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Extreme points and the Krein–Milman theorem

The next four chapters will focus on an important geometric aspect of compact sets,
namely, the role of extreme points where:

Definition An extreme point of a convex set, A, is a point x ∈ A, with the property
that if x = θy + (1 − θ)z with y, z ∈ A and θ ∈ [0, 1], then y = x and/or z = x.
E(A) will denote the set of extreme points of A.

In other words, an extreme point is a point that is not an interior point of any
line segment lying entirely in A. This chapter will prove a point is a limit of convex
combinations of extreme points and the following chapters will refine this repre-
sentation of a general point.

Example 8.1 The ν-simplex, ∆ν , is given by (5.3) as the convex hull in Rν+1

of {δ1 , . . . , δν+1}, the coordinate vectors. It is easy to see its extreme points are
precisely the ν + 1 points {δj}ν+1

j=1 . The hypercube C0 = {x ∈ Rν | |xi | ≤ 1} has
the 2ν points (±1,±1, . . . ,±1) as extreme points. The ball Bν = {x /∈ Rν | |x| ≤
1} has the entire sphere as extreme points, showing E(A) can be infinite.

An interesting example (see Figure 8.1) is the set A ⊂ R3 , which is the convex
hull of

A = ch({(x, y, 0) | x2 + y2 = 1} ∪ {(1, 0,±1)}) (8.1)

Its extreme points are

E(A) = {(x, y, 0) | x2 + y2 = 1, x �= 1} ∪ {(1, 0,±1)}

(1, 0, 0) = 1
2 (1, 0, 1) + 1

2 (1, 0,−1) is not an extreme point. This example shows
that even in the finite-dimensional case, the extreme points may not be closed. In
the infinite-dimensional case, we will even see that the set of extreme points can be
dense!
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Not an
extreme point

Figure 8.1 An example of not closed extreme points

If a point, x, in A is not extreme, it is an interior point of some segment

[y, z] = {θy + (1− θ)z | 0 ≤ θ ≤ 1} (8.2)

with y �= z. If y or z is not an extreme point, we can write them as convex com-
binations and continue. (If A is compact and in Rν , and if one extends the line
segment to be maximal, one can prove this process will stop in finitely many steps.
Indeed, that in essence is the method of proof we will use in Theorem 8.11.) If one
thinks about writing y, z as convex combinations, one “expects” that any point in
A is a convex linear combination of extreme points of A – and we will prove this
when A is compact and finite-dimensional. Indeed, if A ⊂ Rν , we will prove that
at most ν + 1 extreme points are needed. This fails in infinite dimension, but we
will find a replacement, the Krein–Milman theorem, which says that any point is a
limit of convex combinations of extreme points. These are the two main results of
this chapter.

Extreme points are a special case of a more general notion:

Definition A face of a convex set is a nonempty subset, F , of A with the property
that if x, y ∈ A, θ ∈ (0, 1), and θx + (1− θ)y ∈ F , then x, y ∈ F . A face, F , that
is strictly smaller than A is called a proper face.

Thus, a face is a subset so that any line segment [xz] ⊂ A, with interior points in
F must lie in F . Extreme points are precisely one-point faces of A. (Note: See the
remark before Proposition 8.6 for a later restriction of this definition.)

Example 8.2 (Example 8.1 continued) ∆ν has lots of faces; explicitly, it has
2ν+1 − 2 proper faces, namely, ν + 1 extreme points,

(
ν+1

2

)
facial lines, . . . ,

(
ν+1

ν

)
faces of dimension (ν − 1). The hypercube Cν has 3ν − 1 faces, namely, 2ν ex-
treme points, ν2ν−1 facial lines,

(
ν
2

)
2ν−2 facial planes, . . . , 2

(
ν

ν−1

)
faces of di-

mension (ν − 1). The only faces on the ball are its extreme points. The faces of
the set A of (8.1) are its extreme points, the line {(1, 0, y) | |y| ≤ 1}, and the lines
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{θ(x0 , y0 , 0)+(1−θ)(1, 0, 1)} and {θ(x0 , y0 , 0)+(1−θ)(1, 0,−1)}, where x0 , y0

are fixed with x2
0 + y2

0 = 1 and x0 �= 1.

A canonical way proper faces are constructed is via linear functionals.

Theorem 8.3 Let A be a convex subset of a real vector space. Let � : A → R be
a linear functional with

(i)

sup
x∈A

�(x) = α <∞ (8.3)

(ii) � � A is not constant.
Then

{y | �(y) = α} = F (8.4)

if nonempty, is a proper face of A.

Remark If A is compact and � is continuous, of course, F is nonempty.

Proof Since � is linear, F is convex. Moreover, if y, z ∈ A and θ ∈ (0, 1) and
θy + (1− θ)z ∈ F , then θ�(y) + (1− θ)�(z) = α and �(y) ≤ α, �(z) ≤ α implies
�(y) = �(z) = α, that is, y, z ∈ F . By (ii), F is a proper subset of A.

The hyperplane {y | �(y) = α} with α given by (8.3) is called a tangent hyper-
plane or support hyperplane. The set (8.4) is called an exposed set. If F is a single
point, we call the point an exposed point.

Example 8.4 We have just seen that every exposed set is a face so, in particular,
every exposed point is an extreme point. I’ll bet if you think through a few simple
examples like a disk or triangle in the plane or a convex polyhedron in R3 , you’ll
conjecture the converse is true. But it is not! Here is a counterexample in R2 (see
Figure 8.2):

A = {(x, y) | −1 ≤ x ≤ 1, −2 ≤ y ≤ 0} ∪ {(x, y) | x2 + y2 ≤ 1}

The boundary of A above y = −2 is a C1 curve, so there is a unique supporting
hyperplane through each such boundary point. The supporting hyperplane through
the extreme point (1, 0) is x = 1 so (1, 0) is not an exposed point, but it is an
extreme point.

Proposition 8.5 Any proper face F of A lies in the topological boundary of A.
Conversely, if A ⊂ X , a locally convex space (and, in particular, in Rν ), and Aint

is nonempty, then any point x ∈ A ∩ ∂A lies in a proper face.
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A nonexposed
extreme point

Figure 8.2 A nonexposed extreme point

Proof Let x ∈ F and pick y ∈ A\F . The set of θ ∈ R so z(θ) ≡ θx+(1−θ)y ∈
A includes [0, 1], but it cannot include any θ > 1 for if it did, θ = 1 (i.e., x) would
be an interior point of a line in A with at least one endpoint in A\F . Thus, x =
limn↓0 z(1 + n−1) is a limit point of points not in A, that is, x ∈ Ā ∩X\A = ∂A.

For the converse, let x ∈ A∩∂A and let B = Aint. Since B is open, Theorem 4.1
implies there exists a continuous L �= 0 with α = supy∈B L(y) ≤ L(x). Since
x ∈ A, L(x) = α. Since B is open, L[B] is an open set (Lemma 4.2), so the
supporting hyperplane H = {y | L(y) = α} is disjoint from B and so H ∩ A is a
proper face.

To have lots of extreme points, we will need lots of boundary points, so it is
natural to restrict ourselves to closed convex sets. The convex set Rν

+ = {x ∈ R |
xi ≥ 0 all i} has a single extreme point, so we will also restrict to bounded sets.
Indeed, except for some examples, we will restrict ourselves to compact convex
sets in the infinite-dimensional case. Convex cones are interesting but can normally
be treated as suspensions of compact convex sets; see the discussion in Chapter 11.
So we will suppose A is a compact convex subset of a locally convex space. As
noted in Corollary 4.9, A is weakly compact, so we will suppose henceforth that
we are dealing with the weak topology.

Remark Henceforth, we will also restrict the term “face” to indicate a closed set.

Proposition 8.6 Let F ⊂ A with A a compact convex set and F a face of A. Let
B ⊂ F . Then B is a face of F if and only if it is a face of A. In particular, x ∈ F

is in E(F ) if and only if it is also in E(A), that is,

E(F ) = F ∩ E(A)

Proof If B is a face of A, x ∈ B, and x is an interior point of [y, z] ⊂ F , it is an
interior point of [y, z] ⊂ A. Thus, y, z ∈ A, so y, z ∈ B, and thus, B is a face of
F .

Conversely, if B is a face of F , x ∈ B, and x ∈ [y, z] ⊂ A, since x ∈ F , the
fact that F is a face implies y, z ∈ F so [y, z] ⊂ F . Thus, since B is a face of F ,
y, z ∈ B and so B is a face of A.
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We turn next to a detailed study of the finite-dimensional case. We begin with
some notions that involve finite dimension but which are useful in the infinite-
dimensional case also. Since we will be discussing affine subspaces, affine spaces,
affine independence, etc., we will temporarily use vector subspaces, etc. to denote
the usual notions in a vector space where we don’t normally include “vector.”

Let X be a vector space. An affine subspace is a set of the form a + W where
a ∈ X and W is a vector subspace. The affine span of a subset A ⊂ X is the
smallest affine subspace containing A. If A = {e1 , . . . , en}, then its affine span is
just

S(e1 , . . . , en ) =
{

θ1e1 + · · ·+ θnen

∣∣∣∣ θ ∈ Rn ,

n∑
i=1

θi = 1
}

(8.5)

as is easy to see since
∑n

i=1 θi = 1 implies that

θ1e1 + · · ·+ θnen = e1 +
n∑

j=2

θj (ej − e1) (8.6)

so the right-hand side of (8.5) is e1 plus the vector span of {ej−e1}n
j=2 . The convex

hull of {e1 , . . . , en} is, of course,

ch(e1 , . . . , en ) =
{

θ1e1 + · · ·+ θnen | θ ∈ Rn ,
n∑

i=1

θi = 1, θi ≥ 0
}

(8.7)

We call {e1 , . . . , en} affinely independent if and only if
∑n

i=1 θiei = 0 and∑n
i=1 θi = 0 implies θ ≡ 0. By (8.6) this is true if and only if {ej − e1}n

j=2
are vector independent.

Proposition 8.7 ch(e1 , . . . , en ) always has a nonempty interior as a subset of
S(e1 , . . . , en ).

Proof By successively throwing out dependent vectors from P = {ej − e1}n
j=2 ,

find a maximal independent subset of P . By relabeling, suppose it is P ′ ≡ {ej −
e1}k

j=1 so {e1 , . . . , ek} are affinely independent, and each e� − e1 with � > k is a
linear combination of P ′. Then S(e1 , . . . , en ) = S(e1 , . . . , ek ).

Since ch(e1 , . . . , ek ) ⊂ ch(e1 , . . . , en ), it suffices to prove the result when
e1 , . . . , en are affinely independent. In that case, ϕ : ∆n−1 → ch(e1 , . . . , ek ) is
a bijection and continuous, so a homeomorphism. Since ∆n−1 has a nonempty
interior ({(θ1 , . . . , θn ) |

∑n
i=1 θi = 1, 0 < θi}), so does ch(e1 , . . . , ek ).

Remark The θ’s are called barycentric coordinates for S(e1 , . . . , e�) and
ch(e1 , . . . , e�).

Theorem 8.8 Let A ⊂ Rν be a convex set. Then there is a unique affine subspace
W of Rν so that A ⊂W, and as a subset of W, A has a nonempty interior.
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Proof Pick e1 ∈ A and consider B = A − e1 ! 0. Let W be the subspace
generated by B, that is, let f1 , . . . , f�−1 be a maximal linear independent subset of
B, and let X be the vector span of {fj}�−1

j=1 . Let ej = fj−1 + e1 for j = 2, . . . , �

so e1 + X ≡ W is the affine span of {ej}�
j=1 . By construction B ⊂ X so A ⊂

W = S(e1 , . . . , e�). By Proposition 8.7, ch(e1 , . . . , e�) ⊂ A is open in S, so A has
no nonempty interior as a subset of S.

W is unique because any affine subspace containing A must contain e1 , . . . , e�

and so S(e1 , . . . , e�). If its dimension were larger than W, W would have empty
interior in it and so would A. Thus, the condition that A have nonempty interior
uniquely determines W.

Definition The dimension of a convex set A ⊂ Rν is the dimension of the unique
affine subspace given by Theorem 8.8. The interior of A as a subset of W is written
Aiint and called the intrinsic interior of A. ∂iA, the intrinsic boundary of A =
Ā\Aiint.

Proposition 8.9 Let A be a compact convex subset of Rν . Then
(i) ∂iA is the union of all the proper faces of A.

(ii) If x ∈ ∂iA and y is any point in Aiint, {θ | (1 − θ)x + θy ∈ A} = [0, α] for
some α > 1.

(iii) If x ∈ Aiint and y ∈ A, {θ | (1− θ)x + θy ∈ A} ∩ (−∞, 0) �= ∅.

Remark This gives us an intrinsic definition of Aiint. x ∈ Aiint if and only if for
any y ∈ A, the line [y, x] continued past x lies in A for at least a while. Similarly,
∂iA is determined by the condition that any line that intersects A in more than one
point enters and leaves A at points in ∂iA and any x ∈ ∂iA lies on such a line as
an endpoint.

Proof (i) This follows from Proposition 8.5 if we view A as a subset of W.

(ii) We know x ∈ ∂iA lies in some face F . Since Aiint, viewed as a subset
of W, is disjoint from the boundary, y /∈ F . As in the proof of Proposition 8.5,
{θ | (1− θ)x + θy ∈ A} ∩ (−∞, 0) = ∅. Since this set is connected and compact
and contains [0, 1], it must be the requisite form. That α > 1 and α �= 1 follow
from (iii).

(iii) [x, y] lies in A, so in W, so since Aiint is open in W, {θ | (1 − θ)x + θy ∈
Aiint} is open. Since it contains 0, it must contain an interval (−ε, ε) about 0.

Proposition 8.10 Let A ⊂ Rν be a compact convex set. Let � = dim(A) and let
F be a proper face of F . Then dim(F ) < �.

Proof Let A ⊂ W where W is the unique �-dimensional space containing A. If
dim(F ) = �, then W must also be the unique �-dimensional space containing F ,
and so F has not empty interior. But as a set in W, F ⊂ ∂A, which contradicts
F int �= ∅. Thus, dim(F ) < �.
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We are now ready for the main finite-dimensional result:

Theorem 8.11 (Minkowski–Carathéodory Theorem) Let A be a compact convex
subset of Rν of dimension n. Then any point in A is a convex combination of at
most n + 1 extreme points. In fact, for any x, one can fix e0 ∈ E(A) and find
e1 , . . . , en ∈ E(A) so x is a convex combination of {ej}n

j=0 . If x ∈ Aiint, then
x =

∑n
j=0 θj ej with θ0 > 0. In particular,

A = ch(E(A)) (8.8)

Remarks 1. It pays to think of the square in R2 which has four extreme points,
but where any point is in the convex hull of three points (indeed, for most interior
points in exactly two ways).

2. The example of the n simplex ∆n shows that for general A’s, one cannot do
better than n+1 points. Of course, for some sets, one can do better. No matter what
value of ν, the ball Bν has the property that any point is a convex combination of
at most two extreme points.

Proof We use induction on n. n = 0, that is, single-point sets, is trivial. Suppose
we have the result for all sets, B, with dim(B) ≤ n − 1. Let A have dimension
n and x ∈ A and e0 ∈ E(A). Take the line segment [e0 , x] and extend it – {θ |
(1−θ)e0+θx ∈ A} = [0, α] for some α by Proposition 8.9. Let y = (1−α)e0+αx.
Since α ≥ 1,

x = θ0e0 + (1− θ0)y (8.9)

where θ0 = 1− α−1 ≥ 0.
By construction, y ∈ ∂iA and so, by Proposition 8.9, y ∈ F , some proper

face of A. By Proposition 8.10, dim(F ) ≤ n − 1, so by the induction hypothesis,
y =

∑n
j=1 ϕjej where ϕj ≥ 0,

∑n
j=1 ϕj = 1, and {e1 , . . . , en} ⊂ E(F ). By

Proposition 8.6, E(F ) ⊂ E(A). Thus,

x =
n∑

j=0

θj ej

where θj = (1− θ0)ϕj for j = 1, . . . , n.
If θ0 = 0, by (8.9), x = y and x ∈ ∂iA. Thus, if x ∈ Aiint, θ0 �= 0.

We will have more to say about extreme points of finite-dimensional convex
sets in Chapter 15 when we discuss a particular convex set, the set of all doubly
stochastic matrices. In particular, we will show that a compact, convex set, K, in
Rν has finitely many extreme points if and only if it is a finite intersection of closed
half-spaces (Corollary 15.3).
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In the infinite-dimensional case, it is not clear that E(A) is nonempty – we will
go through the main construction in two phases. We will first show that E(A) �= ∅
for A a compact convex subset of a locally convex space and then, fairly easily, we
will be able to show that

A = cch(E(A))

which is the Krein–Milman theorem. The following illustrates that the infinite-
dimensional case is subtle.

Example 8.12 Let A be the closed unit ball in L1(0, 1). Let f ∈ A with f �= 0.
Then Hf (s) =

∫ s

0 |f(t)| dt is a continuous function with Hf (0) = 0 and Hf (1) =
α ≤ 1. Thus, there exists s0 with Hf (s0) = α/2. Let

g = 2fχ(0,s0 )

h = 2fχ(s0 ,1)

Then ‖g‖1 = ‖h‖1 = ‖f‖1 = α ≤ 1 and f = 1
2 h + 1

2 g. Since h �= g, f is not an
extreme point. Clearly, 0 = 1

2 (f −f) is not extreme either. Thus, A has no extreme
points!

We will show below that any compact convex subset, A, of a locally convex
space has E(A) �= ∅. This means that the unit ball in L1(0, 1) cannot be compact
in any topology making it into a locally convex space. In particular, because of
the Bourbaki–Alaoglu theorem, L1(0, 1) cannot be the dual of any Banach space.
This is subtle because �1(Z) is a dual (of c0(Z), the bounded sequences vanishing
at infinity). Of course, the unit ball in �1(Z) has lots of extreme points in each
±δn .

Proposition 8.13 Let A be a compact convex subset of a locally convex space, X .
Then E(A) �= ∅.

Proof Extreme points are one-point faces. We will find them as minimal faces.
So let F be the family of proper faces of A with F1 > F2 if F1 ⊂ F2 . This is a
partially ordered set and it has the chain property, that is, if {Fα}α∈I is linearly
ordered, then it has an “upper” bound (“upper” here means small since a “larger
than” means contained in), namely, ∩α∈I Fα . This is closed, a face (by a simple
argument), and nonempty because of the intersection property for compact sets.

Thus, by Zorn’s lemma, there exist minimal faces. Suppose F is such a minimal
face and F has at least two distinct points x and y. By Corollary 4.6, there is a
linear functional on X and so on F with �(x) �= �(y). Since F is compact,

F̃ =
{
z ∈ F | �(z) = sup

w∈F
�(w)

}
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is nonempty. It is a face of F and so, by Proposition 8.6, F̃ is a face of A. Since
�(x) �= �(y), it cannot be that both x and y lie in F̃ , so F̃ � F , violating minimality.
It follows that F has a single point and that point must be an extreme point.

Remark In L1(0, 1), Fα = {f ∈ L1 | ‖f‖1 = 1, f ≥ 0, and f(x) = 0 on (0, α)}
is a face and it is linearly ordered (since α > β ⇒ Fα ⊂ Fβ ), but ∩αFα is empty.
This proves the lack of compactness directly.

Theorem 8.14 (The Krein–Milman Theorem) Let A be a compact convex subset
of a locally convex vector space, X . Then

A = cch(E(A)) (8.10)

Proof Since E(A) ⊂ A and A is closed and convex, B ≡ cch(E(A)) ⊂ A.
Suppose B �= A so there exists x0 ∈ A\B. Since B is closed and convex, by
Theorem 4.5, there exists � ∈ X∗ so

�(x0) > sup
y∈B

�(y) (8.11)

Let F = {x ∈ A | �(x) = supz∈A �(z)}. Then F is nonempty since A is compact,
a face, and by (8.11),

F ∩B = ∅ (8.12)

By Proposition 8.13, F has an extreme point, y0 , and then, by Proposition 8.6,
y0 ∈ E(A). Thus, y0 ∈ B, contradicting (8.12).

Remark In the next chapter (see Theorem 9.4), we will prove a sort of converse
of this theorem.

Example 8.15 Let X = CR([0, 1]) and let A be the unit ball in ‖·‖∞. If |f(x)| <
1 for some x0 in [0, 1], then by continuity for some ε, |f(y)| < 1 for |y − x0 | < ε

and we can find g �= 0 supported in (x0 − ε, x0 + ε), so both f + g and f − g lie
in A. Since f = 1

2 (f + g) + 1
2 (f − g), f is not an extreme point. Thus, extreme

points have |f(x)| = 1. By continuity and reality, A has precisely two extreme
points f ≡ ±1. cch(E(A)) is the constant functions in A so A �= cch(E(A)). Thus,
CR([0, 1]) is not a dual space.

Example 8.16 This is an important example. Let X be a compact Hausdorff space
and let A = M+1(X) be the set of regular Borel probability measures on X . The
extreme points of A are precisely the single-point pure points, δx , since if C ⊂ X

has 0 < µ(C) < 1 and

µC (B) = µ(C)−1µ(B ∩ C)

µX \C = µ(X\C)−1µ(B\C)

then with θ = µ(C), µ = θµC + (1− θ)µX \C so µ is not an extreme point.
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Suppose µ has the property that µ(A) is 0 or 1 for each A ⊂ X . If x �= y are both
in supp(µ), we can find disjoint open sets B,C with x ∈ B and y ∈ C. By the 0, 1
law, either µ(B) = 0 or µ(C) = 0 or both. But that would mean x and y cannot
both be in supp(µ). Thus, supp(µ) is a single point and µ = δx for some x, that is,
the only extreme points are among the {δx}. But each δx is an extreme point since
δx = 1

2 µ + 1
2 ν implies supp(µ) ⊂ {x} so µ = δx . Thus, E(A) = {δx | x ∈ X}.

ch(E(A)) is the pure point measures. A is compact in the σ(M(X), C(X))-
topology and so the Krein–Milman theorem says that the pure point measures are
weakly dense – something that is easy to prove directly.

Example 8.17 In some ways, this is an extension of the last example. Let X be a
compact Hausdorff space and let T : X → X be a continuous bijection. A regular
Borel probability measure µ on X is called invariant if and only if µ(T−1 [A]) = A

for all A ⊂ X . This is equivalent to∫
f(Tx) dµ(x) =

∫
f(x) dµ(x) (8.13)

for all f ∈ C(X). An invariant measure, µ, is called ergodic if and only if
µ(A"T [A]) = 0 (i.e., A = T [A] µ a.e.) implies µ(A) is 0 or 1.

Let T ∗ map M+ ,1(X) → M+ ,1(X) by∫
f(x) d(T ∗µ)(x) =

∫
f(Tx) dµ(x)

Pick any µ ∈M+ ,1(X) and let

µn =
1
n

n−1∑
j=0

(T ∗)j (µ)

Then for any f ∈ C(X),

|µn (f)− µn (Tf)| =
∣∣∣∣ 1n [((T ∗)nµ)(f)− µ(f)]

∣∣∣∣ ≤ 2
n
‖f‖∞ (8.14)

Thus, if µ∞ is any weak-∗ limit point of µn , µ∞(Tf) = µ∞(f) for all f , that is,
T ∗µ∞ = µ∞. Since M+ ,1(X) is compact in the weak-∗ topology, we conclude

MI
+ ,1(T ) = {µ ∈ M+ ,1 | T ∗µ = µ}

is not empty.
We claim µ ∈ MI

+ ,1(T ) is ergodic if and only if µ ∈ E(MI
+ ,1(T )). Suppose µ

is not ergodic. Then there exists an almost invariant set A with 0 < µ(A) < 1.
µ can be decomposed µ = θµA + (1 − θ)µX \A with θ = µ(A) and µC (B) =
µ(C)−1µ(B ∩ C).
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Conversely, suppose µ is ergodic. Then in L2(X, dµ), define (Uf)(x) = f(Tx).
Then U is unitary. Since as functions on ∂D,

1
n

n−1∑
j=0

einθ →
{

1, θ = 0

0, θ ∈ (0, 2π)

the continuity of the functional calculus (see [303, Thm. VIII.20]) implies

1
n

n−1∑
j=1

Unf
L2

−→ P{1}f (8.15)

where P{1} is the projection onto the invariant functions, that is, those g with Ug =
g. (This is essentially a version of the von Neumann ergodic theorem.) We claim
that, since µ is ergodic, any such g is constant. For clearly, Re g and Im g obey
Ug = g so we can suppose g is real. But then, for all rational (α, β), {x | α <

g(x) < β} is almost T -invariant and so it has measure 0 or 1. This implies g

is a.e. constant. Since 〈1, Unf〉 = 〈1, f〉 = µ(f), we see the constant must be
µ(f) =

∫
f(x) dµ(x).

We have thus shown that if µ is ergodic, then∫ ∣∣∣∣ 1
n

n−1∑
j=0

f(Tn−1x)− µ(f)
∣∣∣∣2 dµ(x) = 0 (8.16)

Suppose now µ = θν + (1 − θ)η with 0 < θ < 1. Since (8.16) has a positive
integrand, we see that (8.16) holds if dµ is replaced by dν or dη (but µ(f) is left
unchanged). Thus, ∫

1
n

n−1∑
j=0

f(Tn−1x) dν(x) → µ(f) (8.17)

But since ν is invariant, the left side of (8.17) is ν(f) for any n. Thus, ν(f) = µ(f),
and similarly, η(f) = µ(f). It follows that ν = η = µ, that is, µ is an extreme point.

We have therefore shown that ergodic measures are precisely the extreme points
of MI

+ ,1(T ). The Krein–Milman theorem therefore implies the existence of ergodic
measures. If MI

+ ,1(T ) has more than one point, there must be multiple extreme
points.

Now suppose that {Tα}α∈I is an arbitrary family of commuting maps of X to
X . Invariant measures for all the Tα ’s at once are defined in the obvious way, and
µ is called ergodic if µ(A"Tα [A]) = 0 for all α implies µ(A) is 0 or 1. Since
the T ’s commute, T ∗

α maps each MI
+ ,1(Tβ ) to itself, and so by repeating the proof

that M+ ,1(X) has invariant measures, we see MI
+ ,1(Tβ ) has a T ∗

α -invariant point.
By induction, there are invariant measures for any finite set {T ∗

αi
}�

i=1 , and then by
compactness and the fact that invariant measures are closed, invariant measures for
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all {Tα}α∈I . We summarize in the following theorem. This example is discussed
further in Example 9.7.

Theorem 8.18 Let X be a compact Hausdorff space and let {Tα}α∈I be a family
of commuting bijections of X to itself. Then MI

+ ,1({Tα}), the set of common invari-
ant measures, is nonempty. The ergodic measures are precisely E(MI

+ ,1({Tα})),
the extreme points, and are therefore also nonempty.

As an example, if X is a compact abelian group, and for each x ∈ X ,
Tx : X → X by Tx(y) = xy, then there is an invariant measure. We have therefore
constructed a Haar measure in this case, which is known to be unique. Similar ideas
can be used to construct what are invariant means on noncompact abelian groups.
See the Notes.

(8.15) provides a useful criterion for ergodicity.

Theorem 8.19 Let µ be an invariant measure for a continuous bijection T on
a compact Hausdorff space. For any function f ∈ L2(X, dµ) and n = 0, 1, . . . ,
define

(Avnf)(x) =
1

2n + 1

n∑
j=−n

f(T jx) (8.18)

Then µ is ergodic if and only if

lim
n→∞

µ(|Avnf |2) = |µ(f)|2 (8.19)

For (8.19) to hold, it suffices that it holds for a dense set, S, in L2(X, dµ).

Proof (8.19) is equivalent to weak operator convergence as operators on
L2(X, dµ),

(Avn )∗(Avn ) w−→ (1, · )1
the projection onto 1, so since ‖Avn‖ ≤ 1, it suffices to prove it for a dense set.

If T is ergodic, then (8.15) implies (8.19). Conversely, if (8.19) holds, A is an
invariant set, and χA is its characteristic function, then Avn (χA ) = χA so (8.19)
implies µ(A) = µ(A)2 , that is, µ(A) is 0 or 1. Thus, µ is ergodic.

Example 8.20 Let X = ∂D, the unit circle. Let α be an irrational number and let

T (eiθ ) = ei(θ+2πα)

Let dµ = dθ/2π and fm = eimθ ∈ L2(∂D, dµ). Then, for m �= 0,

Avn (fm ) = (2n + 1)−1
( j∑

j=−n

e2πijαm

)
fm

= (2n + 1)−1 sin(2π(n + 1
2 )mα)

sin(πmα)
fm



132 Convexity

hence ‖Avn (fm )‖ → 0 if m �= 0. Since {fm}m=0,±1,... are a basis of L2(∂D, dµ),
(8.19) holds, so µ is ergodic. Notice A = {e2πiαm}∞m=−∞ is an invariant set but it
has measure 0. It can be shown that µ is the only invariant measure in this case.

Example 8.21 Given a locally compact group, G, a unitary representation is a
continuous map U taking G to the unitary operators on a Hilbert space, H. Given
such a representation, one can form the functions Fϕ,U (g) = 〈ϕ,U(g)ϕ〉 for each
U ∈ H. One can show that as ϕ runs over all unit vectors and U over all represen-
tations, {Fϕ,U } forms a compact convex subset in C(G) in the ‖ · ‖∞-topology. Its
extreme points will correspond to what are called irreducible representations, and
one can use the Krein–Milman theorem to prove the existence of such representa-
tions.

Just the existence of extreme points in compact convex sets is powerful. The
penultimate topic in this chapter provides proofs of two analytic results that would
seem to have no direct connection to the Krein–Milman theorem. First, we provide
a proof of the Stone–Weierstrass theorem; see, for example, [303, Appendix to
Sect. IV.3] for the “usual” proof.

Theorem 8.22 (Stone–Weierstrass Theorem) Let X be a compact Hausdorff
space. Let A be a subalgebra of CR(X), the real-valued function on X, so that
for any x, y ∈ X and α, β ∈ R, there exists f ∈ A so f(x) = α and f(y) = β.
Then A is dense in CR(X) in ‖ · ‖∞.

Proof M(X) = CR(X)∗ is the space of real signed measures on X with the total
variation norm, that is, for any µ, there is a set, unique up to µ-measure zero sets,
B ⊂ X so µ � B ≥ 0, µ � X\B ≤ 0, and ‖µ‖ = µ(B) + |µ(X\B)|.

Define

L = {µ ∈ M(X) | ‖µ‖ ≤ 1; µ(f) = 0 for all f ∈ A}

Then, since the unit ball in M(X) is compact in the weak-∗ topology, L is a com-
pact convex set. If L is larger than {0}, L has an extreme point which necessarily
has ‖µ‖ = 1 since, if 0 < ‖µ‖ ≤ 1, µ is a nontrivial concave combination of
µ/‖µ‖ and 0.

If g ∈ A and ‖g‖∞ ≤ 1, then g dµ ∈ L for any µ ∈ L since
∫

f(g dµ) =∫
(fg) dµ = 0 and ‖g dµ‖ ≤ ‖g‖∞‖µ‖. If 0 ≤ g ≤ 1, then

‖g dµ‖+ ‖(1− g) dµ‖

=
∫

B

g dµ +
∫

B

(1− g) dµ−
∫

X \B

g dµ−
∫

X \B

(1− g) dµ = ‖µ‖

so

µ =
g dµ

‖g dµ‖ +
(1− g) dµ

‖(1− g) dµ‖
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is a convex combination of elements in L. Thus,

µ extreme and 0 ≤ g ≤ 1

with g ∈ A ⇒ g = 0 a.e. dµ or (1− g) = 0 a.e. dµ
(8.20)

If supp(dµ) has two points x, y, we can pick f ∈ A with f(x) = 1, f(y) = 2.
Thus, g = f 2/‖f‖2

∞ has 0 ≤ g ≤ 1 and 0 < g(x) < 1
4 , and so g ∈ (0, 1

4 ) in
a neighborhood U of x. Since µ(U) �= 0, (8.20) fails. We conclude supp(dµ) is
a single point, x. But then µ ∈ L implies f(x) = 0 for all f ∈ A, violating the
assumption about f(x) = α can have any real value α.

This contradiction implies L = {0} which, by the Hahn–Banach theorem, im-
plies that A is dense.

Remark The Stone–Weierstrass theorem does not hold if CR(X) is replaced by
C(X), the complex-valued function. The canonical example of a nondense subal-
gebra of C(X) with the α, β property is the analytic functions on D. It is a useful
exercise to understand why the above proof breaks down in this case.

The second application concerns vector-valued measures, that is, measures with
values in Rν , equivalently, n-tuples of signed real measures. Given such a measure,
�µ, one can form the scalar measure µ̃ =

∑N
i=1 |µi |, which we suppose is finite.

Then dµi = fi dµ̃ with fi ∈ L1 .

Definition A scalar measure, dµ, is called weakly nonatomic if and only if for
any A with µ(A) > 0, there exists B ⊂ A so µ(B) > 0 and µ(A\B) > 0.

In much of the literature, what we have called weakly nonatomic is called
nonatomic, but we defined nonatomic in Chapter 2 as a measure obeying Corol-
lary 8.24 below. That corollary shows the definitions are equivalent, so one can
drop “weakly” once one has the theorem.

Theorem 8.23 (Lyapunov’s Theorem) Let µ̃ be a weakly nonatomic finite mea-
sure on (M,Σ), a space with countably generated sigma algebra, and �f ∈
L1(M, µ̃; Rν ) fixed. Then{∫

A

�f dµ

∣∣∣∣ A ⊂M, measurable

}
⊂ Rν

is a compact convex subset of Rν .

Before proving this, we note a corollary and make some remarks:

Corollary 8.24 Let µ be a σ-finite scalar positive measure which is weakly
nonatomic. Then µ is nonatomic, that is, for any A and any α ∈ (0, µ(A)), there is
B ⊂ A with µ(B) = α.
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Proof By a simple approximation argument, we can suppose µ(A) < ∞. Apply-
ing the theorem to µ � A, we see {µ(B) | B ⊂ A, measurable} ⊂ R is convex.
Since µ(∅) = 0 and µ(A) = µ(A), we see this convex set must be [0, µ(A)].

The main remark that helps us understand the proof is that the extreme points of
{f ∈ L∞(M,dµ) | 0 ≤ f ≤ 1} are precisely the characteristic functions.

Proof of Theorem 8.23 Let Q = {g ∈ L∞ | 0 ≤ g ≤ 1}. Then Q is a convex set,
compact in the σ(L∞, L1)-topology, and F : Q → Rν by

F (g) =
∫

g �f dµ

is a continuous linear function, so {F (g) | g ∈ Q} is a compact convex set, S.
We will show that for any �α ∈ S, there is g = χA ∈ Q with F (g) = α, so
{
∫

A
�f dµ | A ⊂ M} is S, and so convex.

Let Q�α = {g ∈ Q | F (g) = �α}. Q�α is a closed subset of S and so a compact
convex subset. By the Krein–Milman theorem, Q�α has an extreme point g. We will
prove g = χA using the fact that µ is weakly nonatomic.

Suppose for some ε > 0, A = {x | ε < g < 1 − ε} has µ(A) > 0. By
induction, we can find B1 , . . . , Bn+1 disjoint, so µ(Bj ) > 0 and ∪n+1

j=1 Bj = A. Let

�αj =
∫

Bj

�f dµ. Since Rn has dimension n, we can find (β1 , . . . , βn+1) ∈ Rn+1 ,

so that
∑n+1

j=1 βj �αj = 0, some βj �= 0 and |βj | < ε for all j. Let

g± = g ±
∑

βjχBj

Since |βj | < ε and ε < g < 1 − ε on Bj , we have that 0 ≤ g± ≤ 1. Since
some βj �= 0, g+ �= g−. Since

∑
βj �αj = 0, g± ∈ Q�α . Clearly, g = 1

2 g+ + 1
2 g−,

violating the fact that g is an extreme point of Q�α . It follows that g is 0 or 1 for a.e.
x, that is, g = χA for some A. Thus,

∫
A

�f dµ = �α.

We end this chapter with a few results relating extreme points and linear or affine
maps between spaces and sets. These will be needed in the next chapter.

Proposition 8.25 Let X and Y be locally convex spaces and let A,B be compact
convex subsets of X and Y, respectively. Let T : X → Y be a continuous linear
map. Then if T [E(A)] ⊂ B, we have that T [A] ⊂ B.

Proof Since T is linear and B is convex, each T (
∑n

i=1 θixi) with
∑n

i=1 θi = 1
and xi ∈ E(A) lies in B. Then, since B is closed and T is continuous, the same is
true of limits. Since A = cch(E(A)), we see T [A] ⊂ B.

Definition Let X and Y be locally convex spaces and let A,B be convex subsets
of X and Y, respectively. A map T : A → B is called affine if and only if for all
x, y ∈ A and θ ∈ [0, 1], T (θx + (1− θ)y) = θT (x) + (1− θ)T (y).
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Proposition 8.26 Let A and B be compact convex subsets of locally convex
spaces and let T : A → B be a continuous affine map. Then for any face, F, of
B, G ≡ T−1 [F ], if nonempty, is a face of A.

Proof G is closed since F is closed and T is continuous. If x ∈ G, y, z ∈ A,
and x = θy + (1 − θ)z with θ ∈ (0, 1), then T (x) ∈ F , T (y), T (z) ∈ B, and
T (x) = θT (y)+(1−θ)T (z). Since F is a face, T (y), T (z) ∈ F , that is, y, z ∈ G.
Thus, G is a face.
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