
118 CHAPTER 2

But

(eiθ − eiϕ)(eiθ − e−iϕ)
eiθ

= (eiθ + e−iθ )− (eiϕ + e−iϕ)
so

z

(z − eiϕ)(z − e−iϕ)
∣∣∣∣
z=eiθ

= 1

cos θ − cosϕ
> 0

for |θ | < ϕ, that is, on supp(dμ). Thus, (2.14.30) cannot hold. By rotation covari-
ance, any pair of zeros in a gap can be rotated to this case.

We can make the consequences of (iv) explicit:

Corollary 2.14.5. Let (z0, . . . , zn−1) and (w0, . . . , wn) be the zeros of �n(z;β)
and �n+1(z; β̃), respectively, counted counterclockwise. Then one of the following
happens:
(a) �n and �n+1 have a single zero in common, which, by cyclic relabeling,

we can suppose is z0 = w0. In that case, each of the n intervals (z0, z1),
(z1, z2), . . . , (zn−2, zn−1), (zn−1, z0) has exactly one w.

(b) �n and �n+1 have no zeros in common, in which case among the n intervals,
(z0, z1), . . . , (zn−1, z0), one has exactly two w’s and each of the others has
exactly one w.

Proof. Follows from the fact that each of the n intervals (z0, z1), . . . , (zn−1, z0)

must contain at least one w. There is only one other w left.

Remarks and Historical Notes. For properties (iii)–(v) for OPRL, see Section 1.2
of [399]. The gap property (property (iii)) comes as follows: If x0, x1 are two zeros
of Pn in (a, b), which is disjoint from supp(dμ), then Pn/(x − x0)(x1 − x) is of
degree n− 2, so orthogonal to Pn, so∫

|Pn|2(x − x0)
−1(x1 − x)−1 dμ(x) = 0

But (x−x0)
−1(x1−x)−1 is positive on supp(dμ). This classical argument motivated

the final proof in the section.
For purposes of Gaussian quadrature on ∂D, POPUC were introduced by Jones,

Njåstad, and Thron [210]. Their zeros and other properties have been studied by
Golinskii [174], Cantero–Moral–Velázquez [69], Wong [462], and Simon [405].
Our discussion here using CD kernels is influenced by Wong [462]. Most of
Theorem 2.14.4 is from [69, 174] with parts from [405].

The use of bn and of the recursion (2.14.29) is due to Khrushchev [219].

2.15 ASYMPTOTICS OF THE CD KERNEL: WEAK LIMITS

This is the first of three sections on the asymptotics of the CD kernel for OPUC,
Kn(w, z), especially when |w| = |z| = 1 and w = z or |w − z| is small. In this
section, we will say something about limits of 1

n+1Kn(e
iθ , eiθ ) dμ(θ) as a measure.
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We start by relating it to limits of the zero counting measure for paraorthogonal
polynomials.

Given a measure dμ on ∂D, we let dνn be the zero counting measure for�n, that
is, νn is a pure point measure with

νn({w}) = n−1 × (multiplicity of w as a zero of �n) (2.15.1)

Similarly, for any β ∈ ∂D, we let ν(β)n be the zero counting measure for the POPUC
�n(z;β) (all multiplicities are one). Finally, we define

dμ(N)(θ) = 1

N + 1
KN(e

iθ , eiθ ) dμ(θ) (2.15.2)

which is a probability measure on ∂D, since
∫ |ϕj |2 dμ = 1. ν(β)n is a probability

measure on ∂D and νn on D. Here is a result that says they have the same weak
limits:

Theorem 2.15.1. For any � = 1, 2, . . . and any β,∣∣∣∣∫ z� dμ(N) − ∫ z� dν(β)N+1

∣∣∣∣ ≤ 2�

N + 1
(2.15.3)∣∣∣∣∫ z� dνN+1 −

∫
z� dν

(β)

N+1

∣∣∣∣ ≤ 2�

N + 1
(2.15.4)

In particular, for a subsequence, N(1) < N(2) < . . . , dν
(βj )

N(j)+1
w−→ dν∞ if and

only if dμ(N(j))
w−→ dν∞ (for one, and then for all choices of {βj }), and in that

case, for any � = 1, 2, . . . ,

lim
j→∞

∫
z� dνN(j)+1 =

∫
z� dν∞(z) (2.15.5)

Conversely, if (2.15.5) holds for some dν∞ on ∂D, then dμ(N(j))
w−→ dν∞.

Proof. ϕ0, . . . , ϕN are a basis for Ran(πN+1), so with A = πN+1MzπN+1,∫
z� dνN+1 = 1

N + 1
Tr(A�) = 1

N + 1

N∑
j=0

〈ϕj , (Aj )�ϕj 〉 (2.15.6)

and similarly, ∫
z� dν

(β)

N+1 =
1

N + 1

N∑
j=0

〈ϕj , (U(N+1)
β )�ϕj 〉 (2.15.7)

By definition of KN ,∫
z� dμ(N) = 1

N + 1

N∑
j=0

〈ϕj , z�ϕj 〉 (2.15.8)

If j ≤ N − �, (Aj )�ϕj = (U(N+1)
β )�ϕj = z�ϕj , so the terms in the sum cancel

for such j ’s. Since |〈ϕj , z�ϕj 〉| ≤ 1 and similarly for A and U(N+1)
β for any j , the
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remaining terms contribute at most 2�/(N + 1) to the difference of the sums. This
proves (2.15.3) and (2.15.4).

For dμ(N) and dν(β)N+1, we have measures on ∂D so
∫
z−� dη = ∫

z� dη.
Polynomials in z and z−1 are dense in the continuous functions on ∂D, so weak
convergence is equivalent to convergence of

∫
z� dη (for all � ≥ 0), which happens

for one of dμ(N(j)) and dν
(βj )

N(j)+1 if and only if it happens for both (by (2.15.3)).
And convergence then implies (2.15.5). For the converse, note that (2.15.5) implies
convergence of the moments of dν(β)N(j)+1 by (2.15.4).

This is especially useful since there is a class of measures dμ for which w-lim
dν

(β)
n can be seen to be dθ

2π .

Proposition 2.15.2. Consider the conditions

(a) lim
n→∞ (ρ0 . . . ρn−1)

1/n = 1 (2.15.9)

(b) lim
n→∞

1

n

n−1∑
j=0

|αj |2 = 0 (2.15.10)

(c) lim
n→∞

1

n

n−1∑
j=0

|αj | = 0 (2.15.11)

Then (a) ⇒ (b) ⇔ (c). If

sup
n

|αn| = R < 1 (2.15.12)

then (b) ⇒ (a) also.

Proof. (b) ⇔ (c). Since |αj | < 1, we have that |αj |2 < |αj |. This and the Schwarz
inequality imply ⎛⎝1

n

n−1∑
j=0

|αj |
⎞⎠2

≤ 1

n

n−1∑
j=0

|αj |2 ≤ 1

n

n−1∑
j=0

|αj | (2.15.13)

(a) ⇒ (b). We have that

− log|ρj |2 = |αj |2 +
∞∑
k=2

1

k
|αj |2k ≥ |αj |2 (2.15.14)

so

1

n

n−1∑
j=0

|αj |2 ≤ − log[(ρ0 . . . ρn−1)
2/n] (2.15.15)

Thus, (a) ⇒ lim(− log(ρ0 . . . ρn−1)
2/n) = 0 ⇒ (b).

(b) ⇒ (a) if (2.15.12) holds. If (2.15.12) holds, then for some K (can be taken
−R−1 log(1− R)),

− log|ρj |2 ≤ K|αj |2
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so

K

n

n−1∑
j=0

|αj |2 ≥ − log[(ρ0 . . . ρn−1)
2/n] (2.15.16)

so (b) plus the fact that ρj < 1 implies (a).

Definition. Let μ be a measure on ∂D. If

lim
n→∞(ρ0 . . . ρn−1)

1/n = 1

we say μ is regular.

Regularity has two important consequences:

Theorem 2.15.3. Let μ be a measure on ∂D, which is regular. Then for any z ∈
C \ D, we have

lim
n→∞ |�n(z)|

1/n = lim
n→∞ |ϕn(z)|

1/n = |z| (2.15.17)

Remark. The proof shows the convergence is uniform on compact subsets of C\D.

Proof. Since (ρ1 . . . ρn)
1/n → 1, we need only prove the result for �n. Suppose

|z| > 1. By Szegő recursion and |�n(z)| ≥ |�∗n(z)| if |z| > 1 (see (2.9.11)), we
have

(|z| − |αn|)|�n(z)| ≤ |�n+1(z)| ≤ (|z| + |αn|)|�n(z)| (2.15.18)

Since |z| > 1 holds, there is a K(|z|) so that for all n,

1− |αn| |z|−1 ≥ exp(−K|αn|) (2.15.19)

Moreover, if |z| > 1,

1+ |αn| |z|−1 ≤ exp(|αn|) (2.15.20)

Thus, (2.15.18) plus induction implies

exp

⎛⎝−K( n−1∑
j=0

|αj |
)⎞⎠ ≤ |�n(z)|

|z|n ≤ exp

⎛⎝ n−1∑
j=0

|αj |
⎞⎠ (2.15.21)

(2.15.11) thus implies (2.15.17) for �n.
This proves (2.15.17) for |z| > 1 and the limit is uniform in θ , for z = reiθ with

r > 1 fixed. By the maximum principle, for any r > 1,

|�n(eiθ )| ≤ sup
ϕ

|�n(reiϕ)| (2.15.22)

This plus the uniformity implies for any r > 1,

lim sup
[
sup
θ

|�n(eiθ )|1/n
] ≤ r

Since r is arbitrary, the lim sup is at most 1.
Since the ρ’s for the second kind polynomials are the same, we have

lim sup|ψn(eiθ )|1/n ≤ 1 (2.15.23)
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But by (2.4.57),

|ϕn(eiθ )| |ψn(eiθ )| ≥ 1 (2.15.24)

This plus (2.15.22) implies

lim inf|ϕn(eiθ )|1/n ≥ 1 (2.15.25)

and so (2.15.17) for |z| = 1.

Theorem 2.15.4. Let μ be a measure on ∂D, which is regular. Then

w-lim
n→∞ dμ(n) = dθ

2π
(2.15.26)

and for any {βj } ∈ ∂D,

w-lim
n→∞ dν(βn)n = dθ

2π
(2.15.27)

Proof. By Theorem 2.15.1, it suffices to prove for � ≥ 1,∫
z� dνn(z)→ 0 (2.15.28)

since dθ
2π is the unique measure on ∂D with

∫
ei�θ dη(θ) = 0 for � > 0.

Let dν∞ be an arbitrary weak limit point of dνn. For |z| > 1, log|z − w| is
continuous for w ∈ D, so∫

log|z − w| dνn(w)→
∫

log|z − w| dν∞(w) (2.15.29)

Since
1

n
log|�n(z)| =

∫
log|z − w| dνn(w) (2.15.30)

(2.15.17) implies for |z| > 1,∫
log

∣∣∣∣1− wz
∣∣∣∣ dν∞(w) = 0 (2.15.31)

In the region |z| > 1, uniformly in |w| ≤ 1, log|1 − w
z
| is the real part of an

analytic function, so ∫
log

(
1− w

z

)
dν∞(w) = 0 (2.15.32)

since we first see it is an imaginary constant and then, by taking |z| → ∞, we see
the constant is zero. Now

log

(
1− w

z

)
= −

∞∑
j=1

1

j

(
w

z

)j
(2.15.33)

uniformly in |w| ≤ 1 and |z| ≥ 2, so interchanging the sum and integral, we see∫
wj dν∞(w) = 0 (2.15.34)

for j ≥ 1, proving (2.15.28).
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We have thus proven that if dμ is regular, then

1

n+ 1
Kn(e

iθ , eiθ )

[
w(θ)

dθ

2π
+ dμs

]
w−→ dθ

2π
(2.15.35)

When the Szegő condition holds, (2.9.30) says 1
n+1Kn dμs

w−→ 0, and one might
hope that this is true more generally (indeed, see Theorem 2.17.7), which leads us
to a natural guess that under suitable hypotheses, pointwise in θ ,

1

n+ 1
Kn(e

iθ , eiθ )w(θ)→ 1 (2.15.36)

It is precisely this surmise that we explore in the next two sections. Of course, it
cannot hold at points with w(θ) = 0. Note, however, if dμs = 0, (2.15.35) implies
that if the left side of (2.15.36) converges uniformly, the limit must be 1.

Remarks and Historical Notes. Theorem 2.15.1 is from Simon [409]. Regularity
will be discussed more extensively in Section 5.9, mainly in the context of OPRL.
In particular, its history is discussed in the Notes to that section. That regularity im-
plies zeros are distributed according to an “equilibrium” measure (which is dθ

2π for
∂D) is a major theme of that section. The proof of (2.15.28) is essentially potential
theoretic—this is discussed in Section 5.5.

2.16 ASYMPTOTICS OF THE CD KERNEL:

CONTINUOUS WEIGHTS

In this section, we will study the asymptotics of the CD kernel for continuous
nonvanishing weights and apply this to obtain a refined estimate on the zeros of
POPUC. We will call a function, f , on ∂D “continuous” on an interval I = [α, β]
(i.e., α, β ∈ ∂D and I is the set of points between α and β going counterclockwise
from α to β) if, as a function on ∂D, it is continuous at each z ∈ [α, β]. This is
stronger than saying the restriction of f to I is continuous on I ; in particular, it
says something if α = β and I is a single point. Here is the main theorem of this
section:

Theorem 2.16.1 (Levin–Lubinsky [275]). Let dμ be a regular probability measure
on ∂D of the form

dμ = w(θ) dθ
2π

+ dμs (2.16.1)

Suppose for an interval I = [α, β] ⊂ ∂D,
(a) supp(dμs) ∩ I = ∅
(b) w is “continuous” on I and nonvanishing there.

Then
(1) (Diagonal Asymptotics) For any A <∞, uniformly in z∞ ∈ I , and sequences

zn ∈ ∂D with n|zn − z∞| ≤ A for all n,

1

n+ 1
Kn(zn, zn)→ w(z∞)−1 (2.16.2)


