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Approximation of Feynman Integrals
and Markov Fields by Spin Systems

Barry Simon*

In this article T will discuss a similarity in the mathematical structures of two
physically quite different classes of systems: the Markov processes associated with
quantum mechanical anharmonic oscillators and field theories and the family of
lattice models for ferromagnets. In fact, we will see that systems from the first class
are limits of systems from the second class. This approximation is on two levels,
the first due to Guerra, Rosen, and Simon [1973] and the second to Simon and
Griffiths [1973]. These approximations, their extension and the development of the
Ising model methods in constructive quantum field theory made available by them
have been a major theme in constructive field theory during the past two and a
half years. For a summary of applications up until January, 1974, I would refer
you to my Zurich lectures{Simon [1974]). More recent work includes that of Glimm
and Jaffe [1974a,1974b], Guerra, Rosen and Simon [1974], Newman [1974], and
Spencer [1974].

Here 1 would like to describe the basic ideas of the approximation and illustrate
their application by discussing the proof of the following result which is essentially
due to Glimm, Jaffe, Spencer [1973].

THEOREM 1. Let E;, E,, E; be the three smallest eigenvalues of the differential
operator H = — L (d2/dx?) + ax® + bx* (b > 0). Then

(0 Ey— E, 2 Ey — E,.

Perhaps the most interesting feature of Theorem 1 is that its proof is intimately
connccted with the fact that the magnetization in a ferromagnet induced by an
external magnetic field is a concave function of the inducing field!
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The basic systems. Let us begin by describing the basic systems which we will

relate. The free Euclidean quantum field is the Gaussian random process ¢(-) in-
dexed by $2(R") with mean zero and covariance

@ (80N §&) duo = <f, (- 4 + mr)1g)
where (, > is an L2 inner product. Due to work of Symanzik, Nelson and Oster-

walder-Schrader, constructive qQuantum field theory is now concerned with con-
structing measures dv = lim,_ dy +{A = R*; compact) with

3) dv, = exp (— {4 P($())oen d"x) duy / Norm,

where “Norm’ represents a normalization factor chosen so that jdvy=1Pisa
polynomial bounded from below and “ren” indicates that when » = 2 certain
infinite subtractions are needed. As n increases, the local singularities of P(x) be-
come worse and, as a result, the renormalizations more complex. In any event, dy 4
has been defined incase r = 2 essentially due to work of Nelson and in case n = 3,
deg P = 4, by recent work of Glimm and Jaffe and Feldman. In the physical case
n = 4 (n is the number of space-time dimensions), there arc still rather severe
technical problems to be overcome in the definition of (3). (We expect that more
details of this subject will be found in Glimm’s and Nelson’s contributions to these
PROCEEDINGS.) When 7 = 1, there is a random process indexed by R, ¢(¢), with
$(f) = [ () q(t) dr and this process is connected to the differential operator of
Theorem 1 by the Feynman-Kac formula (for a proof, see, e.g., Simon [1974)):

THEOREM 2. Let n = 1, m = 1 in (2). Let P(x) = bxt + (a — })x® and let dy
be the limit of the measures in (3). Let Oy be the eigenvector of H normalized by
HOy = E| 0, fOx)?dx = |, H 2 E,. Then

@ §7(q() 2(a(0) dv = { f(@)0y, exp (— 1(H ~ E)) g(q) 0.
A classical Ising model is a probability measure on {— 1, 1}¥ of the form
(5) do = €xp (;ja,-ja,-aj + E ‘u,'o',')/NO[m

where ¢;= 11 are coordinates for {—1, 1}¥ thought of as the values of ¥ spins which
can point up (¢; = + 1) or down (g; = —1). The y; represent external magnetic
fields and the measure « is called ferromagnetic if a; 2 0, all { # J» in which case
there is a tendency for the spins to align in parallel. The study of Ising models has
been much influenced by certain inequalities involving expectations of ¢’s and
their products. The first of these “correlation inequalities” was proved by Griffiths
[1967] and the subject has been developed extensively by Ginibre, Griffiths, Hurst,
Kelley, Lebowitz, Percus, and Sherman. In particular, Theorem 1 depends on the
following inequality of Lebowitz [1974] (the proof may be found in the original
paper or in Simon [1974]):

THEOREM 3. If {-) denotes expectation with respect 1o a measure do. of the
Jorm (5), then whenever a; = 0,p =0,

(6) $0:0i0401) = {0,0,) (o) + {0:0,) {o00) + {0,01) {a,04).
To understand the physical significance of (6), we note that
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@) LHS — RHS = 33{0;)/0u;014:0:- h
in J i ;+. The

Now {¢,> represents the magnetization of spin /11 the external field {u;}

ted concavity of {s; as a function of external fields is expressed by the

€x ; 5

Gll')i?fﬁcths-Hurst-Sherman inequalities: If g; > 0,

(8) 7% (0,-)/3;1,-3‘“,, s 0. . mme
i — pp O — ;S -

Since the derivative in (8) is zero if all y; = 0 (by u; Ho-t }fc;,icsr,t ;:inequa{ity Y

try), (8) imples that the derivative (Nis negative ifallg; = ,h i e I

V;fc will also need to discuss generalized, Ising models where da ,
replaced by a measure 3 on R¥ with

N
9) dB = exp (— 5 byow; + 5 p.u,.) 11 aria) / Norm

nd b;; is a strictly positive definite matrix. The

-is a finite measure on R a  SLC : ite m o
‘;;:lll*::n‘;?;netic case is the one with b;; £ 0for i # j. Certain correlation inequ

hold for expectations with respect to 8 but inequalities as detailed as (6) do not
hold without additional restrictions on the d 7.

The approximation theorems. The basic approximation theorem of Guerra, Rosen
Simon [1973] is: . ’
THEOREM 4. The measures du 4 of form (3) are the limits of generah;edgferrom(;g:z:e
tic Ising mod‘els of form (9) in case n =1, 2, The measz;es c?‘T ;:: ,,E ) are
form d¥(g) = exp (— Q(o)Mo where Q = (const)P + gquadratic .

Guerra, Rosen, and Simon present a general sch'eme {the * ;i::t::it:l a;:g;c;mg:; .

tion™) which formally approximates dy ,l,l va;l:-:eﬁzzvz ;t:hc;(:ns\;:fme in case = y
ven co

Re‘x“ﬂ)’; 2?1::km[:::i‘:1]g l:):'sTf::)rem 4 is the following: For eth f € PR, ¢ ( jc; }
tdeg P ='t -f suitable linear combinations of the ¢; in the apprf)).umatmg theorl)]r.an ,
l:‘}hzm(l) fhe coefficients in this linear approximation are positive. Th'lil‘; m;:; cu;\g:;
{ne ;ali’ties on expectations (such as (6)) carry over to measures d.{,;l,. Z"ea o
of he proof of Theorem 4 is to replace R" by_ a lattice . =
(;:f t t}(xvl:;a)cr ; and the Laplacian in (2) by a finite Sllfference_apgt)ro:;x;!:bli;)it;
Si:;z 'the :’nve:.;e covariance matrix appears in th_e Gaussnaln fO'l; : ;(;Il:} a;: obanilly
distribution, dpy is approximated by gel_leral.lsmg models wnimations ussian and
with b;; S 0 (i # j) because —4 has ﬁn}te difference approx
negati':'le —oﬁ"-diagonal. dy, is then approximated by

Tl exp (— 6" P(0)en) dito
més A
’ from dug to dvy.
Iy the dT’s are affected by the change ' _ ‘
* ’l?'seybasic approximation theorem of Griffiths and Simon [1973] is

] i del of the form (9) with drio) =
THEOREM 5. A generalized ' Isn.tg‘ mo _ . s e form (5),
exp(— bt — ag®do (b; > 0) is a limit of classical Ising models of

To explain the idea of their proof, take N = mk in (5), replace o; by 5., @ =
1, .-, mr =1, kandleta;be of the form:
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anr:ﬁt = - b,,fm (brr = 0)
Then

.-Z;,- a;8iS; = — § b, (§ m-1/2 s.;,) ()E mV2 s, ,) + constant

so by the central limit theorem ¢ = m~1% I s, will approach a generalized Ising
model with d7 Gaussian. By adding a term const(1/m)d,, to a we can cancel the
Gaussian limit and by rescaling (i.e., taking o, = m=¥* I 5, get the quartic limit.

The Griffiths-Simon theorem has recently been extended to the approximation of
multicomponent fields by multicomponent Ising models (plane rotor and classical
Heisenberg models) by Dunlop and Newman [1974].

Proor oF THEOREM 1. By application of Theorems 3, 4, 5, the path space expec-
tution dv, withn = 1, P(x) = bx! + (a — 1) x? obeys: ‘

Lqlty) ats) 4(ts) 91D S La(ty) 9(12)) <(g(ts) q(1)> + 2 others;
so by taking A — oo, letting £; = 1, = 0, t3 = 7, =t and using Theorem 2:
(10) (g2, exp (— (H — ED) 2> — {g%, D)% £ 2 (gt e HH-E) g0y )2,
Letting 0y, Q;, --- be the cigenfunction of H, {10) says that
T [ <%0 Q) [ exp(~ 1B — Ev)
2
< 2[ 3| <, Q> [Fexpl— t(En — EV)].
mz1

Since Q,,is an even (odd) function of g for m odd (even), (g%, 2 =0, (gl () =
0. Moreover, since 0, has m — 1 nodes, {gh, ;> # 0, {g%h, 0> # 0. Thus
as { -+ co, the leading behavior of the LHS and RHS respectively of (11) is
|<q01, 23 |2 exp (— #(E5 — Ey)) and |<af, Q2> |* exp(— 26(E; — E)). It follows
that E; — E; 2 2E, — E;) completing the proof.
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