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for |0] < ¢, that is, on supp(d ). Thus, (2.14.30) cannot hold. By rotation covari-
ance, any pair of zeros in a gap can be rotated to this case. O

We can make the consequences of (iv) explicit:

Corollary 2.14.5. Let (zg, ..., z,_1) and (wo, ..., w,) be the zeros of ®,(z; B)
and ®,.,1(z; B), respectively, counted counterclockwise. Then one of the following
happens:

(a) ©, and ®,1 have a single zero in common, which, by cyclic relabeling,
we can suppose is zop = wq. In that case, each of the n intervals (zy, z1),
(z1,22)s - ooy (Zn_2, Zn1), (Zu_1, 20) has exactly one w.

(b) @, and ®,1 have no zeros in common, in which case among the n intervals,
(zo, 21), - - +» (zZn—1, 20), one has exactly two w’s and each of the others has
exactly one w.

Proof. Follows from the fact that each of the n intervals (zg, z1), ..., (Z,—1, Zo)
must contain at least one w. There is only one other w left. O

Remarks and Historical Notes. For properties (iii)—(v) for OPRL, see Section 1.2
of [399]. The gap property (property (iii)) comes as follows: If x(, x| are two zeros
of P, in (a, b), which is disjoint from supp(du), then P,/(x — xo)(x; — x) is of
degree n — 2, so orthogonal to P,, so

/|Pn|2<x —x0) " (=0 ) =0

But (x —x0) "' (x; —x) ! is positive on supp(d ). This classical argument motivated
the final proof in the section.

For purposes of Gaussian quadrature on 91D, POPUC were introduced by Jones,
Njastad, and Thron [210]. Their zeros and other properties have been studied by
Golinskii [174], Cantero—Moral-Veldzquez [69], Wong [462], and Simon [405].
Our discussion here using CD kernels is influenced by Wong [462]. Most of
Theorem 2.14.4 is from [69, 174] with parts from [405].

The use of b, and of the recursion (2.14.29) is due to Khrushchev [219].

2.15 ASYMPTOTICS OF THE CD KERNEL: WEAK LIMITS

This is the first of three sections on the asymptotics of the CD kernel for OPUC,
K, (w, z), especially when |w| = |z| = 1 and w = z or |w — z| is small. In this
section, we will say something about limits of ﬁ K, (?, e?) duu(6) as a measure.
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We start by relating it to limits of the zero counting measure for paraorthogonal
polynomials.

Given a measure d u on 0D, we let dv, be the zero counting measure for ®,,, that
is, v, is a pure point measure with

v (fw) =n~! x (multiplicity of w as a zero of ®,,) (2.15.1)

Similarly, for any g € 0D, we let v be the zero counting measure for the POPUC
®, (z; B) (all multiplicities are one). Finally, we define

du™ () = Ky (e, ey du(d) (2.15.2)

N+1

which is a probability measure on 9D, since [|¢;[*dp = 1. v s a probability

measure on 9D and v, on . Here is a result that says they have the same weak
limits:

Theorem 2.15.1. Forany ¢ =1,2,... and any f,

2¢

14 N e g (B)

‘/Z du( )_/Z dUN+l < N—-|—1 (2153)
2¢

‘[Zlva+l _/‘ngvl(\?ll < N——H (2.154)

In particular, for a subsequence, N(1) < N(2) < .. dvjf(/])ﬂ SN dvy if and

only if du®™W) 5 dve (for one, and then for all choices of {B;}), and in that
case, forany £ = 1,2, ...,

j—o00

lim [ z“dvyys =/z‘duw(z) (2.15.5)

Conversely, if (2.15.5) holds for some dveg on D, then du™U) 5 dy.

Proof. ¢, ..., gy are a basis for Ran(wy;), so with 4 = wy 1 My,
¢ 1 t 1 o ¢
/Z dvyy1 = N——I—lTr(A )= N——}-l IZ(; (@i, (A7) ;) (2.15.6)
and similarly,
N
/Z il = g 2o e U ) 2.15.7)
j=0
By definition of Ky,
N
/z dp™ = 12 0, 2'0)) (2.15.8)
Jj=0

If j < N—¢ (4)'0; = U™, = z'p, so the terms in the sum cancel
for such j’s. Since |{¢;, z°¢;)] < 1 and similarly for 4 and UéN-H) for any j, the
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remaining terms contribute at most 2¢/(N + 1) to the difference of the sums. This
proves (2.15.3) and (2.15.4).

For du™ and dv),, we have measures on oD so [z ‘dn = [zldy.
Polynomials in z and z~! are dense in the continuous functions on 9D, so weak
convergence is equivalent to convergence of [ z* dn (for all £ > 0), which happens

for one of du™U) and dv'?”  if and only if it happens for both (by (2.15.3)).

N(j)+1
And convergence then implies (2.15.5). For the converse, note that (2.15.5) implies
convergence of the moments of d v](\,ﬂ()j) 41 by (2.15.4). O

This is especially useful since there is a class of measures du for which w-lim
d v,(lﬂ ) can be seen to be %.

Proposition 2.15.2. Consider the conditions

(a) lim (pg...pe)V/" =1 (2.15.9)
n— 00
n—1
. 2 _
®  lim r—lZ|aj| =0 (2.15.10)
j=0
1 n—1
(©) lim ZZ;W =0 (2.15.11)
=

Then (a) = (b) < (c). If
sup la,| = R < 1 (2.15.12)

then (b) = (a) also.

Proof. (b) & (c). Since |o| < 1, we have that |ozj|2 < |a|. This and the Schwarz
inequality imply
2

n—1 n—1 n—1
1 1 , 1
- » - e ; 2.15.1
n2|a,| anw anw (2.15.13)
Jj=0 Jj=0 j=0
(a) = (b). We have that
21
—loglp, " = lerj P+ 3 7 ey = oty P (2.15.14)
k=2
SO
1 n—1
= lejl? = —logl(po .. pu-1)*"] (2.15.15)
Jj=0

Thus, (a) = lim(—log(og . .. pr_1)*") = 0 = (b).
(b) = (a) if (2.15.12) holds. If (2.15.12) holds, then for some K (can be taken
—R"log(1 — R)),

—loglp;I* < Kla,|?
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SO
n—1
K
— > la,P = ~logl(po... pa-1)*'"] (2.15.16)
n
so (b) plus the fact that p; < 1 implies (a). O]

Definition. Let u be a measure on dD. If
lim (po ... o)/ = 1
n—>00
we say w is regular.
Regularity has two important consequences:

Theorem 2.15.3. Let u be a measure on oD, which is regular. Then for any z €
C\ D, we have

lim |®,(2)|"" = lim |@,(z)|"" = |z| (2.15.17)
n—0o0 n—0o0

Remark. The proof shows the convergence is uniform on compact subsets of C\ D.

Proof. Since (p;...p,)"" — 1, we need only prove the result for ®,. Suppose
|z] > 1. By Szegd recursion and |®,(2)| > [P (2)] if |z] > 1 (see (2.9.11)), we
have

(2] = lanDIP (2| = [Pry1(D)] = (2] + lota )P (2)] (2.15.18)
Since |z| > 1 holds, there is a K(|z]) so that for all n,
1— |a| 217" = exp(—K|a,|) (2.15.19)
Moreover, if |z| > 1,
Ll 217" < exp(lan)) (2.15.20)

Thus, (2.15.18) plus induction implies

n—1 n—1
[P, (2)]
exp —K(E |aj|> < L < exp E lex ] (2.15.21)
Jj=0 j=0

(2.15.11) thus implies (2.15.17) for ®,,.
This proves (2.15.17) for |z| > 1 and the limit is uniform in 6, for z = re'? with
r > 1 fixed. By the maximum principle, for any » > 1,

|®, (") < sup |D,(re'?)] (2.15.22)
@

This plus the uniformity implies for any » > 1,
lim sup [sup |®,(e")["/"] < r
0
Since r is arbitrary, the lim sup is at most 1.
Since the p’s for the second kind polynomials are the same, we have

lim sup|, ()" < 1 (2.15.23)
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But by (2.4.57),
ACOIIACOIE= (2.15.24)
This plus (2.15.22) implies
lim inf|g, (")|"/" > 1 (2.15.25)
and so (2.15.17) for |z| = 1. O
Theorem 2.15.4. Let i be a measure on 0D, which is regular. Then
do
w-lim du™ = — (2.15.26)
n—o00 21
and for any {B;} € 0D,
do
w-lim dv{f) = — (2.15.27)
n— 00 2

Proof. By Theorem 2.15.1, it suffices to prove for £ > 1,
f 2tdv,(z) > 0 (2.15.28)

since g—g is the unique measure on 9D with [ e’ dn(9) = 0 for £ > 0.

Let dvy, be an arbitrary weak limit point of dv,. For |z| > 1, log|z — w] is
continuous for w € D, so

floglz —w|dv,(w) — /log|z — w| dvs(w) (2.15.29)
Since
1
— log|®,(2)| = /10g|z —w|dv,(w) (2.15.30)
n

(2.15.17) implies for |z| > 1,

/ log

In the region |z| > 1, uniformly in |w| < 1, log|l — %] is the real part of an
analytic function, so

w
-
z

dveo(w) = 0 (2.15.31)

/log<l _ %) dva(w) = 0 (2.15.32)

since we first see it is an imaginary constant and then, by taking |z| — oo, we see
the constant is zero. Now

w 1w\’
log(l - ;> =-> —,<;) (2.15.33)

=17
uniformly in |w| < 1 and |z| > 2, so interchanging the sum and integral, we see
/wf dvso(w) =0 (2.15.34)

for j > 1, proving (2.15.28). O
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We have thus proven that if du is regular, then

o do w df
K, (", e w@) — +dus | — — (2.15.35)
2 2

n—+1

w

When the Szegé condition holds, (2.9.30) says ﬁKn dus —> 0, and one might
hope that this is true more generally (indeed, see Theorem 2.17.7), which leads us
to a natural guess that under suitable hypotheses, pointwise in 6,

K, (€, ew®) —> 1 (2.15.36)
n—+1

It is precisely this surmise that we explore in the next two sections. Of course, it
cannot hold at points with w(0) = 0. Note, however, if dus = 0, (2.15.35) implies
that if the left side of (2.15.36) converges uniformly, the limit must be 1.

Remarks and Historical Notes. Theorem 2.15.1 is from Simon [409]. Regularity
will be discussed more extensively in Section 5.9, mainly in the context of OPRL.
In particular, its history is discussed in the Notes to that section. That regularity im-
plies zeros are distributed according to an “equilibrium” measure (which is g—z for
dD) is a major theme of that section. The proof of (2.15.28) is essentially potential
theoretic—this is discussed in Section 5.5.

2.16 ASYMPTOTICS OF THE CD KERNEL:
CONTINUOUS WEIGHTS

In this section, we will study the asymptotics of the CD kernel for continuous
nonvanishing weights and apply this to obtain a refined estimate on the zeros of
POPUC. We will call a function, f, on 0D “continuous” on an interval / = [«, 8]
(i.e., , B € dD and [ is the set of points between « and B8 going counterclockwise
from « to B) if, as a function on 9D, it is continuous at each z € [«, B]. This is
stronger than saying the restriction of f to [ is continuous on [; in particular, it
says something if « = 8 and [ is a single point. Here is the main theorem of this
section:

Theorem 2.16.1 (Levin—Lubinsky [275]). Let du be a regular probability measure
on 0D of the form

do
du = w@) — + dus (2.16.1)
2

Suppose for an interval I = [a, B] C 9D,
(@) supp(dp;) N1 =
(b) w is “continuous” on I and nonvanishing there.
Then
(1) (Diagonal Asymptotics) For any A < 0o, uniformly in z., € I, and sequences
z, € 0D withn|z, — zo| < A for all n,

Ky (2, 20) = w(zoo) ™' (2.16.2)

n+1



