 in its spec-
trum; in some sense, H0(θ) has∞ as the only point in its spectrum. Herbst was able to analyze308 the Hydrogen Stark Hamiltonian whose
resonance energies he showed have width that are O(Fk

) for all k and had RS series as asymptotic series.
Herbst and I311 then extended this work to analyze the Stark Hamiltonian for general atoms. We also proved a kind of Borel summability.

The Rayleigh–Schrödinger perturbation series is Borel summable to a function defined about the positive imaginary axis in the F plane whose
analytic continuation back to real F is the resonance. We proved this for atoms. About the same time, Graffi–Greechi268,269,271 discovered this
for the hydrogen Stark effect using the separability of that problem into 1D problems (see below). Sigal602–605 and Herbst–Møller–Skibsted309

have further studied Stark resonances in multi-electron atoms, proving that the widths are strictly positive and exponentially small in 1/F.
Harrell and I then wrote a paper297 that was able to analyze the small coupling behavior of the imaginary part of some resonance energies

that are exponentially small. Essentially, this allowed a rigorous proof of some results obtained earlier by theoretical physicists using a formal
WKB analysis. First of all, we proved the Lanczos–Oppenheimer formula (3.2). As noted earlier by Herbst–Simon,311 this implies asymptotics
of the perturbation coefficients,

E(F) ∼
∞
∑
n=0

A2nF2n, (3.8)

A2n = −62n+1
(2π)−1

(2n)!(1 +O(
1
n
)), (3.9)

since one can write f (x)= ∮γ(2πi)−1 f (z)
z−x dz, where γ is a contour that is a small circle with a loop around the negative axis (in the −F2 variable)

and a large circle.
In the context of the anharmonic oscillator, the same idea of precise asymptotics of RS coefficients occurred earlier than the work of

Herbst–Simon and Harrell–Simon. As noted in Sec. II, Bender–Wu64 had computed the first 75 coefficients for the ground state E0(1,β), and
they did a numerical fit and conjectured that

an = 4π−3/2
(−1)n+1

(
3
2
)

n+1/2
Γ(n +

1
2
)(1 +O(

1
n
)). (3.10)

They had the leading constant to 8 decimal places and guessed its analytic form. In my anharmonic oscillator paper,612 I noted that (3.10) was
equivalent to leading asymptotics,

Im E0(1,β) ∼
β=−b+i0

4π−1/2b−1/2e−2/3b. (3.11)
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Without noticing my remark, Bender and Wu noted65 that (3.11) and so (3.10) follow from a formal WKB calculation of the tunneling
in a potential x2

−bx4. Harrell–Simon297 have rigorous proofs of (3.11) and so (3.10). Helffer–Sjöstrand302 proved Bender–Wu type formulas
for higher dimensional oscillators.

Harrell–Simon uses ODE (i.e., 1D) techniques. The Stark effect can be separated into 1D problems in elliptic coordinates (noted
by Jacobi344 in classical mechanics and then Schwarzschild586 and Epstein183 in old quantum theory and in parabolic coordinates by
Schrödinger585 and Epstein184), and this was later used mathematically by Titchmarsh,750,751 Harrell–Simon,297 and by Graffi–Grecchi and
collaborators.63,88,268,272,274

The Zeeman effect for hydrogen can be reduced to a two-dimensional problem. Avron30 used this and an instanton calculation of
tunneling (see Sec. IX) to formally compute the asymptotics for RS coefficients for the ground state of the Zeeman Hamiltonian (2.5),

Ek = (
4
π
)

5/2
(−1)k+1π−2kΓ(2k +

3
2
)(1 +O(

1
k
)). (3.12)

Helffer–Sjöstrand302 then gave a rigorous proof of this using PDE techniques.
Quantum chemists embraced the complex scaling method to do calculations of resonance energies in atoms and molecules. I

wrote a review of the mathematical theory644 for a joint conference. The calculations for molecular resonance curves were done in a
Born–Oppenheimer approximation with fixed nuclei, which lead to potentials that are analytic outside a large ball. I introduced exterior
complex scaling Simon646 to justify what they did and wrote a paper with Morgan and Simon502 explaining why exterior scaling did indeed
justify their calculations. A more elegant approach (smooth exterior scaling) was subsequently developed by Hunziker336 and Gérard.228

I should note that I have reason to believe that, at least at one time, Kato had severe doubts about the physical relevance of the complex
scaling approach to resonances. Reference 297 was rejected by the Annals of Mathematics, the first journal it was submitted to. The editor
told me that the world’s recognized greatest expert on perturbation theory had recommended rejection so he had no choice. I had some of the
report quoted to me. The referee said that the complex scaling definition of resonance was arbitrary and physically unmotivated with limited
significance. My review of Kato’s work on non-relativistic quantum mechanics (henceforth NRQM) (Ref. 712, Part 1, pp. 154–155) has a long
discussion of why I believe the complex scaling definition is physically relevant with many references to the literature.

I should mention that I used complex scaling625 to show N-body systems with local potentials that can be continued to the right half
plane (in particular, with Coulomb potentials) cannot have positive energy bound states or thresholds.

While I have focused on the complex scaling approach to resonances, there are other methods. One, called distortion analyticity, works
sometimes for potentials that are the sum of a dilation analytic potential and a potential with exponential decay (but not necessarily any x-space
analyticity). The basic papers include the work of Jensen,352 Sigal,601 Cycon,123 and Nakamura.507,508 Some approaches for non-analytic poten-
tials include the work of Gérard–Sigal,229 Cattaneo–Graf–Hunziker,102 Cancelier–Martinez–Ramond,90 and Martinez–Ramond–Sjöstrand.488

There is an enormous literature on the theory of resonances from many points of view. I should mention a beautiful set of ideas about count-
ing asymptotics of resonances starting with Zworski;775 see the work of Sjöstrand722 for unpublished lectures that include lots of references, a
recent review of Zworski,776 and the book of Dyatlov–Zworski170 (I have one paper related to these ideas690). The form of the Fermi golden
rule at thresholds is discussed in the work of Jensen–Nenciu.354 A review of the occurrence of resonances in NR quantum electrodynamics
and of the smooth Feshbach–Schur map is the work of Sigal606 and a book on techniques relevant to some approaches to resonances is the
work of Martinez.487

Finally, I note that these two sections have dealt with eigenvalue perturbation theory. I will return in Sec. IX to a different issue involving
perturbations that give birth to eigenvalues from the edge of the continuous spectrum and to eigenvalues at limiting values of the coupling
constant, namely, −h2Δ + V(x) as h ↓0.

IV. STATISTICAL MECHANICAL METHODS IN EQFT
The fifteen years following 1965 saw the development of a subject known as constructive quantum field theory (CQFT), which success-

fully constructed interacting quantum fields in two and three space–time dimensions obeying all the Wightman axioms.368,733,766 Because of
the failure to get to four space–time dimensions (except for some negative results7,9,209), the long lasting impact to rigorous quantum physics
has been more limited than initially hoped (extending to the physically relevant four dimensional case is a million dollar problem346). Until
now, the spinoff to various areas of mathematics and theoretical physics has been substantial.

My main goal in this section is to focus on my work, much of it jointly with Francesco Guerra and Lon Rosen, on using methods
from classical statistical physics to study Bose CQFT, but I will begin with some of my other work motivated by CQFT that had important
mathematical spinoffs.

CQFT was initially developed by many researchers including Fröhlich, Guerra, Osterwalder, Rosen, Schrader, Segal, Seiler, Spencer,
Wightman, and especially Glimm, Jaffe, and Nelson. I refer the reader to the books of Simon626 and Glimm–Jaffe.254

The initial work mainly on (φ4
)2 theories focused on the Hamiltonian viewpoint where controlling spatially cutoff theories is hard

because the operators act on an infinite number of variables and the potential is not bounded from below [we use (X)d shorthand to describe
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theories where d is the number of space–time dimensions and X as an abbreviation for the interaction term]. The first breakthrough was
by Nelson509 who realized that the free Bose Hamiltonian, H0, in a periodic box in one space dimension, viewed as an infinite sum of
harmonic oscillators (with different frequencies), could be realized as a Gaussian process by shifting from dx to φ2

0 dx, where φ0 is the ground
state, so that H0 acted on R∞ with a Gaussian probability measure, dμ0. The operator H0 was then realized as a pure Dirichlet form (i.e.,
⟨ψ, H0ψ⟩ = ∫ ∣∇ψ∣

2dμ0). For differential operators, this shift to ground state measure and Dirichlet form goes back to Jacobi (!) and since
Nelson’s representation has been used many times in mathematical analysis of quantum theories with finitely many degrees of freedom, e.g.,
Ref. 204. In this representation, Nelson proved that

∥e−tH0 f ∥p ≤ ∥ f ∥p (4.1)

for all f ∈ Lp
(R∞) and all t > 0, and he proved that for some T > 0,

∥e−TH0 f ∥4 ≤ C∥ f ∥2 (4.2)

for some fixed C and all f ∈ L2. He also showed that while the (φ4
)2 spatially cutoff interaction, V , is not bounded from below, it obeys

∫ e−sV dμ < ∞ all s > 0, (4.3)

V ∈ ⋂
p<∞

Lp
(R∞, dμ) (4.4)

and most importantly that (4.1)–(4.4) imply that H0 + V is bounded from below.
Two important followups were by Glimm,250 who proved that (4.2) plus a mass gap imply that by increasing T, (4.2) holds with C = 1 (this

yields dimension independence and allows removing the need for Nelson to restrict to periodic boundary conditions), and by Federbush,189

who used interpolation to prove that ∥e−sH0 f ∥ps ≤ Cs∥ f ∥2 with ps ↓ 2 as s ↓ 0 and then took derivatives, implicitly getting the first Gaussian
logarithmic Sobolev inequality but which was dimension dependent.

The next step is to essentially prove self-adjointness of H0 + V on D(H0) ∩D(V) for spatially cutoff φ4
2. This was accomplished by

Glimm and Jaffe251 who proved it using additional estimates beyond those of Nelson and subsequently by Segal589–591 who only needed
estimates (4.1)–(4.4).

At this point, my work enters via a widely quoted joint paper with Høegh–Krohn714 entitled Hypercontractive semi-groups and two
dimensional self-coupled Bose fields. We abstracted and simplified Segal’s self-adjointness result. One significant aspect was inventing the term
“hypercontractive” for groups obeying (4.1) and (4.2) [Nelson complained to me that since (4.2) has a C which might not be one, we should
have used “hyperbounded” but I replied that hypercontractive sounded better]. Other terms that I have introduced that have caught on include
Agmon metric, almost Mathieu equation, Berry’s phase, Birman–Schwinger bound, CLR (Cwickel, Lieb, and Rosenblum) inequality, CMV
(Cantero, Moral, and Velasquez), coupling constant threshold, diamagnetic inequalities, HVZ (Hunziker, van Winter, and Zhislin) theorem,
Kato class, Kato’s inequality, ten martini problem, Verblunsky coefficients, and ultracontractivity.

Hypercontractivity and its differential version, logarithmic Sobolev inequalities (first completely explicated by Gross283), have had an
enormous number of applications outside quantum field theory; they are even used in Perelman’s proof of the Poincaré conjecture. See
Ref. 709 (Sec. 6.6) for a discussion of the various sides of the mathematical theory with historical notes, additional references, and presentation
of some of the applications. Several years later, in 1983, Davies and I135 found a variant of hypercontractivity called ultracontractivity, which
has evoked considerable mathematics.

Before turning to the discussion of statistical mechanical methods in QFT, I should mention another aspect of my work in CQFT with
mathematical spinoff. I wrote a series of papers with Seiler592–595 on the Yukawa QFT in two space–time dimensions, also known as Y2, that
developed some mathematical tools in the theory of trace ideals that have had many applications including quantum information theory.

The work on statistical mechanical methods depends on the second big breakthrough in CQFT, namely, Euclidean Quantum Field
Theory (EQFT). The Wightman axioms show that the Wightman functions (vacuum expectation values of the product of quantum fields
as tempered distributions on Minkowski space) of any QFT can be analytically continued in time to pure imaginary time differences and
that these continued functions are invariant under the Euclidean group. Schwinger587 first emphasized this, so the analytic continuation to
imaginary times is sometimes called Schwinger functions. Symanzik736,737 noted the analogy between classical statistical mechanics and EQFT
focusing on the analog of the Kirkwood–Salzburg equations.
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The central development was due to Nelson.511,512 He understood that for Bose QFT, EQFT is essentially an infinite dimensional
path integral with the extra bonus of Euclidean invariance. A key role was played by the extension of the Feynman–Kac formula that
Guerra–Rosen–Simon called the Feynman–Kac–Nelson formula. This immediately implied a symmetry, later dubbed Nelson’s symmetry,

⟨Ω0, e−tHℓΩ0⟩ = ⟨Ω0, e−ℓHtΩ0⟩, (4.5)

where Hℓ = H0 + ∫
ℓ

0 : P(φ) : (x) dx is the spatially cutoff Hamiltonian and H0Ω0 = 0. Nelson also realized the key multidimensional Markov
property, which allowed one to go from Euclidean fields to Minkowski fields (later Osterwalder–Schrader520 found an alternate way to do this,
which, because it extended to Fermi fields and provided necessary and sufficient conditions, supplanted this part of Nelson’s approach).

Nelson gave a few lectures on this new approach in Princeton early in 1971 and lectured at a Berkeley summer school that summer
attended by many experts on CQFT (but I was not there). Even though this work eventually rapidly revolutionized the subject, initially, it
had little impact. I think part of the reason this happened was that the language, especially as presented by Nelson, was so foreign to the
functional analysts working in the field, part was that Nelson’s lectures seemed obscure and, most importantly, his original work provided no
new technical results in conventional CQFT. Indeed, the only CQFT technical result was a new proof of a lower bound for (φ4

)2 theories,

Eℓ ≡ inf spec(Hℓ) ≥ −cℓ − d, (4.6)

a result originally proven by Glimm–Jaffe.252 Nelson’s proof was much simpler than theirs, but its impact was lessened by a simple proof that
I found (Ref. 619) shortly before Nelson.

The work that made Nelson’s theory take off was a remarkable note of Guerra286 and then a postdoctoral visitor at Princeton. Guerra
was out of town when Nelson lectured, but he got notes from Sergio Albeverio, then another fellow postdoc. Guerra realized that (4.5) and

Eℓ = lim
t→∞
−

1
t

log⟨Ω0, e−tHℓΩ0⟩ (4.7)

provided tools to study Eℓ andΩℓ, the vector with HℓΩℓ = EℓΩℓ (for example, these two equations immediately imply that ℓ↦ Eℓ is concave).
He proved that Eℓ/ℓ had a limit, α∞, and that ∣⟨Ωℓ,Ω0⟩∣ = O(ℓ−k

) for all k. This was way beyond anything obtained via the purely operator
theory used previously in CQFT.

Indeed, I have a vivid memory of how I first learned of these results. Guerra had been visiting Princeton at that point for about
18 months. He was very quiet—I had probably exchanged only a few words with him and he had given no talks. Wightman told me that
Guerra had asked Wightman to set up a meeting with Lon Rosen (another postdoc and a student of Glimm with several significant CQFT
results) and me, and we met in Wightman’s office in early January, 1972. Guerra began by writing three facts that he was going to prove. Lon
and I later compared notes and we had the same thought “yeah, sure, you’re going to do that.” These went so far beyond what was known that
it was literally unbelievable. He began by writing (4.5) on the blackboard, which we had seen since it was part of Nelson’s proof of (4.6), and
ten minutes later, he had proven the three facts. We were shell shocked!.

After Guerra told us of these results, Lon, Francesco, and I began working together on exploiting these ideas [our work went through two
phases—first, we mainly exploited consequences of (4.5) and similar results, but later we fully embraced the Euclidean viewpoint]. In short
order, we found288,289 improvements on what Guerra had found: first, Eℓ = −α∞ℓ − β∞ + o(1) as ℓ→∞, and second, for some c, d > 0 and
ℓ ≥ 1, one has that e−cℓ

≤ ∣⟨Ωℓ,Ω0⟩∣ ≤ e−dℓ (see the work of Lenard–Newman451 for further developments on these subjects). Moreover, we
found a new and much simpler proof of some bounds of Glimm and Jaffe253 that allow one to show that limit points of the cutoff Wightman
functions (as the spatial cutoff in Hℓ is removed) are tempered distributions.

The above mentioned work of Guerra and GRS got the attention of experts in CQFT and virtually all papers in the subject after early
1972 used the EQFT framework. I recall that a few weeks after GRS started working together, Glimm came to Princeton to talk about the
bounds in Ref. 253 and spent the hour seminar sketching their subtle proof. Afterward, Francesco, Lon and I waylaid him and explained in
10 min the short proof we had found using an extended version of Nelson’s symmetry. It was Glimm’s chance to be shell shocked!.

The further introduction of techniques from rigorous statistical mechanics and, in particular, the use of correlation inequalities, the major
accomplishment highlighted in this section, were introduced in two papers, one by Guerra–Rosen–Simon291 and one by Griffiths–Simon.282

GRS291 was a long paper, so long that the Annals of Mathematics broke it into two parts so it spread between two issues. Among other things,
it provided a detailed exposition of EQFT so that it and my book on the P(φ)2 theory (the work of Simon626, based on lectures I gave at the
ETH) served as the standard references on the subject for a time.

The most important set of ideas in GRS291 involve the lattice approximation. Our work was announced290 a year earlier than Wilson’s
work768 on lattice QCD, which, of course, went much further by allowing Fermion and Gauge fields albeit without mathematical rigor. (It
appears from Wilson’s historical note769 that he did not start to think about lattice approximations to EQFT until early 1974 while we were

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

already working on it in the spring of 1972; that said, there is no reason to think that Wilson knew of our work in 1974 or even in 2005!). The
free EQFT is a Gaussian random field with covariance (−Δ +m2

)
−1. One gets the lattice approximation by replacing −Δ by a finite difference

operator. Since it is the inverse of the covariance that appears in the exponent of the Gaussian field, the free lattice field is formally

Z−1 exp
⎛

⎝
−

1
2 ∑∣i−j∣=1

(si − sj)
2⎞

⎠
∏
j∈Z2

e−m2s2
j dsj, (4.8)

which is an Ising type ferromagnet with nearest neighbor interactions and spins lying in R (rather than just ±1) with single site distribution
e−as2

ds. While (4.8) is a formal infinite product, if one puts it in a finite box, the spins lie in Rk and the product is a simple finite measure. An
analysis of the interaction just changes e−as2

to e−Q(s) for a suitable semibounded even polynomial.
One powerful tool in the statistical mechanics of spin systems is correlation inequalities, a method initiated by Griffiths276–278 whose

inequalities were extended by Kelly–Sherman393 (hence GKS inequalities). A different set of inequalities are due to Fortuin, Kasteleyn, and
Ginibre196 (hence FKG inequality). Relevant to EQFT are versions tailor made for spins with continuous values due to Ginibre249 for GKS
and Cartier99 for FKG. With these extensions, GRS291 obtained GKS and FKG inequalities for Euclidean P(φ)2 theories.

The most important application of these correlation inequalities (namely, of GKS) is to show monotonicity in volume of the so-called
half-Dirichlet Schwinger functions, a suggestion of Nelson,513 exploited by GRS291 to obtain P(φ)2 quantum fields obeying all the Wightman
axioms except perhaps uniqueness of the vacuum (for this last axiom, see below). It should be mentioned that the earliest construction of
P(φ)2 theories (indeed, the first construction of non-trivial examples of theories obeying all the Wightman axioms, albeit in two space–time
dimensions), using cluster expansions, was by Glimm–Jaffe–Spencer255 for λP(φ)2 theories with small λ and then by Spencer729 for P(φ)2 + μφ
with ∣μ∣ large. The Nelson-GRS work [for P(X) = Q(X) + μX with Q even] was the first results without restrictions on the coupling constant.

The second application that I mention is results by Simon622 who, following work of Lebowitz447 on spin systems, used the FKG inequal-
ities to show that decay of the truncated two point function dominates the decay of all the truncated vacuum expectation values. This
means that to prove uniqueness of the vacuum (respectively, existence of a mass gap), it is enough to prove that as x − y →∞, one has
that ⟨φ(x)φ(y)⟩ − ⟨φ(x)⟩⟨φ(y)⟩ goes to zero (respectively, goes to zero exponentially).

While the work of Ginibre and Cartier nicely proves GKS and FKG inequalities for fairly general single spin distributions, there are
other results for ±1 spins that do not extend so generally. In this regard, Griffiths279 introduced a simple but powerful tool. Consider two ±1
spins s1 and s2, and let t = 1

2(s1 + s2). Then, t takes values 0,±1 just like a spin 1 spin, but if s1 and s2 are uncoupled, the weights are 1
4 , 1

2 , 1
4

rather than equal weights. If we find a coupling with energy H so that the Gibbs weight e−H has the values 2, 1, 2, then the adjusted weights
are all equal. We thus pick H = −(log 2)t2, which is ferromagnetic. Thus, any correlation inequality that holds for ferromagnetically coupled
spin 1/2 spins extends to spin 1 spins. Using this idea and a second order deMoivre–Laplace limit theorem, Griffiths–Simon281,282 realized a
lattice system with real valued spins with a weight exp(−as4

− bs2
) ds (a > 0, b ∈ R) as a limit of scaled spin 1/2 ferromagnetic chains. This

allowed one to obtain GHS (after Griffiths–Hurst–Sherman280) and Lebowitz448 inequalities and a Lee–Yang449 theorem for P(φ) theories
with P(X) = aX4

+ bX2
+ μX, a,μ ≥ 0, b ∈ R. This, in turn, can be used to prove that when μ > 0, such theories have a unique vacuum (see the

work of Simon630) and even a mass gap (see Ref. 292). It is known (see the work of Newman516) that if the polynomial P is of (even) degree
larger than 4, then exp(−P(x)dx) dx may not be approximated by ferromagnetic arrays of ±1 spins, so the Griffiths–Simon result is restricted
to φ4 theories.

I should remark that correlation inequalities are useful in the study of Schrödinger operators on Rν. For example, it is known,178,631

using GHS inequalities, that if V(x) is an even function on R with V′′′(x) ≥ 0 for x > 0 and if E1 < E2 < E3 are the first three eigenvalues of
−d2
/dx2

+ V(x), then E3 − E2 ≥ E2 − E1. In addition, in Sec. VIII, we will discuss applications of FKG inequalities to Schrödinger operators in
magnetic fields.

While I only worked on CQFT in two space–time dimensions, there is some deep work by others on the three-dimensional case. This, as
well as work by others on two dimensions, is presented in the book by Glimm–Jaffe.254

I should close the discussion of my work in CQFT by mentioning a paper with Fröhlich213 that, among other things, constructs P(φ)2
theories obeying all the Wightman axioms for any semibounded polynomial P. It relies on Spencer’s large μ expansion729 and FKG inequalities.

V. THOMAS–FERMI THEORY
In 1972–73, Lieb and I found results on the Thomas–Fermi (TF) theory that we announced in 1973464 with full details only published in

1977465 due, in part, to a long journal backlog. We first of all established existence and uniqueness of solutions to the TF equations for neutral
(and positive ionic) atoms and molecules and, more importantly, proved that TF theory was an exact approximation to quantum theory in
suitable Z →∞ limits. Since then, an entire industry has been spawned from this work.

TF theory goes back to Thomas746 and Fermi192 in 1927 near the dawn of quantum mechanics as an approximation expected to be valid
in regions of high electron density. Interestingly enough, it approximated a linear equation in 3N variables as N →∞ by a non-linear equation
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in three variables! They originally found their basic equation using a Fermi surface heuristic argument, but we relied on the 1932 approach of
Lenz453 who used energy functionals giving birth to the density functional method of atomic and molecular physics that has become such a
standard that the 1998 Nobel Prize in Chemistry was awarded to Walter Kohn “for his development of the density functional theory.”

In units where

h̵2
(

3
2
)

2/3
(2m)−1

= 1 (5.1)

(where m is the electron mass and we assume the electron has two spin states—state counting is important because one assumes Fermi
statistics), the Lenz functional is

E(ρ; V) =
3
5 ∫

ρ5/3
(x) d3x +

1
2 ∫

ρ(x)ρ(y)
∣x − y∣

d3xd3y − ∫ ρ(x)V(x) d3x. (5.2)

Here, ρ(x) is the electron density, so if there are N electrons, we have that

∫ ρ(x) d3x = N, (5.3)

and V(x) is the one electron potential; for a molecule with nuclear charges z1, . . ., zk at distinct points R1, . . ., Rk, we have that

V(x) =
k

∑
j=1

zj

∣x − Rj∣
. (5.4)

We set

Z =
k

∑
j=1

zj. (5.5)

The last term in (5.2) is just the interaction of the electrons with the nuclei and is exact, not an approximation. The second term is an
electron repulsion and assumes no electron correlation so that the two point density is

ρ2(x, y) = ρ(x)ρ(y), (5.6)

which cannot be even approximately true unless N is large, since ∫ ρ2(x, y)d3xd3y = N(N − 1), while, by (5.3), ∫ ρ(x)ρ(y)d
3xd3y = N2. The

first term relies on a quasi-classical calculation. If one has N particles in a box, Ω, of size ∣Ω∣ with ρ = N/∣Ω∣ and fills phase space by putting
particles in {p∣ ∣p∣ ≤ pF}, then N = 4π

3 p3
F ∣Ω∣/2h3 (two in the denominator from two spin states) by the rule that each particle takes volume

h3 in phase space. The total energy of this is then C∣Ω∣ρ5/3 with an explicit C, which explains where the first term in (5.2) comes from. The
choice (5.1) leads to C = 3/5. Of course, the notion of states taking h3 in phase space is an approximation justified in a large N limit by Weyl’s
celebrated eigenvalue counting result [see later and Ref. 710 (Sec. 7.5) for exposition and references].

The Euler–Lagrange equation with Lagrange multiplier to take condition (5.3) into account with the restriction ρ(x) ≥ 0 is that there is
φ0 ≥ 0 so that with

φ(x) = V(x) − ∫
ρ(x)
∣x − y∣

d3y, (5.7)

ρ2/3
(x) =

⎧⎪⎪
⎨
⎪⎪⎩

φ(x) − φ0 if φ(x) ≥ φ0,

0 if φ(x) ≤ φ0.
(5.8)

This is the Thomas–Fermi integral equation, which implies the Thomas–Fermi PDE,

Δφ = [max(φ − φ0, 0)]3/2. (5.9)

One result that Lieb and I proved464,465 is the following:

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

Theorem 4.1. Let V be given by (5.4) and N, Z given by (5.3)/(5.5). Then, E(ρ; V) is well defined if ρ ≥ 0 lies in L1
∩ L5/3. Moreover, we

have the following:

(a) If N ≤ Z, there is a unique minimizer of E(ρ; V) among those ρ’s obeying (5.3).
(b) If N > Z, there is no minimizer of E(ρ; V) among ρ′s obeying (5.3).
(c) If N < Z, the minimizing ρ has compact support and obeys the TF integral equation for some φ0 > 0 and is real analytic on the open set

{x ∣φ(x) > φ0; x ∉ {Rj}
k
j=1}.

(d) If N = Z, the minimizer minimizes E(ρ; V) on all ρ ∈ L1
∩ L5/3, ρ ≥ 0 without any condition (5.3). This minimizing ρ obeys the TF integral

equation with φ0 = 0. One has that, for all x, φ(x) > 0 and so ρ(x) > 0 on all of R3. φ is real analytic on R3
/{Rj}

k
j=1 and

ρ(x) ∼ 1728∣x∣−6 (5.10)

as x →∞.

Remarks.

1. The only prior results on existence were for the neutral atomic case (k = 1, R1 = 0,φ0 = 0) where one looks for spherically symmetric
solutions of (5.9). Since, if φ is spherically symmetric, one has that Δφ = r−1

(rφ)′′; we see that if Y(r) = rφ(rω), then (5.9) when r ≠ 0
is equivalent to

Y ′′(r) = r−1/2Y(r)3/2, (5.11)

which goes back to the work of Thomas and Fermi. Thomas noticed that Y(x) = 144x−3 solves (5.11) (which leads to φ = 144x−4 and
ρ = φ3/2

= 1728∣x∣−6). In 1929, already, Mambriani482 proved the existence and uniqueness of solutions of (5.11) with limr↓0
Y(x) = a and limx→∞ Y(x) = 0; see the work of Hille314 for further work. However, Lieb–Simon had the first results on the existence
and uniqueness going beyond the spherically symmetric case. We note that uniqueness of spherically symmetric solutions of the PDE
does not prove that the minimizer for E is spherically symmetric nor that the minimizer is unique.

2. Sommerfeld726 suggested that the singular solution 144x−4 should control general asymptotics of the TF PDE and that was proven by
Hille314 in the spherically symmetric case and by Lieb–Simon465 in the non-central case. We used subharmonic comparison ideas, a
technique we learned from Teller,745 who used it in a different context.

3. Uniqueness of minima follows from strict convexity of E, i.e.,

0 < θ < 1, ρ1 ≠ ρ2 ⇒ E(θρ1 + (1 − θ)ρ2) < θE(ρ1) + (1 − θ)E(ρ2),

since one term in E is linear and the other two are strictly convex.
5. Existence uses what has come to be called the direct method of the calculus of variations (see, for example, the work of Dacorogna125).

In particular, one looks at {ρ ∣ ρ ∈ L1
∩ L5/3, ρ > 0, ∫ ρdx ≤ N}, which is compact in a suitable weak topology (if ≤ N is replaced by = N,

it is not weakly closed, so not compact), and one proves that ρ↦ E(ρ) is weakly lower semicontinuous. A potential theory argument
shows that if N ≤ Z, the minimizer has ∫ ρ = N, but if N > Z, the minimizer obeys ∫ ρ = Z. These weak compactness, lower semicon-
tinuous (lsc) ideas ideas are now standard analysis, but, at the time, while they were used in some areas, they were not widely known
in mathematical physics. While Lieb eventually became a world expert in subtle extensions of this method, he learned the necessary
functional analysis from me at the time of our work.

With the existence out of the way, we turned to figuring out the connection to atomic physics. In this regard, there are several reasons
that the TF theory might not have anything to do with true quantum systems. As we saw, in the neutral case, ρTF decays as x →∞ as C∣x∣−6

but true atomic bound states decay exponentially (see Sec. VII; O’Connor’s work was done before Lieb and I were working). As we will see,
scaling shows that in the atomic case, the TF density shrinks as Z grows (at a Z−1/3 rate), while true atoms expand in extent (although it might
be that atomic radii, defined as where Z − 1 electron live, might be bounded as Z →∞, they certainly do not shrink). Finally, it is a result of
Teller745 that molecules do not bind in TF theory while they do exist in nature. For technical reasons, Teller had a short distance cutoff in
the Coulomb potential in his argument, leading some people to question whether his result held in TF theory without cutoffs but, it does, as
Lieb and I showed. Interestingly enough, this apparent negative result in TF theory was a key, several years later, in the elegant Lieb–Thirring
proof470 of the stability of matter!

Early in our work, Lieb understood why none of these issues were problems in connecting TF theory to quantum mechanical atoms. TF
theory describes the cores of atoms while chemistry involves the outermost electrons, so it is not surprising that molecules do not bind in TF
theory—it is an expression of the repulsion of the cores. The ∣x∣−6 Sommerfeld asymptotics describes the mantle of the core, while exponential
decay describes the last few electrons. I still remember the start of our collaboration while we were both visitors at IHES in the fall of 1972. Lieb
had the idea that Weyl type estimates should show that TF was a proper semiclassical limit of atoms. At the end of a long day of discussing this
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idea, I told him of Teller’s result which I had learned about in a course taught by Wightman, so since TF theory did not bind atoms, it could
not describe physics. The next morning Lieb walked in and said to me: “Mr. Dalton’s hooks are in the outer shell.” In other words, chemistry
had nothing to with region in which a leading quasi-classical limit is valid (the notion behind density functional theory is that chemistry can
be connected to non-leading terms).

One key to the large Z results is scaling. The following is easy to check. If Z > 0 and

VZ(x) = Z4/3V(Z1/3x), ρZ(x) = Z2ρ(Z1/3x), (5.12)

then

E(ρZ ; VZ) = Z7/3E(ρ; V), ∫ ρZ(x) d3x = Z∫ ρ(x) d3x. (5.13)

In particular, if

EV(Z; N) = inf{E(ρ; VZ) ∣ ρ ∈ L1
∩ L5/3, ρ ≥ 0 ∫ ρ(x) d3x = N}, (5.14)

then

EV(Z; nZ) = Z7/3EV(1; n). (5.15)

Given z1, . . ., zk, R1, . . ., Rk, we let ETF(N; z1, . . ., zk; R1, . . ., Rk) be the TF energy [i.e., the minimum of E(ρ; V) with V given by (5.4) over
ρ′s obeying (5.3)]. Then, (5.15) says that

ETF(nZ; z1Z, . . . , zkZ; Z−1/3R1, . . . , Z−1/3Rk)

= Z7/3ETF(n; z1, . . . , zk; R1, . . . , Rk). (5.16)

We next describe quantum atomic energies. Let Hphys be those elements in L2
(R3N ;C2N

), which are functions of N points x1, . . ., xN in
R3 and spins σ1, . . ., σN in C2, which are antisymmetric under permutations of (xj, σj) [see Ref. 710 (Sec. 7.9) for more on this formalism].
On Hphys, let

H = −
N

∑
j=1

h̵2

2m
Δj +∑

i<j

1
∣xi − xj∣

−
N

∑
j=1

k

∑
ℓ=1

zℓ
∣xj − Rℓ∣

, (5.17)

where h is given by (5.1). We set

EQ(N; z1, . . . , zk; R1, . . . , Rk) = inf
φ∈Hphys

⟨φ, Hφ⟩. (5.18)

If N ≥ Z ≡ ∑k
j=1 zj, it is known (see Refs. 614 and 774) that H has a discrete ground state, ψ; we set

ρQ(x; z1, . . . , zk; R1, . . . , Rk)

= ∑
σj=±1;j=1,...,N

∫ ∣ψ(x, x2, . . . , xN ; σ1, . . . , σN)∣
2 d3x2 . . . d3xN (5.19)

(the ground state can be degenerate in which case in the theorem below one can take any ground state eigenfunction).
The main result of Lieb–Simon465 is as follows:

Theorem 4.2. For any distinct R1, . . ., Rk and positive z1, . . ., zk and n > 0, we have that

lim
Z→∞

Z−7/3EQ(nZ; z1Z, . . . , zkZ; Z−1/3R1, . . . , Z−1/3Rk)

= ETF(n; z1, . . . , zk; R1, . . . , Rk). (5.20)

Moreover, if n ≤ ∑k
j=1 zj, then

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

lim
Z→∞

nZ−2ρQ(Z−1/3x; z1Z, . . . , zkZ; Z−1/3R1, . . . , Z−1/3Rk)

= ρTF(x; n; z1, . . . , zk; R1, . . . , Rk) (5.21)

in the sense of convergence of the integral over x in any fixed open set.

Our proof of (5.20) uses the method of Dirichlet–Neumann bracketing. This goes back to Weyl764 as formalized by Courant–Hilbert118

[see Ref. 15 for the discrete analog and Ref. 710 (Sec. 7.5) for another textbook discussion]. They used it to count eigenvalues of the Laplacian
in regions with smooth boundary. It was later used to prove that when V ∈ C∞0 (Rν

), then as λ→∞, one has that N(λV), the number of
negative eigenvalues of −Δ + λV on L2

(Rν
), obeys

lim
λ→∞

λ−ν/2N(λV) = (2π)−ντν ∫ max (−V(x), 0)ν/2 dνx (5.22)

(where τν is the volume of the unit ball in Rν). This was discovered independently about the same time by Birman–Borzov,74 Martin,485

Robinson,569 and Tamura.741 (Lieb and I only knew of Martin’s work when we looked at Thomas–Fermi, although all but Tamura existed at
the time.) In Sec. IX, I will discuss what happens if V is not C∞0 (Rν

).
Using these ideas of dividing space into small boxes, it was not hard to show that EQ(VZ)/ETF(VZ) → 1 as Z →∞ if V ∈ C∞0 (R3

). These
methods do not deal with the boxes around the nuclei at Rj. Basically, one needs to show that the system does not collapse on those points,
i.e., most of the electrons wind up in the boxes containing those points. When I left IHES for Marseille at the end of 1972, Lieb and I were at
this point and were left with the problem we called between ourselves “pulling the poison Coulomb tooth.” I spent a long weekend in Paris
in March, 1973, and we figured out how to pull the tooth. With current technology, one would use Lieb–Thirring inequalities [discussed in
Sec. IX; see also Refs. 470 and 471 for the original papers331 for the discrete case and Ref. 709 (Sec. 6.7) for a textbook discussion] but they did
not exist, so we used an ad hoc argument exploiting the angular momentum barrier.

The proof of (5.21) is not hard. The ρ’s are functional derivatives of the energy under adding an infinitesimal VZ to the Coulomb
attraction. Normally, convergence of functions does not imply convergence of derivatives, but it does for concave functions, and one can
show that the energies, as minima of a set of functions linear in λ, are concave under λ→ λV .

I have one other result on large Z ions. As noted above, it is known (see Refs. 614 and 774) that the Hamiltonian, H(Z, N), for a charge
Z nucleus and N electrons has infinitely many bound states if N ≤ Z. What happens if N > Z? It is a result of Ruskai580 and Sigal599,600 that
there is a finite number N(Z) so that H(Z, N(Z)) has no discrete spectrum [i.e., there is a negative ion with nuclear charge Z and total charge
−(N(Z) − Z)] and so that for all N > N(Z), we have that N(Z) has no bound states below the continuum. In Ref. 463, Lieb, Sigal, Thirring,
and I showed that N(Z)/Z → 1 as Z →∞. That this is especially subtle is seen by the fact that if one replace fermionic electrons by bosons
(with negative charge), then Benguria and Lieb67 showed that the analogous lim inf is strictly bigger than 1. I note that there are no twice
negatively charged ions known in nature, so it is possible that N(Z) is always either Z or Z + 1. In fact, one of the 15 open problems in my
2000 list (the work of Simon689 of which 11 remain open) is to prove that N(Z) − Z remains bounded as Z →∞.

Since 1973, there has been a huge literature on large Z atoms and molecules and on density functional theory. I will not attempt a
comprehensive review, but I should mention the work on non-leading asymptotics beyond (5.20) and (5.21). For the energy, Hughes327 and
Siedentop–Weikard597,598 obtained the O(Z2

) term for atoms and Ivrii and Sigal343 for molecules. Later, Fefferman and Seco191 obtained the
O(Z5/3

) term. For the density, Iantchenko, Lieb, and Siedentop338 found the O(Z2
) term (recently, I was coauthor of a paper200 that proved

an analog for a relativistic Hamiltonian). Since much of the work on higher order corrections to (5.2) was done by Lieb and collaborators, I
refer the reader to the relevant volume of Lieb’s Selecta462 for references. The reader can also look at two somewhat dated review articles by
Lieb461 and Hundertmark.328

Before leaving this subject, I should mention that Lieb and I467 used methods similar to those we used to prove existence of solutions to
the TF equation to prove existence of solutions to the Hartree and Hartree–Fock equations for neutral (and positive) atoms and molecules.
Later works on existence of solutions of Hartree–Fock equations include the work of Lions473 and Lewin.455

VI. INFRARED BOUNDS AND CONTINUOUS SYMMETRY BREAKING
A fundamental problem in statistical physics concerns the following. The Gibbs states of statistical mechanics are clearly analytic in all

parameters, yet nature is full of discontinuities, for example, the direction of a magnet as a magnetic field is slowly varied through zero field.
We now realize that the way to understand this is by looking at the thermodynamic limit, i.e., infinite volume, where states can become non-
analytic in parameters. That this is far from evident can be seen by a story told in Pais’ book [Ref. 522 (pp. 432–433)] that as late as 1937, at
the van der Waals Centenary conference, a vote of the physicists present was taken on whether this view was correct and the vote was close
(although, given that Peierls’ work mentioned below was in 1936, it should not have been close; that means that Peierls’ work was not well
known, or at least not understood, at the time).
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The simplest models on which this can be explored are the lattice gases whose formalism is described in the books of Ruelle579 and
Simon.677 Two of the simplest examples both have spins on a lattice, say, Zν, σα, at points α ∈ Zν. In a finite box Λ ⊂ Zν, the Hamiltonian
(energy functional) is

HΛ = −J ∑
α,γ∈Λ, ∣α−γ∣=1

σα ⋅ σγ. (6.1)

The sign is there so that when J > 0, energies are lowest when spins are parallel, i.e., the model is ferromagnetic. J < 0 describes the antiferro-
magnet. We will normally take J = ±1, which is no loss since we can vary the inverse temperature, β, in e−βH defining the Gibbs measure. We
have not been careful about boundary conditions; we will most often take periodic BC although sometimes free or plus BC.

I said two models because I have not described the set of single spins and their distributions. If each σα = ±1 with equal apriori weights,
we have the nearest neighbor Ising model. If instead each σα ∈ S2, the unit sphere is R3 with the rotation invariant apriori weight, we have
the classical Heisenberg model. More generally, if each σα ∈ Sd−1, the unit sphere is Rd, and we have the d-rotor model. Significant here is the
global symmetry of the system: discrete, σα → −σα, for the Ising model and continuous, σα → Rσα with R ∈ SO(3), the rotation group, for the
Heisenberg model.

In 1936, Peierls533 found a simple argument proving that when ν ≥ 2, the nearest neighbor Ising model on Zν has a phase transition at low
temperature. However, the argument depends on the sharp difference between spin up and spin down and fails for the classical Heisenberg
model where the spins vary continuously. Indeed, in 1966, Mermin and Wagner494 (Hohenberg320 had asimilar result on a related model
in the same time frame) proved that in 2D, the classical Heisenberg model has no broken symmetry states at positive temperature (see also
Ref. 411). Their argument relies on the fact that if the spin wave energy (when J = 1) is given by

Ep =
1
2 ∑∣α∣=1

(1 − eip⋅α
) =

ν
∑
j=1
(1 − cos(pj)) (6.2)

(the Fourier transform of the nearest neighbor coupling with a constant added so that Ep ≥ 0 with minimum value 0), then Ep ∼ p2 for p small
so that

∫
∣pj ∣<π

dνp
Ep
= ∞ if ν = 2. (6.3)

In 1976, Fröhlich, Spencer, and I (henceforth FSS)214,215 proved the following theorem:

Theorem 5.1 (Refs. 214 and 215). The classical d-vector model (d ≥ 1) with nearest neighbor interactions on Zν with ν ≥ 3 has multiple
phases (with broken symmetry) if β ≥ βc where

βc ≤ βFSS
c ≡

d
2

I(ν) (6.4)

with

I(ν) =
1
(2π)ν∫∣pj ∣<π

dνp
Ep

, (6.5)

so I(ν) < ∞ when ν ≥ 3.

Remark. While this was the first result on the existence of phase transitions in the isotropic model, there were earlier results on the (in
the quantum case, highly) anisotropic case for the classical (see the work of Malyshev479 and Kunz et al.424) and quantum (see the work of
Ginibre248 and Robinson568) Heisenberg models. These works used variants of the Peierls method. Of course, only the isotropic model has a
continuous symmetry to break.

I(3) can be computed exactly in terms of elliptic integrals, so one finds (with “errors” computed by comparing with high temperature
expansions in parentheses)

Tc(ν = 3, d = 3) ≥ 1.3189 (1.44; 9% error) (6.6)

and

Tc(ν = 3, d = 1) ≥ 3.9567 (4.5108; 14% error). (6.7)
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The method of FSS that I sketch below is basically the only method known for rigorously proving spontaneous continuous symmetry
breaking with a nonabelian symmetry group. We note that such continuous symmetry breaking is not only central to statistical mechanics
but also to models of particle physics.

A basic notion is reflection positivity. This is one of the Osterwalder Schrader axioms mentioned in Sec. IV. FSS realized that it also
played an important role in statistical mechanical models.

Consider spins in a box,Λ, with even sides with periodic boundary conditions and slice the box across bonds into two halves,Λ+ andΛ−.
There is a natural reflection Θ of spins in Λ+ onto spins in Λ− that extends to a map of polynomials in the spins. A state ⟨⋅⟩ is called reflection
positive (RP) if and only if for any polynomial, A, in the spins of Λ+, we have that

⟨Θ(A)A⟩ ≥ 0. (6.8)

First, suppose that we consider uncoupled spins (i.e., a product measure over sites). Then, ⟨Θ(A)A⟩ = ∣⟨A⟩∣2 ≥ 0 so the measure is RP.
Now, suppose we have a Hamiltonian of the form

−H = A +Θ(A) +∑
j
Θ(Bj)Bj. (6.9)

We claim that if ⟨⋅⟩0 is RP, so is ⟨⋅⟩ = ⟨⋅e−H
⟩0/⟨e−H

⟩0 for exp(A +Θ(A)) = exp(A)Θ(exp(A)), and we can expand exp(∑j Θ(Bj)Bj) into a
Taylor series.

Consider a box,Λ, with periodic boundary conditions and state ⟨⋅⟩Λ. Define the magnetization (here and below, we notationally suppress
a Λ dependence).

m =
1
∣Λ∣∑α∈Λ

σα. (6.10)

Our sign that there is a phase transition will be that

lim inf⟨m2
⟩Λ ≡M2

> 0. (6.11)

This implies many other notions of phase transition. For example, one can show that the derivative of the free energy per unit volume with
respect to an external magnetic field has a discontinuity of at least 2M. In addition, there are multiple equilibrium states in the sense of
Dobrushin162,163 and Lanford–Ruelle434 [see Ref. 677 (Sec. III.2)].

We let Λ∗ be the dual lattice to Λ so that {α↦ ∣Λ∣−1/2eip⋅α
}p∈Λ∗ is an orthonormal basis for the ℓ2

(Λ). Define the Fourier spin wave
variables

σ̂p =
1
√
∣Λ∣
∑
α∈Λ

e−ip⋅ασα, (6.12)

and define the spin wave expectation function

gΛ(p) = ⟨σ̂p ⋅ σ̂−p⟩ (6.13)

=
1
∣Λ∣ ∑α,β∈Λ

e−ip⋅(α−β)
⟨σα ⋅ σβ⟩

= ∑
α

e−ip⋅α
⟨σα ⋅ σ0⟩. (6.14)

Note that m = ∣Λ∣−1/2σ̂p=0 so that

⟨m2
⟩Λ = ∣Λ∣−1gΛ(p = 0). (6.15)

Since σ̂p are components of the functions α↦ σα in an ON basis, the Plancherel theorem implies that
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∑
p∈Λ∗

gΛ(p) = ∑
α
⟨∣σα∣2⟩ = ∣Λ∣. (6.16)

Since there are ∣Λ∣ values of p inΛ∗, this says that normally each gΛ(p) should be of size 1, while the condition of there being a phase transition
is that gΛ(p = 0) is of order Λ. This allows one to interpret the phase transition as due to a Bose condensation of spin waves.

The key to the proof will be what FSS dubbed an infrared bound (IRB), that for p ≠ 0, one has that

gΛ(p) ≤
d

2βEp
, (6.17)

where Ep is the spin wave energy.
By (6.15)–(6.17),

lim inf
∣Λ∣→∞

⟨m2
⟩Λ ≥ 1 −

dI(ν)
2β

, (6.18)

where I(ν) is given by (6.5) and we use the fact that Λ∗ fills out the ν-fold product of [−π,π] as ∣Λ∣ → ∞. Thus, infrared bounds imply
Theorem 5.1.

The first step in the proof of infrared bounds from reflection positivity is to use RP to prove something called Gaussian domination,
namely, if we define, for arbitrary {hα} ∈ Rd∣Λ∣,

Z({hα}) = ∫
S(d−1)∣Λ∣

exp
⎛

⎝
−β

1
2 ∑∣α−γ∣=1

(σα − σγ − hα − hβ)
2⎞

⎠
, (6.19)

then one has that

Z({hα}) ≤ Z({hα} ≡ 0). (6.20)

One first proves that ifΛ is split into two halvesΛ+ andΛ− and given h, we let h+ be the H obtaining by restricting h toΛ+ and reflecting
it and similarly for h−, then

Z({h}) ≤ Z({h+})1/2 Z({h−})1/2. (6.21)

The details of the proof of (6.20) can be found in Ref. 215 or Ref. 211.
Once one has Gaussian domination, fix h all real and use the fact that Z({λh}) is maximized at λ = 0 so the second derivative is negative.

This implies that

⟨ ∑
∣α−γ∣=1

∣(σα − σγ) ⋅ (hα − hγ)∣2⟩
Λ

≤
1

2β ∑∣α−γ∣=1
∣hα − hγ∣2. (6.22)

Adding the results for the real and imaginary part extends this inequality to complex h. Taking h to be a plane wave with a single component
(and summing over possible components) proves the infrared bound and completes the proof that RP⇒phase transition.

A little about the history of this work with Fröhlich and Spencer. In October 1975, I heard indirectly that Jürg and Tom had found that
there was spontaneously symmetry breaking in the multi-component Φ4

3 EQFT. The analog of infrared bounds for this case was easy. There
is a Källen–Lehmann representation for the two point function,

⟨φ(x) ⋅ φ(x)⟩ = α + ∫ dρ(m)∫
d3k
(2π)3 eik⋅(x−y)

(k2
+m2
)
−1, (6.23)

where if φ has N components, one has that

∫ dρ(m) = N. (6.24)
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The infrared bound then just needs that (k2
+m2
)
−1
≤ k−2. Since I had heard of this indirectly and they were looking at the field theory, I felt,

perhaps unfairly, that I could think about the statistical mechanical analog. I realized that the key was (6.24), which followed from canonical
commutation relations, and I found a commutation inequality for the transfer matrix and could use that to push through a phase transition
(this is the argument that appears in Ref. 214). The three of us met at the AMS meeting in San Antonio in January 1976 and agreed to publish
our results jointly. We found the Gaussian domination approach during the writeup of the full paper.

It is not surprising that the work on infrared bounds generated considerable further work (479 Google Scholar citations). I will not try to
describe all of it but will focus on two further developments in which I played a role. The first concerns phase transitions in spin systems with
long range interactions. It was known for many years that finite range 1D systems could not have phase transitions [see, for example, Ref. 677
(Theorem II.5.3)]. Ruelle578 proved that this remains true for infinite range interactions with not too slow decay. In particular, for the pair
interacting ferromagnetic model with J(n) = (1 + ∣n∣)−α, he proved there were no phase transitions if α > 2.

On the other hand, Dyson,173 exploiting correlation inequalities, proved that there are phase transitions if 1 < α < 2. For 2D, as we have
seen, Mermin and Wagner494 proved that plane rotors had no symmetry breaking for nearest neighbor interactions but Kunz–Pfister423 used
Dyson’s method to prove that 2D plane rotors with a similar pair interaction has a broken symmetry phase transition if 2 < α < 4. Because
these results depend on correlation inequalities that fail for classical Heisenberg models, the proofs do not extend to such Heisenberg models.
Indeed, Dyson conjectured but could not prove that his result was still true in the Heisenberg case.

With Fröhlich, Israel, and Lieb, I showed210 that infrared bounds could be proven for such long range models, and in particular, we
proved Dyson’s conjecture about long range order in the 1D classical Heisenberg model with slowly decaying pair interaction. We called a
function J on Z+, the strictly positive integers, RP if and only if for all positive integers, n and z ∈ Cn, one has that

∑
i,j≥1

z̄izjJ(i + j − 1) ≥ 0. (6.25)

Then, FILS showed that 1D ferromagnets with −H = ∑i<jJ( j − i)σj ⋅ σi yield periodic BC RP states and infrared bounds. (6.25) comes
up already in the study of the Hamburger moment problem [Ref. 707 (Sec. 4.17)], and using this,the authors of Ref. 210 easily proved that
J(n) = (1 + ∣n∣)−α,α > 0 is RP. The corresponding Ep then has ∫ E−1

p dp < ∞ precisely if α < 2 recovering Dyson’s result and extending it to
the d-vector model. Simon210 is also able to recover the Kunz–Pfister result and extend it to the classical Heisenberg model.

The second extension concerns quantum lattice gases. In that case, the spins, σα of (6.1) are non-commuting matrices, indeed quantum
spins. The basic formalism [see Ref. 677 (Sec. II.3)] has a vector space C2s+1 for quantum spins with total spin s [so σ ⋅ σ = s(s + 1)1] for
each site and the Hilbert space associated with a box Λ is ⊗α∈ΛC2s+1 so a space of total dimension (2s + 1)∣Λ∣. Statistical mechanical states
are defined in terms of traces. For classical Heisenberg models on Zν (or any bipartite lattice), the Heisenberg ferro- and antiferromagnet
are equivalent under flipping every other spin. It is critical to realize this is not true in the quantum case! It is not even true for two spins. If
σj; j = 1, 2 are two-spin 1

2 quantum spins, the lowest energy of −σ1 ⋅ σ2 is − 1
4 (with multiplicity 3), while the lowest energy of σ1 ⋅ σ2 is − 3

4 (with
multiplicity 1)! In fact, the ground state energy density of the ferromagnet is explicit, while for the antiferromagnet, it is not, so before the
work of Dyson, Lieb, and Simon174,175 (henceforth DLS), to be discussed below, and the quantum anti-ferromagnet was invariably regarded
as harder than the quantum ferromagnet. However, DLS could prove the following theorem:

Theorem 5.2 (Ref. 175). The nearest neighbor quantum Heisenberg antiferromagnet for s ≥ 1 and ν ≥ 3 and for spin 1/2 and sufficiently
large ν has a phase transition with Néel order.

Remarks.

1. Néel order means that for any Λ with even sides, one has that lim inf⟨( 1
∣Λ∣∑α∈Λ(−1)∣α∣σα)

2
⟩
Λ
> 0.

2. Kennedy, Lieb, and Shastry394 in 1988 using a more subtle analysis filled in the missing spin 1/2 cases when ν = 3.
3. While the bounds on βc are concrete, they involve an implicit equation that includes the ground state energy of the antiferromagnet,

which is not known in closed form.

There are two issues involving the quantum case vis-à-vis the classical case that should be mentioned. First, infrared bounds cannot
hold in the form of (5.17) because they imply that as β→∞, that ⟨σα ⋅ σγ⟩ goes to a constant (i.e., independent of α and γ). In the classical
case, this quantity goes to 1 uniformly in the sites (for Λ fixed). However, in the quantum case with spin S, it goes to S(S + 1) for α = γ but
only to S2 for α = γ {for the maximum spin value of σα + σγ is 2S so the maximum value of σα ⋅ σγ = 1

2 [(σα + σγ)
2
− σ2

α − σ2
γ] =

1
2 [2S(2S + 1)

− 2S(S + 1)] = S2}. The solution is to get an initial inequality not on the thermal expectation ⟨AB⟩ = Tr(ABe−βH
)/Tr(e−βH

) but what DLS
call the Duhamel two-point function (A, B) = ∫

1
0 Tr(e−xβHAe−(1−x)βHB)/Tr(e−βH

). Since DLS proved that (A∗, A) ≥ g(A) f (c(A) /4g(A),
where g(A) = 1

2 ⟨A
∗A + AA∗⟩, c(A) = ⟨[A∗, [H, A]]⟩, and f is the function given implicitly by f (x tanh x) = x−1 tanh x, this implies a direct

bound with coth. Various formulas involving coth occur; indeed, DLS conjecture (but do not prove) that the correct analog of (5.17) is

gΛ(p) ≤
√

3
2 S coth(

√
2
3 SβEp), where gΛ(p) is thermal expectation of σ̂p ⋅ σ̂−p.

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-21

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

Second, to get infrared bounds on the Duhamel functions, one needs that the algebra of matrices on which the reflection acts in

non-commutative RP to be real matrices. Of course, the usual representation of Pauli spins is not real. σ1 and σ3 are but σ2 = (
0 i

−i 0
) is not!

Indeed, because of the commutation relations [σ1, σ2] = 2iσ3, there is no representation in which all spins can be real. For the antiferromagnet,
one can take s1 = σ1, s2 = iσ2, and s3 = σ3, and let the reflection be

Θ((sα)j) =

⎧⎪⎪
⎨
⎪⎪⎩

−(sRα)j, j = 1, 3,

(sRα)j, j = 2,
(6.26)

so that −σα ⋅ σRα = sα ⋅ Θ(sα) and so get positivity under a reflection on a real algebra for the antiferromagnet. The corresponding infrared
bound on the Duhamel two point function then reads

((σ̂p)
j, (σ̂−p)

j
) ≤

1
2Ẽp

Ẽp = ν +
ν
∑

1
cos(pj) (6.27)

(the sign in Ẽp is such that it vanishes at pj = π consistent with Néel order). This bound leads to Theorem 5.2.
Dyson, Lieb, and I initially thought that we had a trick for getting real matrices for the ferromagnet. One can double dimension and

replace multiplication by i by ( 0 1

−1 0
) and thereby homomorphically map n × n complex matrices to a subset of all 2n × 2n real matrices.

However, it turns out that when you do this at each site for Pauli matrices, the natural reflection no longer has reflection positivity. Our
announcement174 focused on the ferromagnet and so did the preprint of Ref. 175. However, Fröhlich was giving a course at Princeton on
the work of FSS and DLS and did not understand one step in our preprint. He found this and came to us on the same day we had finished
correcting the galley proofs for the longer article; indeed, after we placed the envelope with them in the outgoing departmental mailbox. We
immediately realized that there was a problem and retrieved and then fixed the galley proofs so that the published version of Ref. 175 is correct.
Later, Speer728 proved that reflection positivity must fail for this model. I note that now, almost 45 years later, there is no rigorous proof of the
existence of a phase transition in the quantum Heisenberg ferromagnet! It is fortunate that none of us was a young unknown when this work
was done for while there is a correct very important result, the wrong result was embarrassing. The paper175 does have results on the quantum
xy ferromagnet where the coupling drops the σα,zσβ,z (the xy model has an Abelian continuous symmetry); this is possible because there is a
representation in which two of the Pauli matrices are both real.

There has been considerable literature on the quantum Heisenberg model since. There is a lovely online bibliography on this subject
posted by Kennedy–Nachtergale.395

Another application of RP methods involves what is called the chessboard Peierls method. Fröhlich, Israel, Lieb, and I wrote two
papers210,211 that systematized both infrared estimates and this method and, in particular, applied the chessboard Peierls method to a number
of models. The key is what is called chessboard estimates. The name was introduced by Fröhlich–Simon213 in a paper in the Annal of Math-
ematics on the structure of states in general P(φ)2 quantum field theories. They could not use the less fancy term “checkerboard estimate”
because that had already been used by GRS291 for a different bound.

While FS systematized the estimates and introduced the name, the idea had appeared earlier in works of Glimm–Jaffe Spencer,256

Guerra,287 Seiler–Simon,594 and Park.524,525 Fröhlich–Lieb (henceforth FL)212 following up on their use in QFT by Glimm–Jaffe–Spencer
exploited these estimates with the Peierls argument to prove phase transitions in spin models and this was pushed further by FILS.

We consider a box Λ, typically with periodic BC, that can be partitioned by hyperplanes into boxes, {Δα}α∈Q, so that there are an even
number of boxes in each direction and so that there is RP in each hyperplane. Given a function F of the spins in box Δα, we cover Λ by
continually reflecting F in hyperplanes, and let γ(F,Δα) be the ∣Λ∣th root of the ⟨⋅⟩Λ expectation of the product of these reflected copies of F.

The chessboard estimate says that given functions, Fα, of the spins in Δα, one has that

RRRRRRRRRRR

⟨∏
α∈Q

Fα⟩
Λ

RRRRRRRRRRR

≤ ∏
α∈Q

γ(Fα,Δα). (6.28)

If the number of edges in each direction is a power of 2, it is easy to prove the estimate directly by multiple use of the Schwarz inequality. In
general, one uses an argument reminiscent of the proof of Gaussian domination (in fact, one can prove Gaussian domination from chessboard
estimates). One considers the ratio of the two sides of the chessboard estimate as each Fα runs through the various F’s and their reflections,
considers the one that maximizes it, and then uses RP to prove among the maximizers is one where the ratio is 1.
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The Peierls strategy sums on contours that separate various states of the system. A key part of the strategy is the estimation of the
probability of large contours. Those can typically be thought of expectations of products of bad events, typically one for each link in the
contour. One can use a checkerboard estimate to get upper bounds on these probabilities in terms of thermodynamic quantities and this is
the chessboard Peierls method.

In particular, FL showed that this approach was effective in studying anisotropic classical Heisenberg models; they succeeded in proving a
phase transition in 2D for arbitrarily small anisotropy. FILS used this technique in a wide variety of models including ones with no symmetry.
In particular, FILS recovered the results of the Piragov–Sinai537,538 approach in a different way.

Since this section is the only one on statistical mechanics, per se, I end it with a brief discussion of some of my other work in the subject:
first, a paper650 (and a brief report in Ref. 648) on the classical limit of quantum spin models. This was motivated by a wonderful paper of
Lieb457 who considered a classical Hamiltonian, HΛ({σα}α∈Λ), which is affine in the spins σα ∈ S3,α ∈ Λ. The classical partition function is

Zcl(γ) = ∫ ∏
α∈Λ
[dΩ(σα)/4π] exp(−HΛ[{σα}]), (6.29)

where dΩ is the usual unnormalized measure on the unit sphere, S2, in R3. For ℓ = 1
2 , 1. 3

2 , . . . , define

Zℓ
Q(γ) = (2ℓ + 1)−∣Λ∣Tr(exp[−H(γLα/ℓ)]), (6.30)

where Lα is an independent spin ℓ quantum spin at each site α ∈ Λ.
Then, Lieb proved that

Zcl(γ) ≤ Zℓ
Q(γ) ≤ Zcl(γ + ℓ

−1γ). (6.31)

Among other things, this immediately implies convergence of Zℓ
Q(γ) to Zcl(γ) as ℓ→∞ because Zcl(γ) is continuous in γ (indeed it is

analytic). Moreover, in situations where one knows that the infinite volume limit object (the pressure) p⋅(γ) = lim 1
∣Λ∣Z⋅,Λ(γ) exists, it implies

convergence of the limit objects, since while they might lose analyticity in the limit, they are convex and so continuous.
I had begun teaching a course on group representations that eventually turned into a book,684 and it occurred to me to wonder what the

analog of (6.31) was if the representations of SU(2) or SO(3) were replaced by a more general compact Lie group. In particular, what classical
limit space replaces S2.

While it was mathematical elegance that attracted me, I had another motivation. Dunlop–Newman169 had proven a Lee–Yang zero
theorem for S2 spins by using the fact that Asano22 had proven one for spin 1

2 quantum spins, the Griffiths trick279 then gets it for spin
ℓ quantum spins and the limit theorem implied by (6.31) then implies one for S2 spins. It was natural to worry about spins on Sd−1 (i.e.,
d-component rotors).

Since I eventually showed the classical limit spaces are symplectic manifolds, SN is never a classical limit if N ≥ 3, but it turns out that it
is a quotient of one. I reduced proving Lee–Yang for Sd−1 for all d to proving a conjectured Asano type result for spin 1

2 SO(2k) spinors. Until
now, not only is that conjecture still open but so is whether Lee–Yang holds for Sd−1 spins with d ≥ 4!

To avoid going too far afield, I will describe the main results of Ref. 650, assuming a knowledge of the theory of representations of
compact Lie groups as described in the work of Simon,684 Adams,1 or Fulton–Harris.220 One fixes a fundamental weight, λ, on a compact Lie
group, G, and for each L = 1, 2, . . ., one considers the irreducible representation, UL, on HL, with maximal weight Lλ. By picking a basis in the
Lie algebra, g, of G, one considers Hamiltonians multilinear in the basis vectors at the various sites in a box Λ. If dL = dim(HL), then

ZL
Q(γ) = d−∣Λ∣L Tr(exp[−H(γSα/L)]). (6.32)

Extend λ to g∗, the dual of g, by setting it to zero on the orthogonal complement of the Cartan subalgebra. Under the dual of the
adjoint action of G on g, one gets a manifold by looking at the orbit of this extension of λ. These coadjoint orbits, Γλ, which also play a
role in the Kirilov397 theory of representations of nilpotent Lie groups and in the closely related Kostant–Souriau414 ,727 method of geometric
quantization, are the classical limits. Haar measure on G induces a measure on Γλ, and one uses this to define a suitable classical limit partition
function Zcl(γ). By using coherent vectors based on the maximal weight vectors and the same Berezin–Lieb inequalities that Lieb did, I could
extend his result to this case.
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There is a magic weight, δ, which is the sum of all the fundamental weights. Let a = 2⟨λ, δ⟩/⟨λ, λ⟩, where ⟨⋅, ⋅⟩ is the Killing inner product
on the weight space. Then, I extend (6.31) to

Zcl(γ) ≤ ZL
Q(γ) ≤ Zcl(γ + aL−1γ). (6.33)

SU(2) is rank 1, so there is a single fundamental weight and δ = λ so a = 2. Moreover, L = 1 corresponds to ℓ = 1
2 , so ℓ = 1

2 L. Thus,
(6.33) in this case is just (6.31). One surprise of this analysis is that there are several distinct classical limit spaces if the rank is 2 or more. For
example, for SO(4), the space for the limit of spherical harmonics is the 4D space S2

× S2, while for the spinor representations, it is the 2D space
S2
∪ S2.

At Princeton, I ran a “brown bag seminar,” which included brief presentations about current research both on one’s own work and
work of others. There were typically about 25 participants that often included all the senior math physics faculty at Princeton (Lieb, Nelson,
Wightman, and me) and Dyson from the Institute as well as our wonderful group of postdocs/junior faculty/grad students (see Ref. 706
for a complete list but included were Aizenman, Avron, Fröhlich, Deift, and Sigal). In the fall of 1979, Michael Aizenman came back from a
conference in Hungary and, at a brown bag, reported on some work of Dobrushin–Pecherski (a small part of Ref. 164) that showed sufficiently
fast power decay of correlations in spin systems implied exponential decay. In trying to understand why this might be, I proved the following
theorem:

Theorem 5.3 (Refs. 651 and 652). Let ⟨σασγ⟩ denote the two-point function of a spin 1
2 nearest neighbor (infinite volume, free boundary

condition) Ising ferromagnet at some fixed temperature. Fix α, γ, and B, a set of spins whose removal breaks the lattice in such a way that α and
γ lie in distinct components. Then,

⟨σασγ⟩ ≤ ∑
δ∈B
⟨σασδ⟩⟨σδσγ⟩. (6.34)

Remarks.

1. One consequence of this is that if the lattice is Zν, then if ⟨σασγ⟩ ≤ C∣α − γ∣−μ with μ > ν − 1, then for some C1 and m > 0, one has that
⟨σασγ⟩ ≤ C1e−m∣α−γ∣.

2. I talked about this at a later brown bag, which stimulated additional work: Lieb found an improvement and Aizenman and I found a
version for multicomponent models. We arranged for these three papers and one by Rivasseau566 to appear successively in CMP. Lieb’s
improved result460 involved the component Λ of Zν

/B with α ∈ Λ and allowed ⟨σασδ⟩ in (6.34) to be replaced by ⟨σασδ⟩B∪Λ, the expec-
tation with interactions outside B ∪Λ dropped. This included Griffiths third inequality.278 These geometric correlation inequalities are
sometimes called Lieb–Simon inequalities as a result.

3. As mentioned, Aizenman and I12 proved a version for d-vector models. Rivasseau566 extended Lieb’s improved inequality to d = 2
models.

4. Related inequalities appeared earlier in the work of Kasteleyn–Boel.371

Among some of my other results on lattice gases are the following:

1. A work with Sokal,715 which made rigorous an argument of Thouless747 exploiting energy-entropy estimates, that, for example,
provided another proof of the result of Ruelle578 that a pair of spin 1

2 Ising ferromagnets whose coupling obeys ∑n∣J(n)∣ < ∞ has
zero spontaneous magnetization.

2. A paper656 on the one-dimensional d-rotor model with critical J(n) = ∣n∣−2 (for n ≥ 1). As mentioned above, for J(n) = ∣n∣−α, Dyson
showed phase transitions for Ising spins if 1 < α < 2, FILS proved phase transitions for d-rotor models with 1 < α < 2, and Ruelle proved
no phase transition if α > 2. The case α = 2 is borderline. Fröhlich–Spencer216 proved that Ising models with this borderline α have
discrete symmetry breaking. In Ref. 656, I proved d-rotor models with d ≥ 2, and this critical coupling do not have continuous symmetry
breaking.

3. A note with Aizenman13 comparing Ising and plane rotors that gives a lower bound on the Berezinskii–Kosterlitz–Thouless transition
temperature.

4. A note655 showing that the rather complicated directional dependence of the high temperature decay in the Ising model is explained by
leading order perturbation theory.

5. A note653 showing that for d-rotor models, mean field theory provides upper bounds on transition temperatures.
6. A book677 that discusses the lattice models that have been at the center of this section. It focuses on formalism and does not discuss

correlation inequalities, Lee–Yang, the Peierls argument, and infrared bounds, some of the most fascinating aspects of the subject. I
have a book on those aspects of this subject in preparation.713
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VII. N-BODY QUANTUM MECHANICS
Secs. II–VI have focused on one or two problems, all (but Sec. VI) within a limited area of mathematical physics. This section is much

more diffuse dealing with general N-body NRQM, so I will leave more background to references and only briefly discuss a lot of work. In
particular, by thinking of 2 as a possible value of N, I will throw in some subjects that are not usually considered N-body QM like some inverse
potential scattering and even a little bit of general 1D Schrödinger operators.

A full N-body Hamiltonian acts on L2
(RνN

), where x ∈ RνN is written x = (r1, . . ., rN) with rj ∈ Rν. We write

H̃0 = −
N

∑
j=1
(2mj)

−1Δrj , Ṽ = ∑
1≤i<j≤N

Vij(ri − rj), H̃ = H̃0 + Ṽ . (7.1)

Then, a basic preliminary is as follows:

Theorem 6.1. In any coordinate system, ρ1, . . ., ρN , where ρj, j = 1, . . ., N − 1 is a linear combination of rk − rℓ and (with M = ∑N
j=1 mj),

ρN =
1
M

N

∑
j=1

mjrj, (7.2)

we have that, realizing H̃ ≡ L2
(RνN

) = L2
(Rν
) ⊗ L2

(Rν(N−1)
) ≡ HCM ⊗H, where the first factor is functions of ρN and the second functions of

{ρj}
N−1
j=1 ,

H̃0 = h0 ⊗ 1 + 1⊗H0, (7.3)

H̃ = h0 ⊗ 1 + 1⊗H, (7.4)

where h0 = −(2M)−1ΔρN
, H0 is a positive quadratic form in −i∇ρj

, j = 1, . . . , N − 1, and H = H0 + V.

I refer the reader to Ref. 712 (Sec. 11) for a discussion of various coordinate systems and the formalism of Sigalov–Sigal609 (see also the
work of Hunziker–Sigal337). In that formalism, a major role is played by the inner product

⟨r(1), r(2)⟩ =
N

∑
j=1

mjr(1)j ⋅ r(2)j. (7.5)

In this inner product, H̃0 is the Laplace–Beltrami operator, and the reason that (7.3) holds is that ρN is orthogonal to the other ρj’s. One
coordinate system that we will need soon is atomic coordinates where

ρj = rj − rN , j = 1, . . . , N − 1, ρN =
1
M

N

∑
j=1

mjrj. (7.6)

In this coordinate system when m1 = m2 = ⋅ ⋅ ⋅ = mN−1 = m and 1
m +

1
mN
≡ 1

μ , one has that [see Ref. 712 (11.48) for the calculation)

H0 = −
N−1

∑
j=1

1
2 μ

Δj −
1

mN
∑
j<k
∇j ⋅∇k. (7.7)

One normally studies H, the N-body Hamiltonian with center of mass removed, also known as the reduced N-body Hamiltonian. If one
takes mN to infinity, the annoying extra last term in (7.7) known as the Hughes–Eckert term is gone. This extra term is present because in the
inner product (7.5), the ρj of (7.6) are not mutually orthogonal. For this reason, it is often convenient to use coordinate systems like Jacobi
coordinates [Ref. 712 (Example 11.6)].
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One last piece of kinematics we need is the notion of a cluster decomposition or clustering, C = {Cℓ}
k
ℓ=1, which is a partition, i.e., a family

of disjoint subsets whose union is {1, . . ., N}. We use P for the set of all non-trivial clusterings, i.e., those with ℓ ≥ 2. We set #(Cℓ) to be the
number of particles in Cℓ. A coordinate, ρ, is said to be internal to Cℓ if it is a function only of {rm}m∈Cℓ , which is invariant under rm → rm + a
(all m ∈ Cℓ); equivalently, it is a linear combination of {rm − rq}m,q∈Cℓ . A clustered Jacobi coordinate system is a set of #(Cℓ) − 1 independent
internal coordinates for each cluster together with Rℓ = (∑q∈Cℓ

mqrq)/(∑q∈Cℓ
mq). If we write H(Cℓ) to be L2 of the internal coordinates of

cluster Cℓ and H(C) to be L2 of all the centers of mass of the clusters, then

H̃ = H̃(C) ⊗
k
⊗
ℓ=1

H(Cℓ), (7.8)

H̃0 = H̃(C)0 ⊗ 1 ⋅ ⋅ ⋅ ⊗ 1 +
k

∑
ℓ=1

1⊗ ⋅ ⋅ ⋅ ⊗H0(Cℓ) ⊗ ⋅ ⋅ ⋅ ⊗ 1, (7.9)

where H̃(C)0 = −∑
k
ℓ=1(2M(Cℓ))

−1ΔRℓ and H0(Cℓ) is a quadratic form in the derivatives of the internal coordinates.
In (7.9), the operator H̃(C)0 has a decomposition like (7.3), where H is replaced by H(C), the functions of the differences of the centers of

mass of the Cj. We write

H̃(C)0 = h0 ⊗ 1 + 1⊗H(C)0 . (7.10)

Given a cluster decomposition, C = {Cℓ}
k
ℓ=1, we write (jq) ⊂ C if j and q are in the same cluster of C and (jq) ⊄ C if they are in different

clusters. We define

V(Cℓ) = ∑
j,q∈Cℓ

j<q

Vjq, (7.11)

V(C) =
k

∑
ℓ=1

V(Cℓ) = ∑
(jq)⊂C

j<q

Vjq, (7.12)

I(C) = ∑
j<q

Vjq − V(C) = ∑
(jq)⊄C

j<q

Vjq. (7.13)

Here, V(C) is the intracluster interaction and I(C) the intercluster interaction. We define on H(Cℓ),

H(Cℓ) = H0(Cℓ) + V(Cℓ), (7.14)

H(C) = H(C)0 ⊗ 1 ⋅ ⋅ ⋅ ⊗ 1 +
k

∑
ℓ=1

1⊗ ⋅ ⋅ ⋅ ⊗H(Cℓ) ⊗ ⋅ ⋅ ⋅ ⊗ 1 (7.15)

= H − I(C),

Σ(C) =
k

∑
ℓ=1

inf σ(H(Cℓ)). (7.16)

We note that

C ∈ P⇒ σ(H(C)0 ) = [0,∞). (7.17)

By (7.15), we have that [where σ(⋅) is the spectrum] σ(H(C)) = σ(H(C)0 ) + σ(H(C1)) + ⋅ ⋅ ⋅ + σ(H(Ck)). By (7.17),

C ∈ P⇒ σ(H(C)) = [Σ(C),∞) (7.18)
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for someΣ(C). When I discuss N-body spectral and scattering theory below, I will be interested in thresholds. A threshold, t, is a decomposition
C = {Cℓ}

k
ℓ=1 ∈ P and an eigenvalue, Eℓ, of H(Cℓ) for each ℓ = 1, . . ., k. The threshold energy is E(t) = ∑k

ℓ=1 Eℓ. Of course, E(t) ≥ Σ(C).
With these preliminaries in hand, I can describe the central mathematical questions in the analysis of N-body NRQM. I assume that the

reader is familiar with the basic notions of self-adjointness of unbounded operators, the spectral theorem for them [Ref. 710 (Chaps. 5 and 7)],
and the spectral decompositions into discrete and essential spectrum and into absolutely continuous, singular continuous, and point spectrum
[see Ref. 710 (Theorem 5.1.12)]. One always supposes that the two body potentials, V ij, go to zero at infinity, usually faster than r−1−ε.

(1) The self-adjointness of H.
(2) The determination of the essential spectrum of H. This is solved by the celebrated the work of Cycon et al.124 (Sec. 3.3) for a proof

and references to the original papers of Hunziker, van Winter, and Zhislin whose proofs are very different from the proof in Ref. 124.

Theorem 6.2 (HVZ theorem). For reduced N-body Hamiltonians with two-body potentials vanishing at infinity, one has that

σess(H) = [Σ,∞) Σ = inf
C∈P

Σ(C). (7.19)

(3) Absence of the singular continuous spectrum for H. My advisor, Arthur Wightman, had a colorful name for this: “the no
goo hypothesis.” His point was that the absolutely continuous (a.c.) spectrum had an interpretation as scattering states and the
point spectrum as bound states. If there were a singular continuous spectrum, it would have to be goo. Connected to this is that
the point spectrum should only have limit points at thresholds; one might expect no embedded point spectrum, but the examples
discussed at the start of Sec. III show that it is too simple minded although one might like to prove the absence of positive energy
eigenvalues and thresholds.

(4) Asymptotic completeness. To describe this, we need some additional preliminaries. Let t be a threshold and C be the associated cluster
decomposition. Under the decomposition (7.8), we let Ht be all states of the form φ⊗ η, where φ is an arbitrary vector in H̃(C) (i.e., the
function of the differences of centers of mass of the clusters) and η is a sum of products of eigenvectors of H(Cℓ) with the eigenvalue
Eℓ. Let Pt be the projection onto Ht . In 1959, Hack294 proved that for each threshold, the limits [the funny convention that has Ω±
associated with limits as t → ∓∞ comes from the physics literature where Ω± defined this way is connected in time independent
scattering to lim±ε ↓0(H − E − iε)−1],

Ω±t = s − lim
t→∓∞

eitHe−itH(C)Pt (7.20)

exists so long as the two-body potentials decay faster that r−1−ε [for longer range, including the physically important Coulomb case,
following Dollard,165 one needs to use modified wave operators—see, for example, Ref. 554 (Sec. XI.9)—we will refer to this case below
without further technical details]. These are the cluster wave operators. If ψ = Ω−t γ, then as t →∞, we have that e−itHψ looks like bound
clusters of Cℓ in eigenstates with energy Eℓ moving freely relative to each other, i.e., intuitively scattering states. One can show that for
distinct thresholds, t ≠ s, one has that ranΩ−t is orthogonal to ranΩ−s . Asymptotic completeness is the assertion that

⊕
all thresholds t

ranΩ+t = ⊕
all thresholds t

ranΩ−t = Hac(H), (7.21)

where Hac(H) is the space of all vectors whose spectral measures for H is purely absolutely continuous.

For each of these four, I made significant, albeit not the definitive, contributions as I will describe soon. Kato [see Ref. 712 (Secs. 7–10)]
was both the pioneer and continuing master of the self-adjointness problem, but I made a basic discovery on allowed local positive singularities
and followed up on Kato’s work on what I called Kato’s Inequality. I not only named the HVZ theorem (where Hunziker, van Winter, and
Zhislin were the initiators) but also reworked and extended it twice, including my work with Last on the ultimate HVZ theorem. Perry, Sigal,
and I were the first to prove the absence of the singular continuous spectrum for fairly general N-body operators although we relied heavily
on ideas of Mourre (and Balslev–Combes had earlier handled suitable analytic potentials including the important Coulomb case). Sigal–Soffer
were the first to establish N-body asymptotic completeness but they (and later, others) relied, in part, on my work with Deift, which reduced
the problem to the existence of what are now called Deift–Simon wave operators.

In the remainder of this section, I will discuss in more detail these and other works on N-body and related problems. My earliest paper
on general N-body systems is the work of Simon,614 which proved that general atoms and positive ions have infinitely many eigenvalues (aka
bound states) below their continuous spectrum. This is really a remark on a paper of Kato,376 written 20 years earlier. In that paper, Kato
showed that helium in the approximation of infinite nuclear mass had infinitely many eigenvalues and with its physical mass has at least
25 585 eigenvalues (counting multiplicity). Kato could not go beyond helium and had the 25 585 limitation because he only used crude
methods to estimate the bottom of the continuous spectrum. The basic point of Ref. 614 is that since Kato’s work, Hunziker335 had proven
Theorem 6.2 above and that by using that, it was not difficult to exploit the method of Kato in Ref. 376 to get the very general result. I should
mention that ten years earlier, Zhislin774 using more involved methods had proven this general result, so my proof was new, but the result was
not.
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I knew about Hunziker’s paper335 because he had done the work while a postdoc at Princeton and it was something that my advisor
Arthur Wightman discussed in his course. To understand the basis of Hunziker’s proof, it pays to recall the essence of one argument for the
reduced two-body case: if H0 = −Δ, H = H0 + V , and V goes to zero at infinity, then σess(H) = [0,∞). One writes down the second resolvent
equation,

(H − z)−1
= (H0 − z)−1

− (H − z)−1V(H0 − z)−1
⇒

(H − z)−1
= (H0 − z)−1

[1 + V(H0 − z)−1
]
−1

. (7.22)

Since V goes to zero, z ↦ V(H0 − z)−1 is a compact analytic function on C/[0,∞), so, by the analytic Fredholm theorem [Ref. 552 (Theorem
VI.4) and Ref. 710 (Theorem 3.14.3)], [1 + V(H0 − z)−1

]
−1

is meromorphic on C/[0,∞) with finite rank residues. This implies the claimed
result on σess(H). For N > 2, Hunziker instead used the fact that Weinberg762 and van Winter,756 essentially by resumming perturbation
theory, proved the Weinberg–van Winter equations,

(H − z)−1
= D(z) + (H − z)−1I(z), (7.23)

where D(z) and I(z) are built out of the potentials and the resolvents of the H(C) and so analytic in C/[Σ,∞). Moreover, Hunziker334 proved
that I(z) was compact (this was proven by Weinberg when N = 3 and conjectured in general) so, as in the reduced two-body case, one gets
the full N body result.

Over the next few years, I became aware that in Ref. 756, van Winter [who like Hunziker specifically looked at ν = 3 but further restricted
to Vij ∈ L2

(R3
) so she could use Hilbert–Schmidt rather than just compact operators] implicitly had Theorem 6.2 when her conditions hold

by a method close to Hunziker’s. Moreover, Zhislin774 had the result for atoms using very different, geometric methods, but his method, as
explicated by Jörgens–Weidmann,367 could also obtain Theorem 6.2. Thus, by the time of Reed–Simon (Vol. 4),555 I had decided to call the
result the HqVZ theorem, a name which stuck.

I provided two generations of improvements in this result and its proof. In the work of Simon,639 motivated, in part, by work on
Deift–Simon wave operators (see below), I found a geometric way of understanding the theorem (independently, Enss,179 at about the same
time, found a proof similar in spirit). Given a partition, C, one defines

∣r∣C = min
(jq)⊄C

{∣rj − rq∣} ∣r∣ = max
j≠q
{∣rj − rq∣}. (7.24)

One constructs a C∞ partition of unity (i.e., ∑C∈P jC = 1, jC ≥ 0) so that for some dN > 0, jC is supported on {r ∣ ∣r∣ ≤ 1} ∪ {r ∣ ∣r∣C ≥ dN ∣r∣}.124

Call this a Ruelle–Simon partition of qunity since Ruelle constructed such partitions in his work on QFT scattering theory. I showed easily
that if f is a continuous function of compact support, [ f (H) − f (H(C))] jC is compact. This is because I(C)jC decays in all directions. One
then writes

f (H) = ∑
C∈P
[ f (H) − f (H(C))] jC +∑

C∈P
f (H(C))jC (7.25)

to conclude that if f is supported on (−∞,Σ), then f (H) is compact, which implies Theorem 6.2.
Many years later, in 2006, Last and I440 returned to this subject in a much more general context. I will state our result for Schrödinger

operators, −Δ + V , on L2
(Rγ
) when V is uniformly continuous (which is true for N-body systems if all V ij are continuous and go to zero at

infinity). We need the notion of limit at infinity. By the Arzelà–Ascoli theorem [Ref. 707 (Theorem 2.3.14)], V(⋅ + y) restricted to large balls
lies in a compact set as y varies through Rγ. It follows that for any ym going to infinity, there is a subsequence ymj so that V(⋅ + ymj) converges
to some W uniformly on compact subsets of Rγ. If ymj/∣ymj ∣ → e ∈ Sγ−1, we say that W is a limit of V at infinity in direction e. We let Le be the
set of such W. By the compactness noted above, each Le is non-empty. Here, is what Last and I440 proved.

Theorem 6.3. For any Schrödinger operators, −Δ + V, on L2
(Rγ
) with V that is uniformly continuous, one has that

σess(−Δ + V) = ⋃
e∈Sγ−1

⋃
W∈Le

σ(−Δ +W). (7.26)

Remarks.

1. Reference 440 also has results for Schrödinger operators where V is allowed to have local singularities (stated in terms of uniformly
local Kato class) and for Jacobi matrices, CMV matrices, and, as I will mention in Sec. VIII, for Schrödinger operators with magnetic
field.
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2. The proof is really quite simple based on Weyl sequences [Ref. 710 (Problem 3.14.5)], i.e., if A is self-adjoint, then λ ∈ σess(A) if and
only if there exists a sequence of unit vectors, {φn}, going weakly to zero with ∥(A − λ)φn∥ → 0. We used localization ideas going back
to the work of Sigal599 and Gårding223 to show that one could pick the Weyl sequence to live in a large ball (of n independent size) and
then compactness to get a trial sequence for a limit at infinity.

3. Earlier in Ref. 439, Last and I had introduced the notion of the right limit for Schrödinger operators on the half line and proved that
in that case, the right-hand side of (7.26) is a subset of the left-hand side. Limits at infinity generalize the notion of the right limit.
Last–Simon also have results relating right limits and the a.c. spectrum, which were generalized in a beautiful and spectacular way
by Remling.563 The work of Last–Simon440 and Remling563 is presented in Ref. 705 (Chap. 7). By exploiting analogy, Breuer and I83

used Remling’s idea as an organizing tool in understanding an issue in classical complex analysis, which power series lead to natural
boundaries on their disk of convergence.

4. Forms of (7.26) seem to have been in the air after 2000. As discussed in Ref. 440 and Ref. 705 (Chap. 7) (where references can be found),
several other groups from very different communities found variants of (7.26). Their proofs used much more machinery than Ref. 440.
In particular, Last–Simon required the closure of the set of the right-hand side of (7.26), but using ideas of Georgescu–Iftimovici,226 one
can show that the set is closed.

5. (7.26) implies the HVZ theorem (if the V ij are continuous and going to zero; using the extension mentioned in Remark 1, one can get
the full HVZ result). Given e ∈ SνN−1, one defines C(e) by putting i and j in the same cluster if and only if ei = ej. It is immediate that the
only right limit in Le is H(C(e)). Last–Simon also have an interesting result on approach to a periodic isospectral torus.

Next, I turn to my contributions to the questions of self-adjointness of Schrödinger operators and the more general issue of the proper
definition of self-adjoint quantum Hamiltonians. In this regard, I should mention my work on defining these operators by the method of
quadratic forms beginning with my Ph.D. thesis, which was published as a book.615 This thesis studied −Δ + V on L2

(R3
) for V ’s obeying

(4π)−2
∬

∣V(x)∥V(y)∣
∣x − y∣2

< ∞, (7.27)

a class that I called the Rollnik class, R, after Ref. 571. Since the left-hand side (7.27) is the square of the Hilbert–Schmidt norm of
∣V ∣1/2

(−Δ)−1
∣V ∣1/2, it was rediscovered earlier than my work by many others. In particular, Birman72 and Schwinger588 used it in their work

(mentioned in Sec. VIII) on bounds on the number of bound states and Grossman–Wu285 used it in a study of two-body scattering theory.
The thesis had an interesting source. Wightman was on leave in my third year of graduate school (1968–1969). When he left, I did not

have a definite thesis problem although it seemed possible that I would do a thesis on the work I was doing on the anharmonic oscillator.
George Tiktopoulos was a High Energy Theory Postdoc at Princeton (later a Professor in Athens) and gave a topics course in potential
scattering, which, while not mathematically precise, was more mathematically careful than many of the other high energy theorists. He
developed things for H ≡ −Δ + V for V ∈ R ∩ L1. Such V ’s were not necessarily locally L2, so Kato’s theorem did not apply and you could not
define H as an operator sum. I kept complaining, sometimes being a little obnoxious as smart graduate students can be, that he needed to add
the condition V ∈ L2

loc to be able to use Kato’s theorem (Grossman–Wu had done exactly this). He was insistent that because he could define a
Green’s function for (H − E)−1 for E very negative via a convergent perturbation series, there must not be a problem. Moreover, the physics
should work for potentials with a ∣x∣−α local singularities so long as α < 2. L2

loc though requires α < 3/2 while (for local singularities) R works
up to 2.

I eventually realized that Tiktopoulos was right and one could do everything using quadratic forms, and I wrote a long thesis where,
among other things, I rigorously discussed scattering theory through the proof of dispersion relations and the HVZ theorem. Wightman liked
it so much that he proposed, making it a volume in the book series he edited for Princeton Press. I started an instructorship in September
1969 with the thesis largely written, but Wightman asked me to hold off submission of the formal thesis until he had a chance to carefully read
it and make suggestions. Since I had a job (in those days, Universities were not as picky about postdocs without being actual docs yet) and he
(and I) were busy, submission kept being postponed. The math and physics departments proposed promoting me to Assistant Professor and
the Dean was very unhappy when he learned that I did not officially have a degree and refused to process the appointment until I did. Bob
Dicke, the chair in Physics, made it clear to Wightman that he would better deal rapidly with the roadblock and suddenly within a weekend,
he would read my entire thesis!

I was not the first one to use quadratic form methods to define quantum Hamiltonians. From the earliest days of quantum mechanics,
mathematicians had the idea to use the Friedrichs’ extension, which is essentially a quadratic form construction [Ref. 710 (Sec. 7.5)]. The
perturbation approach that I used had been used in a related context already in Kato’s book385 and by Nelson510 from whom I learned it.
Forms were also used by several of Nelson’s and Wightman’s students slightly before me. What I did was show that large parts of the then
existing theory could be carried over to a quadratic form point of view. Afterward and, in part, because of my work, forms became a tool more
widely used by mathematical physics studying NRQM.

I returned to form ideas, essentially as a simplifying tool, many other times later in my career. On the purely mathematical side, I wrote
two papers on the subject of monotone convergence theorems for forms, an area where the first results appeared in the first edition of Kato’s
book.385 Both papers641,643 resolved an issue left open by Kato in the case of monotone increasing forms; independently, Davies,133 Kato (in
the revised second edition of his book), and Robinson569 had also settled this issue. In Ref. 643, I found a decomposition analogous to the
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Lebesgue decomposition of measures, which allowed a significant improvement of the result for monotone decreasing forms. Also on the
mathematical side, Alonso and I16 wrote a paper that systematized the theory of self-adjoint extensions of semi-bounded operators in terms
of quadratic forms.

As noted in Sec. III, I (some of it joint with Reed) used quadratic form techniques to simplify some of the technical issues around
the complex scaling results of Balslev–Combes. I developed a quadratic form version of the Cook method in scattering theory;638 Kato,389

Kuroda,429 and Schechter582 also had results on that question. As I will discuss soon, in Ref. 645, I discussed the form analog of Kato’s famous
L2

loc result.
Turning to self-adjointness property, my most impactful paper was Ref. 623. Following Kato’s work,375 a number of authors studied what

you needed for essential self-adjointness, also known as esa [on C∞0 (Tν
)], of the operator −Δ + V on L2

(Rν
) in terms of Lp

(Rν
) conditions

of V . Call p ν-canonical if p = 2 for ν ≤ 3, p > 2 if ν = 4, and p = ν/2 if p ≥ 5. Then, the optimal Lp extension of Kato’s theorem is as follows:

Theorem 6.4. Let p be ν-canonical. Then, if V ∈ Lp
(Rν
) + L∞(Rν

), then −Δ + V is esa on C∞0 (Rν
).

Except for the improvement that one can have p = ν/2 (he assumed that p > ν/2) if ν ≥ 5, this is a result of Brownell.87 For later purposes,
we note that rather than Lp conditions, Stummel735 stated conditions on V in terms of norms like (when ν ≥ 5)

lim
α↓0
[sup

x
∫
∣x−y∣<α

∣x − y∣4−ν∣V(y)∣2 dy] = 0. (7.28)

See the discussion in Ref. 124 (Sec. 1.2). Lp conditions imply Stummel conditions, but Stummel conditions are more flexible.
That Theorem 6.4 is optimal can be seen when ν ≥ 5, then for C large −Δ − C∣x∣−2 is not esa on C∞0 (Tν

). This implies that Theorem 6.4
fails for p larger than the canonical value! In particular, when ν ≥ 5, there are L2 potentials for which −Δ + V is not esa on C∞0 (Tν

). What
I realized in Ref. 623 is that there is an asymmetry between conditions on the positive and negative parts of V . In particular, I proved the
following theorem:

Theorem 6.5. If V ≥ 0 and

V ∈ L2
(Rν, e−cx2

dνx) for some c > 0, (7.29)

then −Δ + V is esa on C∞0 (Rν
).

My discovery (and proof) of this result shows the advantage of working in multiple fields because this was an outgrowth of my work
in CQFT! As I discussed in Sec. IV, for abstract hypercontractive semigroups [i.e., obeying (4.1) and (4.2)], Segal’s method589 showed that
H0 + V is esa on D(H0) ∩D(V) if V obeys (4.3) and (4.4). One of the things that Høegh–Krohn and I714 realized is that if (4.3) is replaced
by the stronger condition V ≥ 0, one could replace (4.4) by the weaker condition that V ∈ L2 [we did this to handle the spatially cutoff two
dimensional: exp(φ(x)): field theory, a favorite model of Høegh-Krohn]. I realized that this implied that when (7.29) holds, then for a suitable
d, −Δ + dx2

+ V is esa on C∞0 (Rν
). An additional trick allowed me to subtract dx2 and obtain Theorem 6.5. Given this new result, I made the

natural conjecture for V ∈ L2
loc(R

ν, dνx).
When I finished writing the preprint of Ref. 623, I mailed a copy to Kato (in those days, papers were typed, and given that Xeroxing was

costly, a very few Xerox copies were sent by snail mail—this was years before TEX and email). About six weeks later (counting the time for
ground mail from Princeton to Berkeley and back!), I got Kato’s paper383 in which he proved my conjecture by showing the following:

Theorem 6.6. If V ≥ 0 and V ∈ L2
loc(R

ν, dνx), then −Δ + V is esa on C∞0 (Rν
).

Kato’s method was totally different from mine. He first proved what I eventually called Kato’s inequality that

Δ∣u∣ ≥ Re(sgnΔu) (7.30)

[here u is complex valued and sgn(u) ≡ limc↓0ū(x)/(∣u(x)∣2 + c2
)

1/2]. A novel feature of (7.30) is that Kato proved it as a distributional
inequality under the conditions that u ∈ L1

(Rν
) and Δu ∈ L1

(Rν
). This inequality came from left field—I am not aware of anything earlier

that was close to it in the work of Kato or anyone else. Moreover, given the inequality, the Proof of Theorem 6.6 is a few lines [see, for example,
Ref. 710 (p. 622)].
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Kato’s paper did much more than just prove (7.30) and show how to use that to prove Theorem 6.6. He also proved a version of (7.30)
for magnetic fields, namely, for smoothÐ→a ,

Δ∣u∣ ≥ Re(sgn (Ð→∇ − iÐ→a )2u), (7.31)

again as a distributional inequality. He used this to show that

H(Ð→a , V) = −(Ð→∇ − iÐ→a )2
+ V (7.32)

is esa on C∞0 (Rν
) if V ∈ L2

loc(R
ν
), V ≥ 0 andÐ→a is C1. I then improved this624 to only require that div(Ð→a ) ∈ L2

loc(R
ν
) andÐ→a ∈ Lp

loc(T
ν
), where

p had a slightly stronger condition than 2p being ν canonical. Finally, Leinfelder–Simader450 proved the optimal result requiring that div(Ð→a )
∈ L2

loc(R
ν
) andÐ→a ∈ L4

loc(R
ν
).

Kato also had results where V had a negative part. In that context, he introduced what I later called the Kato class, Kν. V ∈ Kν⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

limα↓0[supx∫∣x−y∣≤α
∣x − y∣2−ν∣V(y)∣ dνy] = 0 if ν > 2,

limα↓0[supx∫∣x−y∣≤α
log(∣x − y∣−1

)∣V(y)∣ dνy] = 0 if ν = 2,

supx∫∣x−y∣≤1
∣V(y)∣ dy < ∞ if ν = 1.

(7.33)

Ironically, this is not optimal (but it is close to optimal) for self-adjointness, but it is optimal for various Lp semigroup condition as shown
by Aizenman–Simon [Ref. 14 (Theorem 1.3)], for example, V ∈ Kν⇔ e−t(−Δ−∣V∣) is bounded from L∞ to L∞ with limt↓0∥e−t(−Δ−∣V∣)

∥∞,∞ = 1.
The Kato class will appear several times below.

Before leaving the subject of Kato’s inequality and self-adjointness, I note the following form analog of Theorem 6.6 that I proved using
connections of Lp semigroup bounds and Kato’s inequality that I will discuss shortly.

Theorem 6.7 (Ref. 645). Let V ≥ 0 be in L1
loc(R

ν, dνx), and let Ð→a ∈ L2
loc(R

ν, dνx) be an Rν valued function. Let Q(D2
j )

= {φ ∈ L2
(Rν, dνx) ∣ (∇j − iaj)φ ∈ L2

(Rν, dνx)} with quadratic form ⟨φ,−D2
j φ⟩ = ∥(∇j − iaj)φ∥2. Let h be the closed form sum ∑ν

j=1 −D2
j + V.

Then, C∞0 (Rν
) is a form core for h.

This paper also has a Proof of Theorem 6.6 using Lp semigroup bounds. It does not explicitly use Kato’s inequality, but, by then, I knew
that his inequality was a expression of the positivity preserving behavior of semigroups.

Both Kato and I were taken with his inequality and each of us wrote additional papers on the subject (Kato86,384,387,388,390–392). I focused
on what the analog is in a much more general context. In Ref. 640, I proved the following theorem:

Theorem 6.8 (Ref. 640). Let A be a positive self-adjoint operator on L2
(M, dμ) for a σ–finite, separable measure space (M,Σ, dμ). Let

Q(A) = D(∣A∣1/2 ) be the form domain of A and qA(u) = ∥∣A∣1/2u∥2, the quadratic form of A. Then, the following are equivalent:

(a) (e−tA is positivity preserving)

∀u ∈ L2, u ≥ 0, t ≥ 0⇒ e−tAu ≥ 0.

(b) (Beurling–Deny criterion) u ∈ Q(A) ⇒ ∣u∣ ∈ Q(A) and

qA(∣u∣) ≤ qA(u). (7.34)

(c) (Abstract Kato inequality) u ∈ D(A) ⇒ ∣u∣ ∈ Q(A) and for all φ ∈ Q(A) with φ ≥ 0, one has that

⟨A1/2φ, A1/2
∣u∣⟩ ≥ Re⟨φ, sgn(u)Au⟩. (7.35)

The equivalence of (a) and (b) for M a finite set (so A is a matrix) is due to Beurling–Deny.71 For a proof of the full theorem (which is
not hard), see Ref. 640 or Ref. 710 (Theorem 7.6.4). In that paper, I also conjectured the analog of (7.31) in a similar general context, a result
then proven independently by me649 and by a group of three others.313
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Theorem 6.9 (Refs. 313 and 649). Let A and B be two positive self-adjoint operators on L2
(M, dμ), where (M,Σ, dμ) is a σ–finite, separable

measure space. Suppose that φ ≥ 0⇒ e−tAφ ≥ 0. Then, the following are equivalent:

(a) For all φ ∈ L2 and all t ≥ 0, we have that

∣e−tBφ∣ ≤ e−tA
∣φ∣.

(b) ψ ∈ D(B) ⇒ ∣ψ∣ ∈ Q(A) and for all φ ∈ Q(A) with φ ≥ 0 and all ψ ∈ D(B), we have that

⟨A1/2φ, A1/2
∣ψ∣⟩ ≤ Re⟨φ, sgn(ψ)Bψ⟩. (7.36)

For a proof, see the original papers or Ref. 710 (Theorem 7.6.7). There is further discussion of this result in the context of diamagnetic
inequalities in quantum mechanics in Sec. VIII.

These semigroup ideas are intimately related to properties of eigenfunctions of Schrödinger operators, a subject I often looked at in the
1970s. One issue that particularly attracted me was that of exponential decay. In 1969, the only results on decay of discrete eigenfunctions
of N-body quantum Hamiltonians with N > 2 had very severe restrictions like N = 3 or only Coulomb potentials. I gave looking at N-body
systems to Tony O’Connor, my first graduate student (who began working with me when I was a first year instructor). He had the idea of
looking at analyticity of the Fourier transform and obtained results in the L2 sense (i.e., ea∣x∣ψ ∈ L2) that were optimal in that you could not do
better in terms of isotropic decay. Here, ∣x∣ is a mass weighted measure of the spread of the N particles, and explicitly, in terms of the inner
product (7.5) and the center of mass ρN of (7.6), one has that

M∣x∣2 = ⟨r − ρN , r − ρN⟩. (7.37)

O’Connor found that one had the L2 bound if ∣a∣2 < 2M(Σ − E).
His paper518 motivated Combes–Thomas114 to an approach that has now become standard of using boost analyticity. It is widely applica-

ble although in the N-body case it exactly recovered O’Connor’s bound. Over the years, I had a six-paper series on the subject of exponential
decay.98,139,468,627–629 In the first three papers, I looked at getting pointwise bounds. In the first paper, I obtained optimal pointwise isotropic
bounds for N-body systems. In the second paper, I considered the case where V goes to infinity at infinity and proved pointwise exponential
decay by every exponential (Sch’nol584 earlier had a related result). In the third paper, I assumed ∣x∣2m lower bounds on V and got exp(−∣x∣m+1

)

pointwise upper bounds on the eigenfunctions. When one has an upper bound on V of this form, one gets lower bounds of the same form on
the ground state. Papers 1 and 2 were written during my fall 1972 visit to IHES, one of my most productive times when Lieb and I did most of
the Thomas–Fermi work and I developed new aspects of correlation inequalities and Lee–Yang for EQFT.

The fourth paper139 (joint with Deift, Hunziker, and Vock; Deift had been my student and we continued working on this while he
was a postdoc. I learned that Hunziker was looking at similar questions so we joined forces—Vock was his master’s student) explored non-
isotropic bound for N-body systems. We found a critical differential inequality that if f obeys it, then e fψ ∈ L∞ and in some cases were able
to find explicit formula for the optimal f (but only in a few simple situations). Later, Agmon4 found the optimal solution of the differential
inequality as a geodesic distance in a suitable Riemann metric (discontinuous in the case of N-body systems)—this is now called the Agmon
metric, a name that appeared first in the fifth paper of this series by Carmona–Simon,98 which also proved lower bounds for the ground state
complementary to Agmon’s upper bounds. We proved that if ψ(x) is the ground state and ρ(x) is the Agmon metric distance from x to 0,
then lim∣x∣→∞ − log∣ψ(x)∣/ρ(x) = 1. In some ways, the fourth paper is made obsolete by4,98 although the explicit closed form for ρ in some
cases remains of significance. The sixth paper with Lieb468 studied the N-body system in the special region where subclusters remained bound
but were distant from each other.

Carmona–Simon98 used path integral techniques in NRQM so I pause to say something about that subject that due to pioneering work of
Lieb and Nelson was a kind secret weapon around Princeton, which I also used so extensively that I wrote what became a standard reference.692

It was based on lectures I gave in Switzerland in the summer of 1977. I was on leave in 1976–77 and also gave lectures at the University of
Texas, which also turned into a book693 on my other secret functional analytic weapon, the theory of trace ideals. It has had a rebirth of use
since it is a tool in quantum information theory.

One thing that I used path integral methods for is to study more general issues of properties of eigenfunctions and integral kernels (for
the semigroup and resolvent) than exponential decay, although they also allowed stronger results and simpler proofs also for exponential
decay. I did this in the Functional Integration book just mentioned but even more in two articles, one with Aizenman14 and one that was
billed as a review article.657 The article with Aizenman, which won the Stampacchia prize, proved Harnack inequalities and subsolution
estimates on eigenfunctions of Schrödinger operators under only K loc

ν conditions on V (see also Ref. 112). The 80 page review article is my
fifth most cited publication (the only more cited items are three books and the Berry’s phase paper) and proves many results, for example, on
continuum eigenfunction expansions, under greater generality than previously. I should mention that this work was influenced by a beautiful
paper of René Carmona92 (and later Ref. 93) that emphasized a simple way to get L∞ bounds. When I learned of this work, I invited René to
visit Princeton leading to Ref. 98. Later, he and I teamed up with an Irvine graduate student of his97 to discuss analogs of these Schrödinger
operators results when −Δ is replaced by other generators of positivity preserving semigroups, most notably the one,

√
−Δ +m2, associated

with relativistic quantum theory.
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A little more on subsolution estimates (which had been discussed for more general elliptic operators but with greater restrictions on the
regularity of coefficients in the PDE literature, especially by Trudinger). These imply that if Hu = Eu, then

∣u(x)∣ ≤ C∫
∣y−x∣≤1

∣u(y)∣ dν, y (7.38)

where C only depends on Kν norms of V restricted to the ball of radius 1 about x. These immediately imply that L2 estimates, for example,
those found by O’Connor,518 imply pointwise estimates, for example, those proven by me in Ref. 627.

Eigenfunction properties and expansions recurred in my later work many connected with 1D problems, including the discrete case,
especially with applications to the a.c. spectrum and/or almost periodic problems (see Sec. X). I mention four: Simon685 has a simple proof that,
for 1D discrete and continuum Schrödinger operators, if all eigensolutions are bounded for energies in an set, S, then the spectrum is purely
a.c. on S, a result of Gilbert–Pearson.247 It also uses this theorem to analyze 1D Schrödinger operators with potentials of bounded variation,
recovering results of Weidmann761 and extending them to the Jacobi case. Simon694 gave a simple proof, using rank one perturbation theory
[specifically Theorem 11.2(b)], that for such operators on L2

(R), the singular spectrum is always simple, a result proven earlier by Kac369 and
Gilbert246 in a more complicated way. Last–Simon439 had many results on the connection of eigenfunctions to spectral behavior depending
on the growth of transfer matrices for ODEs, and Kiselev–Last–Simon405 had additional results on growth of transfer matrices and spectral
properties, including the subtle borderline x−1/2 decaying random potential.

Before leaving the subject of eigensolutions, I should mention a paper with Schechter583 also written in the 1975–76 year that I was on
leave (Schechter was at Yeshiva University where I spent two days a week that year). Carleman91 had studied the issue of unique continuation
(if a solution of Hu = Eu vanishes on an open set, it vanishes identically), a subject for which almost all work since has used what have come
to be called Carleman estimates after that paper. In 1959, Kato380 understood that unique continuation was an element of a proof of the
non-existence of positive eigenvalues. What Schechter and I realized is that Carleman estimates were limited to bounded potentials and it was
natural to consider the problem for some unbounded V ’s. We proved the first such results although we stated that we believed our conditions
were far from optimal. We hoped that we would motivate the harmonic analysis community and there were a number of papers that our
work stimulated. Most notable were the work of Jerison–Kenig355 and Koch–Tataru.413 An optimal result (from Ref. 355) says that one has
unique continuation for −Δ + V is V ∈ Lν/2loc (R

ν
) (with ν > 2). In terms of local Lp conditions, this is optimal, but it has been realized recently

(Garrigue225) that if ν = Nμ and V has an N body form, it is not optimal. One would hope that there is a result for Lp
loc when p > μ/2 rather

than p > ν/2 (which is bad for N very large). Ironically, the result of Schechter–Simon583 that p > μ (if μ > 4) suffices is among the strongest
results for this general N-body case. In any event, there is work remaining to be done.

I had first heard of unique continuation theorems as a graduate student in the context of Kato’s result380 that if V is a continuous
function on Rν so that ∣x∣ ∣V(x)∣ → 0 at infinity, then −Δ + V has no eigenvalues in (0,∞). In one of my first serious papers,610 I found a
result on no positive eigenvalues that allows V to be a sum of two pieces, V1 that obeys Kato’s condition and a piece V2 that obeys V2 → 0
and ∣x∣∂V2/∂x → 0 at infinity. For more on positive eigenvalues, see my review of Kato’s work in NRQM (Ref. 712, Sec. 12).

From Wightman, I had learned of the paper of Wigner–von Neumann755 that constructed an example of V going to 0 at∞ so that−Δ + V
has a positive eigenvalue. The example they actually wrote down has V(x) = O(∣x∣−2

) at infinity and violates Kato’s theorem! I discovered that
they had clearly used cos x/sin x = tan x, which caused a miraculous cancellation of the O(∣x∣−1

) terms! My paper seems to have been the first
to note the error and write down the correct explicit form they should have. At one point, I had to ask Wigner a question about something
else and I asked him about if he knew that this paper, written 40 years, before had this error. He thought for a moment and then replied “No, I
did not know” and after a pause “Johnny did that calculation.” I note that the construction of the analog of this example in dimension ν ≠ 1, 3
is not so straight-forward. It can be found in a paper I wrote many years later with Frank.203

Kato’s result says that on (0,∞), if limx→∞ x∣V(x)∣ = 0, then h = − d2

dx2 + V(x) has no eigenvalues in (0,∞), and many years later, Kiselev,
Last, and I405 proved that if limx→∞x∣V(x)∣ < ∞, the set of positive eigenvalues is discrete with only 0 as a possible limit point (indeed, the
sum of the positive eigenvalues, if any, must be finite). In Ref. 686, I constructed V ’s where x∣V(x)∣ had arbitrarily slow growth at infinity (in
particular, some for which it was known that the a.c. spectrum was [0,∞) by Kiselev403) with any desired uncountable set of positive energy
eigenvalues, even dense sets. I was motivated by an earlier paper of Naboko505 who was able to construct such examples so long as the set of
positive eigenvalues had the form En = κ2

n with the κn rationally independent. Hsu et al.326 have a recent review of physically relevant examples
with bound states in the continuum.

Next, I turn to scattering theory, in particular, the question of N-body asymptotic completeness (big problem 4) where my most signif-
icant result involves the Deift–Simon wave operators.142 To put it in context, I begin with a lightning summary of the high points of 2 and
N-body scattering. One needs to bear in mind that big problem 3 [absence of singular continuous (s.c.) spectrum] is often intimately related
to big problem 4 in that sometimes the techniques to solve them (namely, detailed analysis of the boundary values of the resolvent) are close;
indeed, Reed–Simon554 called the combination of the two strong asymptotic completeness.

In abstract scattering theory, one defines wave operators for a pair of self-adjoint operators by (as above, the funny ± convention is taken
from the physics literature and often the opposite to the convention in the mathematics literature)

Ω±(A, B) = lim
t→∓∞

eitAe−itBPac(B), (7.39)
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where Pac(B) is the projection onto those the subspace of those vectors whose spectral measure for B is purely absolutely continuous. The
insertion of Pac(B) (which is redundant in the usual case of two body physics where B = −Δ, A = −Δ + V with V short range) is a wonderful
realization of Kato,378 who understood that if we call Ω±(A, B) complete if and only if

ranΩ±(A, B) = Hac(A) ≡ ran Pac(A), (7.40)

then one has the following theorem:

Theorem 6.10. Suppose that Ω±(A, B) exist. Then, they are complete if and only if Ω±(B, A) exist.

The first mathematical results on the existence of wave operators was a simple argument of Cook,117 improved by Hack293 and Kuroda.428

The latter two got existence on Rν for V ’s decaying as ∣x∣−1−ε. The first completeness results were obtained by Kato378,379 and Rosenblum572

whose best result says that if A − B is trace class, then Ω±(A, B) exist so, by symmetry and Theorem 6.10, they are complete [see Ref. 712
(Sec. 13) for a lot more on the history and extension of the Kato–Rosenblum theorem]. By shifting from trace class to differences of resolvent
being trace class, these results imply completeness on R3 if V decays like ∣x∣−3−ε. It then took about ten years to get to solving big problems
3 and 4 for N = 2 and V bounded by ∣x∣−1−ε. This was first accomplished by Agmon3 (Agmon announced this at the 1970 International
Congress of Mathematicians); at the same conference, Kato386 announced the solution of big problem 4 for this class, extending some ideas of
Kato–Kuroda. Then, Kuroda430,431 realized that by borrowing one technical device from Agmon, their method also solved big problem 3 for
this class. For more on the history and details of this work, see Ref. 712 (Sec. 15).

Already in 1963, Faddeev187 obtained asymptotic completeness for certain three-body equations. Because his basic conditions were
written on the Fourier transform, it is difficult to write them in terms of the V ij, but his assumptions required decay faster than (1 + ∣x∣)−2−ε. He
also supposed the two-body subsystems did not have zero energy resonances. In any event, his work had limited impact on the mathematical
physics literature and his methods were never extended to N ≥ 4 nor were they a major factor in the eventual successful resolution of problems
3 and 4.

For decay faster than Coulomb, two body problems were well understood by 1972. It took another 15 years for the complete solution
of big problem 4 for general N-body systems. During that period, it was a major open question and several people, formally or informally,
announced solutions that turned out to have errors. At one point, Agmon wryly remarked to me “those whom the gods would drive mad, they
teach of the problem of N-body asymptotic completeness.” While I was certainly aware of the problem and several times did work related to
it, I never tried to systematically approach it because I did not see a fruitful approach. Two high points of the fifteen year intermediate period
were work of Enss and Mourre, each of which played important roles in the eventual resolutions. Because Mourre’s work is more connected
with big problem 3, I will postpone its discussion of it.

Enss180 revolutionized scattering, especially two-body scattering. At a heuristic level, scattering is a time-dependent phenomenon, but
prior to Enss, the most powerful results in quantum scattering used time independent methods (i.e., focus on resolvents rather than the
unitary groups)—Faddeev’s work and the Agmon–Kato–Kuroda work mentioned above. Enss used purely time-dependent methods without
any resolvents anywhere. He combined Cook’s method with two extra ingredients. The first was geometric, motivated, in part, my work with
Deift,142 discussed below, and the geometric approach to the HVZ theorem by Enss179 and me,639 discussed above. The other was to localize
in phase space. He did this while respecting the uncertainty principle by, in essence, projecting on spectral subspaces for the dilation operator,
A = 1

2 [x ⋅ p + p ⋅ x]. This suggested that a natural way of approaching his work was to use an eigenfunction expansion for A, i.e., the Mellin
transform, which is precisely the approach used by Perry534 in a thesis done under my direction.

I was taken with this work of Enss and talked it up using my then considerable influence. I wrote a long (50 page) article647 showing how
to apply it in a large number of scattering theory situations (Reed and I had just finished our scattering theory volume,554 so I knew of lots of
scattering problems beyond two-body NRQM). When Enss visited the Institute, we used some of these ideas to study total cross sections.181,182

Fifteen years after Enss’ work, his techniques were critical to an analysis by me and others of some intriguing examples of Neumann
Laplacians. Recall that Dirichlet and Neumann Laplacians are described most naturally in terms of quadratic forms (Ref. 710, Sec. 7.5).
Given an open set, Ω ⊂ Rν, one defines Q(−ΔΩN) to be the set of functions ψ ∈ L2

(Ω, dνx) so that ∇ψ ∈ L2
(Ω, dνx). The sesquilinear form

ψ ↦ ∫ ∣∇ψ∣
2dνx, where ∇ψ is the distributional gradient, defines a self-adjoint operator, −ΔΩN , the Neumann BC Laplacian for Ω. If we

restrict the form to the closure of C∞0 (Ω) in form norm, the corresponding operator is −ΔΩD , the Dirichlet BC Laplacian for Ω. If Ω
has a smooth boundary, the functions C∞ with Dirichlet or Neumann boundary conditions are an operator core for −ΔΩD and −ΔΩN ,
respectively.

As I will explain in Sec. IX, I had considered the case Ω = {(x, y) ∣ ∣xy∣ < 1} ⊂ R2 and had shown that despite the fact that Ω has infinite
volume, −ΔΩD has discrete spectrum. The intuition is that the horns got narrow so the lowest Dirichlet eigenvalue associated with cross sections
went to infinity. When chatting at a conference in Gregynog, Wales, Brian Davies, and I started discussing−ΔΩN . With Neumann BC, the lowest
eigenvalue is zero, so one expects one a.c. mode in each of the four horns. It was easy to construct wave operators to get existence, and we
realized that using Enss theory, we could prove136 that −ΔΩN had the a.c. spectrum of multiplicity exactly four (one for each horn).

The opposite phenomenon to Dirichlet Laplacians of infinite volume but the discrete spectrum is Neumann Laplacians with finite volume
and some essential spectrum. Already Courant–Hilbert119 had found bounded regions with 0 ∈ σess(−ΔΩN), and Hempel, Seco, and I305 had
shown that for any closed set S ⊂ [0,∞), there was a bounded Ω so that σess(−ΔΩN) = S; these examples had empty a.c. spectrum. Davies
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and I found that for Ω = {(x, y)∣x > 1, ∣y∣ < f (x)}, one has that −ΔΩN has a.c. spectrum of multiplicity one on all of [0,∞) so long as all of
k1(x) = ∣ f ′(x)∣, k2(x) = ∣ f ′(x)∣2 f (x)−1 and

V(x) =
1
4
(

f ′

f
)

2

+
1
2
(

f ′

f
)

′
(7.41)

are O(∣x∣−1−ε
) as x →∞. [In Sec. IX, I will discuss results of Ref. 350 on eigenvalue asymptotics when V(x) → ∞]. For example, if

f (x) = x−α,α > 0, one gets the a.c. spectrum even though if α > 1, then Ω has finite volume. I realized676 that one could wrap such a finite
volume horn up and construct a bounded region whose −ΔΩN had a.c. spectrum on [0,∞)!

Returning to the theme of general N-body asymptotic completeness, the big breakthrough and first solution was by Sigal–Soffer.607 The
paper uses in impressive combination of Mourre estimates, Deift–Simon wave operators, and phase space estimates motivated by Enss theory.
Unfortunately, as the MathSciNet review says It is disappointing that this important result has not received the exposition it deserves. The paper
contains numerous misprints, points of unclarity, obscure notation, and minor technical errors. Because the details of the proof are inaccessible
to all but the most dedicated specialist, there has been considerable speculation about the validity of the result. Fortunately, two experts who
have studied the paper thoroughly have assured the reviewer (open letter from Hunziker and Simon, dated September 1, 1987) that essentials
of the proof are correct. I should say a little more about my role in this. The 70+ page paper was clearly very important but also not ideally
written. Walter Hunziker and I felt a duty as leading figures (and also, because, if I recall, one or both of us were referees for the Annals)
to determine if the results were correct. I visited ETH in the summer of 1986, and for three weeks, I arrived about 10 in the morning and
worked with Walter until 3 in the afternoon (with a break for lunch) painfully plowing through the paper line by line. We found lots of little
errors—typically a lemma was wrong but when we figured out how it was used, the lemma and/or its proof could be slightly modified to work.
The authors had apparently decided to state each lemma in the most general form they could, often so general, it was now wrong. We made
numerous suggestions for changes, decided the paper was basically correct, and recommended publication even though we agreed that even
after changes it was not a model of exposition. When the Math Reviews reviewer contacted me, Walter and I produced a public document
vouching for the result.

Later proofs sharing some elements with Sigal and Soffer607 are due to Graf,266 Dereziński,161 and Yafaev.771 Coulomb and long range
potentials are treated in Refs. 161 and 608.

Having put it in context with this summary, I turn to exactly what Deift and I did in Ref. 142, a paper used in all the proofs mentioned
above.161,266,607,608,771 We proved a kind of N-body analog of Theorem 6.10. For any partition, C, we defined ∣r∣C in (7.24) as the minimal
distance between components. We also can define

ρC(r) = max
( jq)⊂C

∣rj − rq∣, (7.42)

which describes how far particles within the components are from each other. One defines functions J̃C for each C ∈ P, which are 1 in the
region where ∣r∣ > 1 and

ρC(r) ≤ [∣r∣C]1/2 (7.43)

and supported in the union of the set where ∣r∣ ≤ 1 and the set where (7.43) holds with the right-hand side multiplied by 2. Thus, when ∣r∣ is
large, points in the support have distances within the clusters much less than the average distance between particles. Given two partitions C
and D, we write D ▹ C if D is a refinement of C, i.e., if every subset in C is a union of sets in D. Deift and Simon define

JC = J̃C − ∑
D▹C, D≠C

J̃D, (7.44)

which eliminates configurations where the particles in subsets of D are very close to each other, while particles in different subsets of D, but in
the same subset of C, are quite far but still small compared to the maximum intercluster distance. The Deift–Simon wave operators are defined
by

Ω±C = s − limt→∓∞eitH(C)JCe−itHPac(H). (7.45)

If this limit exists and, say, ψ = Ω+C φ, for φ ∈ Hac(H(C)), then as t → −∞, e−itHψ is asymptotic to JCe−itH
(C)φ. If all the component H(Cj)’s

have no s.c. spectrum and obey asymptotic completeness, then JCe−itH
(C)φ will look exactly like a sum of e−itHηt for t a threshold associated

with C and suitable ηt ∈ ranΩ+t . Thus, one expects, and Deift–Simon prove, an analog of Theorem 6.10.

Theorem 6.11 (Ref. 142). Suppose H is an N-body quantum Hamiltonian so that all the proper subset Hamiltonians H(C) have no
singular spectrum and obey asymptotic completeness. Then, H is asymptotically complete if and only if all the wave operators Ω±C exist.

This clearly suggests an approach to proving asymptotic completeness inductively.
I should say something about the origin of this work with Percy Deift. Percy, who is actually a year older than me, grew up in South

Africa and, encouraged to study practical subjects, got a master’s degree there in Chemical Engineering. When he got interested in more
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theoretical things, he decided to go Princeton, applying to a strange program in applied math. At the time Princeton had no Applied
Math Deptartment, Martin Kruskal, because of his famous work on the Schwarzschild solution, had an appointment in astronomy, but
his true love was mathematics (later, once his soliton work became famous, I persuaded my colleagues in mathematics to give him a
joint appointment, but that is another story). He convinced the administration to allow him to run a Ph.D. program where students had
to have a home department although they could do their thesis work in any area and their preliminary exams were in applied math with
various faculty in other departments on their exam committee. It took students who often would not have been able to get into the depart-
ments in which they did their thesis work by the front door. Its students were a mixed bag. Some of the most painful qualifying exams I
ever served on were in that program, students who were woefully prepared and did not come close to passing. On the other hand, it had
some spectacular successes. Ed Witten, who would never have been admitted to the math or physics departments because he had almost
no courses in those subjects when he applied, did get into Kruskal’s program (one of the decisions I made as the director of graduate stud-
ies in Physics was, after getting rave reviews from some professors who had him in courses, to allow him to transfer to the regular physics
track). Percy Deift, who has been my most successful student, was in Kruskal’s program, originally with Chemical Engineering as a home
department.

I was on leave in Percy’s first year in Princeton and he came to me in the middle of his second year saying that he wanted to do a thesis
under my direction. I was skeptical but after consulting Lon Rosen, with whom he had taken a math methods course, I said I would give him a
try. We discussed various open problems in the then several areas I was working on. He came back and told me that he would like to work on
N-body asymptotic completeness. I told him that was a totally crazy problem for a graduate student to work on without some wonderful idea
that looked almost sure to lead to success—it was too risky that it would lead to total failure after several years. He went away and came back
and said that he understood it was too hard but could I suggest some problems that would lead in the direction of eventually solving N-body
asymptotic completeness. His approach made me decide that maybe this student might get somewhere after all. In the end, his nice thesis was
in another direction,137 but we agreed to discuss scattering theory on the side. This was before the work that Enss and I did on HVZ or Enss’
work, and we wound up discovering the usefulness of using geometric ideas (indeed, Ref. 142 was motivation for my geometric approach
to HVZ639). We first wrote a cute paper141 that used trace class methods, Dirichlet decoupling, and path integral techniques to prove that
(positive) local singularities were irrelevant to questions of the existence and completeness of two-body Schrödinger operator wave operators,
and our second paper was Ref. 142 (we wrote several other papers together later on in his career).

That completes what I want to say about big problem 4, so I turn to big problem 3 and the work I did with Perry and Sigal on extending
Mourre theory to N-body systems.535 Around 1977, Eric Mourre wrote a preprint and submitted it to one of the then editors of Communi-
cations in Mathematical Physics handling Schrödinger operators (starting two years after that, I served as the main editor for that subject for
more than 35 years). Then, as now, an editor has the freedom to look over a manuscript and reject it without any refereeing and the editor
decided that Mourre’s paper was not important enough for CMP and rejected it. Mourre placed the manuscript in his desk drawer rather than
submit it elsewhere. I also got the preprint, thought it might be interesting, but was not sure since it was hard to follow. I was short on time,
so I passed copies on to two of my former students asking them to take a careful look and let me know if there was anything interesting there.
They each eventually reported there did not seem to be anything worth spending a lot of time on. Despite these initial opinions, the paper was
one of the most significant in the study of N-body NRQM spectral theory!

Part of Mourre’s motivation was work by Lavine442–445 on N-body systems with repulsive potentials who, in turn, was extending the
work of Putnam,544 Kato,382 Weidmann,760 and Kalf.370 Lavine and Mourre centrally use the generator of dilations (which is also central, in a
different way to the work of Enss and Perry as I’ve discussed),

A =
1
2i
(x ⋅∇ +∇ ⋅ x). (7.46)

What makes repulsive potentials special is that one has a positive commutator

[H, iA] > 0, (7.47)

where H is the N-body Hamiltonian. Putnam (with a later slick proof of Kato) proved that for bounded operators, positive commutators
implies that both have purely a.c. spectrum (related to this and useful in Mourre theory is the Virial theorem, which is where the work of
Weidmann and Kalf comes in). Lavine figured out how to modify things to apply to the unbounded operators that enter in (7.47) and also
how to sometimes get scattering theory results using an extension of Kato’s smoothness theory.381,382

In his paper, what Mourre realized is that one could get a lot from a local version of (7.47). In particular, he considered what have come
to be called Mourre estimates,

PΔ(H)[H, iA]PΔ(H) ≥ αPΔ(H) + K, (7.48)

where Δ = (a, b) is an open interval, PΔ is a spectral projection, α > 0, and K is a compact operator. First of all, Mourre showed that when
(7.48) holds, H has no s.c. spectrum on Δ and that H has only finitely many embedded eigenvalues in any [a + δ, b − δ], δ > 0, each of finite
multiplicity. Second, he showed that (7.48) held for fairly general three-body Schrödinger Hamiltonians with decaying potentials for Δ any
interval avoiding 0 and the two-body thresholds (which means eigenvalues of two-body subsystems).
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In one sense, it is surprising that Mourre’s path breaking work was not rapidly recognized, but there are several reasons. First, the paper
was in French (the CMP editor was French so that was not an issue on the rapid initial rejection). It was partly the originality of many of the
ideas. Estimate (7.48) with the compact error and its proof via differential inequalities were so new that it was a little difficult to grasp what
was going on. However most of all, the paper was terribly written. It was often unclear what the author was doing and what his steps meant.

Fortunately, the paper did not merely wind up in his desk drawer because Mourre gave talks on it at conferences and, at one, Israel Sigal
realized that there might be something important here (and indeed, Mourre estimates were a critical step in Sigal’s 15 year successful quest to
prove N-body asymptotic completeness). Hence, Sigal decided to try and extend Mourre’s work to N > 3. The first problem he faced is that
the preprint was in French and he did not speak the language. However, he learned that Peter Perry, who was then my graduate student, was
fluent in French, so they started working together, and when trying to overcome some technical issues, they decided to ask me to join them.
By exploiting some rather complicated arguments, we were able to prove the following theorem:

Theorem 6.12 (Ref. 535). Let H be a reduced N-body Hamiltonian with two-body potentials obeying

∣Vij(x)∣ ≤ C(1 + ∣x∣)−1−ε (7.49)

for some C, ε > 0. Then, the closure of the set of thresholds is countable, and a Mourre estimate of the form (7.48) with A given by (7.46) holds
for any closed interval in the complement of the closure of the thresholds. This implies that H has no singular continuous spectrum and that any
such closed interval has at most finitely many eigenvalues, each of finite multiplicity.

Remarks.

1. (7.49) is stated for simplicity of exposition; local singularities are allowed and one can even have slower than ∣x∣−1 decay if the first or
second derivative decays as in (7.49).

2. We first of all showed (following Mourre) that Mourre estimates implies the absence of s.c. spectrum and finiteness of embedded
eigenvalues. One then gets the result inductively on thresholds, so the key is the proof of the Mourre estimates, which in our paper is
quite involved.

3. Prior to our work, with one exception, all results on the absence of the s.c. spectrum were single channel, requiring either repulsive
potentials442–445 or weak coupling.341 The exception is the results of Balslev–Combes56 using dilation analyticity that required analytic
potentials. Our work was the first that, for example, handled C∞0 potentials.

This solved big problem 3 in great generality and provided tools of use in scattering theory. After we obtained our results, I contacted
Mourre to find out where his paper had been published. When I learned it was sitting in his drawer, with his permission, I contacted the
original rejecting editor and the editor-in-chief of CMP (where I was, by then, an editor) to get their OK to have the paper reconsidered. Peter
Perry (with Mourre’s permission) translated the paper into English, and it appeared as Ref. 504. Before leaving the subject of Mourre theory, I
should mention two lovely papers of Froese–Herbst and one paper for which I was a coauthor. In Ref. 207, Froese–Herbst found a considerably
streamlined proof of N-body Mourre estimates, and in Ref. 208, they used Mourre estimates to obtain some remarkable results on exponential
decay. In Ref. 69, Bentosela–Carmona–Duclos–Simon–Souillard–Weder used Mourre theory (but with A = i∂/∂x1, which works well because
of the Fx1 term) to prove that a Stark Hamiltonian, −Δ + V(x) + Fx1, with V fairly smooth and F1 ≠ 0, has no s.c. spectrum and only isolated
point spectrum of finite multiplicity (in 1D, a separate argument proved no eigenvalues).

That completes what I will say about few-body quantum systems. Since this is the main section that includes a discussion of scattering
theory, I will use the rest of this section to discuss some other work of mine connected to scattering starting with inverse scattering. My
most important inverse result involves an alternative to the Gel’fand–Levitan227 approach to determining the potential, V , for h = − d2

dx2 + V
on [0,∞) with Dirichlet boundary conditions at 0 from its spectral measure (in the physics literature, this is usually discussed in terms of
determining V from a reflection coefficient, bound state energies and norming constants, but they determine the spectral measure, i.e., the
measure dρ with

∫ f (x) dρ(x) = π−1 lim
ε↓0 ∫

f (x)⟨δ′, (h − x − iε)−1δ′⟩ dx, (7.50)

and it is the process ρ↦ V that concerned Gel’fand–Levitan). I wrote three papers on this alternate approach (the second and third with,
respectively, Gesztesy and Ramm)242,547,688 and a fourth with Gesztesy244 applying it.

To understand my motivation, one needs to understand the discrete analog of this question—going from a probability measure of
bounded support on R to the Jacobi parameters, {aj, bj}

∞
j=1, where each aj is strictly positive and each bj is real [see 705 (Sec. 1.2) for discussion

of Jacobi parameters]. The simplest way is as recursion coefficients for orthogonal polynomials on the real line (aka OPRL): given dμ, one
forms the orthonormal polynomials and finds the recursion parameters [Ref. 705 (1.2.15)]. However, there is another method associated with
19th century work of Jacobi, Markov, and Stieltjes. If dμ is a measure on R of compact support, one defines the m-function by

m(z) = ∫
dμ(x)
x − z

. (7.51)
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The operator of multiplication by x in L2
(R, dμ) represented in the OPRL basis yields a tridiagonal matrix with bn on diagonal and an off

diagonal called a Jacobi matrix. Mark Kac once gave talks around the topic he described as “be wise, discretize.” Indeed, around 1980, there
was a notable shift in my work and the work of many mathematical physicists (and even earlier in some of the condensed matter theoretical
physics literature) toward difference rather than differential operators, which are often technically simpler. On the half line, this was often
discrete Schrödinger operators that are Jacobi matrices with an all equal to 1. One also studies its analogs on all of Z and on Zν and the more
general Jacobi case. Around 2000, when I added orthogonal polynomials on unit circle (aka OPUC) to my repertoire (see Refs. 695 and 696),
the spectral theory of the associated operator theory and its matrix representation [the CMV matrix discussed in Ref. 695 (Chap. 4)] also
became an interest.

If dμ has Jacobi parameters {aj, bj}
∞
j=1, one lets dμ1 be the measure with Jacobi parameters {aj+1, bj+1}

∞
j=1 where we drop the first two

parameters and knock indices down. One can prove that the m-function, call it m1 of dμ1, is related to m by [see Ref. 705 (Theorem 3.2.4)]

m(z) =
1

−z + b1 − a2
1 m1(z)

. (7.52)

This suggests another way to recover the Jacobi parameters from dμ. From dμ, compute 1/m(z) using (7.51). By (7.52), the leading Laurent
series at infinity is −z + b1 − a2

1z−1
+O(z−2

), so one finds the first two Jacobi parameters. Then, use (7.52) to compute m1 and iterate. The
iteration of (7.52) gives the continued fraction,

m(z) =
1

−z + b1 −
a2

1

−z+b2−
a2

2
−z+b3...

, (7.53)

a representation that goes back to Jacobi, Markov, and Stieltjes. In particular, Stieltjes proved that this expansion converges on the complement
in C of the convex hull of the support of dμ; see Ref. 710 (Sec. 7.7). For this reason, the solution of the inverse problem (of going from the
measure back to the Jacobi parameters from the spectral measure) is called the continued fraction approach as opposed to the first approach
called the OP approach.

As Gel’fand–Levitan remark in their paper, their approach to the inverse problem for Schrödinger operators is an analog of the OP
approach to the inverse Jacobi matrix problem. About 1985, I began to wonder what the Schrödinger operator analog was to the continued
fraction approach.Reference 688 is one of the papers I am proudest of for the following reason. I have felt that one of my weaknesses is a lack
of persistence. If I could not solve some problem fairly quickly, I would drop it, and while I might not totally ignore it, I did not usually return
to it without some really good idea in advance. However, this question is one I had spend a few weeks thinking about every few years until I
finally solved it 1996–97! Early on, I realized that there was an analog of (7.52) for the continuum case, namely, the celebrated Riccati equation
for the Weyl m-function,

dm
dx
(z, x) = V(x) − z −m(z, x)2, (7.54)

where

m(z, x) =
u′(x, z)
u(x, z)

(7.55)

[when Im(z) > 0], with u being the solution of −u′′ + Vu − zu = 0 that goes to zero as x →∞. The issue was deciding what might be the
continuum analog of a continued fraction, and it turned out to be a Laplace transform!

These papers also have results for operators on [0, a] with a < ∞, but for simplicity, I will (except for some remarks) discuss the case
where V is bounded in L1

([0,∞)) and continuous. In that case, I proved the following theorem:

Theorem 6.13 (Ref. 688). Let V be bounded in L1
([0,∞]) and continuous, and let m(z, x) be the Weyl m-function (7.55). Then, there

exists a jointly continuous function A(α, x) on (0,∞) × [0,∞) so that one has that

m(−κ2, x) = −κ − ∫
∞

0
A(α, x)e−2ακ dα (7.56)

whenever κ > 1
2∫
∞

0 ∣V(x)∣ dx. Moreover, A(α, x) depends only on {V(y)∣x ≤ y ≤ x + α} and

lim
α↓0

A(α, x) = V(x), (7.57)

and one has that
∂A(α, x)

∂x
=
∂A(α, x)

∂α
+ ∫

α

0
A(β, x)A(α − β, x) dβ, (7.58)

where if V is C1, then A is jointly C1 and this equation holds in classical sense, and in general, it holds in a suitable weak sense.
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Remarks.

1. The solution of the inverse problem should be clear. To go from m(z, x = 0) to V , one uses (7.56) to obtain A(α, x = 0) using uniqueness
of the inverse of Laplace transform [A is determined by asymptotics of m so, one only needs (7.59) and not the stronger (7.56)]. Then,
using the integrodifferential equation (7.58), one finds A(α, x) for all x [indeed, A(α, x) is determined by A(β, x = 0) for β ∈ [0,α + x]].
Then, one finds V using (7.57). The result is that A(α, x = 0) for α < B determines V(y) for y < B and vice versa.

2. Continuity of V is not critical. One shows that for discontinuous V , one has that A(α, x) = V(x + α) + E(α, x), where is E is continuous
and limα↓0 E(α, x) = 0 so if V is only locally L1, one has that (7.57) holds in the sense of local L1 convergence rather than pointwise in x.
Moreover, E is smoother than V , so, for example, if V is locally C1 with kinks, A has kinks precisely along the lines where x + α is a kink
point.

3. Simon688 discusses V ’s that are locally L1 and (more or less) bounded from below. Gesztesy–Simon242 extended the theory to arbitrary
locally L1 potentials, even those that are limit circle at∞. In place of (7.56), for general V , one has the formula

m(−κ2, x) = −κ − ∫
a

0
A(α, x)e−2ακ dα +O(e−(2a−ε)κ

) (7.59)

for all ε > 0, a > 0. This formula, for each x, determines A(α, x) from m(−κ2, x). This formula alone does not go directly from A(⋅, x) to m(⋅, x),
but one can do that by going through the inverse construction discussed in Remark 1. Reference 242 also has an explicit way to go directly
from the spectral measure, dρ to A(⋅, x = 0), namely,

A(α, x = 0) = −2∫
∞

−∞
λ−1/2 sin(2α

√
λ) dρ(λ) (7.60)

(the integral diverges so the formula requires a proper interpretation!). Ramm–Simon547 discussed asymptotics of A(α, x = 0) as α→∞when
V(x) has very nice behavior at infinity. For further developments, see the work of Gesztesy–Sakhnovich234 and Remling.562

One important consequence of this work is a local version of the following theorem of Borg78 and Marchenko:484

Theorem 6.14 (Borg–Marchenko theorem). Let V1 and V2 be two locally L1 functions on [0,∞), and let m1, m2 be the m-functions
associated with − 1

2
d2

dx2 + Vj. Then, V1(x) = V2(x) for all x ∈ [0,∞)⇔ m1(z) = m2(z) for all z ∈ (−∞, 0) with ∣z∣ large.

The local version, which originally appeared in Ref. 688, is as follows:

Theorem 6.15 (Local Borg–Marchenko theorem). Let V1 and V2 be two locally L1 functions on [0,∞), and let m1, m2 be the m-functions
associated with − 1

2
d2

dx2 + Vj. Then, V1(x) = V2(x) for all x ∈ [0, a) ⇔ asymptotically for z ∈ (−∞, 0), and one has that

∀ε>0 ∃C,R>0 ∀z∈(−∞,R) ∣m1(z) −m2(z)∣ ≤ Ce−∣z∣(2a−2ε). (7.61)

This follows easily from Theorem 6.13 because (7.61) is equivalent to A1(α, x = 0) = A2(α, x = 0) for all x ∈ [0, a], and by the differential
equation, that happens if and only if V1(x) = V2(x) for all x ∈ [0, a]. While this proof is quite illuminating, it does require one to develop
an elaborate machinery. In Ref. 243, Gesztesy–Simon found a simple direct Proof of Theorem 6.15 and then Bennewitz68 showed that an
argument based on Borg’s method in Ref. 78 provides a really short proof.

One memorable aspect of this work was a talk I gave about it at Rutgers while the work was being written up. I was excited to give it
because Gel’fand (of Gel’fand Levitan and other fame), who had moved there after he left Russia, was in the audience. He asked some pointed
questions, made some positive comments, and, in particular, pointed out that one positive element was that it was easy to extend to matrix
valued potentials. That was in the fall of 1997 when I was 51 and Gel’fand was 84. I remember thinking to myself “Gee, I hope I’m that sharp
when I’m 84.” I mentally paused and then thought “No, you wish you were that sharp when you were 48!”

Using Refs. 242 and 688, Gesztesy and I proved244 the following theorem:

Theorem 6.16. Let V0 and V1 be two potentials on (0,∞) so that the two operators − 1
2

d2

dx2 + Vj, j = 0, 1 both have discrete spectrum,
which are identical. Then, there is a smooth family of potentials V t ; 0 ≤ t ≤ 1 interpolating between them, which each have the same spectrum.

Remarks.

1. The proof shows that if V j are both Ck, then the V t ’s we construct are also Ck.
2. Using A’s, the proof is almost trivial. One takes At = tA1 + (1 − t)A0!
3. This result is interesting because the analogous result on the whole line is open. For example, it is not even known if the C∞ potentials

going to∞ at ±∞ whose spectrum is the same as the harmonic oscillator is an connected set!
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Useful tools in inverse theory are the so-called trace formula that provide the potential as an integral of some kind of spectral or scattering
object. Gesztesy and I236 found a fairly general trace formula with further developments in papers we wrote with others.231,233,237 If V is
a continuous function on R bounded from below, one defines H = − 1

2
d2

dx2 + V and HD;x is the same operator with a Dirichlet boundary
condition forced at x. ξ(x, λ) is then the Krein spectral shift [see, e.g., Ref. 710 (Secs. 5.7 and 5.8)] going from HD:x to H. Thus,

Tr(e−tH
− e−tHx;D) = t∫

∞

0
e−tλξ(x, λ) dλ, (7.62)

and the general trace formula in Ref. 236 is that

V(x) = lim
α↓0
[E0 + ∫

∞

E0

e−αλ[1 − 2ξ(x, λ)] dλ] (7.63)

for an E0 below the bottom of the spectrum of H.
Another set of inverse type problems that I studied in five papers with Gesztesy (one also jointly with Del Rio who first told me of

Theorem 6.17)145,238–241 was motivated, in part, by a remarkable theorem of Hochstadt–Lieberman315 (we state this with Dirichlet boundary
conditions and continuous V although they hold more generally).

Theorem 6.17. Let V be a continuous on [0, 1], and let H be − 1
2

d2

dx2 + V on L2
(0, 1; dx) with u(0) = u(1) = 0 boundary conditions. Then,

the set of eigenvalues of H and V on [0, 1/2] determine V.

Typical of our results is that if one considers the H operator with boundary conditions u(a) = u(b) = 0 with 0 ≤ a < b ≤ 1 on L2
(a, b; dx),

then for a ∈ (0, 1), the spectra of the three operators on [0, a], [a, 1], and [0, 1] determine V!241 The point of our papers is that eigenvalues
are zeros of suitable m-functions, and factorization theorems for analytic functions together with known asymptotics (and some partial
information on V) determine m, and so by a version of Borg–Marchenko for bounded intervals, they determine V . For some results, we also
use Phragmén–Lindelöf theorems to allow us to only need information on some of the eigenvalues.

I close this subsection on scattering theory ideas by mentioning two of my papers that have somewhat unusual applications of the
trace class completeness theory (the Kato–Rosenblum theorem mentioned earlier in this section). One of these exploits an extension of the
Kato–Rosenblum trace class scattering theorem due to Pearson:530

Theorem 6.18. Let A and B be two self-adjoint operators and J a bounded operator so that AJ − JB is trace class. Then,

Ω±(A, B; J) = lim
t→∓∞

eitAJe−itBPac(B) (7.64)

exist.

Remarks.

1. For a proof and a discussion of implications, see the work of Reed–Simon (Theorem XI.7).
2. If A and B are unbounded, one has to worry about the meaning of “AJ − JB is trace class.” The more precise hypothesis is that there is a

trace class operator C so that for all φ ∈ D(A) and ψ ∈ D(B), one has that

⟨φ, Cψ⟩ = ⟨Aφ, Jψ⟩ − ⟨φ, JBψ⟩,

3. In applications, it is a useful (and easy to prove) fact that if J is compact, the limit in (7.64) exists and is 0.
4. One example that shows the power of Pearson’s extension is that it implies that if (A + i)−1

− (B + i)−1 is trace class, then the ordinary
wave operators (7.39) exist and are complete (a result sometimes called the Birman–Kuroda theorem). For this assumption implies the
one of Pearson’s theorem with J = (A + i)−1

(B + i)−1. Then, using Remark 3, we get the existence for J = (B + i)−2. Applying that limit
to vectors of the form (B + i)2ψ proves the existence of the ordinary wave operators, and then Theorem 6.10 implies completeness.

5. The following extension (and corollary of) of Pearson’s theorem is useful: if

(A + i)−1
[AJ − JB](B + i)−1 (7.65)

is trace class, then Pearson’s theorem applies with J1 = (A + i)−1J(B + i)−1, and by mimicking the argument in Remark 4, one sees that
the limits in (7.64) exist.

Davies and I134 studied very general 1D Schrödinger operators, H = − d2

dx2 + V . Let Jr be a smooth function that is 0 on (−∞,−1) and 1
on (1,∞) and Jℓ = 1 − Jr . Then, under great generality on V (e.g., any bounded V ; see below), one sees that Pearson’s theorem implies that
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Ω±(H, H; Jr) andΩ±(H, H; Jℓ) = 1 −Ω±(H, H; Jr) exist and it is not difficult to show that they are projections P±r and P±ℓ . Letting H±r = ran P±r
(and similarly for ℓ), one has the following theorem:

Theorem 6.19 (Ref. 134). Let V be a potential on R whose positive part is in L1
loc and negative part is a form bounded perturbation of − d2

dx2

with relative bound less than 1. Let Hac be the absolutely continuous subspace for H. Then,

Hac = H−r ⊕H−ℓ = H
+
r ⊕H+ℓ . (7.66)

Moreover, if φ ∈ H−r , then as t →∞, one has that for any R, the probability that e−itHφ lies in {x∣x < R} goes to zero and similarly for the other
four subspaces.

Remarks.

1. For discussion of form bounded perturbations, see, for example, Ref. 710 (Sec. 7.5). Under the hypotheses, one can define H as a closed
form sum on Q[− d2

dx2 ] ∩Q(V+).
2. What this theorem says is that every φ ∈ Hac is the sum of a piece that goes in x to plus infinity as t →∞ and a piece that goes to minus

infinity. Similarly, there is a decomposition as t → −∞.
3. There are also results in Ref. 134 on operators on Rν, which are periodic in all directions but one.
4. Reference 134 also has a powerful method for sometimes eliminating the s.c. spectrum called the twisting trick. I will not say more

about it, except to note that subsequently, Davies132 used a variant for a penetrating analysis of double well Hamiltonians, a subject I
will discuss further in Sec. IX.

Once you have this set up, there is a natural notion of reflectionless: we say that a potential is reflectionless if and only if H+ℓ = H
−
r , that is,

all states that come in from the left go out entirely on the right with no reflection. Deift and I143 conjectured in 1983 that a 1D almost periodic
Schrödinger operator is reflectionless in this sense. A different notion of reflectionless arose in the theory of solitons [see, for example, Ref. 517
(Chap. II)], and there has arisen a huge literature on this notion capped by Remling’s characterization563 of right limits of the a.c. spectrum
mentioned in the remarks after Theorem 6.3. In particular, a 1D Schrödinger operator, H, is called spectrally reflectionless if and only if for all
x and Lebesgue a.e. E in the a.c. spectrum of H, one has that (with G being the Green’s function, i.e., the integral kernel of the resolvent of H),

lim
ε↓0

Re G(x, x; E + iε) = 0. (7.67)

In 2010, more than 25 years after the conjecture of Deift–Simon, Breuer, Ryckman and Simon82 proved that conjecture by proving the
much more general (they also have this result for Jacobi matrices and two sided CMV matrices).

Theorem 6.20 (Ref. 82). A one-dimensional Schrödinger operator is spectrally reflectionless if and only if it is reflectionless in the sense of
Davies–Simon.

The other trace class paper that I should mention is by Simon and Spencer.716 Typical of our results is the following theorem:

Theorem 6.21 (Ref. 716). Let h be a discrete Schrödinger operator on R so that lim supn→∞∣bn∣ = lim supn→−∞∣bn∣ = ∞. Then, h has no
a.c. spectrum.

Remarks.

1. I want to emphasize that this involves lim sup rather than lim. If it were lim, the spectrum would be discrete, but it is easy to construct
examples with the lim sup condition but spectrum all of R. This result says that tunneling through high barriers destroys the a.c.
spectrum, which is an intuitive result.

2. The proof is an easy application of the Birman–Kuroda theorem. One picks a two sided subsequence, {nj}
∞
j=−∞, going to ±∞ as j→ ±∞

and so that ∑∞j=−∞∣bnj ∣
−1
< ∞ and by simple estimates shows that if h∞ is h with the sites at all nj removed (what you get if bnj were

taken to ±∞), then (h + i)−1
− (h∞ + i)−1 is trace class. Hence, since h∞, as a direct sum of finite matrices, has no a.c. spectrum, neither

does h.
3. Simon–Spencer716 used this idea in many other ways, not only the obvious ones like continuum Schrödinger operators where the

barriers not only have to be high but also not too narrow but also some limited results in higher dimensions. There is even a proof that
certain one-dimensional random discrete Schrödinger operators have no a.c. spectrum (as we will recall in Sec. XII, more is true).

4. Once I started working in the theory of orthogonal polynomials, I learned that Dombrowski166 had the same idea eleven years prior
to us in a different but closely related (and also simpler!) context. In particular, she considered Jacobi matrices, J, and proved that if
lim infn→∞an = 0, then J has no a.c. spectrum. For one picks a subsequence nj so that ∑∞j=1 anj < ∞. Dropping those anj ’s gives a trace
class perturbation, which turns the matrix into a direct sum of finite matrices and one uses the Kato–Birman theorem!
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I close this section on N-body quantum mechanics by mentioning that my books by Reed–Simon553–555 and Cycon et al.124 have been a
useful introduction to many researchers trying to learn about the subject.

VIII. MAGNETIC FIELDS IN NRQM
One of the things that made the 1970s so fruitful for my research is that I kept finding subareas where mathematical physicists had not

looked, so I could wander around an orchard and pick the low hanging fruit and write papers, which, because they set the framework, could
be widely used and quoted later. One of these areas was physics of NRQM with magnetic fields where Avron Herbst and I wrote a series of
papers34–37 with lots of intriguing results, a major part of this section. The basic objects studied are magnetic Hamiltonians,

H(a, V) = −(∇ − ia(x))2
+ V(x). (8.1)

It may seem strange to imply that there was not earlier work on this subarea, given that, for example, fifteen years before, Ikebe–Kato339

had proven a fairly general result on self-adjointness in magnetic field, at least when the vector potential, aj(x), is C2. Kato, as discussed in
Sec. VII, included magnetic fields in his Kato inequality paper as did some of my followup work. However, this earlier work focused almost
entirely on self-adjointness or issues where one treated the magnetic vector potential as just a coefficient in the PDE but did not focus on the
physics underlying the magnetic field nor the special roles of gauge invariance nor the role of the non-commutativity of the components of
−i∇j − aj. We were really the first researchers to look at these problems as mathematical physicists rather than as mathematicians.

Avron and Herbst were following up on their earlier beautiful work on constant electric field.31 They may have asked me to join them
for magnetic fields because of my earlier work about a year before related to Theorem 6.9. To begin with, I proved the following theorem:

Theorem 7.1 (Ref. 632). Let

E(a, V) = inf
φ∈L2(Rν)

⟨φ, H(a, V)φ⟩. (8.2)

Then, for any a, V, we have that

E(a, V) ≥ E(a = 0, V). (8.3)

Remarks.

1. “Any a, V ,” of course, means for which one can reasonably define the operators and for which they are bounded below.
2. In other words, energies go up if one turns on any magnetic field.
3. Formally, the proof is easy: if φ = ∣φ∣eiψ , then (∇ − ia)φ = (∇∣φ∣ − ia∣φ∣ + i∇ψ∣φ∣)eiψ so ∣∇ − i a)φ∣ ≥ ∇∣φ∣. Squaring and integrating, one

gets

⟨φ, H (a, V))φ⟩ ≥ ⟨∣φ∣, H (a = 0, V))∣φ∣⟩, (8.4)

from which (8.3) results. A rigorous proof is not much harder.

Since (8.4) involves ∣φ∣ and if φ is antisymmetric in particle coordinates, ∣φ∣ is symmetric, and this argument works for bosons but not
fermions. Moreover, if a particle has spin, one adds a σ ⋅ B term that destroys (8.3), and the theorem only holds for spinless particles [in
fact, Lieb (his result and proof were published as an the appendix to Ref. 34) proved in constant magnetic field for the Pauli equation of
spin 1

2 electrons, and energies went down when magnetic fields are turned on; for a while, there was a conjecture that for the Pauli equation
Theorem 7.2 below held with the direction of the inequality reversed for general magnetic field but Avron and I44 found a counterexample], so
I wrote a paper entitled “Universal Diamagnetism for Spinless Bosons” and submitted it to Phys. Rev. Lett. The referees report was memorable.
Essentially, it said Since there are no stable spinless bosons in nature, the result of this paper is of limited physical applicability. However, it is nice
to see something nontrivial proven in just a few lines, so this paper should be accepted as an example to others. So the paper was accepted!632

The next step illustrates the dynamics of the brown bag lunch at Princeton. At one, I described Theorem 7.1 and mentioned that I con-
jectured that this was a zero temperature result and that there should be a finite temperature result that was an inequality between integral
kernels of semigroups, and I was working on it. Almost immediately, Ed Nelson interjected: “You know that follows from the stochas-
tic integral magnetic field version of the Feynman Kac formula.” Stirred by this, I found a direct proof from Kato’s inequality, which, in
typical fashion, Ed refused to be a coauthor of. These inequalities that I dubbed diamagnetic inequalities are used often in the study of quan-
tum mechanics in magnetic fields (some tried to call them Nelson–Simon inequalities but my name was catchier). We have the following
theorem:

Theorem 7.2 (diamagnetic inequalities). Let a ∈ L2
loc, V+ ∈ K loc

ν , V− ∈ Kν. Then, C∞0 (Rν
) is a form core for H(a, V) and pointwise

∣ exp[−tH(a, V)]φ∣ ≤ exp[−tH(a = 0, V)]∣φ∣. (8.5)
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The reader will recognize that this follows from Theorem 6.9 and (6.32). Of course, this is only if a is smooth. The full result I proved
in the work of Simon645 is obtained by using the Trotter product formula and gauge transformations. Many years later, Hundertmark and
I332 wrote a paper that proved diamagnetic inequalities for differences of semigroups with Neumann and Dirichlet boundary conditions. This
allowed a quick proof of invariance under change of boundary condition of the density of states in magnetic field, something whose prior
proofs had been complicated. This paper also had new quadratic forms proof of diamagnetic inequalities.

I turn now to the results in the papers with Avron and Herbst. A fraction of them specifically discuss constant magnetic field. Classically,
2D electrons in such a field go in circles in two dimensions, while in 3D, they can move out to infinity in the direction of the field. Quantum
mechanically, one has the celebrated Landau levels—in the 2D pure point spectrum (although of infinite multiplicity). As we will see, this
produces various enhanced binding scenarios. Here are some of the main results.

1. Center of mass reduction. The physics of N particles in constant magnetic field is invariant under translations of all of the particle
coordinates, but the mathematics of the reduction can be very different from what is described in Theorem 6.1. If the total charge is
not 0, the unitaries associated with translations in different directions perpendicular to the field no longer commute but only commute
up to a phase. Put differently, the components of the conserved generators of translation (called quasimomentum) obey canonical
commutation relations. It is surprising that this subject was not worked out in the physics literature before us, but it was not. Many
of the citations of this paper are in the physics literature as seen by the fact that it has 355 citations on Google Scholar but only 26 on
MathSciNet!

2. Borel summability and dilation analyticity of atoms in constant magnetic field. In paper III,36 Borel summability of the perturbation
series in magnetic field strength for constant field is proven for eigenvalues of multielectron atoms, which are discrete and simple on the
space, where Lz , the total azimuthal angular momentum about the axis of the field, is fixed. Reference 34 discusses dilation analyticity
for hydrogen in a constant magnetic field, and Ref. 36 discusses this for multielectron atoms. Stability is a key technical issue. These
results (and more for hydrogen in constant field) were announced in Ref. 32.

3. Large B. Reference 37 discusses asymptotic behavior for hydrogen in a large constant field B as ∣B∣ → ∞. Because terrestrial magnetic
fields in natural units are tiny, this is of interest only in astrophysical contexts. If

H0(B) = (− i(∇) −
1
2

Bẑ × r)
2
, (8.6)

H(B, λ) = H0(B) − λ∣r∣−1, (8.7)

then, by scaling, H(B, z) is unitarily equivalent to B(H(1, zB−1/2
)), so large B with z = 1 is equivalent to studying fixed field and small λ.

Since the magnetic field binds in the two dimensions perpendicular to B, this is effectively a 1D weak coupling problem where I had
discovered small coupling asymptotic series (see the discussion in Sec. IX), but the decay is slower than in my earlier work. However,
one can modify that work and obtain the first few terms, which are very complicated [the leading order is log(B) as first suggested by
Ruderman577], but there are log(log(B)) and log(B)−1 terms!

4. The hydrogen Zeeman ground state has Lz = 0. In Ref. 36, we proved that for hydrogen in magnetic field, the ground state has Lz = 0. For
zero magnetic field, the ground state is positive [see, for example, Ref. 554 (Sec. XIII.12)], so in an azimuthally symmetric potential, the
ground state has Lz = 0. However, paper I34 constructs examples of azimuthally symmetric potentials so that for small field, the lowest
part of the spectrum is discrete and the lowest energy is not Lz = 0 (Lavine–O’Carroll446 also have such examples). The deep result
that for attractive Coulomb potentials, the ground state has Lz = 0 uses the monotonicity of V(r) in r and correlation inequalities as
extended to quantum systems as discussed in Sec. IV. For a proof of a more general result, which does not use correlation inequalities,
see the work of Grosse–Stubbe.284

5. Enhanced binding. As discussed in Sec. IX, if V ≤ 0 is in C∞0 (R3
), then for small λ, the operator −Δ + λV has no eigenvalues in (−∞, 0),

but for C∞0 (R), − d2

dx2 + λV always has at least one negative eigenvalue. Things are different if −Δ is replaced by H0(B) [given by (8.6)]
with B ≠ 0, for

H0(B) = H̃0(B) ⊗ 1 + 1⊗ (
−d2

dx2 ) (8.8)

on L2
(R3
) = L2

(R2
) ⊗ L2

(R), where H̃0(B) has point spectrum {(2n + 1)B}∞n=0, each of infinite multiplicity.

Further analysis [see Ref. 34 (Sec. 3)] shows that if one restricts to Lz = m, one has point spectrum {2 max(−m, 0) + n + 1}∞n=0

≡ {Em(n)}∞n=0, each of multiplicity 1. Thus, H0(B) ↾ Lz = m is a direct sum of copies of − d2

dx2 + Em(n). If V ≤ 0 is azimuthal (so commut-
ing in Lz), each space with Lz = m and m ≥ 0 has at least one eigenvalue of H0(B) + V below its essential spectrum, so we conclude the
following theorem:

Theorem 7.3 (Ref. 34). If V ∈ C∞0 (R3
) is a non-negative (not identically 0) function of only z and ρ =

√
x2 + y2, then H0(B) + V for any

B ≠ 0 has essentially spectrum [∣B∣,∞) and infinitely many eigenvalues in (−∞, ∣B∣).
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Remark. By diamagnetic inequalities, if λ is so small that −Δ + λV has no negative spectrum, then all the eigenvalues are in [0, ∣B∣) for
all B ≠ 0. Moreover, for B fixed, for all small λ there is exactly one eigenvalue for each of H0(B) + V ↾ (Lz = m) for each m ≥ 0 (if B > 0).

6. Negative Ions. One form of enhanced binding discovered by Avron–Herbst–Simon involves negative ions in magnetic field. In nature,
most neutral atoms do not bind any extra electrons although there is no rigorous proof that this is even true for He−. By using ideas
discussed in point 5, AHS in an announcement33 in Phys. Rev. Lett. and in paper III36 prove that every neutral atomic Hamiltonian in
non-zero constant magnetic field will bond at least one additional electron.

7. Magnetic bottles. In paper I,34 we looked at the question of whether one can produce Hamiltonians with compact resolvent with just
magnetic field alone {i.e., [H(a, V = 0) + 1]−1 compact}. It is easy to see how to do this in even dimension, e.g., R2 by making Bz →∞ as
x2
+ y2
→∞ (even though there is no z direction, Bz ≡ ∂xay − ∂yax is defined), but, a priori, it is not clear how do this in odd dimension.

However, we found lots of examples, e.g., in 3D, B = (x, y,−2z) (since∇ ⋅ B = 0, there is a with B = ∇ × a).
8. General spectral and scattering theory in constant magnetic field. In papers I, II, and III,34–36 Avron, Herbst, and I tried to extend much

of the theory of 2− and N−body systems when −Δ is replaced by H0(B) [given by (8.6)]. Much of it is straightforward, but there are
interesting twists. For example, for perturbations, V of −Δ, the Agmon–Kato–Kuroda theory needs (1 + ∣x∣)−1−ε decay, but the (two-
body) analog for H0(B) developed in Ref. 34 only needs (1 + ∣z∣)−1−ε decay and any kind of decay in the orthogonal directions. Cook’s
method as developed in Ref. 34 for the existence of Ω±(H0(B) + V , H0(B)) needs (1 + ∣z∣)−1−ε decay in V but allows growth (!) in the
x and y directions by less than an inverse Gaussian since Landau levels decay in a Gaussian manner! Because of the unusual form of
reduction of the center of mass discussed in Ref. 35, the HVZ theorem proved there is more involved than in the zero field case.

I turn now to some later work on NRQM in magnetic field. AHS, because of its focus on the constant field case, left an important issue
on the table. The standard analysis using Weyl’s criterion [Ref. 710 (Problem 3.14.5)] and localized test functions proves that σess(H(a, V))
= [0,∞) if a(x) → 0 and V(x) → 0 as x →∞, but this gets the physics wrong. If, say, ν = 2 and

Bz(x, y) = C(1 + ρ)−α, (8.9)

then in any fixed gauge, a→ 0 if and only if α > 1, while one expects that σess(H(a, V)) = [0,∞) so long as α > 0, i.e., rather than requiring
a→ 0, we should only need B→ 0 at∞. The first theorem of this type was proven in the Ph.D. thesis of my student Miller,496 which he never
published since he decided not to take an academic job. He used test functions and Weyl’s criterion but functions with an x-dependent phase
factor that implements a change of gauge in which the new a is small on the support of the test function. The standard reference for this is a
joint paper that he and I wrote,497 which I will turn to shortly. There is now a huge literature on the this issue, which is summarized in the
work of Last–Simon,440 a paper that has an HVZ type result in terms of limits at infinity of magnetic fields (we limited ourselves to bounded,
uniformly Hölder continuous magnetic fields).

Miller and I497 found the following remarkable fact:

Theorem 7.4 (Ref. 497). Let H(α) be the quantum Hamiltonian of a 2D particle with V = 0 and magnetic field given by (7.9). For all
α > 0, σ(H(α)) = [0,∞). If 0 < α < 1, H(α) has dense pure point spectrum in all of [0,∞). If α = 1, there is E0 (depending on C) so that the
spectrum is dense pure point on [0, E0] and purely a.c. on [E0,∞). If α > 1, the spectrum is purely a.c.

Remark. There is an arithmetic mistake in the calculation of E0 in Ref. 497 that was recently noted and corrected by Avramska–Lukarska
et al.29

The proof is easy. That σ(H(α)) = [0,∞) follows from Miller’s argument about B→ 0. On the other hand, since B is azimuthal sym-
metric, one can pick a gauge in which H(a, V) commutes with rotations and look at fixed Lz = m where the operator is unitarily equivalent
to − d2

dx2 + Vα,m(x) on L2
([0,∞)). If 0 < α < 1, then Vα,m →∞ so each H(α) ↾ Lz = m has purely discrete spectrum (although they have to fit

together to give dense point spectrum)! If α = 1, each Vα,m → E0 and if α > 1, each Vα,m → 0 at a power rate.
There is a interesting classical physics underlying this. If α > 1, the classical orbits are all unbounded, if 0 < α < 1, all orbits are bounded,

while if α = 1, the orbits are either bounded or unbounded depending on whether E < E0 or E > E0.
While the physics is not related, there is an intriguing result of Hempel et al.304 that has similar mathematics. H = −Δ + cos∣x∣ on L2

(R3
)

has alternating bands of a.c. and dense point spectrum! The argument is similar to that of Ref. 497: near x = (x, 0, 0) with x large, H looks
like − d2

dx2 + cos x − d2

dy2 −
d2

dz2 , which lets one show that σ(H) = [E0,∞) for suitable E0. On the other hand, if S is the (band) spectrum of

− d2

dx2 + cos x on L2
(R), the restriction of H to each fixed angular momentum space is − d2

dr2 +
ℓ(ℓ+1)

r2 + cos r, which has a.c. spectrum on S and
eigenvalues in the gaps.

Finally, I have two papers51,660 that looked at continuity in B of various objects associated with H0(B) + V when V is periodic. My interest
was originally sparked by a lack of continuity in frequency, α, of the density of states (and the spectrum) of the almost periodic Jacobi matrix
(see Sec. X) Hu(n) = u(n + 1) + u(n − 1) + λ cos(παn + θ)u(n), which is supposed to be a strong coupling approximation of a 2D periodic
operator in magnetic field [Thouless explained the apparent puzzle of the continuity of the density of states shown in Ref. 660 and this lack of
continuity of the above H in α for fixed θ. The correct analog is not the density of states associated with the operator H for fixed θ. Rather the
correct analog is the integral over θ and this is known to be continuous in α (Ref. 50, Theorem 3.3)]. The first paper660 proves continuity of the
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density of states in B. The key is to note that while a in any fixed gauge is misbehaved at infinity, the diagonal heat kernel e−t(H0(B)+V)
(x, x) is

gauge invariant and so periodic in x. This yields continuity of the Laplace transform of the density of states. Reference 51 deals with the more
subtle issue of continuity of the spectrum in B.

IX. QUASI-CLASSICAL AND NON-QUASI-CLASSICAL LIMITS
The structures of quantum and classical mechanics are very different, so it is remarkable that a world we believe is described by quantum

theory is consistent in the right realm with classical mechanics. Thus, their connection has been a compelling subject for both physicists and
mathematicians. I have a lot of work that explores their connection and when the naïve connection needs modification.

One of the simplest connections goes back to Weyl764 in 1912, a number of years before the new quantum mechanics and so, obviously,
done in different context, namely, classical electromagnetism. Looking at −h2Δ below a fixed energy E at small h is the same as looking at −Δ
below a very large energy. Weyl fixed a compact set Ω ⊂ Rν with smooth boundary and looked at the number, NΩ(E), of eigenvalues below E
for −ΔΩD , the Laplacian in Ω with Dirichlet boundary conditions and proved that

lim
E→∞

NΩ(E)
Eν/2

=
τν
(2π)ν

∣Ω∣, (9.1)

where τν is the volume of the unit ball in Rν and ∣Ω∣ is the volume of Ω [an exposition of the proof of (9.1), close to Weyl’s, can be found, for
example, in Ref. 710 (Sec. 7.5), which also explains the interesting history of how Weyl came to consider this problem]. The right side of (9.1)
has two volumes in Rν and can be interpreted as a volume in phase space. −ΔΩD is the quantum Hamiltonian when the units are h = 1 = 2m,
so E = p2 and the volume in phase space of {(x, p)∣x ∈ Ω, p2

≤ E} is τνEν/2. Thus, (9.1) says that for large E, NΩ(E) looks like the volume in
phase space where the energy is less than E times (2π)−ν. h = 1⇒ h = 2π so this says each state takes a volume of hν.

We now shift to a particle with interaction. As above, −h2Δ + V in the small limit is related to −Δ + λV in the large λ limit. If we are
interested in the number of negative energy states, the relevant volume is {(x, p)∣p2

+ λV(x) ≤ 0}, so the semiclassical number of states is

Ncl,V(λ) =
τνλν/2

(2π)ν∫Rν
∣V(x)∣ν/2 dνx. (9.2)

From early on, while a graduate student, I had an interest in bounds on the number of bound states of quantum systems, although I did
not initially think about quasi-classical limits. I found in the literature two well-known results. Bargmann57 proved that for − d2

dx2 + V(x) on
L2
(0,∞) with u(0) = 0 boundary conditions, the number of negative eigenvalues, n(V), obeys

n(V) ≤ ∫
∞

0
r∣V(r)∣ dr (9.3)

(Bargmann, who viewed this as a bound on s-waves for a 3D problem with a central potential, also had results for higher angular momentum).
Schwinger588 (see below for the work of Birman) proved on L2

(R3
) that one has that N(V), the number of negative eigenvalues (counting

multiplicity) of −Δ + V , is bounded by

N(V) ≤
1
(4π)2 ∫

∣V(x)∥V(y∣
∣x − y∣2

d3xd3y. (9.4)

With this in mind, as a graduate student, I realized that the growth of N(λV) as λ→∞was interesting and not what one might expect naïvely
from (9.4) when ν = 3. Rather I found611 when V is very nice, there are λν/2 upper and lower bounded (but I did not prove strict λν/2 asymptotic
behavior nor did I realize at the time the connection to quasi-classical behavior).

Quoting my paper, several years later, Martin485 proved the much stronger quasi-classical result

lim
λ→∞

N(λV)
Ncl,V(λ)

= 1 (9.5)

on Rν when V is Hölder continuous [as noted earlier, Birman–Borzov,74 Robinson,569 and Tamura741 proved the same result (some with
somewhat weaker hypotheses on V) in a similar time frame]. These authors all used a variant of Weyl’s argument. Interestingly enough, the
result without proof (essentially doing a quasi-classical computation and asserting its correctness) appeared in 1948 as a solved problem in
the quantum mechanics book of Landau–Lifshitz [Ref. 433 (Sec. 48, Problem 1)] (I could only check this in the second edition of the English
translation; 1948 is the date of the first edition).

I pause in the discussion of (9.5) for a side trip to the tool behind the next steps. In 1976, Valya Bargmann reached the age of 68 and
had to retire, and the remaining senior joint appointments in mathematical physics at Princeton edited a festschrift in his honor.469 I wrote
two reviews for that book on subjects where Bargmann had been a pioneer, one637 on how to go from time automorphisms to Hamiltonians
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in quantum mechanics (where the foundational work was done by Bargmann and Wigner) and one on bounds on the number of bound
states.636 While the second was there because of Bargmann’s bound, an especial point concerned the bound then universally associated in the
West with Schwinger. I had found that in the same year as Schwinger’s paper, Birman had published72 a long paper that included the same
bound as Schwinger proven by the same method.

This method considers eigenvalues E < 0 of H0 + V where σ(H0) ⊂ [0,∞) and V is relatively form compact and self-adjoint so if V1/2

≡ ∣V ∣1/2 sgn(V), then

KE = −∣V ∣1/2(H0 − E)−1V1/2 (9.6)

is compact. One shows that the dimension of the solutions of KEφ = φ is the multiplicity of E as an eigenvalue of H0 + V [essentially because
if φ = ∣V ∣1/2ψ, then KEφ = φ⇐⇒ (H0 + V)ψ = Eψ].

Birman and Schwinger had the further idea of adding a coupling constant, λ, and looking at eigenvalues, Ej(λ), of H0 + λV . Using the
fact that Ej(λ) is a strictly monotone function of λ, one proves the following theorem:

Theorem 8.1. The number of eigenvalues of H0 + V less than E < 0 (counting multiplicity) is the number of eigenvalues (counting
multiplicity) μ > 1 of KE.

Remarks.

1. Birman and Schwinger only considered the case where V ≤ 0 so KE is self-adjoint and the compact operator. KE is self-adjoint so its
eigenvalues are real. However, one can prove, in general, that the eigenvalues are real even though KE may not be self-adjoint.

2. μ = λ−1.
3. By taking limits, one can show that if KE has a limit, K0, as −E ↓0, then the number of eigenvalues E < 0 is bounded by the number of

μ > 1 for K0. When V ≤ 0 so KE ≥ 0, this, in turn, is bounded by Tr(K0) and Tr(K2
0). This allowed Birman and Schwinger to provide

an alternative proof of (9.3) and the first proof of (9.4).

I felt it important to get Birman some credit for what was known as Schwinger’s bound, so in Ref. 636, I dubbed Theorem 8.1 the
Birman–Schwinger principle, and thereafter, KE became to be known as the Birman–Schwinger operator (or when written as an integral
operator, Birman–Schwinger kernel) and Theorem 8.4 became the Birman–Schwinger bound. I am very glad I succeeded in this. There is an
interesting postscript: several years afterward, I got a letter from Birman thanking me several times for mentioning his work but then essen-
tially asking “but why did you include Schwinger—my paper was dated almost a year earlier.” While Birman was correct about submission
dates, the result already widely had Schwinger’s name, and there were rumors this was one of many things that Schwinger had written in the
notebooks he kept while working on radar during the Second World War and doing real physics in his spare time.

I return to my analysis of (9.5). All prior results that I knew of required V to at least be continuous so I wondered about V ’s with
singularities and, more generally, only Lp conditions. In Ref. 635, I proved several theorems and conjectures about this situation. In particular,
I showed the following theorem:

Theorem 8.2 (Ref. 635). Let B be a Banach space of functions on Rν in which C∞0 (Rν
) is dense and with ∥⋅∥ν/2 ≤ C∥⋅∥B for some C.

Suppose one has a bound of the form

N(V) ≤ c1∥V∥ν/2B . (9.7)

Then, (9.5) holds for all V ∈ B.

The proof is by an approximation argument using the fact that if A and B are self-adjoint operators and N(⋅) is the number of negative
eigenvalues (counting multiplicity), then N(A + B) ≤ N(A) +N(B). I also noted that because of Theorem 8.1, by looking at λV as λ→∞, a
bound like (9.7) is equivalent to

μn((−Δ)−1/2
∣V ∣1/2) ≤ c2n−1/ν

∥V∥1/2
B . (9.8)

I developed a version of weak trace ideals analogous to weak Lp spaces (related ideas were already in the work of Goh’berg–Krein258). Thinking
of (−Δ)−1/2 as a function of the Fourier transform variable, (9.8) with B = Lν/2(Rν

) is implied by (called conjecture 2)

∥ f (p)g(x)∥ν,w ≤ c3∥ f ∥ν,w∥g∥ν, (9.9)

where ∥⋅∥p,w on the left side is a weak trace ideal norm and on the right a weak Lp norm [Ref. 709 (Sec. 2.2)]. In Ref. 635, I conjectured
(a slightly weaker version of) (9.9) for 2 < p < ∞ and noted that it implied for ν ≥ 3 (called conjecture 1; while conjecture 2⇒ conjecture 1,
the latter was of interest even if proven by other means),
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N(V) ≤ cν∥V∥ν/2ν/2, (9.10)

which I separately conjectured. I note that by Theorem 8.2, this implies (9.5) for the maximal set where V ∈ Lν/2(Rν
).

I was already familiar with bounds a little like (9.9). In Ref. 594, Erhard Seiler and I had proven that for 2 ≤ q < ∞, one has that

∥ f (p)g(x)∥q ≤ C∥ f ∥q∥g∥q. (9.11)

By using interpolation ideas and this bound, I succeeded in Ref. 635 in proving (9.7) for ∥⋅∥B = ∥⋅∥ν/2+ε + ∥⋅∥ν/2−ε for all small ε > 0 (with a
constant that might diverge as ε ↓0) and so (9.5) for V ∈ Lν/2+ε

∩ Lν/2−ε, but I could not prove (9.9).
I did this work in the spring of 1975. In the fall, Charlie Fefferman, who I had told about my conjecture 2, introduced me to Michael

Cwikel, a visitor at IAS, whom he described as an expert on interpolation theory and might be the one to solve my conjecture. I took Cwikel
aside and described the problem to him.

A couple of months later, I was leaving my physics office planning to check my math mailbox on my way home. As I passed his office,
Elliott Lieb beckoned to me saying something like “You know your conjecture. I think I’ve solved it.” He proceeded to describe to me his
beautiful proof of conjecture 1458,459 using path integrals. I then went to my math mailbox and found a note from Cwikel saying that he
had proven conjecture 2 and thereby conjecture 1 enclosing a sketch of his proof.122 I could not imagine my finding Lieb’s tour de force
but found it ironic that I failed to find Cwikel’s proof because I only thought of using interpolation theory while Cwikel, who was an expert
on interpolation, was smart enough to instead use in a clever way a standard harmonic analysis trick of breaking a function into the sets
where it lies between 2k and 2k+1 that I had seen Stein use many times in grad courses I had taken not long before. I should mention that
while I was unaware of it when I wrote,594,635 Birman and Solomjak had written a number of papers on trace ideal properties of f (p)g(x).
While they did not have Cwikel’s result, motivated by his result, they proved some additional estimates on such operators. Much of this
work is summarized in the work of Birman–Solomjak.76 I should also mention here two papers with improved versions of Cwikel’s estimates:
Frank197 and Hundertmark et al.329

In July 1976, I went to a conference in the Soviet Union (one of only two trips I made there), which was ideal in terms of location and
my interest. The conference was in a small town outside Leningrad but organized by the Moscow based group of Dobrushin and Sinai, so I
could talk to them about the work on phase transitions described in Sec. VI. Because it was near Leningrad, Birman and his group could come
out to meet me (I only learned later, it was not easy for them to get permission to do so). They began by saying that my paper635 was very
interesting, but while they did not quite have a counterexample, they were fairly sure that my conjecture was wrong at which point I told them
about Cwikel and Lieb. There was confusion because the conjecture they meant was conjecture 2, but I thought they meant conjecture 1! In
fact, they handed me a reprint in Russian of a paper of Rozenblum574 who had announced a result equivalent to my conjecture 1 in 1972 (a
detailed exposition only appeared after my visit575). Eventually, I gave the bound the name CLR bound, a name which stuck. I believe that
Rozenblum feels this is unfair, but given the methods are totally different and the work independent, I think it appropriate. Before leaving
this subject, I should mention a later different proof of Conlon,116 Fefferman,190 Li–Yau,456 and a non-path integral variant of Lieb’s proof by
Rozenblum–Solomyak.576

In the same time frame as my conjecture, Lieb and Thirring,470 as part of their brilliant proof of the stability of matter, exploited another
quasi-classical bound, namely, if Ej(V) are the negative eigenvalues (counting multiplicities) of −Δ + V on L2

(R3
), then

∑
j
(−Ej(V)) ≤ c1,3 ∫ ∣V(x)∣

5/2 d3x. (9.12)

Interestingly, their proof only relied on the Birman–Schwinger bound (9.4) even though (9.12) has the right large coupling behavior and (9.4)
does not. Of course, if V−(x) = max(0 ,−V(x)), it is easy to see that −Ej(V) ≤ −Ej(V−), so once one has (9.12), one immediately has the
stronger result where ∣V ∣ on the right is replaced by V−. For simplicity of exposition, we will continue to use ∣V ∣, but the reader should bear
in mind that this implies the stronger result.

In the same Bargmann Festschrift referenced above, they471 exploited the same proof to show what are now called Lieb–Thirring bounds,

∑
j
(−Ej(V))p

≤ cp,ν ∫ ∣V(x)∣
p+ν/2 d3x (9.13)

for −Δ + V on L2
(Rν
) so long as

p > 0 if ν ≥ 2, p > 1/2 if ν = 1. (9.14)

The CLR bounds are not included but are at the borderline. As we will see below, there cannot be a bound at ν = 2, p = 0 nor for ν = 1, p < 1/2.
That left the case ν = 1, p = 1/2, which was open for 20 years until a bound was proven by Weidl.759 Then, Hundertmark et al.330 using a
different method proved bounds with optimal constants for that case.

Speaking of optimal constants, Lieb–Thirring in their first paper on the general inequality471 already raised the question of the optimal
constant in (9.13), not surprising given Lieb’s then recent work on the best constants in Young, Hausdorff–Young, and Sobolev inequalities.
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There are two obvious lower bounds on the constant. By Weyl type arguments, limλ→∞ λ−(p+ν/2)∑j(−Ej(λV))p is a universal, computable
number ccℓ

p,ν, so clearly, ccℓ
p,ν ≤ cp,ν. It is also not hard to see that the bound on −E1 implied by (9.13) implies a Sobolev inequality, so the known

best constants in the Sobolev inequalities implies another lower bound, cSob
p,ν . Lieb–Thirring471 conjectured that cp,ν = max(ccℓ

p,ν, cSob
p,ν ) and using

KdV sum rules [see (13.1)] proved this for p = 3/2, ν = 1 (where it happens that ccℓ
p,ν = cSob

p,ν ), and Laptev–Weidl435 extended cp,ν = ccℓ
p,ν to p = 3/2

and all ν. Aizenman–Lieb10 proved that if cp0 ,ν = ccℓ
p0 ,ν for some p0, then the same is true for all p ≥ p0. In particular, the Lieb–Thirring conjecture

holds for all ν when p ≥ 3/2 and (by Ref. 330) for ν = 1, p = 1/2.
Shortly after their conjecture, Glaser et al.257 found it was false for p = 0, ν ≥ 8 and recently Frank et al.199 found it false for any ν ≥ 2 and

some p. That leaves ν = 1, where 1
2 < p < 3

2 is open (and where cSob
p,ν > ccℓ

p,ν). This interested me so much that it is an entry in my 2000 open
problems list [Ref. 689 (Problem 15)] of 2000. See the work of Frank et al.201 and Frank198 for more on Lieb–Thirring inequalities.

Around 2000 and for several years afterward, I returned to issues connected with the critical 1D (i.e., ν = 1, p = 1
2 ) Lieb–Thirring inequal-

ity. This is connected to the issue of Szegő asymptotics of OPRL705 [see the discussion in Sec. VII around (7.51) for the definitions of OPRL
and OPUC]. This asymptotics says that for certain classes, {pn}

∞
n=0, of OPRL whose spectral measure has essential support [−2, 2], one has

that for all z ∈ D/{0} that

lim
n→∞

znpn( z +
1
z
) (9.15)

exists and is not identically zero [which determines asymptotics of pn(x) for x ∉ [−2, 2]]. The name comes from the work of Szegő739 on
asymptotics of OPUC.695

For OPRL, from a measure theory point of view, a natural family of measures analogous to OPUC is measures on [−2, 2], typically with
pure a.c. measure, i.e.,

dρ(x) = f (x) dx, x ∈ [−2, 2] (9.16)

[see Ref. 696 (Sec. 13.1)]. For such measures, early on, it was realized that the critical condition on such measures is

∫

2

−2
log f (x)(4 − x2

)
−1/2dx > −∞, (9.17)

a condition known as the Szegő condition after an analog for OPUC used by Szegő in Ref. 739. If one thinks about Jacobi parameters rather
than measures, it is natural to allow pure points outside [−2, 2], possibly even countably many so long as the only limit points are ±2. In this
regard, the best possible result when Killip and I began our work (discussed below) was as follows:

Theorem 8.3 (Ref. 532). Let dρ be a probability measure on R, which has a pure a.c. part on [−2, 2] of the form (9.16) and additional pure
points {E±j }

N±
j=1 on ±(2,∞), so that f obeys the Szegő condition (9.17) and, in addition,

∑
j,±

√
∣E±j ∣ − 2 < ∞. (9.18)

Then, the associated OPRL, {pn}
∞
n=0, obey Szegő asymptotics (9.15).

Taking into account that ±2 are the edges of the spectrum of the free Jacobi matrix (i.e., bn ≡ 0, an ≡ 1), one sees that (9.18) is a kind of
critical Lieb–Thirring sum. Two other relevant facts are as follows: First, Nevai514 made a conjecture about Jacobi parameters,

∞
∑
n=1
∣an − 1∣ + ∣bn∣ < ∞ ⇒ (9.17) [Nevai]. (9.19)

In my work with Killip,396 we proved that

(9.18) + LHS of (9.19) ⇒ (9.17) [Killip-Simon]. (9.20)

It was then clear that a suitable critical Lieb–Thirring inequality for Jacobi matrices would prove Nevai’s conjecture. Fortunately, Dirk
Hundertmark, one of the coauthors of Ref. 330, had just come to Caltech as a postdoc and we proved.

Theorem 8.4 (Ref. 331). One has that

∑
j,±

√
(E±j )2 − 4 ≤

∞
∑
n=1
∣bn∣ + 4

∞
∑
n=1
∣an − 1∣. (9.21)
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Indeed, mimicking the proof of Ref. 330 fairly easily proves (9.21) when an ≡ 1, and we found a method to go from that case to the full
(9.21). Of course, (9.21) says that LHS of (9.19)⇒ (9.18) and so (9.20)⇒ (9.19) proving Nevai’s conjecture. D. Hundertmark and B. Simon
also proved general p > 1

2 , ν = 1 Lieb–Thirring and Bargmann bounds for Jacobi matrices.
Over the next few years, with graduate students and postodcs, I explored various extensions. Zlatoš and I721 proved a variant of Ref. 396

for oscillatory bn and an − 1 and Damanik–Hundertmark–Simon129 proved (9.18) and a Szegő condition for some oscillatory Jacobi matrices
where the sum on the right-hand side of (9.21) is infinite, for example, an = 1 + (−1)nα

n or bn =
(−1)nβ

n .
It was widely believed in the OP community that if Szegő asymptotics holds, one must have a Szegő condition, so it came as a surprise

when Damanik–Simon131 found necessary and sufficient conditions for Szegő asymptotics to hold that allowed many examples where one has
Szegő asymptotics even though the Szegő condition and finiteness of the LHS of (9.18) fail; indeed, Ref. 131 had examples where the sum of
(∣E±j ∣ − 2)α is infinite for all α < 3

2 .
I was also involved in several projects leading to Lieb–Thirring bounds for perturbations of non-free Schrödinger operators and Jacobi

matrices. Frank, Weidl, and I,204 to quote our result for Schrödinger operators, proved that if there is a solution, u0, of (−Δ + V0)u0 = 0 and
c1, c2 ∈ R so that 0 < c1 ≤ u0(x) ≤ c2 < ∞ for all x, then Lieb–Thirring inequalities for perturbations of −Δ imply them for perturbations of
−Δ + V0 (with adjusted constants). In particular, this implies that perturbations of periodic Schrödinger obey a Lieb–Thirring bound at the
bottom of the spectrum. A similar analysis gives such bounds for perturbations of periodic Jacobi matrices at the top and bottom of the
spectrum and also for perturbations of almost periodic finite gap Jacobi matrices.107,723 These results depend on a ground state representation
for Schrödinger operators that goes back to Jacobi, discussed above before (3.1), and which was heavily used in work in constructive quantum
field theory. Somewhat surprisingly, Ref. 204 seems to be the first place that this representation was worked out for Jacobi matrices. This
ground state representation was used earlier to compare operators by Kirsch and me401 in a paper that, in particular, got interesting bounds
on effective masses in solid state Hamiltonians. This representation has also been used recently by Christiansen, Zinchenko, and me110 in the
study of periodic Jacobi matrices on trees.

It was natural to ask about Lieb–Thirring bounds and the analog of the Nevai conjecture for eigenvalues in gaps of perturbations of
periodic and finite gap almost periodic Jacobi matrices. For the periodic problem with all gaps open, this was accomplished by Damanik,
Killip, and me130 and for finite gap problems by Frank and me202 after partial results by Birman73 and Hundertmark–Simon.333

We saw that (9.10) was only proven for ν ≥ 3. There is a good reason for this. A bound like (9.10) implies that for λ small, −Δ + λV has
no bound states (for, say, all V ∈ C∞0 ), but it was known that for a negative square well, i.e., V being the negative of the characteristic function
of (−a, a) in R or of a disk of radius a in R2, −Δ + λV has a negative eigenvalue for all λ. I asked what happens for general V and proved633

the following theorem:

Theorem 8.5 (Ref. 633). Let V be a real-valued function on R, not identically 0, obeying

∫ (1 + ∣x∣)
2
∣V(x)∣ dx < ∞. (9.22)

Then, − d2

dx2 + λV(x) has a negative eigenvalue, E(λ), for all small, positive λ if and only if

∫ V(x) dx ≤ 0, (9.23)

and if that is the case, one has that

α(λ) ≡ (−E(λ))1/2
= −

λ
2 ∫

V(x) dx −
λ2

4 ∫
V(x)∣x − y∣V(y) dxdy + o(λ2

). (9.24)

Remarks.

1. This work was motivated by Murph Goldberger, who at the time was department chair of physics at Princeton (I was the Director of
Graduate Students) and who later was the President of Caltech at the point when I was recruited. He had organized a group of particle
theoretical physicists (Jason) who worked on DoD projects for a few weeks each summer. While studying some problems on sound
waves in water (not quantum mechanics!), Murph with Henry Abarbanel and Curt Callen got interested in negative eigenvalues in one
dimension and found (9.24) as a formal series. Murph wanted to know if I could prove something.

2. For α to always be positive when (9.23) holds, one must have that ∫ V(x)dx = 0⇒ ∫ V(x)∣x − y∣V(y)dxdy ≤ 0, a fact summarized by
saying the ∣x − y∣ is a conditionally negative definite kernel; this is indeed true.

3. Blankenbecler, Goldberger, and I,77 and independently Klaus,407 showed that (9.22) could be replaced by the weaker

∫ (1 + ∣x∣)∣V(x)∣ dx < ∞. (9.25)

4. If V(x) ∼ −ax−β as x →∞ with 1 < β < 2, something interesting happens. There are now infinitely many eigenvalues, but most are
O(λ2/(2−β)

) while the lowest eigenvalue is O(λ2/(3−2β)
). This is proven in Ref. 77, which also has results when β = 2.

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-49

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

5. Not only does (9.17) fail if ν = 1, 2, but there is a result [Ref. 636 (Remark 3 on p. 315)] that if ∥⋅∥ is any translation invariant norm on a
vector space of functions that includes some non-zero, everywhere non-positive continuous functions of compact support, then for any
N and any ε, there is a V with ∥V∥ < ε and so that −Δ + V has at least N negative eigenvalues!

6. We think of this result that violates a putative quasi-classical bound as an example of non-quasi-classical eigenvalue behavior.
7. Reference 633 also proves that if V decays exponentially, then (−E(λ))1/2 is analytic in λ at λ = 0.
8. Reference 633 also has results when ν = 2. In that case, if ∫ V(x)d2x < 0, we have a negative eigenvalue for −Δ + λV , but for small λ, it

is O(exp(−d/λ))!

The proof of the theorem is not hard. The one-dimensional Birman–Schwinger kernel for E = −α2 has the form

Kα(x, y) = ∣V ∣1/2(x) exp(−α∣x − y∣)V1/2
(y). (9.26)

The Birman–Schwinger principle says that E is an eigenvalue of − d2

dx2 + λV if an only if −λ−1 is an eigenvalue of Kα. In more than two
dimensions, ∥Kα∥ is bounded as α ↓ 0 so if λ < sup∥Kα∥, then −Δ + λV has no negative eigenvalues, but in 1 (or 2) dimensions, ∥Kα∥ diverges
as α ↓ 0. The reason that there is only one negative eigenvalue when λ is small [at least when (9.22) or (9.25) holds] is that the divergent piece
is rank one. To see this, Simon633 writes

Kα = Lα +Mα, (9.27)

Lα(x, y) = ∣V ∣1/2(x)V1/2
(y)/2α, (9.28)

Mα(x, y) = (2α)−1
∣V ∣1/2(x)[eα∣x−y∣

− 1]V1/2
(y), (9.29)

so limα↓0 Mα ≡M0 exists, where

M0(x, y) = ∣V ∣1/2(x)∣x − y∣V1/2
(y). (9.30)

Thus, the Birman–Schwinger principle is equivalent to

α = −
λ
2
⟨V1/2, (1 + λMα)

−1
∣V ∣1/2⟩. (9.31)

The leading term on the right is − λ2 ∫ V(x) dx, and the next is λ2

4 ⟨V
1/2, M0∣V ∣1/2⟩.

This work lead to several threads of later work. In Ref. 642, I asked when a new eigenvalue, E(λ), issuing from E = 0 at λ = λ0 is O(λ − λ0)

and proved the following theorem:

Theorem 8.6. Suppose that B is a relatively compact symmetric perturbation of a self-adjoint operator, A, that σess(A) includes [0, ε] for
some ε > 0 and that λ0 > 0 is such that A + λB has exactly one more negative eigenvalue (counting multiplicity) for λ ∈ (λ0, λ0 + δ) than for
λ ∈ (λ0 − δ, λ0). Then, there is one eigenvalue, E(λ), near 0 for λ ∈ (λ0, λ0 + δ) and

lim
λ↓λ0

E(λ)
λ − λ0

= α (9.32)

exists. Moreover, α ≠ 0 if and only if A + λ0B has eigenvalue 0, and in that case, the eigenvalue is simple and α = ⟨φ, Bφ⟩ where (A + λ0B)φ = 0
with ∥φ∥ = 1.

In Refs. 408 and 654, I made what turned out to be an important definition.

Definition 8.7. Let ν ≥ 3 and V ∈ Lp
(Rν
) ∩ Lq

(Rν
) for some p < ν

2 < q. V is called

supercritical⇔ inf spec(−Δ + V) < 0,
subcritical⇔ inf spec(−Δ + (1 + ε)V) = 0 for some ε > 0, and
critical⇔−Δ + (1 + ε)V is supercritical for all ε > 0 and inf spec(−Δ + V) = 0.

Thus, critical V ’s are ones that like −Δ in 1 and 2 dimensions are about to give birth to bound states. A main result of Ref. 654 is that
V is subscritical ⇔ supt∥e−(−Δ+V)t

∥∞,∞ < ∞ (the norm from L∞ to L∞). Both Simon654 and Klaus408 showed that if V and W are both
critical in three dimensions, then −Δ + V(x) +W(x − R) has a bound state of energy, E(R) < 0, for large R with E(R) ∼ −βR−2. Klaus408 even
computes the universal value of β. This result is connected to the Effimov effect. A considerable literature has developed on the study of critical
operators; Pinchover536 reviewed the literature as of 2005. I note that while408 focused on R3, it has a remark about what happens in Rν; ν ≥ 4,
which is wrong; for the correct results, see Ref. 536 (Theroems 8.5–8.6).

J. Math. Phys. 63, 021101 (2022); doi: 10.1063/5.0056008 63, 021101-50

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

In Refs. 409 and 410, Klaus and I consider the variety of coupling constant threshold behavior that can occur for −Δ + V + λW (with
V and W short range) when as λ ↓ λ0, some eigenvalue is absorbed in the continuous spectrum (the first paper deals with the two-body
problem and the second with a limited set of N-body systems). The results are quite complicated and supplement/illuminate some work of
Jensen–Kato.353

Our next topic concerns the situation where V goes to infinity at infinity (or, at least, is bounded away from zero there) but min(V(x))
= 0, and we are interested in the lowest eigenvalues of −Δ + λ2V as λ→∞. In Ref. 664, I proved the following theorem:

Theorem 8.8 (Ref. 664). Let V , W be two C∞ functions on Rν so that we have the following:

(1) For some A, R > 0, one has V(x) ≥ A if ∣x∣ ≥ R.
(2) V(x) ≥ 0 for all x.
(3) V(x) vanishes only at {x( j)

}
M
j=1 (M ≥ 1), and at each such minimum, the matrix A( j)

kℓ =
∂V

∂xk∂xℓ
(x( j)

) is strictly positive.
(4) W is bounded from below.

Let H( j)
= −Δ +∑k,ℓ A( j)

kℓ xkxℓ +W(x( j)
). Let {eα}∞α=1 be an ordering of the union over j of the eigenvalues of H( j) (counting multiplicity)

so that e1 ≤ e2 ≤ ⋅ ⋅ ⋅. Then,

H(λ) ≡ −Δ + λ2V + λW (9.33)

has eigenvalues, {Eα(λ)}∞α=1, with E1(λ) ≤ E2(λ) ≤ ⋅ ⋅ ⋅ at the bottom of its spectrum, and for any α = 1, 2, . . ., we have that

lim
λ→∞

Eα(λ)
λ
= eα. (9.34)

Moreover, each Eα(λ) has an asymptotic series in λ−1 to all orders,

Eα(λ) = eαλ + a(0)α + a(1)α λ−1
+ . . . . (9.35)

I always thought of the paper in which this theorem appeared as Ed Witten’s homework assignment because one motivation for this
work was his wonderful paper on the supersymmetric proof of Morse inequalities and the Morse index theorem.770 In it, he used this theorem
[or rather its generalization when functions on Rν are replaced by the tangent bundle on a compact manifold and −Δ by a Laplace–Beltrami
operator (also discussed in Ref. 664)]. When using this result, Witten says Although the rigorous theory has apparently not been developed
for operators acting on vector bundles on manifolds, the method used in the work of Reed and Simon554 (pp. 34–38) to treat the double well
potential should suffice with some elaboration for this case. In fact, the argument in Ref. 554 he refers to is one-dimensional and uses some
other properties of the simple double well. The general one-dimensional case had been done by Combes et al.113 but their arguments also
depended on one dimension and are somewhat involved, so I wrote my paper, in part, to get a proof that works in multiple dimensions and
also one that is fairly simple.

Reference 664 was the first paper of a series. The other papers dealt with eigenvalue splitting in the situation where multiple wells have
the same eigenvalue. It is simpler to discuss the case of the lowest eigenvalue assuming a double degeneracy. A basic role is played by the
Agmon metric, mentioned in Sec. VII [in the page after (7.37)], which was known to determine the rate of decay of eigenfunctions. In this
situation, it is defined as the distance in the Riemann metric V(x)(dx)2, i.e.,

ρ(x, y) = inf{∫
1

0

√
V(γ(s))∣γ̇(s)∣ ds ∣ γ(0) = x, γ(1) = y} (9.36)

over all smooth paths, γ(s), 0 ≤ s ≤ 1, between x and y. The main result of Refs. 665 and 668 is as follows:

Theorem 8.9 (Ref. 668). Let V be a C∞ function on Rν (and W = 0) obeying conditions (1)–(3) of Theorem 8.8. Suppose there are two
points a ≠ b where V vanishes and that e1 = e2 < e3 so that e1 and e2 are eigenvalues associated with the operators, H( j), at the points a and
b. Let ja (resp jb) be characteristic functions of small balls about a (respectively, b), balls that are so small that they are disjoint. Let Ωλ be the
normalized ground state of the operator, H(λ), of (9.33). Suppose that

lim inf∥jaΩλ∥∥jbΩλ∥ > 0. (9.37)

Then,
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lim
λ→∞
− λ−1 log[E2(λ) − E1(λ)] = ρ(a, b). (9.38)

Remarks.

1. (9.37) says that the ground state lives near both minima. One condition that guarantees this is if there is a Euclidean rotation or reflection
of order 2 that leaves V invariant with Ra = b. In that case, the limit is exactly 1/4. That holds for the famous 1D double well where
V(x) = x2

(x − 1)2. In that case, ρ is given by a WKB integral, and this result was proven by various authors in the ten years before my
result (see Ref. 668 for references) but my work was the first rigorous result in more than one dimension.

2. The proof controls eigenfunction decay by writing the eigenfunctions in terms of path integrals and using the method of large deviations
to single out a minimum action solution. It is a basic fact of classical mechanics that minimum action is equivalent to minimum distance
in a suitable metric.

3. The importance of minimum action paths to leading order tunneling in multi-dimensions was noted in the theoretic physics literature
several years before my work. These solutions were called instantons; see Ref. 668 for references to that literature.

4. Shortly after my work, Helffer–Sjöstrand301 developed a powerful microlocal analysis approach to these problems and recovered the
results of Theorems 8.8 and 8.9 that got higher order terms, established some of Witten’s conjectures and worked in a more general
setting as they discussed in a number of later papers.

5. I wrote two later papers669,671 on some specialized situations related to Theorem 8.9.

Kirsch and I400 proved an interesting universal tunneling bound.

Theorem 8.10 (Ref. 400). Let V be a continuous function on R so that − d2

dx2 + V(x) has discrete eigenvalues {Ej}
N
j=1 below any essential

spectrum. Let n < N + 1, and suppose for some α > 0, we have that V(x) ≥ En + α2 on R / [a, b]. Let λ = maxE∈[En−1 ,En];x∈(a,b)
√
∣E − V(x)∣. Then,

En − En−1 ≥ πλ2α(λ + α)−1e−λ(b−a). (9.39)

The last topic that I discuss in this section concerns another non-quasi-classical situation. Just as Theorem 8.6 was motivated by a ques-
tion posed to me by Goldberger and Theorem 8.8 by Witten, this work was motivated by a query from some theoretical, non-mathematical,
physicists. In this case, I was asked by Jeffrey Goldstone and Roman Jackiw if the two-dimensional Schrödinger operator

H1 = −
∂2

∂x2 −
∂2

∂x2 + x2y2 (9.40)

has purely discrete spectrum or not. They noted that one was used to the condition for purely discrete spectrum of −Δ + V being that V(x)
→ ∞ as x →∞. While this failed for V(x, y) = x2y2 since V vanished on the axes, they suspected the spectrum was discrete since it went to
infinity in all but four directions. In fact, the natural quasi-classical condition of finite phase space volume, i.e., ∣{(x, p)∣p2

+ V(x) ≤ E}∣ < ∞,
for all E also fails in this case. A closely related question involves the operator

H2 = −ΔΩD , Ω = {(x, y) ∈ R2
∣ ∣xy∣ ≤ 1}. (9.41)

Motivated by their question, in Ref. 666, I proved the following theorem:

Theorem 8.11 (Ref. 666). The operators H1 of (9.40) and H2 of (9.41) both have purely discrete spectrum.

Remarks.

1. Reference 666 gives six proofs that H2 has purely discrete spectrum. The simplest proves that H1 has purely discrete spectrum (and that
easily implies that so does H2) as follows: It follows by scaling and the fact that− d2

dq2 + q2 has smallest eigenvalue 1 that− d2

dq2 + ω2q2
≥ ∣ω∣,

which implies that − ∂2

∂x2 + x2y2
≥ ∣y∣. Interchanging x and y, adding the two, and multiplying by 1/2 show that

H1 ≥
1
2
(−Δ + ∣x∣ + ∣y∣) ≡ H3. (9.42)

Since H3 has purely discrete spectrum, by the min–max principle (Ref. 710, Theorem 3.14.5), so does H1. The “defect” in this proof is
that it turns out that H1 for large energies is much larger than H3. The number of eigenvalues of H3 larger than E grows like E3 (by a
quasi-classical estimates), while for H1, only like E3/2 ln E (as discussed below), which is much smaller.

2. The operator H1 that Goldstone and Jackiw asked me to look at was a toy model for a more involved model they were really interested
in. Let A be a semi-simple Lie algebra, and let −ΔA be the Laplacian in the inner product on A given by the negative of the Killing form.
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For ν ≥ 2, let Aν be the set of ν-tuples, (A1, . . ., Aν), of elements of A. Then, they were interested in the operator on L2
(Aν
),

H4 = −∑
i
ΔAi −∑

i<j
Tr([Ai, Aj]

2
). (9.43)

This had been proposed as a model of zero momentum Yang–Mills fields. In Ref. 666, I also found one proof that this more involved
operator with a potential that stays zero on unbounded narrow sets has purely discrete spectrum. Another model that I considered had
been proposed by Feynman—namely, take three particles in three dimensions and let the interaction be the area of the triangle whose
vertices are positions of the three particles. This potential also stays zero on an unbounded narrow set and I proved it has purely discrete
spectrum.

3. There was much work earlier on Dirichlet Laplacians like H2, where Ω can have infinite volume but still have purely discrete spectrum.
In 1948, Rellich560 considered a class of Dirichlet operators that includes H2 and proved that they have purely discrete spectrum. In
1953, Molčanov499 found necessary and sufficient conditions on Ω for −ΔΩD to have purely discrete spectrum in terms of fairly involved
conditions involving capacity, with an optimal version of Molčanov’s result in the work of Maz’ya–Shubin.491 Maz’ya490 has a review of
the uses of these kinds of capacity conditions. For results of this type with magnetic field, see the work of Helffer–Mohamed.299

4. Fefferman and Phong, using ideas described and summarized in Ref. 190, have an illuminating picture of when the naïve phase space
picture of eigenvalue counting fails. Their ideas are used in the most general result in Ref. 666 and, in particular, in the proof that H4
has purely discrete spectrum.

5. I revisited the issues connected to Theorem 8.11 many years later.703

Robert,567 Solomyak,725 Tamura,742 and I667 also obtained results on the eigenvalue counting asymptotics of operators like H1 and H2. In
one sense, one can say this is consistent with the quasi-classical expectation in that, for example, (9.1) holds for H2 since both sides are infinite.
However, the growth in this case is not the O(E) that (9.1) gives when ∣Ω∣ < ∞ but at a different rate, which we think of as non-quasi-classical.
In particular, Simon667 proved that

lim
E→∞

E−1
(log E)−1NH2(E) = 1/π (9.44)

and
lim

E→∞
E−3/2

(log E)−1NH1(E) = 1/π. (9.45)

There is also discussion in the literature of the analog of H2 when Dirichlet boundary conditions are replaced by Neumann boundary
conditions. As I described in Sec. VII around Eq. (7.41), if one looks at the Neumann Laplacian of

Ω = {(x, y) ∈ R2
∣ x > 1, ∣y∣ < f (x)}, (9.46)

then if the V of (7.40) goes to zero slowly, −ΔΩN has some a.c. spectrum. Evans and Harris186 found necessary conditions on when this
operator has purely discrete spectrum. For many such operators, Jakšić, Molčanov, and I350 found the leading asymptotics for the number of
eigenvalues, NΩ

N (E), of asymptotics as E →∞. In particular, we found for the interesting case f (x) = exp(−xα) that

NΩ
N (E) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
∣Ω∣E if α > 2,

1
2
(∣Ω∣ +

1
2
)E if α = 2,

CαE1/2+1/(2(α−1)) if 1 < α < 2,

(9.47)

where

Cα =
1

4(α − 1)
√
π
(
α
2
)

1/(1−α) Γ(1/(2(α − 1)))
Γ(3/2 + 1/(2(α − 1)))

.

For α > 2, we have a quasi-classical Weyl behavior, but for other alpha, we have non-quasi-classical behavior.
A final remark on non-quasi-classical eigenvalue behavior. Kirsch and I402 (motivated again by a question from a non-mathematical

physicist—in this case, Michael Cross) found such behavior for the growth of the number of eigenvalues below E as E ↑ 0 for −Δ + c(1 + ∣x∣)−1.

X. ALMOST PERIODIC AND ERGODIC SCHRÖDINGER OPERATORS
In AY 1980–81, I visited Caltech as a Fairchild Distinguished Scholar (I got an offer during the year and stayed). I was looking forward

to a year with no teaching, only one postdoc (Yosi Avron, who also had a leave from Princeton) and only one grad student (Peter Perry),
a year where I expected to be able to focus on research with few distractions. I had the impression that many of the areas I had focused on
were winding down, at least as far as my involvement. CQFT was mainly using involved expansions and estimates, not my forte, and the leap
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to four dimensional space–time, which required going beyond superrenormalizable theories seemed daunting (and still has not happened!).
The hottest open question in N-body NRQM was asymptotic completeness, and while I was hopeful, the N-body Mourre estimates that I had
recently proven with Perry and Sigal (see Sec. VII) would be useful, I had no plan for how to proceed. Hence, I suggested to Yosi that we look at
moving into a new area. There seemed to be two to consider: Schrödinger operators with almost periodic potentials (where I was aware of some
interesting non-rigorous work of Aubry19,23) and quasi-classical eigenvalue counting (where I was aware of a then recent preprint of Helffer
and Robert300—a kind of multidimensional version of Bohr–Sommerfeld quantization rules). They both seemed interesting and promising.
After thinking about it, I said to Yosi: “Let’s try to do both. We will do almost periodic first—it does not look very complicated or involved.
We will finish it up in six months and then we can turn to quasi-classical.” Little did I realize. Almost periodic Schrödinger operators was a
major focus of my work for more than 15 years, and now, 40 years later, while there has been remarkable progress, it is still an active area
with its own separate conferences. While, in the last few years after that, I did some quasi-classical research (see Sec. IX), I never worked on
detailed eigenvalue locations and related issues although it has become an active area (see, for example, the work of Zelditch773 for a recent
review of some aspects).

Before turning to the details of this subject, I should point out that it is intimately connected to the subject of Sec. XII (random
Schrödinger operators) and to the subject of Sec. XIII (singular spectrum), so some papers may only be mentioned here and discussed in
more detail in later sections. Moreover, our formal discussion below will start with the general framework of Schrödinger operators and
Jacobi matrices with ergodic potentials, which encompasses random and almost periodic potentials as special cases. We will be very brief in
this presentation referring the reader to the relevant sections of my book with Cycon et al.,124 the lovely review of Jitomirskaya,358 or, for more
comprehensive discussion, the books of Aizenman–Warzel,15 Carmona–Lacroix,96 Damanik–Filman,127 Pastur–Figotin,527 or Stollmann.732

My initial work, much of it with Avron,45,48,50,62,120,121,143,661 was a big part of my research during the three year period 1981–1983 [which
was extremely fruitful including also my early work on TKNN (Thouless, Kohmoto, Nightingale, and Nijs) integers and Berry’s phase and
their geometric significance40,663 (see Sec. XI), my work on ultracontractivity135 (see Sec. IV), my work on multiwell problems664,668 and on
nonclassical eigenvalue asymptotics666,667 (see Sec. IX), my discovery of localization for slowly decaying random potentials659 (see Sec. XII),
the completion and publication of my influential review article on Schrödinger semigroups657 (with over 1400 citations on Google Scholar),
several miscellaneous papers on NRQM with Coulomb potentials,69,463 as well as the preparation of my 45 h, Bayreuth lecture course in the
summer of 1982, which turned into Ref. 124].

I gave a review talk on the early work on almost periodic Schrödinger operators at the 1981 Berlin ICMP,658 and the paper based on the
talk became known as the almost periodic flu paper because I started by remarking on the fact that there seemed to be a worldwide explosion
of work in this new area that I dubbed the almost periodic flu. Indeed, besides my work in California with Avron, there was work by Bellissard
and collaborators in France (reviewed with lots of references in Ref. 61; notable was his use of C∗-algebra methods), Chulaevsky111 in Moscow,
and by Moser,503 Johnson–Moser,366 and Sarnak581 in New York (notable was the Johnson–Moser invention of the rotation number and the
resulting gap labeling).

The basic framework is a probability measure space (Ω,Σ, μ) with expectation, E, a distinguished bounded function, f : Ω↦ R, and a
distinguished group g ↦ T g of ergodic measure preserving maps indexed by the reals or the integers [see Ref. 709 (Secs. 2.6–2.9) for more on
the ergodic and subadditive ergodic theorems]. In the continuous case, one considers a potential Vω(x) = f (Tx(ω)) and ergodic Schrödinger
operator Hω = −

d2

dx2 + Vω(x) acting on L2
(R), and in the discrete case, one takes diagonal elements bn(ω) = f (Tn(ω)) and the ergodic discrete

Schrödinger operator
(Hωu)n = un+1 + un−1 + bn(ω)un (10.1)

acting on ℓ2
(Z). While this is the simplest example, one often generalizes (and we will occasionally below) in three ways: one can allow

suitable unbounded f ′s (often bounded from below), one can replace R or Z by Rν or Zν with the multidimensional Laplacians, and finally,
one can consider ergodic Jacobi matrices rather than only discrete Schrödinger operators (i.e., allow ergodic an’s).

Two special cases are the random (discussed mainly in Sec. XII) and almost periodic cases (the latter is the subject of this section after a
general discussion of some common objects). For the discrete random case, Ω = [a, b]Z, f ({ωj}j∈Z) = ω0, T1({ωj}j∈Z) = {ωj+1}j∈Z, and

dμ({ωj}j∈Z) = ⊗j∈Zdκ(ωj), (10.2)

so bj(ω) is a sequence of independent identically distributed random variables (also known as iidrv). The special case where dκ is uniform
distribution on an interval is usually called the Anderson model (after Ref. 18 for which Anderson got the Nobel prize for claiming the model
had localized states as we will discuss in Sec. XII). I will sometimes call the general iidrv case the generalized Anderson model. Sometimes
what I called the generalized Anderson model is called just the Anderson model, but it pays to have separate names. One sometimes studies
unbounded distributions or even non-independence, but demands the bj be “really random,” at least defined by a Markov process. Since I
never worked directly on continuum random operators, I will leave the description of those models to the books mentioned above, especially
the work of Aizenman–Warzel15 and Stollmann.732 I do, however, note that to accommodate models with, say, a fixed potential localized
about lattice points in Rν with iidrv coupling constants, one needs to modify the set up to only require ergodicity under a discrete group even
for Rν models.

The other case is almost periodic functions. [For more on the general theory of almost periodic functions, see, e.g., Ref. 710 (Sec. 6.6)].
In this case, Ω is a separable, compact, Abelian group, called the hull, and there is a homomorphism S : G→ Ω (with G = R or Z) so that
T g(ω) = ωS(g) and f : Ω→ R. Two important special cases are where S(G), the image, is a winding line on a finite dimensional torus, Ω,
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viewed as a product of copies of ∂D with complex product as the group product, in which case the potential is called quasiperiodic and the case
where the potential is a uniform limit of periodic functions of longer and longer commensurate periods [e.g., V(x) = ∑∞n=12−n cos(x/2n

)], in
which case the potential is called limit periodic. The most famous example is

(Hα,λ,θu)n = un+1 + un−1 + λ cos(παn + θ)un, (10.3)

the almost Mathieu operator (henceforth AMO). In much recent literature, what I call λ is called 2λ (so the self-dual point is λ = 1), but I will
follow the convention of the older literature. I like to joke that there have been more papers in the Annals of Mathematics about the AMO
than about any other single mathematical object. In the physics literature, this is called Harper’s equation when λ = 2 and arose as a tight
binding approximation to a 2D electron in magnetic field (α is then the magnetic flux per unit cell). The name almost Mathieu equation is one
I introduced in Refs. 50 and 658. I took it from the fact that the differential equation

−
d2u
dx2 + λ cos(x)u(x) = Eu(x) (10.4)

is called the Mathieu equation (with Avron,46 I had then recently studied the asymptotics of its gap widths as E →∞). My name is a joke
based on the fact that (10.3) is almost (10.4) and is also only almost periodic if α is irrational [while (10.4) is periodic].

Two basic objects associated with one dimensional ergodic operators are the density of states (DOS) and the Lyapunov exponent. The
DOS, unlike the Lyapunov exponent, makes sense in higher dimensions, but, for simplicity, let us mainly focus on the one-dimensional
discrete case. For each ω, Hω defines a self-adjoint operator on ℓ2

(Z) and so defines a spectral measure, dμω(E), defined by

∫ f (E)dμω(E) = ⟨δ0, f (H)δ0⟩. (10.5)

The DOS measure dk(E) is defined by
dk = E(dμω). (10.6)

The integrated density of states (IDS) is then defined by

k(E) = dk((−∞, E)). (10.7)

If χL is the characteristic function of {n ∣ −L ≤ n ≤ L}, then translation covariance shows that if PB(Hω) is the spectral projection for a set, B,
then

(2L + 1)−1E(Tr(χLPB(Hω)χL)) = ∫
B

dk(E). (10.8)

This together with translation covariance and the Birkhoff ergodic theorem (Ref. 709, Theorem 2.6.9) imply that for a.e. ω and all continuous
functions f on R of compact support, one has that

lim
L→∞
(2L + 1)−1 Tr(χL f (Hω)χL)) = ∫ f (E)dk(E). (10.9)

A simple argument (e.g., restricting to moments) then shows that dk is also the limit of the eigenvalue density of Hω restricted to large boxes
with either periodic or Dirichlet boundary conditions.

The earliest mathematical work on the DOS was by Benderskĭi–Pastur66 who defined it in the random case as a limit of box eigenvalue
counting. See (Ref. 124, p. 175) for additional references on work on the random case prior to Avron–Simon50 whose principal theme was the
DOS for the almost periodic case (and, as we will discuss below, the Thouless formula, Aubry duality, and spectral properties of the AMO).
We introduced the definition via (10.6) and formula (10.9), which we proved held for every ω in the hull, rather than just almost every ω. We
also proved the equality to the definition via (10.6) to the definition via periodic or Dirichlet boundary conditions and also (up to a factor of π)
to the then recently defined rotation number of Johnson–Moser.366 This equality under boundary conditions was natural, given the statistical
mechanical analogy and the proof was not hard. Twenty-five years later, its analog turned out to be very useful to prove a result704 in the
theory of orthogonal polynomials that surprised many experts in that subject.

We also proved that for any ω, the spectrum of Hω is equal to the support of the measure dk, and in particular, spec(Hω) is the same for
all ω in the hull. We also proved that k was continuous in E (and in α at irrational values of α—it is definitely not continuous at rational α!) in
1D and noted the importance of continuity since that implies that for every E, one has that (here, HL,D

ω is the restriction of the Hamiltonian,
Hω, to the box {n ∣ −L ≤ n ≤ L} with Dirichlet boundary conditions, which one could replace by periodic boundary conditions)

k(E) = lim
L→∞
(2L + 1)−1#{eigenvalues of HL,D

ω ≤ E}. (10.10)
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Our proof of the continuity of k in 1D depended on the fact that in 1D eigenvalues have multiplicity at most 1 (all that mattered was
the finiteness), so we suggested, but could not prove, that k was continuous in general dimension. Moreover, the proof only showed that
limε↓0[k(E + ε) − k(E − ε)] = 0 (which implies continuity for monotone functions) with nothing about how small differences are. Later, Craig
and I120 proved log Hölder continuity (using subharmonic function methods introduced in the subject by Herman312) and then extended this
to any dimension121 to get the continuity in any dimension that50 had conjectured. Since the proofs of Refs. 120 and 121 use the Thouless
formula, I will discuss it below. I note that shortly after us, Delyon–Souillard159 found a distinct, really short, proof of the multidimensional
continuity (but not log Hölder continuity).

Before leaving the DOS, I should mention gap labeling not because I contributed to it but because it will be relevant to the discussion of
the Cantor spectrum and the ten martini problem. If H is a discrete Schrödinger operator of period L, the usual Bloch wave analysis shows
the spectrum can have up to L − 1 gaps and that if there is such a gap, the IDS value in it (which has to be constant) is an integral multiple
of 1/L. Johnson–Moser366 (once one has the equality of their rotation number and the IDS) found an analog for the 1D almost periodic
continuum case (their method was extended to the discrete case by Delyon–Souillard158). Independently, Bellissard58 proved the same result
using C∗-algebra methods, eventually using the same idea for certain higher dimensional operators.60 Bellisard’s work caused Johnson365 to
find another approach to gap labeling. For any almost periodic function, f , its average, A( f ) = limR→∞(2R)−1

∫
R
−R f (x) dx is easily shown to

exist. Given a real ω, f is said to have a non-zero Fourier coefficient at ω if and only if A(e−2πixω f ) ≠ 0. Since in the case that x ∈ Z, these
Fourier coefficients only depend on the fractional part of ω, we view ω as an element of R/Z, which we write as [0, 1) and add mod Z. One
can prove that the set of ω with the non-zero coefficient is a countable set. The set of reals that are finite sums and differences of those ω with
non-zero coefficients is called the frequency module of f . It is easy to see that f is quasiperiodic if and only if the frequency module is finitely
generated. Moreover, unless the potentials are periodic, the frequency module is dense in [0, 1) or [0,∞).

Gap labeling is the assertion that in any gap of the spectrum, the value of the IDS is a number in the frequency module. What this says
in case V or a, b are periodic, where the frequency module is multiples of 1/p (with p the “true” period), is that the constant value of the IDS
in a gap is among j/p, j = 1, . . . (where in the discrete case, j runs through p − 1). We speak of a gap being open for a given j if there is such an
interval of constancy and closed if there is a single energy with k(E) = j/p. Earlier in 1976, I had proven in Ref. 634 that in the continuum case
for a dense Gδ of V ’s of period one, all allowed gaps are open. For the discrete case, there is a much more precise analysis168,492 that shows the
set of period p Jacobi parameters with at least one gap closed is a finite union of closed varieties with codimension 2, so the set with all gaps
open is an open set that is much more than generic. A little thought shows that if all allowed gaps are open in the almost periodic case, the set
of gaps is dense so that the spectrum of H is a Cantor set (i.e., a closed, perfect, nowhere dense set). Of course, it can be a Cantor set even if
only many, rather than all, gaps are open.

Avron and I were struck by this Cantor spectrum. Just as we were doing this work, pictures appeared from the Voyager flyby of Saturn,
which showed many more gaps in that planet’s rings than previously known, so many that it almost appeared that the rings were nowhere
dense! We wrote a speculative paper47 suggesting that the structure might be due to an almost periodic Hill equation, although we pointed
out that naïve perturbation estimates of gap size were too small by several orders of magnitude, so there would need to be some then not
understood phenomena increasing this gap size. Alas, there does not seem to be such a phenomenon and nature chose a different mechanism.

At this time, Avron and I,48 Chulaevskĭi,111 Moser,503 and Pastur–Tkachenko528 independently found classes of limit periodic
Schrödinger operators with Cantor spectrum. We also proved the spectrum remained purely absolutely continuous, so the spectrum was
a positive measure Cantor set (much more is now known about limit-periodic Schrödinger operators—a.c. spectrum is not typical; see the
work of Damanik–Gan128). We also discovered that such absolutely continuous spectrum still had all states with slow decay, leading us to
develop a refinement of the a.c. spectrum.45

Mark Kac had moved to USC about the time I was visiting Caltech, and at lunch one day in 1981, he and I discussed the Cantor spectrum
and the AMO. We agreed that it was an interesting conjecture to prove that the operator Hλ,α,θ of (10.3) had a Cantor spectrum for all irrational
α and λ ≠ 0 [if α is irrational, it is known (see the work of Avron–Simon50) that the spectrum is θ independent]. “That’s a grand conjecture,”
said Mark, “I will offer ten martinis for its solution.” He later repeated this offer at an AMS meeting and I popularized it as the ten martini
problem. Added to the interest was the famous Hofstadter butterfly,318,319 a picture (see Fig. 2) showing the spectrum at the critical value λ = 2
of the spectrum as a function of α (computed numerically for α = p/q with q not too large), which looks like a fractal. The ten martini problem
was solved in full in 2004 by Avila–Jitomirskaya25 (mentioned in Avila’s Fields Medal citation) after an important partial result by Puig.543

This is weaker than the result that all gaps are open, something known as the dry form of the ten martini problem (still partially open).
A year after my lunch with Kac, Bellissard and I62 used the strategy of my periodic result.634 We first proved that if α = p/q is rational

and qθ is not a multiple of π, then all gaps were open (i.e., the spectrum has q − 1 gaps). This non-trivial analytic fact was proven using ideas
motivated by the classical result of Ince340 that the continuum Mathieu operator (10.4) has all gaps open. Once we knew that, with further
analysis and some continuity results on k(E) from Avron–Simon,50 the magic of the Baire category theorem showed that for a Baire generic
set of (α, λ), the spectrum is a Cantor set! It is remarkable that with one’s bare hands, one can learn something about the irrational case
(Cantor spectrum) by knowing something about the rational case even though, of course, in the rational case, the spectrum is never Cantor.

When I told Mark about this on the phone admitting it was not the full result, he remarked “But it is still interesting! I will give you three
martinis for it.” So I always think of this as the three Martini result. Alas, before we met again, Mark was dead of abdominal cancer (the same
disease that felled the other half of the Feynman–Kac formula not too long afterward).

Returning to my basic series with Avron, I need to define the Lyapunov exponent. I will do it first for the discrete case. Given a pair of
potential Jacobi parameters, a > 0, b ∈ R and z ∈ C, one defines the single step transfer matrix
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FIG. 2. The Hofstadter butterfly.

A(a, b; z) =
1
a

⎛
⎜
⎝

z − b −1

a2 0

⎞
⎟
⎠

, (10.11)

so the difference equation
anun+1 + bnun + an−1un−1 = zun (10.12)

is equivalent to (un+1

anun
) = A(an, bn; z)( un

an−1un−1
). I learned the trick of putting a factor of a in the lower component, which yields an A with

det(A) = 1 from Killip in about 2000 and it did not appear in the earlier papers.
One defines the transfer matrix

Tn({aj, bj}
n
j=1; z) = A(an, bn; z)A(an−1, bn−1; z) . . .A(a1, b1; z). (10.13)

We use Tn(z;ω) for the transfer matrix with an(ω), bn(ω). The Furstenberg–Kesten theorem (Ref. 709, Theorem 2.9.1) then implies that for
each fixed z, for a.e. ω, one has that the Lyapunov exponent

γ(z) = lim
n→∞

n−1 log(∥Tn(z;ω)∥) (10.14)

exists and is a.e. ω independent. More can be proven: The multiplicative ergodic theorem (Ref. 709, Theorem 2.9.10) says that for each z and
a.e. ω, not only does (10.14) hold but also there is a one-dimensional subspace Vz;ω ⊂ C2 so that

lim
n→∞

n−1 log(∥Tn(z;ω)v∥) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−γ(z) if v ∈ V/{0},

γ(z) if v ∈ C2
/V .

(10.15)

Thus, for such z,ω, if γ > 0, then all solutions of (10.12) on a half line either grow or decay exponentially. We emphasize that the need
for a.e. ω rather than every is not a mere technicality but, as we will see [in the discussion two paragraphs prior to (10.24)], can have dramatic
consequences.

An important role is played by what is called the Thouless formula,

γ(E) = ∫ log ∣E − E′∣dk(E), (10.16)

which relates the Lyapunov exponent, γ, to the IDS, k(E) in the discrete case. This is the form for the discrete Schrödinger case where an ≡ 1;
in general, one has an extra term E(− log(a(ω)) with the added condition that this expectation is finite. It has the name because of the 1974
work of Thouless748 although it appeared earlier in the physics literature in a paper of Herbert and Jones.306 In fact, closely related ideas,
although not the exact formula, go back to Szegő in 1924740 who realized an important connection to two dimensional potential theory [for
discussion of the basics of potential theory, see Refs. 303, 489, and 548 or Ref. 709 (Secs. 3.6–3.7)] since the right-hand side of (10.12) is
the (negative of the) logarithmic potential of dk. I was not aware of this related work from the OP community in the 1980s but only many
years later, at which point I wrote a summary article701 that explained the use of potential theory ideas to spectral theorists and the opposite
direction to the OP community as well as some new insights.
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Thouless’s basic idea is that the elements of the transfer matrix when all an ≡ 1 are monic polynomials, Pn(z), whose zeros are the
eigenvalues of the Hamiltonian in a box. Since log(Pn(z)) = ∑n

j=1 log ∣z − Ej∣, where the sum is over the eigenvalues, (10.16) then follows from
the fact that dk is the limit of the density of eigenvalues in a box. Avron and I realized this argument worked flawlessly when z lay outside the
convex hull of the spectrum of H but because of infinities in the log was problematic for z on the real axis. Indeed, we noted in the almost
periodic case for z off the real axis that it held for all ω rather than just a.e. ω. In Ref. 50, we were able to use the fact that the integral on the
right-hand side of (10.16) is the Hilbert transform of k(E) and the L2 continuity of Hilbert transform to prove that (10.16) holds for Lebesgue
a.e. E in R and this suffices for some applications we made.

Slightly later, Craig and I120 were able to prove (10.16) for all E ∈ R. The key was the observation of Herman312 that the limit in (10.14)
was subharmonic. Since the integral on the right-hand side of (10.16) is also subharmonic, and by Thouless’s argument, the equation holds
for z non-real and it holds for all z by a regularity result on subharmonic functions. Craig and I realized that, in general, for fixed ω, the
quantity lim supn→∞ n−1

∥Tn(z;ω)∥might not be upper semicontinuous, which implied that this lim sup might only have the right-hand side
of (10.16) as an upper bound. We also realized that since γ(E) ≥ 0, the measure dk in (10.16) cannot give too great weight to small sets, which
implied the log Hölder continuity. By looking at averages of positive Lyapunov exponents on strips, we could even extend the continuity result
to higher dimension.

Avron–Simon50 also began the study of a fascinating subject, the possible ω dependence of spectral components. Recall [Ref. 710
(Theorem 5.1.12)] that one can refine the spectrum into pure point, a.c., and s.c. pieces. It is a theorem of Kunz–Souillard425 that these
spectral pieces are a.e. constant in the general ergodic case (one might think this is obvious by the ergodic theorem but the subtlety is proving
the measurability in ω of the projections onto various spectral pieces). As mentioned above, Avron and I proved that a.e. could be replaced by
all in the almost periodic case for the spectrum, but as we will see shortly, that is not true for two of the three spectral components.

For the AMO (10.3), there are interesting dependencies of spectral types on the coupling constant and frequency. A key aspect is what is
called Aubry duality.19,23 Formally, the Fourier transform maps Hα,λ to λ

2 Hα,4/λ since it maps the finite difference operator to multiplication
by cos and turns multiplication by cos into a finite difference operator. Of course, this can only be formal since Fourier transform in ℓ2

(Z)
maps not to itself but to L2

(∂D, dθ/2π)! One version of Aubry duality says that the IDS, k(α, λ; E), of Hα,λ obeys

k(α, λ; E) = k(α, 4/λ; 2E/λ). (10.17)

One way of understanding the dual relation is to view the direct integral of Hα,λ,θ over θ as an operator on L2
(R) and apply the appropriate

Fourier transform. Alternatively, following Ref. 19, one looks at α = p/q with θ = 0 on a set with q points on which finite Fourier transform
maps ℓ2

(Zq) to itself. One obtains (10.17) by approximating irrational α by rationals. Aubry–André’s argument19 for the limit was formal;
Avron and I50 proved the necessary continuity (which only holds at α irrational!) to get the first rigorous proof of (10.17). Two immediate
consequences of Aubry duality are (here α is irrational)

spec(Hα,λ) =
λ
2

spec(Hα,4/λ), (10.18)

γ(λ,α; E) = γ(4/λ,α; 2E/λ) + log(λ/2). (10.19)

Aubry–André19 have a number of conjectures about the almost Mathieu equation, which I (and others) made some progress on in my
work. The first involves the conjecture about the Lebesgue measure, ∣spec(Hα,λ)∣, of the spectrum,

∣spec(Hα,λ)∣ = 2∣2 − ∣λ∥, (10.20)

based on numeric calculations. We note this implies zero Lebesgue measure when λ = 2 (which has led to a lot of literature on what the
Hausdorff measure is of the set in that case; Reference 360 has a summary of some of that literature as well as new results), an earlier conjecture
of Hofstadter.318,319

In Ref. 52, Avron, von Mouche, and I attempted to prove (10.20) and proved the equality for rational α if the left-hand side is the Lebesgue
measure of the intersection over θ of spec(Hα,λ,θ) and proved the convergence of the Lebesgue measure of the union over θ as any sequence
of rationals approaches an irrational α. This implies that the left-hand side of (10.20) is ≥ the right-hand side for α irrational. The techniques
of Ref. 52 have been used in many later works studying this problem. For α whose continued fraction expansions are not bounded, Last436,437

proved the complete (10.20) for all λ. The set of α with bounded integers in their continued fraction expansion is easily seen to have Lebesgue
measure zero and to be a nowhere dense Fσ , so Last’s result covers “most” irrationals but not all, and in particular, it does not cover the golden
mean that has been used in many numeric calculations. The result is now known for all irrational α through a series of papers. The history is
reviewed in the work of Jitomirskaya–Krasovsky,360 which has a simple proof of the general result.

The other conjecture in Ref. 19 concerns spectral types. One starts with (10.19) and the fact that always γ ≥ 0, which implies that for
λ > 2,

γ(E) ≥ log(λ/2) (10.21)

(proven rigorously by Avron–Simon50 and Herman312), which later was proven to hold with equality on the spectrum by
Bourgain–Jitomirskaya.81 By a result of Pastur526 and Ishii,342 strict positivity of the Lyapunov exponent implies that the spectrum there
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has no a.c. component, so the authors of Ref. 19 suggested that when λ > 2, the spectrum is pure point. The Fourier transform of a rapidly
decaying eigenfunction looks like a plane wave, so their conjecture on spectral type was a.c. spectrum when 0 < λ < 2 and pure point spectrum
when λ > 2. They realized that λ = 2 would be subtle and suggested perhaps there would be eigenfunctions with power law decay.

When Avron and I started thinking about the issue of spectral type for the AMO, Peter Sarnak, then a graduate student, suggested to me
that spectral properties might depend on the Diophantine properties of the irrational frequencies (see also Ref. 581), that is, how well those
irrationals are approximated by rationals. The Liouville numbers are those irrationals α for which there exist rationals pk/qk with

∣α −
pk

qk
∣ ≤ k−qk , (10.22)

while we say that (α1, . . .,αℓ) have typical Diophantine properties if there exist C and k so that for all integers, not all zero, we have that

min
m∈Z

RRRRRRRRRRR

m −
ℓ

∑
j=1

njαj

RRRRRRRRRRR

≥ C(n2
1 + ⋅ ⋅ ⋅ + n2

ℓ)
−k. (10.23)

We say that α is Diophantine if (10.23) holds with ℓ = 1 and α1 = α. It is well known that the Diophantine rationals in [0, 1] have full Lebesgue
measure, while the disjoint set of Liouville numbers is a dense Gδ (providing an interesting demonstration that the two notions of generic are
distinct). Avron and I decided that the picture of Aubry–André was likely wrong when αwas a Liouville number. I visited Moscow in the spring
of 1981 and explained our expectation and Molchanov came up to me with a young mathematician, Sasha Gordon, who had shown260 that if a
potential, V , is well enough approximated by periodic potentials, then − d2

dx2 + V on L2
(R, dx) has no square integrable eigenfunctions. Avron

and I found the easy extension to the discrete case and used it and the Pastur–Ishii result to prove49,50 that when α is a Liouville number and
λ > 2, then the AMO, Hα,λ,θ, has a purely singular continuous spectrum for all θ. This was only one of the times that Gordon had a significant
impact on my work—the other most significant one was his impact on my work on the generic singular continuous spectrum (see Sec. XIII).
We also had two joint papers.263,264 I think Gordon, who was a very inventive mathematician, never got the recognition that he deserved and
I felt guilty that I might have benefitted from his brilliance as much or more than he did!

The result with Avron on examples with purely singular spectrum and γ > 0 on the spectrum shows the subtlety of tracking measure zero
sets. By Fubini’s theorem and the multiplicative ergodic theorem, one concludes that for a.e. θ, one has that for a.e. E ∈ R, every solution of
the difference equation Hα,λ,θu = Eu either decays or grows exponentially at both ±∞. Gordon’s lemma implies that in the Liouville case, the
solutions decaying in one direction cannot in the other, so the spectral measures of Hα,λ,θ live on the sets where Lyapunov behavior fails to
hold. The moral is that the a.e. set of θ, where (10.14) might not hold, not only exists but can be where all the important stuff is happening!

For Diophantine α, with λ > 2, the Aubry–André conjecture was proven by Jitomirskaya357 who proved that for such values of the
parameters, one has dense point spectrum of Hα,λ,θ for Lebesgue a.e. θ. It is not a limitation that the proof is only for a.e. θ since the spectrum
is purely singular continuous for a dense Gδ of θ (see the discussion of my work with Jitomirskaya364 in the next paragraph). That leaves α
which is neither a Liouville number nor Diophantine, a non-empty, uncountable, set of irrationals that is both of Lebesgue measure zero and
a subset of a nowhere dense Fσ (so, in a sense, rare). For such α, one looks at the continued fraction approximations pn/qn. which are the best
rational approximations (Ref. 708, Sec. 7.5), and defines

β(α) ≡ lim sup
n→∞

(
log qn+1

qn
). (10.24)

[This measure of approximation in the context of almost periodic Schrödinger operators goes back to my paper on the Maryland model670

in an equivalent form β(α) ≡ lim supn→∞ − n−1 log(∣sin(παn)∣.] Diophantine α have β = 0 and Liouville α have β = ∞. Avila–You–Zhou28

(see also the work of Jitomirskaya–Liu362) proved a conjecture from Ref. 356 that if 2 < λ < 2eβ(α), the spectrum of Hα,λ,θ is purely singular
continuous for all θ, and if λ > 2eβ(α), then the spectrum of Hα,λ,θ is dense pure point for a.e. θ. See the work of Jitomirskaya–Liu361 for more
on this case including a review of the literature and a detailed analysis of the eigenfunctions.

One of the results of the singular continuous revolution that I will discuss in Sec. XIII is that Jitomirskaya and I364 proved that if an(ω) = 1
and bn(ω) is an even almost periodic function, then for a dense Gδ of ω in the hull, hω has no eigenvalues. If it is a model where γ > 0 on the
spectrum so that the Pastur–Ishii theorem implies no a.c. spectrum, this yields purely s.c. spectrum for a Baire generic set of ω. Since there
are models (like AMO for λ > 2 and α Diophantine) where it is known there is dense point spectrum for a.e. ω, we see there are examples
where neither the point spectrum nor the s.c. spectrum are ω independent even though we know that they are a.e. ω independent. However,
independently, Kotani418 and Last and I439 showed that the a.c. spectrum is always ω independent.

I later wrote a paper with Hof and Knill316 in which we proved, using a relative of the ideas in Ref. 364, that certain weakly almost periodic
potentials taking only finitely many values (which are known to have no a.c. spectrum417) have purely s.c. spectrum for a dense Gδ set in their
hull.

Next, I turn to AMO when 0 < λ < 2. The results on the point spectrum with exponentially decaying eigenfunctions for α Diophantine
and λ > 2 plus Aubry duality immediately imply lots of a.c. spectrum when α is Diophantine and λ < 2. After several years,50 it was assumed
that the dual of the singular continuous spectrum must be purely singular continuous, so it came as a big surprise when Last436 proved that
for all irrational α, one has that ∣σac(Hα,λ,θ)∣ ≥ 4 − 2∣λ∣. At the time, Last was a graduate student of Avron at Technion and Avron told me of
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Last’s result. I assured Avron that I was sure Last was wrong. Since I would be coming soon to Israel, rather than plow through the paper and
figure out the error, I suggested we meet so I could determine where the error was and tell him! To my surprise, Last convinced me that his
proof was correct and that he could prove a kind of lower semicontinuity on ∣σac(H)∣ and then use the fact that Avron, van Mouche, and I52

had proven the inequality for rational α. Once the blinders were removed, I realized that my work then in progress with Gesztesy236 provided
a new proof of Last’s result! Indeed, we could slightly improve his result since where he had ∣σac∣, we could obtain the potentially smaller ∣Σac∣

(Σac is the essential support of the a.c. spectrum, that i,s the minimal class of sets mod sets of Lebesgue measure 0 that supports all the a.c.
spectral measures). We proved the following theorem:

Theorem 9.1 (Ref. 236). Let H[n] be a sequence of periodic discrete Schrödinger operators so that for each fixed m, b[n]m has limit bm, and
let H be the discrete Schrödinger operator with potential b. Then, for any open interval (α,β) ⊂ R, we have that

∣(α,β) ∩ Σac(H)∣ ≥ lim sup
n→∞

∣(α,β) ∩ Σac(H[n])∣. (10.25)

For AMO with ∣λ∣ < 2, this leaves the question of the point and singular continuous spectra which were expected to be empty and proving
that first for a.e. θ and then for all θ was open for many years; indeed, proving this for non-Diophantine α (Jitomirskaya357 had handled the
Diophantine case for a.e. θ) was one of the list of problems I sent to the 2000 ICMP.689 The full result was settled by Avila24 (it is most
unfortunate that this paper has never appeared. It seems the blame is shared by the top journal that rejected it and by the author who then
refused to send it elsewhere).

Finally, in our discussion of AMO, I mention the self-dual point ∣λ∣ = 2, which is often quite subtle. In Ref. 264, Gordon, Jitomirskaya,
Last, and I claimed that if the spectrum of Hα,λ,θ has zero measure for λ = 2 and some irrational α (the spectrum is θ independent), then for
a.e. θ, the spectrum is purely singular continuous. At the time the zero measure result was known for most, but not all, irrational α but, as
just mentioned, it is now known for all irrational α. As explained in the discussion under (2), the authors of Ref. 264 were fooled by a sloppily
stated result in Ref. 143, so there was a gap in the proof and the result was only established in the work of Avila et al.26 That left the question
of whether there might be an exceptional set with some (or even all) point spectrum. Very recently, Jitomirskaya359 proved that there are no
point eigenvalues for any α and any θ. This paper includes a discussion of earlier work between the 1997 paper of Gordon et al.264 and her
2020 breakthrough.

That concludes our survey of the refined spectral analysis of AMO, and I conclude this section with a summary of some of my other
papers on almost periodic operators.

(1) Kotani theory. In 1982, I received a brilliant paper by Kotani,415 which dealt with ergodic continuum 1D Schrödinger operators. Since
it dealt with a.c. spectrum, it was mainly of interest for the almost periodic case. It had three main results:

(a) A kind of converse of the Pastur–Ishii theorem, namely, if γ(E) = 0 on a Borel subset A ⊂ R of positive Lebesgue measure, then for a.e.
ω, Hω has a.c. spectrum on A.

(b) If γ(E) = 0 on an open interval I ⊂ R, then the spectrum is purely a.c. on I.
(c) If γ(E) = 0 on a Borel subset A ⊂ R of positive Lebesgue measure, then the process x↦ Vω(x) is deterministic, which means there is

no a.c. spectrum in “truly random” cases.

I discovered it was not so straightforward to extend this to the case of discrete Schrödinger operators but I succeeded in Ref. 661 which
was used by many later authors. In Ref. 420, Kotani and I joined forces to extend these results to discrete strips.

(2) Deift–Simon theory. I wrote a paper with Deift143 that focused on aspects of the a.c. spectrum motivated by Kotani415 and some results
of Moser503 who had proven that the rotation number, α(E) = πk(E), obeys

dα2
(E)/dE ≥ 1 (10.26)

on the spectrum of periodic continuum Schrödinger operators and also for the particular limit periodic potentials he studied in
Ref. 503. In Ref. 143, we noted that (10.26) could not hold, in general, for all ergodic Schrödinger operators, essentially because of
the phenomena of Lifshitz tails (see Sec. XII), but we proved in the continuum case that it holds on the set where γ(E) = 0, and for the
discrete Schrödinger operator (i.e., Jacobi matrix with a ≡ 1), one has the stronger

2 sin(α)dα(E)/dE ≥ 1 (10.27)

on A ≡ {E∣γ(E) = 0}, which implies that ∣A∣ ≤ 4. We also proved that the a.c. spectrum has multiplicity 2. While we regarded these as
the most important results in this paper (as seen by our abstract), this paper is probably best known for two more technical aspects.
First, we construct L2 (in ω) eigenfunctions for energies in the a.c. spectrum, which, for example, plays a critical role in the work in
(4). Second, there is a claim in Ref. 264 that our results imply mutual singularity of the singular parts of the spectral measures for a.e.
pair (ω,ω′) based on a theorem in Ref. 143 that for every real E, a certain set of ω associated with the singular spectrum has measure
zero. Unfortunately, the theorem in Ref. 143 is sloppily stated in that in the section it appears, there is an implicit condition that γ > 0,
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which the authors of Ref. 264 forgot (despite the fact that I was a coauthor of both—blush!). Since the authors of Ref. 264 applied this
at the self-dual λ where γ = 0, that paper has one incorrect claim. I note that the claimed mutually singularity when γ = 0 is still open
although many expect that it is true.

(3) The Maryland model. Dick Prange and two of his postdocs at Maryland found and studied194,195,275,542 a fascinating exactly solvable
almost periodic model, which I dubbed “the Maryland model,” a name that has stuck in later literature. I wrote two papers662,670 on
rigorous aspects of the model, which had some overlap with another independent rigorous analysis by Figotin–Pastur.193 The model
is just like AMO, but cos is replaced by tan, i.e.,

(Hα,λ,θu)n = un+1 + un−1 + λ tan(παn + θ)un. (10.28)

Since tan is unbounded, one needs to eliminate the countable set of θ’s where for some n, παn + θ is of the form (k + 1
2)π; k ∈ Z. Then,

one has a well defined but unbounded operator. When α is Diophantine, the Maryland group found an explicit set of eigenfunctions
but did not prove it complete and their computation of the density of states had other formal elements.

One surprise is that the DOS was the same as for the Lloyd model, which is the random model whose single site distribution
is π−1 λ

λ2+x2 dx, which physicists call Lorentzian and mathematicians call the Cauchy distribution. λ is called the half-width of the
distribution. This distribution has the following weird property. If X1, X2 are two independent random variables each with a Cauchy
distribution of the same half-width, then for any t ∈ [0, 1], tX1 + (1 − t)X2 is also a Cauchy random variable with half-width λ. Simon662

noted that this implies that the Lloyd model has the same DOS as the free Hamiltonian with a random Cauchy constant added to it
and so does the Maryland model with the same λ (note that if θ is uniformly distributed on [0,π], then λ tan(θ) is Cauchy distributed
with half-width λ).

In addition to a proof of completeness of those eigenfunctions that had been found by Prange’s group, Simon670 studied other
properties of this model including the fact that for α a Liouville number, the spectral measures are purely singular continuous and the
structure of the (non-normalizable) eigenfunctions for such α. I note that this model was one of the first times that non-mathematical
physicists had to face singular continuous spectrum; they gave the corresponding eigenfunctions that decay in an average sense but
are not normalizable, the name “exotic states.”

(4) Clock spacing of zeros for ergodic Jacobi matrices with absolutely continuous spectrum. We saw above that the DOS describes the bulk
properties of the eigenvalue distribution of Schrödinger operators in large boxes in that the eigenvalue counting distribution converges
to the DOS. However, there is the issue of the fine structure, in particular, the spacing between nearby eigenvalues. The earliest results
on this problem are in the random Anderson type case where Molchanov500 in 1D and Minami498 in higher dimensions proved that
the distribution is asymptotically Poisson. For random matrices, the fine spacing in the bulk is governed by the Wigner surmise for
GOE/GUE (short for Gaussian Orthogonal Ensemble/Gaussian Unitary Ensemble - see the work of Mehta493 or Deift138 for discussion,
proof, and history). Basically, because of the strong localization in the Anderson case, nearby eigenvalues do not impact each other and
the placement of such eigenvalues are close to independent of each other. In the random matrix case, eigenfunctions are more spread
out, and there is some eigenvalue repulsion so eigenvalues are less likely to be too close to each other.

I gave the problem of extending the Poisson results to OPUC to my then graduate student, Stoiciu which he solved.731 Along the way,
I suggested that he do some numeric calculations and, for comparison, suggested he look at some rapidly decaying Verblunsky coefficients.
Here is the striking result that he found for the zeros of Φn=20 when αj = (

1
2)

j+1 (Fig. 3).
By a Theorem of Mhaskar–Saff,495 it was known that the counting measure for the zeros in this case converges to a uniform distribution

on the circle of radius 1
2 , but I was amazed when I saw that the eigenvalue repulsion was so strong, they seemed to be spaced like the numerals

on a clock. I called this “clock spacing,” a name which stuck even when eventually applied to OPRL when the spacing was locally rigid but
globally not equally spaced because the limiting DOS did not have a uniform density. I wrote a series (the last with Last)441,697–699 for situations
there Verblunsky or Jacobi parameters converged to a constant or periodic sequence.

Motivated by this, Lubinsky476,477 found a new approach to clock behavior for OPRL with the a.c. spectrum [−1, 1] based on proving a
universality result for the Christoffel–Darboux kernel

Kn(x, y) =
n

∑
j=0

pj(x)pj(y), (10.29)

namely, that one says that bulk universality holds at x0 if and only if

K(x0 + a/n, x0 + b/n)
Kn(x0, x0)

→
sin(πρ(x0)(b − a))
πρ((x0)(b − a))

(10.30)

uniformly in bounded a, b, where ρ(x) is the weight in the DOS, which is assumed to be absolutely continuous. Earlier, although Lubinsky
and I did not realize it until later, Freud205 had studied the fine structure of zeros, had proven (10.30) in a less general setting, and realized
that it implied clock spacing in the sense that if ⋅ ⋅ ⋅ x[n]−k < ⋅ ⋅ ⋅ < x[n]−1 < x[n]0 ≤ x0 < x[n]1 < ⋅ ⋅ ⋅ are the zeros near x0, then

lim
n→∞

n(x[n]j+1 − x[n]j ) = 1/ρ(x0) (10.31)
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FIG. 3. Zeros of an OPUC.

for all j ∈ Z. Levin454 independently rediscovered this connection, so the fact that bulk universality implies clock behavior is sometimes called
the Freud–Levin theorem.

Lubinsky proved bulk universality for a large class of measures supported on [−1, 1] with a.e. non-vanishing a.c. weight there. Totik752

and I702 were able to replace [−1, 1] by fairly general sets e ⊂ R, but we required that e have a large interior, so large that it was dense in e. Last
and I realized that Lubinsky’s second approach476 might allow one to handle various almost periodic Jacobi matrices with the a.c. spectrum
even though that spectrum is nowhere dense (e.g., the AMO with ∣λ∣ < 2), but we ran into a couple of hard technical problems. Fortunately,
we were able to convince Avila to attack these issues and the three of us27 were able to prove bulk universality and clock behavior for a.e. x0 in
σac for all ergodic Jacobi matrices.

One of the goals when I wrote my two OPUC books695,696 was to extend the spectral analysis of Jacobi matrices to OPUC (i.e., replac-
ing Jacobi parameters by Verblunsky coefficients). Included were two sections concerning ergodic Verblunsky coefficients, one on random
(Ref. 696, Sec. 12.6) and one on subshifts (Ref. 696, Sec. 12.8), a class of weakly almost periodic functions.

I end this section on almost periodic Jacobi matrices and Schrödinger operators by emphasizing that because it has focused on my
own work, there is no discussion of some issues and limited discussion of later work on the issues we do discuss. In particular, I have not
said anything on Hausdorff dimension of the spectrum in the case where σ(H) has Lebesgue measure zero nor about long time behav-
ior of powers of the position (although I do have two papers on the latter545,675). Nor have I discussed subshifts and substitution models
except for the OPUC work just mentioned and Ref. 316. For more on these subjects, the reader can consult a number of books and review
articles2,96,126,127,356,358,363,438,527 (that said, we really do need a more recent comprehensive review of the AMO).

XI. TOPOLOGICAL METHODS IN CONDENSED MATTER PHYSICS
I was a pioneer101 in the use of topology and geometry (mathematicians sometimes use “geometry” when there is an underlying distance

and “topology” for those geometric objects that do not rely on a distance) in NRQM. In particular, Avron, Seiler, and I40 realized that the
approach of Thouless et al.749 to the quantum Hall effect (for which Thouless got the Nobel prize) was basically an expression of the homotopic
invariants (also known as Chern integers) of a natural line bundle that arises in certain eigenvalue perturbation situations, and I realized663

that the phase that Berry70 found in the quantum adiabatic theorem is holonomy in this bundle and that the quantity Berry70 used to compute
this phase (and which independently had been found by Avron et al.40), now called the Berry curvature, is just the curvature in this line bundle.
I emphasize that Thouless et al.749 never mention “topology” and that Thouless learned they had found a topological invariant, essentially the
Chern class, from me. The only mention of curvature or holonomy in the work of Berry70 is where he remarks that Barry Simon, commenting
on the original version of this paper, points out that the geometrical phase factor has a mathematical interpretation in terms of holonomy, with
the phase two-form emerging naturally [in the form (7b)] as the curvature (first Chern class) of a Hermitian line bundle.

As a mathematician, I am mainly an analyst and most of my training and expertise is analytic so, as background, I should explain
something about how I came to know enough toplogy/geometry to realize its significance in NRQM. As a freshman at Harvard, I took the
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celebrated Math 55 Advanced Calculus course whose first half did differential calculus in Banach spaces and second half integral calculus
on manifolds. This was a dip into the sea of geometry but from an analytic point of view without any discussion of Riemannian metrics or
curvature. I did some self study of general relativity, but the true topology/geometry was hidden since my study was in physics books (and
before the era of those that emphasized the geometry). A key part of my education was a course on Algebraic Topology given my senior year
by Valentin Poénaru, then a recent refugee from Romania, who was visiting Harvard. It was a wonderful course and I really got into the subject
so much that Poénaru took me aside and tried to convince me to give up mathematical physics and switch to topology. I was particularly taken
with the homotopy group long exact sequence of a fibration (see the work fo Hatcher298 for background on this and other topological issues).

Let me mention one of the simplest examples of fibrations of interest in physics, namely, the Hopf fibration, which is a natural map
of S3 to S2. Let σj; j = 1, 2, 3 be the usual Pauli σ matrices. If a = (a0, a1, a2, a3) = (a0,Ð→a ) is a unit vector in R4, then U(a) ≡ a01 + iÐ→a ⋅ σ is
a unitary matrix with determinant 1 if and only if a ∈ S3. This sets up a homeomorphism between S3 and the group SU(2) of 2 × 2 unitary
matrices of determinant 1. In that case, there is a rotation R(a) on S2 defined by U(a)(b ⋅ σ)U(a)−1

= R(a)(b) ⋅ σ. This is the Cayley–Klein
parametrization of rotations, a map of SU(2) onto SO(3). If e3 is a unit vector in the z direction, then a↦ R(a)e3 defines the Hopf fibration,
H, which maps S3 to S2. The point is that it is easy to see (for example, by looking at the inverse images of the north and south poles) that
inverse images of distinct points under H are circles that are linked so the map is homotopically non-trivial, proving that π3(S2

) is non-zero
(in fact, this homotopy group is generated by H and is just Z).

Of course, geometry in the naïve sense was present, even central, to some of my work in the 1970s, for example, the work on phase space
methods in N-body NRQM (see Sec. VII) and I had even mentioned that the Agmon metric was the geodesic distance in a suitable Riemann
metric, but if one thinks of “real” geometry needing curvature and “real” topology needing homology or homotopy invariants, I had not
used them in my research in the 1970s. In Sec. IX, I mention work that was motivated by Witten’s seminal paper770 on the supersymmetry
proof of the Morse inequalities and index theorem. This paper has been celebrated not only for the results itself but also because of the bridge
it opened up between high energy theorists studying gauge (and later string) theories and topologists, but it also impacted me in leading
me to consider certain geometric ideas that I needed in the work I will describe in this section. This is not so much in those of my papers
directly motivated by Witten664,668 but through other mathematics motivated by it. Witten motivated several reworkings of the proof of the
Atiyah–Singer index theorem, in particular, a preprint of Getzler245 [see Ref. 124 (Chap. 12) for additional references] which caught my
attention in the period just after I gave the Bayreuth lectures, which eventually appeared as Ref. 124. I had lectured on Witten’s proof of
the Morse inequalities there and decided to add a chapter on this further extension (Chap. 12 was actually the only chapter that I wrote in
Ref. 124—the other chapters were written by my coauthors based on and usually expanding the lectures I had given).

For pedagogical reasons, I decided to give details only in the special, indeed, classical case of the Gauss–Bonnet theorem where it turns
out that Getzler’s proof is essentially one found in 1971 by Patodi529 who did not know that he was speaking supersymmetry! While I had
heard of the Gauss–Bonnet theorem, I had not known exactly what it said until following up on Witten taught me all about it. Since it will
explain some of my later work, let me say a little about this theorem (and also holonomy) in the case of S2, the sphere of radius R embedded
in R3. At each point, the Gaussian curvature is 1/R2, so if K is the curvature and d2ω the surface area, we have that

1
2π ∫

K dω =
1

2π
1

R2 4πR2
= 2. (11.1)

The remarkable fact is that if you deform the sphere to another surface, say, an ellipsoid, then the curvature is no longer constant, but the
integral in (11.1) is still 2. However, this is not true for the torus. The integral is still independent of the underlying metric needed to define
K, but it is 0, as can be seen by looking at the flat torus R2

/Z2 with the Euclidean metric on R2 (which cannot be isometrically embedded into
R3 but can in R4). In fact, for any surface in R3 (and for hypersurfaces in general dimension), the integral is the Euler characteristic of the
surface (Euler–Poincaré characteristic in higher dimension). This is the Gauss–Bonnet theorem. It says that the integral of a natural geometric
quantity lies in a discrete set and is determined by topological invariants.

To explain holonomy, consider someone carrying a spear around the Earth trying at all times to keep the spear tangent to the sphere
and parallel to the direction it was pointing (which may or may not be parallel to the direction the person is walking). Imagine going along
the equator through one quarter of the Earth, turning left, going to the north pole, turning left, and going back to the original point. Suppose
the spear is parallel to the equator at the start. The person turns to move along a line of longitude, but being careful not to turn the spear, it
will point directly to his right. After the next turn, the spear will point backward. So despite having tried to keep it parallel, upon return, it
has rotated by 90○, i.e., π/2 radians. This rotation after parallel transport is holonomy. The path encloses one eighth of the Earth, a area of
4πR2

/8 = πR2
/2 so the integral of the curvature over the enclosed area is the holonomy!

Perhaps relevant to my work is the following amusing story. Avron and I were talking in my office about our work on almost periodic
things and Dick Feynman burst in and exclaimed “how do you compute the homotopy groups of spheres?” There had been several papers
in the high energy literature that mentioned those and he was puzzled why the higher homotopy groups were not trivial. I told him about
the Hopf fibration that had always struck me and then retrieved from my memory the exact sequence of a fibration. The conclusion of our
discussion continues to amuse me. When I finished, Avron looked at me and said “Barry, I did not realize you knew anything about that.”
Before I could answer, Dick with a huge grin on his face turned around waved his hands at my rather full bookshelves and exclaimed in his
trademark New York accent: “Whadya mean? He’s a Professor, of course he knows it!” I might have recalled all that when I needed homotopy
and the exact sequence of a fibration several months later in my work with Avron and Seiler, but it helped that I had had this interaction.
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In early 1983, Yosi Avron told me about the paper of Thouless et al.,749 which gave a novel explanation of the quantum Hall effect, a
subject that had fascinated Yosi. The striking aspect of that effect is that a resistance was quantized. In the TKNN approach (we quickly came
up with that abbreviation, sometimes TKN2, especially TKNN integers, a name which has stuck), this arose because, using the Kubo formula,
they got the resistance (in a certain idealized situation) was given by an integral over a torus that turned out to be an integer (in suitable units).

We quickly realized that their integers were associated with a single band, which was assumed non-degenerate (i.e., at every point in the
Brillouin zone, the eigenstate for that band is simple), and their integrand involved the change of eigenfunction. We also realized that since the
integrand was an integer, it had to be invariant under continuous change and so an indication of a homotopy invariant of maps from the two
dimension torus T2 to unit vectors in Hilbert space mod phases (equivalently a continuous assignment of a one dimensional subspace in the
Hilbert space to each point in T2). After more thought and study, we learned that the homotopy class of maps from T2 could be classified by
maps from S1 and S2 and so the underlying homotopy groups of P(∞), the one dimensional subspaces of a Hilbert space. We also considered
that there might be non-trivial homotopy invariants depending on several bands so what we wanted to consider was the homotopy groups of
the set, N, of compact operators with non-degenerate eigenvalues. We got excited since if, for example, we found a non-trivial π3, there would
be new topological invariants for the physically relevant three-dimensional torus.

By a continuous deformation, we could consider maps to a fixed set of simple eigenvalues but variable eigenspaces. Given the phase
change, this was the same as the quotient of all unitary maps by the diagonal unitary maps U(H)/DU(H). Hence, these homotopy groups
might be computable via the exact sequence of the fibration that my talk with Feynman had reminded me about! Indeed, since it was known
that the set of all unitaries U(H) is contractible, it has no homotopy, i.e., all homotopy groups are trivial, and thus, by the exact sequence of
the fibration, we knew that πj(N) = πj−1(DU(H)). Since the diagonal unitaries is just an infinite product of circles, T1, and πj(T1

) is Z for
j = 1 and 0 for all other j, we had discovered that the only non-trivial homotopy group of N was π2, that the same was true for P(∞), and that
π2(N) was just an infinite product of π2(P(∞))’s. In other words, the only homotopy invariants were the TKNN integers.

We added Reudi Seiler, whom Yosi had been consulting, to the authors and published this negative result in Physical Review Letters.40 We
made a big deal of our new result that if two non-degenerate bands with TKNN integers n1 and n2 went through a degeneracy as parameters
were varied so that afterward they were again non-degenerate with TKNN integers n3 and n4, then n1 + n2 = n3 + n4. However, there were
results that were more important although only noted in passing. The most basic was the new one that the TKNN integers were homotopy
invariants, something that would be clarified by my work on Berry’s phase which I turn to shortly. We also found two compact formulas
for the integrand that eventually became commonly used in further work. First, if that ψj is the eigenstate of band j, then the corresponding
TKNN integer, nj, is given by

nj =
1

2π∫T2
Kj, Kj = i⟨dψj, dψj⟩. (11.2)

We were especially fond of a second formula that if Pj is the projection onto ψj, then

Kj = iTr(dPjPjdPj). (11.3)

We liked this because while (11.2) requires a choice of phase in each space, (11.3) is manifestly phase invariant. The operator d in the last two
expressions is the exterior derivative and there is an implicit wedge product. The reader might worry that because df ∧ df = 0, and if there
were no trace and Pj in (11.3) was a function, the quantity would be 0. However, because Pj is operator valued, it is not 0. Indeed,

K = i∑
k,ℓ

Tr(
∂Pj

∂xk
Pj
∂Pj

∂xℓ
)dxk ∧ dxℓ

=
i
2∑k,ℓ

Tr(Pj[
∂Pj

∂xk
,
∂Pj

∂xℓ
])dxk ∧ dxℓ

=
i
2∑k,ℓ
⟨ψj, [

∂Pj

∂xk
,
∂Pj

∂xℓ
]ψj⟩dxk ∧ dxℓ, (11.4)

where [⋅, ⋅] is commutator and we used the antisymmetry of dxk ∧ dxℓ.
The next part of this story took place in Australia, so I should mention that trip in the summer of 1983 (well, the winter in Australia!)

almost did not happen. My fourth child, Aryeh, was born in December 1982 and given the time to get his birth certificate and passport, it was
only the end of April that I was able to contact the Australian consul in Los Angeles to get visas for all of us including a work visa for me. He
sent a long medical form for me requiring a new general exam from a doctor and xray. I had had them 3 months before at Kaiser but was told
by the consul that I had to do them over. I have been raised to avoid unnecessary x rays and I was not sure Kaiser would agree to a second
exam. As far as I could tell, this was a restriction put in place to make it difficult for Asians to come and work and I tried to use my invitation
from the Australian Academy of Sciences to get a waiver. The consul was uncooperative, almost nasty. This was not only pre-Skype but email
was almost non-existent and intercontinental phone calls were very expensive, so I sent a telex to my host, Derek Robinson, explaining that
because of visa issues, I would probably have to cancel my trip. The next day, he called me, which impressed me given the cost of international
calls, telling me to stay calm and he would fix it. I did not know that Derek was the secretary of the Australian Academy of Sciences. But three
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days later, I got a call from the consul saying “Sir, I am anxious to issue your visas, but I need you to return the forms I sent you.” I replied
“But what about the medical form.” “Oh, you do not need that, sir.” According to the current vogue, I should feel guilty for having used my
white privilege, but given how important this visit turned out to be, I am glad.

Derek was actually away for the first two weeks of my visit but Brian Davies had also just arrived so we collaborated together on the work
on ultracontractivity that is mentioned in Sec. IV. Midway through my visit, I heard that Michael Berry, whom I would meet several years
before at Joel Lebowitz’ seminar, was visiting physics at Australian National University where Derek was in mathematics and where I was
visiting. He had given a seminar, but before I had learned he was there, so I called and asked him for a private version which he kindly agreed
to. He explained to me his work on an extra phase he had found in the adiabatic theorem (see below) and gave me a copy of the manuscript70

that he had recently submitted to Proc. Roy. Soc. He mentioned that Bernard Souillard, when he heard about Berry’s work, told Berry that
he thought it might have something to do with the paper of Thouless on TKNN integers but then Berry added that when he asked Thouless
about it, Thouless said that he doubted there was any connection (no pun intended). I replied I thought there probably was and that night I
figured out all the main points that appeared in my paper!663

Berry’s paper dealt with the quantum adiabatic theorem. This theorem deals with a time-dependent Hamiltonian H(s); 0 ≤ s ≤ 1 and
considers T large and H(s/T), so one is looking at very slow changes. φT(s) ≡ ŨT(s)φ; 0 ≤ s ≤ T solves φ̇T(s) = −iH(s/T)φT(s);φT(0) = φ.
Let E(s) be an isolated, simple eigenvalue of H(s), and let P(s) be the projection onto the corresponding eigenspace. The adiabatic theorem
says that if P(0)φ = φ, then limT→∞(1 − P(s/T))φT(s/T) = 0, i.e., if you start in an eigenspace, you stay in it adiabatically. Berry asked and
answered the question what happens if H(1) = H(0) so you end where you start. What is the limiting phase of φT(T). The surprise he found (it
turned out that in 1956, Pancharatnam523 had done the same thing, but it had been forgotten) is that the naïve guess that φT(T) ∼ e−iT∫ 1

0 E(s)dsφ
is wrong but that there is an additional phase, eiΓ. In my paper, I gave Γ the name it is now known by—Berry’s phase.

Berry originally wrote Γ as a line integral but, then assuming that family H(s) was a closed curve in a parameter space, he used Stokes
theorem to write Γ as the integral over a surface, S, in parameter space whose boundary was the closed curve in the form

Γ = ∫
S
K(ω) dω, (11.5)

K = Im∑
m≠0

⟨φm(ω),∇H(ω)φ0(ω)⟩ × ⟨φ0(ω),∇H(ω)φm(ω)⟩
(Em(ω) − E0(ω))2 , (11.6)

where he supposed the interpolating Hamiltonian H(ω) had a complete set {φm}m of simple eigenfunctions with H(ω)φm(ω) = Em(ω)φm(ω)
and P(ω)φ0(ω) = φ0(ω); E(ω) = E0(ω).

What I did in my paper663 is realizing that what Berry was doing was simple and standard geometry in the exact same setting as TKNN. I
had learned in the meantime that the TKNN integers were called the Chern invariant and the curvature K was called the Chern class and used
those names for the first time in this context. The adiabatic theorem defines a connection, i.e., a way of doing parallel transport and Berry’s
phase was nothing but the holonomy in this connection. Berry had used (11.2) as an intermediate formula in his paper but did not have the
phase invariant formula of Avron–Seiler–Simon. Despite the fact that our independent work was earlier (dates of submission for our paper
is May 31, 1983, and his June 13, 1983) and that the geometric ideas were in our paper (and more explicitly with the name curvature in Ref.
663), K is universally known as the Berry curvature.

Berry also realized that in situations where the parameter space could be interpolated into higher dimensions, that eigenvalue
degeneracies were sources of curvature, a theme I developed in Ref. 663.

In the vast literature related to these issues, I should mention two especially illuminating points. The first involves the fact that the first
mathematically precise and, in many ways, still the best proof of the quantum adiabatic theorem is Kato’s 1950 proof373 [see Ref. 712 (Sec. 17)
for an exposition]. Without loss, one can suppose E(s) = 0 [otherwise replace H(s) by H(s) − E(s)1]. Kato constructs a comparison dynamics
solving

d
ds

W(s) = iA(s)W(s), 0 ≤ s ≤ 1, W(0) = 1, (11.7)

iA(s) ≡ [P′(s), P(s)], (11.8)

for which
W(s)−1P(s)W(s) = P(0) (11.9)

by an explicit calculation, and he proves that
∥W(s)P(0) −UT(s)P(0)∥ = O(1/T). (11.10)

The relevant point here is that W(s) defines a connection whose differential, by (11.8), is [P, dP] so that its differential, the curvature, is given
by (11.4). Thus, the Avron–Simon–Seiler formula for the Berry curvature was almost in Kato’s paper nearly 35 years before!
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Second, as noted in Ref. 663, when the Hilbert space is Cn, this connection appeared in a 1965 paper of Bott–Chern.79 As noted later
by Aharonov–Anadan,6 this connection is induced by a Riemannian metric going back to Fubini219 and Study734 at the start of the twentieth
century.

I returned to the subject of the quantum Hall effect and Berry’s phase twice. As background, I note that from Berry’s paper onward, a key
observation was that Berry’s phase is zero if all the H(s) can be taken simultaneously real (indeed, Berry tells the story that prior to this work,
he noted a curiosity in eigenvalue perturbation theory; if one has real matrices depending on two parameters with an eigenvalue degeneracy
only at 0 ∈ R2, then going around the degeneracy causes a sign flip in the eigenvector. In this case, because eigenvectors are chosen real, there
is only a ± degeneracy and so a unique way of continuing. He talked about this result and someone asked him what happened in the complex
case and he replied, there was no difference. However, after the talk, he realized that in the complex case, phase ambiguity meant there was no
unique way to continue under just perturbation of parameters and then that the adiabatic theorem did give a way of continuing, which in the
complex case could lead to a non-trivial phase. Since the curvature must be real, the i in (11.4) [or the Im in (11.6)] show if all the P’s are real,
then K = 0 and there is no Berry phase. For spinless particles, time reversal just complex conjugates the wave function so the mantra became
“time reversal invariance kills Berry’s phase.” Magnetic fields destroy reality of the operators (and are not time reversal invariant). Indeed, the
basic example is to take a constant magnetic field, B ∈ R3 and H(B) = B ⋅ σ where σ is a spin s spin. The curvature is then (2s + 1)B/B3.

In work with Avron and two then Caltech postdocs Sadun and Seigert,38,39 I discovered that for fermions you could have a non-zero
Berry phase even with time reversal invariance and that there was a remarkable underlying quaternionic structure relevant to their study.
The underlying issue goes back to a 1932 paper of Wigner767 on time reversal invariance, T, in quantum mechanics. He first proved his
famous theorem that symmetries in quantum mechanics are given by either unitary or anti-unitary operators and then argued that T was
always antiunitary with T2

= 1 for bosons and T2
= −1 for fermions. In the Bose case, that means T acts like a complex conjugate and so the

argument of no Berry’s phase applies but not in the fermion case. Instead, J ≡ T and, I, the map of multiplication by i are two anticommuting
operators whose squares are each −1, so they and K = IJ turn the underlying vector space into one over the quaternions! It was Dyson172 who
first realized that fermions under time reversal have a quaternionic structure (although he first notes the relevance of sympletic groups and
that the connection between such groups and quaternions is well known in the mathematical literature on group representations).

We worked out the details, especially for half integral spin systems. Just as the simplest example of Berry’s phase is a spin 1/2 magnetic
dipole, our simple example is a spin 3/2 electric quadrupole. An interesting feature concerns the fact that eigenspaces are never simple
but always even complex dimension. This degeneracy is known as Kramers degeneracy (after Ref. 422)—one point of Wigner’s paper767 is to
explain this degeneracy as a result of time reversal symmetry for fermions. Thus, one looks for simple holonomy in systems with quaternionicly
simple eigenvalues, i.e., eigenvalues of fixed complex multiplicity 2. The Berry phase is thus a 2 × 2 unitary matrix.

One noteworthy aspect of Ref. 39 is its abstract which reads in full: Yes, but some parts are reasonably concrete. While I had
introduced topological ideas, I was somewhat dismayed about all the terribly fancy stuff that appeared in the math physics literature,
especially throwing around the term “fiber bundle.” Yosi and I used to joke that some people seemed to suffer from bundle fibrosis.
So we were concerned about some of the abstruse language in Ref. 39 and decided to work out several examples in full as a coun-
terweight. We liked our abstract, but getting it into the journal was not easy, an interesting story that I will not include (but see
http://www.math.caltech.edu/SimonFest/stories.html#barry). Almost twenty five years after our paper, the abstract earned a fan blog post
entitled Abstract Snark546 that declared our abstract and one other “almost Zen in their simplicity and perfection.”

My other work in this area is three related papers that I wrote with Avron and Seiler41–43 that followed up on an alternate approach to
the quantum Hall effect due to Bellissard59 in which topology entered as an index in C∗-algebraic K-theory. We developed an index theory
for the simpler case where certain subsidiary operators were Fredholm. To me, some of the mathematics we developed was most fascinating.
In particular, we proved the following theorem:

Theorem 10.1. Let P and Q be two orthogonal projections so that P −Q is trace class. Then, Tr(P −Q) is an integer.

Remarks.

1. For discussion of trace class, see Ref. 710 (Sec. 3.6).
2. This is a result that begs to be proven by Goldberger’s method.777

3. Our proof relied on two operators used extensively by Kato385 A = P −Q and B = 1 − P −Q, which he showed obeyed A2
+ B2

= 1. We
noted43 that one also had the supersymmetry relation AB + BA = 0. Since A is trace class and self-adjoint, using a basis of eigenfunctions
and the Hilbert–Schmidt theorem (Ref. 710, Theorem 3.2.1) shows that

Tr(A) = ∑
λ
λdλ, (11.11)

where we sum over eigenvalues and dλ = dim(Hλ) with Hλ = {φ ∣ Aφ = λφ}. The supersymmetry implies that ψ ∈ Hλ ⇒ Bψ ∈ H−λ.
Since B2

↾ Hλ = (1 − λ2
)1, we see if λ ≠ ±1, then B is a bijection of Hλ and H−λ, so for such λ, we have that dλ = d−λ. Thus, (11.11)

implies that Tr(A) = d1 − d−1 ∈ Z.
4. Slightly earlier, this result was proven by different methods by Effros and Grothendieck.177 His proof is sketched in Ref. 710 (Problem

3.15.20) and our proof can also be found (Ref. 710, Example 3.15.19). I found another proof using the Krein spectral shift, which is
sketched in Ref. 710 (problem 5.9.1). Amrein–Sinha17 has a fourth proof.
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5. For a review of some of the literature on pairs of projections, see Ref. 712 (Sec. 5). I have several more recent papers on pairs of
projections.80,711

XII. ANDERSON LOCALIZATION: THE SIMON–WOLFF CRITERION
I have some contributions to random Schrödinger operators, especially in one dimension. While the first of my papers in the area

predates slightly the work of Section XI, I have placed this here because my two most significant contributions were finished near the end of
1984, so close to each other that there was a joint announcement719! One is the work with Wolff720 on a necessary and sufficient condition
for point spectrum, which appears in the title of this section and the other is work with Taylor718 on regularity of the density of states in the
Anderson model. While the Simon–Taylor work was done first (indeed, I talked about it at the conference where I learned of Kotani’s work
that motivated Simon–Wolff), I begin with Ref. 720.

The generalized Anderson model is described in Sec. X. Suppose that the single site distribution, dκ, is acwrt Lebesgue measure. If Hω
has dense point spectrum for a.e. ω, then, by independence at distinct sites, if we fix all sites but one, we will have dense point spectrum for
Lebesgue a.e. choice of the potential at the remaining point in the a.c. support of the single site distribution. So it is natural to discuss a family
of rank one perturbations,

Aλ = A + λQ, Q = ⟨φ, ⋅⟩φ, (12.1)

where is A is a self-adjoint operator with a simple spectrum (I discuss in Remark 1 why assuming simplicity is no loss), Q is the projection
onto a unit vector, φ is and λ ∈ R. If dμλ is the spectral measure for Aλ in vector, φ, a key role is played by the function

K(E) = ∫
dμ0(E′)
(E − E′)2 , (12.2)

which is well-defined as a function with values in (0,∞] including the possible value of∞. This function will play a crucial role in Sec. XIII
also. One main theorem of Simon–Wolff720 is as follows:

Theorem 11.1 (Simon–Wolff criterion720). Suppose A is a self-adjoint operator with cyclic unit vector φ. Fix an open interval (α,β) in
spec(A). The following are equivalent:

(a) For (Lebesgue) a.e. real λ, Aλ has dense point spectrum in (α,β).
(b) For (Lebesgue) a.e. real E ∈ (α,β), we have that K(E) < ∞.

Remarks.

1. We supposed that A has simple spectrum, with φ being a cyclic vector. For general A and φ, we can restrict A to the cyclic subspace
generated by φ and that restriction obeys the simplicity and cyclicity assumptions, so we can conclude something about the spectral
measure dμλ. For an Anderson type model, if we know each δβ,β ∈ Zν has a spectral measure with dense pure point spectrum, we get
the result for the full operator. We also note that it was later shown that any single δβ is cyclic in the localization region; see the end of
this section.

2. Simon–Wolff 720 further noted that if G(β, γ; z) = ⟨δβ, (H − z)−1δγ⟩ is the Green’s function and dμ is the spectral measure for H and δ0,
then

∫ ∣E − E′∣−2dμ(E′) = lim
ε↓0
∑
β∈Zν
∣G(β, 0; E + iϵ)∣2. (12.3)

The two main approaches to the spectral analysis of multidimensional generalized Anderson models are the multiscale analysis of
Fröhlich–Spencer (see the work of Fröhlich–Spencer217,218 for the original work and732 for a pedagogical presentation) and the method of
fractional moments of Aizenmann–Molchanov (see the work of Aizenmann–Molchanov11 for the original work and Ref. 15 for a pedagogi-
cal presentation). Both most directly prove exponential decay of Green’s functions with some kind of uniformity as one approaches the real
axis and prove the finiteness of the right-hand side of (12.3) for a.e. ω and a.e. E in some interval, so by Theorem 11.1, they imply dense
point spectrum.

The Proof of Theorem 11.1 relies on two elements—a general analysis of the spectral type under rank one perturbations due to Aron-
szajn20 and Donoghue167 (Aronszajn discussed the special case of variation of boundary condition for ODEs and Donoghue extended to
general rank one perturbations; some elements appeared earlier in their joint work21). We need the Stieltjes (also known as Borel also known
as Cauchy) transforms

Fλ(z) = ∫
dμλ(E′)
E′ − z

, (12.4)
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and we define various subsets of R using Fλ=0 and K,

Sλ = {x ∣ lim
ε↓0

F0(x + iε) = −λ−1
} for λ ≠ 0,

S0 = {x ∣ lim
ε↓0

Im F0(x + iε) = ∞},
(12.5)

P = {x ∣ K(x) < ∞}; Pλ = Sλ ∩ P for λ ≠ 0,
P0 = {x ∣ lim sup

ε↓0
ε Im F0(x + iε) > 0}, (12.6)

L = {x ∣ lim
ε↓0

Im F0(x + iε) ∈ (0,∞)},

B = R/ (⋃
λ∈R

Sλ ∪ L),
(12.7)

where, when we write a lim is equal to some value, it includes the statement that the limit exists.
As preliminaries, we note first that by the dominated convergence theorem, if K(x) < ∞, we have that limε ↓0F0(x + iε) exists and lies in

R so P is ⋃ {λ≠0}Pλ plus the set where the limit is 0. Second, the general theory of Stieltjes transforms implies that each Sλ has measure zero.
Note also that the sets Pλ are disjoint from each other and from L. We say that Z ⊂ R supports a measure, ν, if and only if

ν(R/Z) = 0. (12.8)

Then, the work of Aronszajn–Donoghue implies the following theorem:

Theorem 11.2 (Refs. 20 and 167). Let Aλ be a family of rank one perturbations. Then, we have the following:

(a) The a.c. parts of the measures dμλ,ac are mutually absolutely continuous for all λ ∈ R and are supported on L.
(b) The singular parts of the measures dμλ,sing are mutually singular and for distinct λ ∈ R and each is supported on Sλ.
(c) For all λ ∈ R, the pure point part of the measure, dμλ,pp is supported on Pλ and the singular continuous part of the measure is supported

on Sλ/Pλ.
(d) The set B has Lebesgue measure zero, and for all λ ∈ R, we have that μλ(B) = 0.

Remarks.

1. For proofs, see Ref. 710 (Sec. 5.8) or Ref. 693 (Sec. 12.2).
2. One can say much more about Pλ and L. First, L is the essential support of the all the dμλ,a.c.. Second, for λ ≠ 0, each point, x0 in Pλ is a

pure point with dμλ,pp(x0) = (λ2K(x0))
−1.

3. After my introduction to rank one theory in the course of this work, I was motivated to do a lot more in the subject. First, the work
on Baire generic singular continuous components147,149 discussed in Sec. XIII. Second, I worked on the natural meaning of Aλ when
λ = ∞235 and the extension of the theory when A is unbounded and φ is very singular.406 Finally, I extended the theory to multiplicative
rank one perturbations of unitary operators, a subject useful in OPUC.695,700

4. After those works, I wrote some lecture notes on rank one perturbations.681 When the AMS decided to reprint my trace ideals book,
which had gone out of print, it made sense to include those notes as some extra chapters in the second edition.693

The second element of the Simon–Wolff analysis was our result that has come to be called spectral averaging.

Theorem 11.3 (spectral averaging720). For general rank one perturbations, one has that

∫ [dμλ(x)] dλ = dx (12.9)

in the sense that
∫ [ f (x)dμλ(x)] dλ = ∫ f (x) dx (12.10)

for any continuous function, f, of compact support on R.

Remarks.

1. Theorems 11.2 and 11.3 immediately imply Theorem 11.1 because, by Theorem 11.2, (a) is equivalent to dμλ((α,β)/P) = 0 for a.e. λ
and by Theorem 11.3, ∫ [dμλ((α,β)/P)] = ∣(α,β)/P∣.
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2. There are variants of spectral averaging that predate.720 In 1971, Javrjan351 proved equivalent formulas for the special case of boundary
condition variation of Sturm–Liouville operators on [0,∞). For some applications, all that is needed is the consequence of spectral
averaging that if a set Q ⊂ R has Lebesgue measure zero, then for a.e. λ, one has that dμλ(Q) = 0 for a.e. λ. This fact (or the stronger one
that some average of dμλ with an a.e. positive weight is dominated by an a.c. measure) appears in the literature in several place prior to
Ref. 720: for example, the work of Carmona94 and Kunz–Souillard.425

I conclude the discussion of Simon–Wolff 720 with a bit about the history of its genesis. In the summer of 1984, Kotani reported on
some interesting work at a conference in Maine. I did not hear about this work until he and I attended a conference in Bremen in Novem-
ber although he eventually published his work in the Proceeding of the conference in Maine.416 While Kotani focused, as he often did, on
continuum Schrödinger operators, I will discuss the discrete case that he mentioned in passing. He looked at an ergodic discrete Schrödinger
operators on a half line (n ≥ 1) (i.e., an ≡ 1, bn(ω) samples of an ergodic process) in an energy region, (α,β), where one knew the Lyapunov
exponent was positive. He considered operators hθω where the eigenfunction equation hu(n) = u(n + 1) + u(n − 1) + bnu(n) = Eu(n), n ≥ 1
was supplemented by the boundary condition cos(θ)u(1) + sin(θ)u(0) = 0. This is equivalent to truncating the doubly infinite matrix but
replacing b1 by b1 − cot(θ). As explained in Sec. X, one has exponentially growing or decaying solutions except for an ω-dependent set of
energies in (α,β). By making explicit an argument of Carmona,94 he showed that for Lebesgue a.e. θ, the spectral measures were supported
on the set where one had this exponential dichotomy. Thus, he had the shocking result that in cases like the one where Avron and I proved
that there was purely singular spectrum (AMO with large coupling and Liouville frequencies), the half line problem had pure point spectrum
for the a.e. boundary condition θ.

It was immediately clear to me that these ideas might say something about the dense point spectrum for the higher dimensional Anderson
model where Fröhlich–Spencer had recently announced results on exponential decay of Green’s functions. I asked Kotani if he had thought
about such applications and when he said no, I asked if he minded if I thought about it and he said fine. I returned to Caltech and quickly real-
ized the relevance of the Aronszajn–Donoghue theory and understood the key was finding some abstract version of the Carmona argument.
I decided it was a question connected with Hilbert transforms and so consulted Wolff and we came up with spectral averaging.

Bernard Souillard was also at the conference in Bremen and he also realized the possible applicability of Kotani’s scheme to multidi-
mensional localization and he, together with Delyon and Lévy, also developed an approach152–154 to these problems. They did not phrase it in
terms in general rank one perturbations and required exponential decay (rather than only ℓ2 decay) and did not have a necessary and sufficient
theorem, so Simon–Wolff have been much more generally quoted. However, their ideas worked more easily in some non-rank one situations,
and indeed, Delyon, Souillard, and I157 used their approach to prove some results about random operators with the so-called off-diagonal
disorder (which are rank 2)!

After my work with Wolff, I wrote two papers, one with Kotani419,673 applying these ideas to discrete Schrödinger operators in strips.
Before leaving the subject of spectral averaging, I should mention a later work of mine687 that extends it to trace class perturbations and

averages over finite intervals and relates it to a wonderful formula of Birman–Solomjak.75 It involves the Krein spectral shift [see Ref. 693
(Sec. 11.4) for references and the theory], ξA,B(x), which, whenever B − A is trace class, can be defined by

Tr( f (B) − f (A)) = ∫ f ′(x)ξA,B(x)dx. (12.11)

Javrjan351 actually had a local version of (12.9), which generalized to arbitrary rank one perturbations says that

∫

λ1

λ0

[dμλ(x)] dλ = ξA+λ0Q,A+λ1Q(x)dx, (12.12)

from which (12.9) follows because limλ→∞ξA−λC,A+λC(x) = rank(C)1 (for all x) if C is finite rank. The main result in Ref. 687 considers
general families, A(s); s0 ≤ s ≤ s1, of self-adjoint operators with a weak derivative C(s), which is trace class, positive, and continuous in trace
norm. I defined dμs(x) = Tr(C(s)1/2dEs(x)C(s)1/2

) [with A(s) = ∫ xdEs(x) in the spectral resolution form of the spectral theorem (Ref. 710,
Sec. 5.2)] and proved that

∫

s1

s0

[dμs(x)] ds = ξA(s0),A(s1)(x)dx. (12.13)

I showed that this was equivalent to the formula of Birman–Solomjak that

d
ds

Tr( f (A(s))) = Tr(C(s) f ′(A(s))) (12.14)

and provided a half page proof of (12.14).
I turn next to my work with Taylor,718 which concerns the issue of regularity of the IDS, k(E). The most heavily quoted and used

regularity result is the estimate of Wegner758 that for the generalized Anderson model on Zν, if the bn are iidrv with distribution (9.2) where
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dκ(x) = g(x)dx, (12.15)

with g ∈ L∞, then one has the Wegner estimate
∣k(E) − k(E′)∣ ≤ 2∥g∥∞∣E − E′∣. (12.16)

This estimate is easy to prove and can be deduced from spectral averaging (although it predates it!). It (or rather its finite volume analog) is
the starting point for most variants of multiscale analysis. This estimate and others that are known in general dimension are of the form that
k is as regular as E ↦ κ(−∞, E). What Taylor and I proved was the possibility of significantly greater smoothness in one dimension (at least
once κ has some minimal smoothness).

Why did I think this might be true? For the free case,

k(E) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if E ≤ −2,
1
π

arccos(
−E
2
) if − 2 ≤ E ≤ 2,

1 if E ≥ 2,

(12.17)

which implies that k(E) is C∞ on (−2, 2) with dk/dE = [2π
√

4 − E2]
−1

so there is a singularity in dk/dE at E = ±2. In general, one would
expect that there are singularities at the edges of the spectrum. Indeed, this k(E) is globally Hölder continuous of order 1/2 and no higher
order. For the Anderson model, I knew there were Lifshitz tails (see below), which implies that k(E) went to zero as E ↓Σ−, the bottom of
the spectrum faster than the inverse of any power of (E − Σ−)−1 consistent with k(E) being C∞ as E shifts from the spectrum to below the
spectrum. I discussed this with Tom Spencer who was dubious that k was C∞ for the original Anderson model, so we made a 25 cent bet on
whether it was true (I would win if someone, not necessarily me, proved it true and he would win if someone, not necessarily him, proved it
false).

Of course, one expected this not merely for the Anderson model (where g is the characteristic function of an interval), but for at least some
generalized Anderson models. I found that one needed some minimal regularity on κ because Bert Halperin295 had shown that there were
examples where dκ was a two point measure, where k was not even C1. While Halperin went on to become a distinguished condensed matter
theorist, he wrote this paper as a junior undergrad at Harvard! While the argument was solid, there were missing points of mathematical
clarity so that Taylor and I, who wanted to advertise the result, included details in an the appendix.718 The model has

dκ(x) = (1 − θ)δ(x) + θδ(x − λ) (12.18)

with 0 < θ < 1/2. This model came to be called the Bernoulli–Anderson model. We showed that k(E) was not Hölder continuous of any
order larger than α0 = 2∣ log(1 − θ)∣/Arc cosh(1 + 1

2 ∣λ∣), so by taking θ small and/or λ large, one can assure lack of Hölder continuous of any
prescribed order. We also gave heuristics and conjectured that for those extreme values, dk should have a singular component (we recall that
the Cantor function is Hölder continuous of order log(2)/log(3), so dk can be singular continuous even though k is Hölder continuous).
Motivated by this, Carmona et al.95 proved this conjecture (and more importantly proved localization in Bernoulli Anderson models) and
Martinelli–Micheli486 even proved for any fixed θ, dk was purely singular continuous for all large λ.

The main result of Simon–Taylor is as follows:

Theorem 11.4. Let k be the IDS for a generalized Anderson model in ν = 1 dimension with dκ of the form (12.15) where g has compact
support, and for some α > 0, one has that (1 + k2

)
α/2ĝ(k) is the Fourier transform of an L1 function. Then, k is C∞.

When g is the characteristic function of an interval, the hypothesis holds for any α < 1, so this won my 25 cent bet with Spencer! Let me say
something about the strategy and genesis of this result. Most of the early proofs of localization in the 1D Anderson model relied on a theorem
of Furstenberg,221 who proved that, under certain circumstances, products of iidrv SL(2,R)matrices had a positive Lyapunov exponent. His
proof relied on the action of SL(2,R) on RP(1), real projective space [by (A, [φ]) ↦ A[φ]], and the induced natural convolution of measures
on SL(2,R) with measures on RP(1) to get measures on RP(1). If μ was the probability measure on SL(2,R) describing the distribution of
individual matrices in the random product, Furstenberg showed and used that there was a unique measure ν on RP(1) so that μ ∗ ν = ν. In the
Anderson case, for each real energy, E, there is a distribution of transfer matrix (10.11) and so an invariant measure, νE, for each E. I realized
that by a discrete analog of the Sturm oscillation theorem, k(E)was the weight that νE gave to those lines in RP(1)with two coordinates of the
same sign so that smoothness of k should be implied by smoothness of νE in E. Since νE was also invariant for multiple SL(2,R) convolutions
of μE, what one needed is that these multiple convolutions got smoother and smoother in E. While I was interested in smoothness in E, I
suspected (correctly it turns out) that what one really needed was that these high order convolutions of μE were a.c. with respect to the Haar
measure on SL(2,R) with weights that were smoother and smoother in the group parameters.

This was a question in noncommutative harmonic analysis and I assumed the representation theory of SL(2,R)would play a major role,
so I contacted Michael Taylor, who I had heard was a big expert on the topic (shortly after this, he published two books on the subject743,744)
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and suggested that we work on it. At some point, I also spoke to Eli Stein who was also a big expert on the representation theory of SL(2,R)
and he made the suggestion that it is often easier to control convolutions on SL(2,R) with one’s “bare hands” rather than by using the non-
commutative Fourier transform, which is what we did. The underlying μE are certainly not a.c. with respect to the Haar measure on SL(2,R)
since they are supported on a one-dimensional subset of the three-dimensional group, but we proved that under the technical condition on g
in Theorem 11.4, the three fold convolution is a.c. with respect to Haar measure with a weight that has a tiny bit of smoothness so that in the
standard way, the higher order convolutions of that will be smoother and smoother. While conceptually the proof was straightforward, some
of the technical details were formidable. In particular, we strongly used the compact support hypothesis on g.

Our paper stimulated several others that obtained strengthening of our result—two by Klein and co-workers89,412 and one by
March–Snitman.483 Their techniques were very different from ours and each other. In particular,412 only needs the weak condition on g
that its Fourier transform is C∞ with all derivatives vanishing at∞ (automatic if g is of compact support and the analog is even true if dκ is
the Cantor measure!).

Besides these two major works on random potentials, I have papers on four other aspects [(1) and (3) only in one dimension]. Let me
briefly discuss them.

(1) localization for slowly decaying random potentials I wrote a number of papers on the model (half or whole line) where an ≡ 1 and

bn = (1 + ∣n∣)−αωn, (12.19)

where ωn are iirdv (sometimes with restrictions on their common distribution) [(see Refs. 155, 156, 405, and 659 and Ref. 696
(Sec. 12.7)]. The first and most basic paper659 showed that if 0 < α < 1/2, with minor assumptions on the distribution dκ, of ω [basi-
cally, it has the form (12.15) with g bounded and of compact support], then for a.e. ω, hω has dense point spectrum in [−2, 2] with
eigenfunctions decaying at least as fast as e−C∣n∣β ; β = 1 − 2α. As noted there, the proof is an easy adaptation of the proof of localization
in the one dimensional Anderson model by Kunz–Souillard.425 I pointed out that one knew (by the trace class theory) there was pure
a.c. spectrum on [−2, 2] when α > 1 and that while 1/2 ≤ α ≤ 1 was open, it was likely that localization required α < 1/2.

The transition region α = 1/2 was discussed in two papers that I wrote with Delyon and Souillard,155,156 which is especially inter-
esting because the same ideas allow the analysis of a random Kronig–Penny model in the non-zero electric field. We fixed g and added a
coupling constant, λ, in bn = λ(1 + ∣n∣)−1/2ωn. We showed for all sufficiently large λ that for a.e. ω, the model has dense point spectrum
with power decaying eigenfunctions and for all sufficiently small λ no point spectrum. Subsequently Delyon150 proved purely singular
continuous spectrum in these small λ regions.

Kotani–Ushiroya421 studied a closely related set of models. They studied 1D random continuum Schrödinger operators of the
type studied by the Russian and co-workers259 but with the potential multiplied by (1 + ∣x∣)−α. They proved purely a.c. spectrum on
[0,∞) when 1/2 < α and sharpened the results of the last paragraph when α = 1/2. Kiselev, Last, and I405 used discrete analogs of
Prüfer variables to recover and strengthen the results for the decaying discrete models. In particular, if bn = λn−1/2ωn with ωn as in the
classical Anderson model, we proved that the spectrum is purely dense pure point if λ2

≥ 12, and if λ2
< 12, the spectrum is purely

s.c. in the region ∣E∣ ≤
√

4 − λ2/3 and dense pure point in the complementary part of [−2, 2]. We even found the local Hausdorff
dimension of the spectral measures [see Ref. 707 (Sec. VIII B) for discussion of the local Hausdorff dimension of a singular measure]
in the singular continuous region.

Random decaying operators, as we will see in Sec. XIII, play an important role in discussions of singular continuous spectrum for
Baire generic decaying potentials. Gordon et al.265 (I was a coauthor of an extension of this work to higher dimensions263) considered
the random potentials of the form (12.19) with α < 0. One might think that ∣bn∣ → ∞ so the spectrum is discrete but if g has zero in its
support, it might happen that although lim sup∣bn∣ = ∞, one has that lim inf∣bn∣ = 0! Indeed, when ω is uniformly distributed in [0, 1],
the spectrum is discrete if and only if −α > 1. When 0 < −α ≤ 1, there is a semi-infinite interval of dense point spectrum.

(2) Lifshitz tails. I made some contributions to the theory of Lifshitz tails399,672,674 (I am embarrassed to say that I sometimes used the
atypical spelling Lifschitz although I do note the original is Cyrillic). There is a huge literature, so I will only include my papers and the
original one of Lifshitz referring the reader to the excellent review of Kirsch–Metzger398 from my 60th birthday festschrift for more
references and more history. Here is a rough heuristic argument close to Lifshitz original.472 Consider a model

Hωu(n) = 2νu(n) − ∑
∣j∣=1

u(n + j) + bω(n)u(n)

≡ [(H0 + bω)u](n) (12.20)

on Zν with, say, the bω(n) uniformly distributed in [0, 1]. The free term is written as a Laplacian so that H0 is a positive operator whose
spectrum is [0, 4ν], and it is easy to prove that for a.e. ω, the spectrum of Hω is [0, 4ν + 1]. Imagine putting the system in a large box
and looking for eigenvalues with energy less than ε and normalized eigenfunction φ. For ⟨φ, H0φ⟩ to be small, φ must be spread out
over a region of radius R at least ε−1/2 with O(ε−ν/2

) sites. For ⟨φ, Vφ⟩ to also be small, we need V to be small at (most of) these sites,
certainly no less than 1/2, so we are looking at probabilities of order cε

−ν/2
with 0 < c < 1. (One could argue that c should be ε but that
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only introduces a log term in the exponent and would restrict the form of the single site probability). In any event, the expectation is
that at least

lim
E↓0

log(− log(k(E)))/ log(E) = −ν/2, (12.21)

the weakest form of Lifshitz tails (and the only one that I proved). The early rigorous results in this area used the method of large
deviations. My work was motivated by a breakthrough of Kirsch–Martinelli who found the first proof that used bare hands rather
than some fancy probabilistic methods. They only obtained results of the form (12.21) (which was weaker than some earlier work)
but for more general models. They relied on Dirichlet–Neumann bracketing (Ref. 710, Sec. 7.5) and treated continuum models. I
wrote672 mainly to advertise their work but also to extend it to the discrete case. The most important contribution of that paper was
the use of Temple’s inequality, which was often used in later works. In Ref. 399, Kirsch and I proved results like (12.21) for random
perturbations of periodic problems near the bottom and top of the spectrum. We could not handle the issue of showing there are also
Lifshitz tails near the internal gap edges, a problem that, so far as I know, remains open, but I did handle the case of interior gaps in an
Anderson model where there are gaps due to gaps in the support of dκ.674 I should not leave this subject without mentioning that there
are interesting issues involving Lifshitz tails in random alloys with long range potentials and in magnetic fields, which are discussed
in Ref. 398.

(3) The notion of semi-uniform localization of eigenfunctions (SULE). Del Rio, Jitomirskaya, Last, and I146,147 illuminated what exponential
localization in random systems means (this work also discussed Hausdorff dimension of singular continuous spectrum, so I will return
to it in Sec. XIII). To use the title of our paper aimed to physicists, we dealt with the question “What is localization?” At the time we
wrote it, given the acceptance of Anderson’s picture, many theoretical physicists would tell you that a system on Zν is localized (at all
energies) means there is a complete set of eigenfunctions, {φω,m}

∞
m=1, each obeying

∣φω,m(n)∣ ≤ Cω,me−A∣n−nω,m ∣, (12.22)

where nω,m is the center of localization of the mth eigenfunction. Physically though, localization means that a function that at time zero
lives on a finite set should remain not too spread out uniformly in time. The natural estimate is to expect that

E(sup
t
∣e−itHω(n, ℓ)∣) ≤ Ce−Ã∣n−ℓ∣. (12.23)

Indeed, Delyon et al.151 proved this for 1D Anderson models, and Aizenman8 proved this in high dimension for large coupling Ander-
son models. One point of Refs. 146 and 147 is that there are (non-random) models where (12.22) holds but not only does (12.23) fail,
but, in fact, for any δ > 0, one has that ⟨e−itHδ0, n2e−itHδ0⟩/t2−δ

= ∞! In fact, it is just a rank one perturbation (by cδ0) of the 1D AMO
at coupling larger than 2 with Liouville frequency. Our point was that knowing the size of Cω,m is critical for dynamic consequences
of the dense point spectrum. One might guess that one can take C independent of m but that does not hold in large classes of models.
Instead, for a fixed H, we defined SULE to mean that for all δ > 0, there is Cδ ,

∣φm(n)∣ ≤ Cδeδ∣nm ∣e−A∣n−nm ∣. (12.24)

We proved that for operators H with simple spectrum, this is equivalent to (and, in general, it implies)

sup
t
∣e−itH

(n, ℓ)∣ ≤ Cδeδℓe−A∣n−ℓ∣. (12.25)

We explicated the a.e. ω versions of this and noted that (12.23) implies (12.25) for a.e. ω.
(4) Simplicity of the spectrum in the localization regime. In Ref. 678, I proved that for a generalized Anderson model in arbitrary dimension,

if, for a.e. ω, the spectrum is only dense pure point on an interval [a, b], then for a.e. ω and every n, δn is cyclic for Hω ↾ [a, b], i.e.,
finite linear combinations of {P[a,b](Hω)Hk

ω δn}
∞
k=0 are dense in ranP[a,b](Hω). In particular, this implies that the spectrum is simple

on [a, b].

Motivated, in part, by this, Jakšić–Last347,348 analyzed these questions more deeply. In particular, they proved the result if “dense pure
point on an interval [a, b]” is replaced by “has spectrum on all of [a, b] with no a.c. part.” They needed a result of Poltoratski on Hilbert
transforms540 to control singular continuous spectra and in Ref. 349, and they provided a new proof of his result. Poltoratski is a great expert
on Hilbert transforms, so when, in our study of consequences of Remling’s work, Zinchenko and I needed some facts about that transform,
we joined forces with Poltoratski to prove what we needed.541

XIII. GENERIC SINGULAR CONTINUOUS SPECTRUM
I like to joke that I spent the first part of my career proving that singular continuous spectrum never occurs (following Wightman’s

“no goo hypothesis” dictum) and the second part showing that it is generic! In 1978, Pearson531 shocked most experts by showing that
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1D continuum Schrödinger operators with slowly decaying sparse potentials have purely singular continuous spectrum, and as discussed
in Sec. X, Avron and I proved that for suitable coupling and frequency, the AMO also had purely singular continuous spectrum but the
phenomenon was still regarded as exotic and highly atypical. Starting in the early 1993, I discovered that, at least in the sense of Baire, it was,
in fact a generic phenomenon, a discovery sometimes called “the singular continuous revolution.” In the next few years, I published eight
papers147,149,316,364,679,682,683,717 and two announcements146,148 on the subject. Later, I studied the analog for OPUC (Ref. 696, Sec. 12.4).

I recall that the Baire category theorem (Ref. 707, Theorem 5.4.1) says that a countable intersection of dense open sets in a complete
metric space is dense. Thus, countable unions of nowhere dense sets (called first category) are candidates for non-generic sets in that they are
closed under countable unions and their complements (the supersets of the dense Gδ ’s) are dense. So dense Gδ sets in complete metric spaces
are call Baire generic. Subsets of [0, 1] of Lebesgue measure 1 are called Lebesgue generic. The notions can be radically distinct in that one can
find subsets A and B of [0, 1], which are disjoint with one Baire generic and the other Lebesgue generic (and we will see shortly lots of spectral
theoretic cases where they are). We have already seen after (9.23) that the Diophantine irrationals and the Liouville numbers provide such
sets. One application of the Baire category theorem (Ref. 707, Sec. 5.4) is for existence. If a countable set of conditions each hold on a dense
Gδ , they all hold somewhere (indeed on a dense Gδ). The most famous example is an indirect proof of the existence of continuous, nowhere
differentiable functions (Ref. 707, Problem 5.4.3).

I should emphasize that the idea of s.c. spectrum being Baire generic under some conditions was discovered before me by Sasha Gordon.
In a paper submitted in 1991,261 he announced and in a paper262 published about the same time as149 Gordon found the same result as in
Ref. 149 (Theorem 12.2) with a different proof. Our work was definitely later. I also note that in 1981, Zamfirescu772 proved the suggestive
result that among all measures on [0, 1] with a fixed bounded variation and no pure points, which is a complete metric space in the variation
norm, a Baire generic measure is singular. See Ref. 707 (Problem 5.4.8) for a proof of the related result that if the probability measures on
[0, 1] is given the vague topology (in which it is a complete metric space), a Baire generic one is purely singular continuous. I also note that
Choksi–Nadkarni in two papers103,104 [the first in 1990 predating my work but which the authors say appeared in a (somewhat inaccessible)
conference proceedings] proved results for unitary operators analogous to the results entitled Generic self-adjoint operators. That said, my
presentation of the full panoply of situations with the generic s.c. spectrum established the notion widely.

My original motivation for this work involved a visit to Caltech by Raphael del Rio who gave a seminar on a result144 related to the
following theorem, which appeared in this form in the paper of del Rio, Makarov, and Simon:149

Theorem 12.1 (Ref. 149). Consider a one parameter family of the form (12.1) where A is a bounded self-adjoint operator. Then, there is a
set, B ⊂ spec(A), which is a dense Gδ in spec(A), so that no E ∈ B is an eigenvalue of any Aλ; λ ≠ 0.

del Rio’s result was for boundary condition variation of Sturm–Liouville operators, only discussed a set being dense and uncountable.
His proof was fairly involved but it had the key idea of studying the set we will define as B below and applying the Aronszajn–Donoghue
theory. In particular, we let

B = {E ∣ K(E) = ∞} (13.1)

and proved that it was dense and uncountable. I was struck by this result which seemed surprising since, a priori, it certainly seemed possible
that for the Anderson model, the eigenvalues filled the entire spectrum as λ varied. Within a couple of days, I realized that dense Gδ ’s were
lurking and that there was a very short proof. For suppose E0 ∈ spec(A) and there is an open interval, C, about E0, which is disjoint from B, so
that K(E1) < ∞ for all E1 ∈ C. It is easy to see that this condition implies that F(E1) ≡ limε ↓0F(E1 + iε) exists and is real. Since the imaginary
part vanishes E1 ∉ L ∪ S0, which, by Theorem 11.2, is dense in spec(A). It follows that E0 ∉ spec(A) contradicting that E0 ∈ spec(A). We
conclude that B is dense in spec(A). Moreover, by a simple argument, G is lower semicontinuous, so {E∣K(E) > n} is open and thus B is a Gδ .
By Theorem 11.2(c), no E ∈ B is an eigenvalue of some Aλ; λ ≠ 0.

Much more interesting than the set of forbidden energies is the set of forbidden coupling constants, and in this regard, one has the
following theorem:

Theorem 12.2 (Refs. 262 and 149). Consider a one parameter family of the form (12.1) where A is a bounded self-adjoint operator. Then,
{λ ∣ Aλ has noeigenvaluesin spec(A)} is a dense Gδ in R.

The proof relies on the fact that on the set P where K(E) < ∞, the boundary value, F(E), exists and is real, and by Theorem 11.2(c),
the corresponding λ’s are given by F(E) = −λ−1. Since λ↦ −λ−1 takes countable unions of closed nowhere dense subsets of ±(0,∞) to such
unions, it suffices to write P as a union of such sets each of which is mapped by F to such a set. One does this by finding such a union so that
on each such set, F is Lipschitz. One needs to go into the complex plane to do this.

This result implies the remarkable fact that in the Anderson model, that for a.e. choice of random potential at all sites but one, for a
Lebesgue generic choice at the last point, the spectrum is entirely pure point, while for a different Baire generic choice, it is purely singular
continuous. In particular, the dense pure point spectrum will turn into singular continuous spectrum under some arbitrarily small perturba-
tions. However, there is an asymmetry. In the context of general rank one perturbations, if there is dense pure point spectrum, there is always
a dense set of couplings with purely singular continuous spectrum, but there are examples where for all coupling, the spectrum is purely
singular continuous.
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This next step on forbidden coupling constant was quite natural, and shortly after I figured out Theorem 12.1, del Rio and I started
working of what became Theorem 12.2 inviting Makarov to join us when we ran into difficulty. As we were doing that, I asked myself if there
might not be a general mechanism underlying this phenomenon of generic singular continuous spectrum and I realized that the key was some
soft analysis. I found the following theorem:

Theorem 12.3 (Ref. 679). Let A be a family of self-adjoint operators on a Hilbert space, H, which is given a metric topology in which
convergence implies strong operator convergence of resolvents and in whichA is a complete metric space. Then, the following sets are all Gδ sets:

(a) For each closed set, C ⊂ R, the set of A ∈A with no eigenvalues in C.
(b) For each open set, U ⊂ R, and each fixed vector ψ ∈ H, the set of A ∈A so that the spectral measure obeys (μ(ψ)A )ac

[U] = 0.
(c) For each closed set, K ⊂ R, the set of A ∈A with K ⊂ spec(A).

Remarks.

1. While my proof is not hard, it is a little awkward and unnatural. Lenz–Stollmann452 found a more natural and direct proof and also
slight extensions where rather than putting a topology on A, and one looked at continuous images of complete metric spaces and, in
Ref. 680, I provided a different simplification of the proof.

2. I emphasize that this theorem says nothing about density. That may or may not hold.

I singled out one consequence of this because it has such an Alice-in-Wonderland character.

Theorem 12.4 (the Wonderland theorem679). Let A be a family of self-adjoint operators on a Hilbert space, H, which is given a metric
topology in which convergence implies strong operator convergence of resolvents and in which A is a complete space. Suppose that a dense set in
A has purely a.c. spectrum on an open interval I ⊂ R and another dense set has purely dense point spectrum on I. Then, for a dense Gδ of A ∈A,
I lies in spec(A) and the spectrum is purely singular continuous there!

Remarks.

1. I stated the result this way for drama, but the same conclusion holds under the weaker hypothesis that there is a dense subset with no
eigenvalues in I and another with no a.c. spectrum in I and another with I ⊂ spec(A).

2. The proof is immediate from Theorem 12.3. If I = (a, b), let Cn be the set of A ∈A in Theorem 12.3(a) when K = [a + 1/n, b − 1/n].
If {ψm}

∞
m=1 is a dense set in H, let Km be the set of A ∈A in Theorem 12.3(b) when U = I and ψ = ψm. Finally, let Pk be the set of

A ∈A with [a + 1/k, b − 1/k] ⊂ spec(A). By the hypothesis, all these sets are dense and by Theorem 12.3 all are Gδ sets. So, by the Baire
category theorem, their intersection is a Baire generic set. If A is in their intersection, it has I ⊂ spec(A) and there are no eigenvalues in
I and no a.c. spectrum.

Here are some of the applications of this set of ideas:

(1) Generic self-adjoint operators. Let A be the set of all self-adjoint operators, A with ∥A∥ ≤ 1, which is a complete metric space in the
strong operator topology. Then, a Baire generic A ∈A has spectrum all of [−1, 1] and purely singular continuous spectrum! As men-
tioned above, Choksi–Nadkarni103 had proven the same result for unitary operators, and later, they noted that using Cayley transforms,
their results imply the result for self-adjoint operators. They also noted that generically, the spectrum is simple (which is easy to prove
with a simple “this set is a Gδ argument” and the fact that small perturbations of operators with dense point spectrum are operators
with simple dense point spectrum).

The proofs depend on a result of Weyl763 [see Ref. 710 (Theorem 5.9.2)] that any self-adjoint operator is a norm limit of operators with
point spectrum and then a short argument that one can norm approximate operators with dense point spectrum by ones with purely a.c.
spectrum. This result illuminates Weyl’s.

(2) A generic Weyl–von Neumann theorem. Let Ip be the trace ideal with ∥⋅∥p norm [Ref. 710 (Sec. 3.7) or Ref. 693]. von Neumann754

extended Weyl’s result to allow small Hilbert–Schmidt (I2) perturbations and Kuroda427 allowed arbitrarily small Ip for any p > 1 [it
is false if p = 1 by the Kato–Rosenbum theorem (Ref. 554 (Theorem XI.8)]. Using this, I proved that for any self-adjoint operator A
and any p > 1, for a ∥ ⋅ ∥p-topology Baire generic B ∈ Ip, the spectrum of A + B on specess(A) is purely singular continuous.

(3) Generic discrete Schrödinger operators with bounded potential. Let Ω = ×∞n=−∞[α,β] with the product topology, and given ω ∈ Ω, let
A(ω) be the Jacobi matrix with all an = 1 and bn = ωn. For a dense Gδ , A(ω) has purely s.c. spectrum. It is easy to see this: because
of Anderson localization, the set of ω whose spectrum is [−2 + α, 2 + β] and pure point is dense in Ω (and a Gδ by Theorem 12.3).
Moreover, given any ω, it is easy to see it is a weak limit of periodic ω’s, so the set ω for which A(ω) has only a.c. spectrum is dense.
One concludes that a Baire generic A(ω) has spectrum [−2 + α, 2 + β] and purely singular continuous spectrum.

(4) Generic Schrödinger operators with slowly decaying potential. In Ref. 679, I proved if you look at C∞(Rν
), the continuous functions

on Rν vanishing at∞, then, Baire generically, −Δ + V has purely singular continuous spectrum on [0,∞). The continuous functions
of compact support for which the spectrum of the associated Schrödinger operator is pure a.c. on [0,∞) is dense. Moreover, by the
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results of Deift–Simon,141 the a.c. spectrum is unchanged by modifying V0 inside a finite ball, so if one finds a V0 ∈ C∞(Rν
) with the

associated Schrödinger operator having no a.c. spectrum, given an W, we find Vn ∈ C∞(Rν
) equal to W on the ball of radius n and V0

outside the ball of radius n + 1, to show that the V ’s whose associated Schrödinger operator has no a.c. spectrum is dense. One finds
the required V0 by taking a centrally symmetric decaying random potential and using.659

(5) Generic discrete 1D Schrödinger operators with slowly decaying potential. Using similar ideas, Simon679 fixes α ∈ (0, 1/2) and looks
at Jacobi matrices with an ≡ 1 and a Baire generic bn in the space of sequences so that ∣n + 1∣αbn → 0 in the complete metric space
with norm supn(∣n + 1∣α∣bn∣) to get a Baire generic family of Jacobi matrices with purely singular continuous spectrum in (−2, 2).
α < 1/2 enters so one can use Simon659 to get a dense set with no a.c. spectrum.

In Ref. 364, Jitomirskaya and I asked the analog for the hull in the almost periodic case of the same question that del Rio, Makarov, and
I149 and Gordon262 answered for coupling constant variation in the random case and we proved (we also had a result in the continuum case).

Theorem 12.5 (Ref. 364). Let Hω be a discrete Schrödinger operator of the form (10.1). Suppose that for some ω0 ∈ Ωbn(ω0) is even in n
[for example, the AMO, (10.3)]. Then, for a dense Gδ, U ⊂ Ω, Hω has no eigenvalues if ω ∈ U.

Remarks.

1. In particular, if one knows that there is no a.c. spectrum (when Ref. 364 was written, the result of Kotani418 and Last–Simon439 that the
a.c. spectrum of Hω was constant was not known, so instead, we noted that so long as it was known that there was at least one ω with no
a.c. spectrum, one had it for a dense Gδ), then for a Baire generic ω, Hω has purely s.c. spectrum. In particular, this is true for the AMO
when λ > 2. Hence, when the frequency is Diophantine, we have a situation where for a Lebesgue generic θ, the spectrum is dense pure
point, and for a Baire generic theta, the spectrum is purely singular continuous!

2. We needed the condition that some function in the hull is even to use Gordon’s lemma, which is discussed after (10.23).
3. A year later, motivated by this results, Hof, Knill, and I316 proved generic s.c. spectrum for a class of subshift potentials, which while not

strictly almost periodic or even are closely related. See Ref. 316 for details or Damanik126 for more on subshifts.

Besides these four papers, I had several additional papers in the series Operators with singular continuous spectrum. The most substantial,
indeed, by far the longest paper in the series is with del Rio, Jitomirskaya, and Last147 (announced in Ref. 146). As already mentioned in
Sec. XII, that paper discussed localization for random quantum systems [see point (3) in the discussion including (12.22)], but its main focus
involves the Hausdorff dimensions of the support of the singular continuous spectral measures for Anderson Hamiltonians and of the set of
λ in Theorem 12.2 [for more on Hausdorff dimension, see the work of Falconer,188 and for Hausdorff dimension of measure, see the work of
Rogers570 or Simon Ref. 707 (Sec. 8.2)].

In the context of general rank one perturbation theory, the set of λ leading to singular continuous spectrum can be large, e.g., if the initial
measure is pure point but the set P of (12.6) is empty (which can happen for suitable initial measure dμ0), then by Theorem 11.2, there is
purely singular continuous spectrum for all λ ≠ 0. A major point of Ref. 147 is that when one has SULE [see (12.22)], the complement of P,
i.e., the set, B, of E where K(E) = ∞ has Hausdorff dimension 0. Using this, one finds the following theorem:

Theorem 12.6 (Ref. 147). Consider a generalized Anderson model with SULE. Then, for a.e. choice of potential, if we vary the potential at
a single point, say, b0, then the set of such b0, which have any singular continuous spectrum has Hausdorff dimension zero. Moreover, for any
such value, the spectral measure is supported on a set of Hausdorff dimension zero, and one has that for t large, ⟨δ0, x2

(t)δ0⟩ ≤ C(log∣t∣)2.

The last three papers in the series are addenda to the main themes. Paper V with Stolz717 has nothing to do with Baire genericity. Rather
it has criteria for sparse potentials to have no point spectrum, so if one can also assure no a.c. spectrum, the spectrum is pure s.c. For the
examples of Pearson,531 this provides an independent proof of the absence of point spectrum. By getting no a.c. spectrum with the method
of Simon–Spencer716 (see Theorem 6.21), one gets explicit examples with the purely singular continuous spectrum. Reference 682 presented
the first examples of graph Laplacians and Laplace Beltrami operators on manifolds with purely singular continuous spectra. Reference 683
constructed a multidimensional example with high barriers as in the work of Simon–Spencer716 but still having a.c. spectrum. This might
seem to have nothing to do with s.c. spectrum, but the example is separable, built of two 1D operators, which have s.c. spectrum, but with time
decay, one can compute and then use to prove that the sum has a.c. spectrum (my work was, in part, motivated by an unpublished remark of
Malozemov and Molchanov that because the convolution of two s.c. measures can be a.c., it might be possible to construct examples like this).

XIV. FURTHER REMARKS
As I indicated earlier, while there have been references to some work after that cutoff, this paper mainly discusses research done before

1995. My research since had its roots in the earlier work but went in a direction, which seems to have less relevance to quantum physics.
As discussed in Sec. VII, H = −Δ + V(x) has “normal” spectral behavior if V(x) decays faster than ∣x∣−1, namely, only discrete spectrum
in (−∞, 0) and purely a.c. spectrum on (0,∞). On the hand as I discuss in Secs. XII and XIII, if the decay is slower than ∣x∣−1/2, one can
sometimes have no a.c. spectrum. This was realized by 1995.

I began to wonder what happens for decay like ∣x∣−α with 1/2 < α < 1. If V has a gradient decaying faster than ∣x∣−1, it was known for
many years (see, e.g., Ref. 761) that one has “normal” spectral behavior and in the random case, one also has this (see, e.g., Ref. 421). What
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could happen in the general case? Fortunately, at this time, I had two very talented grad students—Sasha Kiselev from St. Petersburg and
Rowan Killp from Auckland in New Zealand. Interestingly enough, they both came to work with me upon the strong recommendation of
Boris Pavlov426 who moved from St. Petersburg to Auckland at a time to interact with each of them as undergraduates. I gave Kiselev the
problem of whether there was always a.c. spectrum for ∣x∣−α decay when 1/2 < α < 1, which I suspected was true. For his thesis,403 he proved
the occurrence for 3/4 < α < 1 and not long after the general 1/2 < α < 1 case was done independently by Christ–Kiselev105 and Remling561

(work done while he was visiting my group).
The idea developed around Caltech, stated explicitly by Kiselev–Last–Simon,405 that the exact borderline should be V or b in L2

(R, dx),
a problem that caught Killip’s fancy. Percy Deift visited Caltech and when Killip told him about the conjecture, given Percy’s work on exactly
integrable systems, he immediately thought about the sum rule of Gardner et al.224 that for any nice enough potential, V(x), on R, one has
that

∫

∞

−∞
V(x)2 dx =

16
3 ∑j
∣Ej∣

3/2
+

8
π∫

∞

−∞
log(∣

1
T(k)

∣)k2 dk, (14.1)

where, say, V is bounded with compact support, {Ej} are the negative eigenvalues of − d2

dx2 + V(x), and T(k) is the transmission coefficient
at energy E = k2. Interestingly enough, more than 20 years before, in Ref. 471, Lieb and Thirring had dropped the last term in (14.1) to
get a Lieb–Thirring inequality, which they could prove was optimal, because for soliton potentials, the dropped term vanishes. Deift and
Killip140 dropped the middle term of (14.1) and got an inequality they could use to prove that if V ∈ L2

(0,∞) [respectively, b ∈ ℓ2
(Z+)], then

H = − d2

dx2 + V [respectively, hu(n) = u(n + 1) + u(n − 1) + bnu(n)] has a.c. spectrum [0,∞) (respectively, [−2, 2]). For the discrete result,
they needed a Toda lattice analog of the KdV sum rule.

Given these results and the results of Refs. 505 and 686 on the embedded dense point spectrum, I made one of the problems in my
2000 open problems list:689 Do there exist potentials V(x) on [0,∞) so that ∣V(x)∣ ≤ ∣x∣−1/2−ε for some ε > 0 and so that −d2

/dx2
+ V(x) has

some singular continuous spectrum. At the time, I did not realize that an analogous problem had been solved in 1936 by Verblunsky753! For
the analog of the potential for OPUC are what are now called Verblunsky coefficients (a term I introduced in 2005), a sequence {αn}

∞
n=0 of

numbers in D associated with any probability measure, dν, on ∂D. What Verblunsky proved, extending a result of Szegő,705,738 is that this
sequence lies in ℓ2 if and only if the a.c. part of dν obeys a certain condition. The singular part could be arbitrary so long as the total mass of
dν was 1.

These ideas were brought into the question of mixed spectrum for Schrödinger operators by Denisov, then a graduate student in Moscow,
in a preprint I first learned about in January 2001 (a version only appeared in print several years later160). Makarov and I were impressed
enough that we invited him to be a postdoc at Caltech, of which more shortly. Denisov used a continuum analog of OPUC called Krein
systems and said that he could construct V ∈ L2

((0,∞), dx), so the corresponding H had an arbitrary singular continuous part on some
[0, E0]. Technically that did not solve my problem since I had stated the result in terms of power decay, not Lp (the power result was obtained
shortly afterward by Kiselev404) but to me morally it did.

Rowan Killip and I set out to understand Denisov’s proof but, in part, because we had no prior experience with OPUC or Krein systems
and could find little literature on the former and none on the later, and we found the arguments opaque. We did determine that the key to his
proof seemed to be a sum rule. We were interested in a result for Jacobi matrices, so we looked at some sum rules of Case.100 His sum rules
were only formal so it was not clear when they hold although his arguments certainly could be made rigorous if bn and an − 1 were of finite
support. We wanted them to always hold, which presented two problems—to avoid possible cancellations of infinities, we needed both sides
to be positive and one had to be able control the limits.

We found that none of Case’s sum rules (which entered from successive terms in a Taylor series) had the necessary positivity but by
fooling around, and we found a linear combination of two of them that was positive. It was mysterious why there was any such combination
and the rather complicated functions that entered in the final sum rule were totally ad hoc. Fifteen years later, Gamboa, Nagel, and Roault222

found a totally new proof using the method of large deviations on certain random matrix ensembles that explained why there was a positive
quantity and the meaning of the previously ad hoc functions. For the OPUC analog, Breuer, Zeitouni, and I found some other positive sum
rules using large deviations.85 Since the paper of Gamboa, Nagel and Roault was not very accessible to spectral theorists, we wrote a pedagogic
exposition of their approach.84

In going from the finite support case to the general, there was one tricky limit that stymied us for a while. In those days, jury duty in Los
Angeles could mean coming in every day for two weeks waiting in the jury assembly room all day for assignment to a trial and in the summer
of 2001, and I had such a stint not even winding up on a jury! Sitting around gave me lots of time to think about this holdup and I realized that
since the object that we were having trouble with was a relative entropy, it had some semicontinuity properties that overcame our difficulty.
We were quite pleased by this discovery although we learned several years later that Verblunsky753 had made the same discovery 65 years
earlier in his related work. (Verblunsky did not know he had an entropy but he had discovered and exploited the semicontinuity.)

One result of my work with Killip396 was necessary and sufficient conditions on a spectral measure for the associated Jacobi matrix to
have J − J0 a Hilbert Schmidt operator (where J0 corresponds to an = 1, bn = 0), a result now regarded as an OPRL analog of Szegő’s theorem.
We also obtained results described in (9.20), which led to a proof of Nevai’s conjecture.

While we were writing this up, Denisov arrived at Caltech and gave a course on Krein systems, which I sat in on. What struck me was
his initial few works where he described the theory of OPUC. I was struck by the beauty and elegance of the subject although I found a much
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simpler proof of Szegő recursion than he gave us (it turned out the proof that I had found was in the literature but so little known that I
surprised at least one expert with it). It became clear to me that the similarities between OPUC and OPRL suggested that one should be able to
carry over (often with some gymnastics needed) much of the spectral theory of Jacobi matrices to OPUC. Rather than lots of small papers on
each subarea, I decided one long review article made sense. I had to face the fact that there was not really any recent exposition of the basics
of OPUC so I decided on a two long review articles that grow into a two volume set of books695,696 with over 1000 pages!

In many ways, the spectral theory of OPUC and its relation to OPRL became a major focus of my research for the time since. Many of
the major results involve Szegő’s theorem and Szegő asymptotics, among them the extension by Damanik–Killip–Simon130 of the work of
Killip–Simon to perturbations of certain periodic Jacobi matrices, my study with Christiansen and Zinchenko on Szegő behavior of finite gap
operators,106–108 and the work with Damanik131 on necessary and sufficient conditions for Szegő asymptotics for OPRL.

OPRL can be viewed as the solutions of an L2 minimization problem. The analogous L∞ minimization problem define Chebyshev
polynomials that depend on some compact subset, e ⊂ C. In a brilliant 1969 paper, Widom765 discussed how to modify Szegő asymptotics for
Chebyshev polynomials when e is a finite union of disjoint sufficiently smooth Jordan curves. He obtained partial results for finite gap sets in
R and he made a conjecture about the expected asymptotics, which we dubbed Szegő–Widom asymptotics. This conjecture remained open
for over 45 years until proven by Christiansen, Zinchenko, and me.109 Our proof could be phrased in terms of discriminants of periodic Jacobi
matrices, which made the arguments natural.

It is appropriate to end with a story about the publication of that paper. I felt the paper was important enough to warrant sending it to
a top three journal, but for various reasons, one of my coauthors wanted to send it to a slightly less prestigious but still top journal. Fairly
quickly, we got a reply that the person asked for a quick opinion thought it was nice that we had solved a 45+ year old conjecture but the paper
was not up to the standard of this journal because the proofs were too simple! I was scandalized by this and insisted that we try a top three
journal, which we did, where the paper was accepted. Lest you think I disapprove of the system that top math journals use to decide which
papers to publish, I feel that it is best described by Churchill’s description of democracy—the worst possible method of evaluation except for
all the others.
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