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What is spectral theory?

Spectral theory is the general theory of the relation of the
What i oot fundamental parameters of an object and its “spectral”
theory? characteristics.

Spectral characteristics means eigenvalues or scattering
data or, more generally, spectral measures.

Examples include
m Can you hear the shape of a drum ?

m Computer tomography

m Isospectral manifold for the harmonic oscillator
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What is spectral theory?

The direct problem goes from the object to spectra.
The inverse problem goes backwards.

The direct problem is typically easy while the inverse
problem is typically hard.

For example, the domain of definition of the harmonic
oscillator isospectral “manifold” is unknown. It is not even
known if it is connected!
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Orthogonal polynomials on the real line (OPRL) and on the
unit circle (OPUC) are particularly useful because the
inverse problems are easy—indeed the inverse problem is the
OP definition as we'll see.

OPs also enter in many application—both specific
polynomials and the general theory.

Indeed, my own interest came from studying discrete
Schrédinger operators on £%(Z)

(Hu)n = Up41 + Un—1 + Vuy,

and the realization that when restricted to Z, one had a
special case of OPRL.
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points. (We then say that p is non-trivial.) This implies
that 1,z, 22, ... are independent since

OPRL basics [1P(z)|?dp = 0 = p is supported on the zeroes of P.
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w1 will be a probability measure on R. We'll always suppose
that o has bounded support [a, b] which is not a finite set of
points. (We then say that p is non-trivial.) This implies
that 1,z, 22, ... are independent since

[1P(z)|?dp = 0 = p is supported on the zeroes of P.

Apply Gram Schmidt to 1,z,... and get monic polynomials
P](ac) = xj + ozjylxj*l + ...
and orthonormal (ON) polynomials

p; = P/l B
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More generally we can do the same for any probability
measure of bounded support on C.

One difference from the case of R, the linear combination of
{:L’j}?io are dense in L?(R, du1) by Weierstrass. This may or
may not be true if supp(du) ¢ R.

If du = d6/2m on 9D, the span of {27}32 is not dense in
L? (but is only H?). Perhaps, surprisingly, there are
measures dyu on JD for which they are dense (e.g., i purely
singular).

More significantly, the argument we'll give for our recursion
relation fails if supp(du) Z R.
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k
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Since Py, is monic and {P; ;“ié span polynomials of degree

at most k£ + 1, we have

k
xPy = Ppy1 + Z By j P;
=0
OPRL basics
Clearly
By = (Pj,zP) /|| Py|*
Now we use

(Pj,xPy) = (xPj, Py)
(need du on RI)
If j <k —1, this is zero.
fj=k—1,(Py1,2P:) = (xPy_1, P) = || P||*.
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= 0); {a;}52,, {b;}72, : Jacobi recursion

2Py = Pyy1 4+ byi1 Py + ak Py_1

by €R, ay =|Pn|/||Pn-1l

OPRL basics
These are called Jacobi parameters. This implies
|IPn|| = anan—1...a1 (since | Pyl = 1).

This, in turn, implies p, = P,/a; ...a, obeys

ITPn = Gp4+1Pn+1 + bn+1pn + anPn—1
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OPRL basics

We have thus solved the inverse problem, i.e., i is the
spectral data and {ay, b, }2° are the descriptors of the
object.

In the orthonormal basis {p,}22,, multiplication by x has
OPRL basics the matrix

b1 al 0 0
al b2 ag 0
0 a9 b3 as

called a Jacobi matrix.
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Since

b= [t @i, an= [ apur@p(o) da

supp(p) C [=R, R] = [bn| < R, |an| < R.

Conversely, if sup,, (|an| + |bn|) = @ < o0, J is a bounded
matrix of norm at most 3a. In that case, the spectral
theorem implies there is a measure du so that

((1,0,...)% J5(1,0,..)H = /x‘du(x)

If one uses Gram-Schmidt to orthonormalize

{J4(1,0,...)1}22,, one finds ;1 has Jacobi matrix exactly
given by J.
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Favard’'s Theorem

We have thus proven Favard's Theorem (his paper was in
1935; really due to Stieltjes in 1894 or to Stone in 1932).

Favard’'s Theorem. There is a one—one correspondence
between bounded Jacobi parameters

Favard’s Theorem {(],T“ bn}zozl c [(0, OO) X R] o0

and non-trivial probability measures, p, of bounded support

via:
= {an,bn} (OP recursion)

{an,bn} = pn (Spectral Theorem)

There are also results for u's with unbounded support so
long as [ 2™ dp < co. In this case, {an, by} = p may not
be unique because J may not be essentially self-adjoint on
vectors of finite support.
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m—Function
Expansion

m—function

By the above construction, one has that

m(z) z/d“(‘r) — (51, (J — 2)716)

Let Jy be the N x N matrix obtained by keeping the top
N rows and leftmost N columns of J. Then it is easy to
prove that

m(z) = (01, (I — 2)7101)

lim
N—o0
We denote the quantity inside the limit as
my(z;at,...,an—1;b1,...,bN).
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Cramér's rule says that
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Coefficient stripping

Let DN(Z; al,...,anN—_1;b1,..., bN) = det(JN - Z) so that
Cramér's rule says that

mN(z; ai,. .. ,bN) _ DN—I(ZS ag,...,aN—-1; bg, ceey bN)
Dn(z;a1,...,an—-1;b1,...,bN)
where we look at the determinant of a once stripped matrix
i obtained by removing the first row and cglumn. By
expanding det(Jy — z) in minors in the first column we get

DN(Z; ALy ey bN) = (bl — Z)DN_l(Z; as, ... ,bN)
—a%DN,g(z;ag,...,bN)

Dividing by Dn_1(z;a2,...,byx) and taking N — oo after
using the formula for m as a ratio of D's, we see that
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where m; is the m—function of the once stripped infinite
Jacobi matrix. This provides another was to recover Jacobi
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formula

m(z)"t = by — 2z — aZmy (2)
where m; is the m—function of the once stripped infinite
Jacobi matrix. This provides another was to recover Jacobi
paramters from a measure: go from the measure to m to
a1,b; and m; (and so inductively all Jacobi parameters) by
looking at Taylor coefficients of m(z)~! near infinity. By

m—Function H H H H H .
Expal;s‘i:;: |terat|ng, one gets a contlnued fractlon expansion:
1
m(z) = 5
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m—Function
Expansion

Coefficient stripping m—function

formula

m(z)"t = by — 2z — aZmy (2)
where m; is the m—function of the once stripped infinite
Jacobi matrix. This provides another was to recover Jacobi
paramters from a measure: go from the measure to m to
a1,b; and m; (and so inductively all Jacobi parameters) by
looking at Taylor coefficients of m(z)~! near infinity. By
iterating, one gets a continued fraction expansion:

1
m(z): a2
bl—Z—l- ! a2
by — -2
2 Z+b3—z+-~

The convergence theorems for continued fractions lets one
go from Jacobi parameters to measure. One consequence of
the single stripping formula is that the poles of m; (i.e. the
pure points of 1) are precisely the zeros of m.
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OPUC basics

Let du be a non-trivial probability measure on 0D. As in
the OPRL case, we use Gram-Schmidt to define monic OPs,
®,,(z) and ON OP’s ¢, (2).

In the OPRL case, if z is multiplication by the underlying
variable, z* = z. This is replaced by z*z = 1.

In the OPRL case, P,y1 — 2P, L {1,z,...,2"?}.
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OPUC basics

In the OPUC case, @41 — 2P, L {z,...,2"}, since
(2®,27) = (®,2771)

if j > 1.

In the OPRL case, we used deg P = n and
Pl{l,z,....2" %} = P=c1P, +c2P,_1.

OPUC basics In the OPUC case, we want to characterize deg P = n,
P1{z 2% ... 2"
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OPUC basics

Define * on degree n polynomials to themselves by

L
*
X
I
©
3
L
VR
NI
~__~

(bad but standard notation!) or

n

Qz) = Z cjzj = Q%(z) = Cn—j 2
§=0

OPUC basics jZO
Then, * is antiunitary and so for deg Q@ = n
QL{l,....2"eQ=co,

is equivalent to

QL{z... 2"} Q=cd
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Szeg6 recursion and Verblunsky coefficients

Thus, we see, there are parameters {a, } 7, (called
Verblunsky coefficients) so that

D, 11(2) = 29, — @, P} (2)

This is the Szeg6 Recursion (History: Szegé and Geronimus
in 1939; Verblunsky in 1935-36)

Applying * for deg n + 1 polynomials to this yields

Szeg6 recursion

andg\‘;erblunssl?y q):;_;'_l(Z) = (I):;(Z) — OénZ(I)n

coefficients

The strange looking —&;, rather than say +ca, is to have
the «,, be the Schur parameter of the Schur function of

(Geronimus); also the Verblunsky parameterization then
agrees with «,,. These are discussed in [OPUCI].
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Szeg6 recursion and Verblunsky coefficients

®,, monic = constant term in ®} is 1 = &} (0) = 1.
This plus @41 = 2®,, — @, P} (2) implies
—Pn41(0) = an

i.e., @, determines o,_1.

Szeg6 recursion
and Verblunsky
coefficients
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Szeg6 recursion and Verblunsky coefficients

For OPRL, we saw || Py+1||/|| Pnl| = an+1. We are looking
for the analog for OPUC.

Szeg6 Recursion = @41 + @, @) = 29,

Pyt L O = ([Pt ]| + ol @] = [[2@n]?

Multiplication by z unitary plus * antiunitary =

Szegd recursion

and Verblunsky
coefficients

1@ns1l* = o 12l o =1~ |a|?
which implies |a;,| < 1 (i.e., a,, € D) and

[@nll = pn—1---po
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Pn+1 Pn -1 z —a,
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Pn+1 Pn -1 z —Qp,
* =A,(z T An=p,
(90n+1) ( )<s0n> : (—anz 1 )

det A, # 0 if z # 0, so we can get ¢, (P,,) from @, 41
(Prt1) by

—2 — *
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Pn+1 Pn -1 z —Qp,
* =A,(z T An=p,
(90n+1) ( )<s0n> : (—anz 1 )

det A, # 0 if z # 0, so we can get ¢, (P,,) from @, 41
(Prt1) by

—2 — *
Szeg6 recursion Z(bn = Pn [¢n+1 + an(I)n+1]
and Verblunsky
coefficients

(I);kz = p;LZ [®n+1 + anq)n—l-l]

This implies that ®,, determines {aj}’;:_ol since we've seen
it determines «v,_1, then by the above inverse Szegé
recursion, ®,,_1, and then inductively all the smaller a's.
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Verblunsky's Theorem

There is a one-one correspondence, called the Verblunsky
map, from measures of infinite support and sequences in D.
We've seen how to go from measures to Verblunsky
coefficients. One way of going in the opposite direction is to
prove that for any {Bj}?;& in D", if the B's are used to
form OPs up to order n, then the measure df /27|, (e)|?
is a measure with Verblunsky coefficients

aj=p0; j=0,...,n—1and a; =0; j >n. Given an
infinite sequence in D°°, one proves these measures
converge to a measure with the given Verblunsky
coefficients.
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Verblunsky's Theorem

For measures with exactly n pure points, there are only n
non-trivial OPs, and n a's. a,_1 € OD. One has
@kl = po ... pr—1 where pj = /1 — |a;|? which explains
why in the n—point case where ||®,| = 0 we have

|aen—1| = 1. For this set of n point measures, the set of
measures and the set of Verblunsky coefficients is 2n — 1
(real) dimensional.

Szegd recursion
and Verblunsky
coefficients
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Szegb's Theorem: Toeplitz version

Szegd's Theorem concerns probability measures on 9D of
the form

Au(0) = w(0) 22 + dus(0)

where dy is singular w.r.t. df. The Toeplitz determinant
D,,(dp) is the n x n determinant with

Cke = /e“’“‘“eduw) = <€_ik'»€_w>L2(du)

In 1915, Szegé proved that
lim Dy, (dp)"/" = exp [/ 10g<w<9>>3ﬁ}

While this is true in general, Szegé only proved it when
dps = 0.
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In 1920, Szegé realized that, because a Toeplitz matrix is
just the Gram matrix of {23}’]7:_1, it is also the Gram matrix
of {Qj}?:_& which is diagonal so

n—1
Dy = [TI1%;1
7=0

so using that ||®;]| is monotone decreasing (by a variational

argument), one has an equivalent form of his theorem,
namely

. 2 49
Szeg6— nh_{gOH(PTLH - exp |:/ IOg(w(Q) 27r:|

Verblunsky Sum
RUS But the recursion relation was only published by Szegé in

1939, so he didn't have a form in term’s of a, and p,.
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sum rule

In two remarkable 1935-36 papers, long unappreciated,
Samuel Verblunsky (then just past his PhD. under
Littlewood) first of all extended Szegé's theorem to allow a
singular part, introduced the ay, in a different form than as
recursion coefficients and wrote Szegé's theorem as a sum
rule

> tog(1 — [a) = [ log(w(e))y
=0

It is critical that this always holds although both sides may
be —oo. This implies what I've called a “spectral theory

Szeg6— ’
Verblunsky Sum gem
Rule

ie>—oo
2T

S gl < 0o = / log(w(0))
5=0

In particular, > 2%, loj|? < 00 = 4. = ID.
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sum rule

What makes the gems so interesting is that they allow
arbitrary singular parts of the measures so long as the Szegé
condition holds, i.e. [log(w(0))%L > —co. If

> =0 laj| < oo, one can show that there is a scattering
theory and strong asymptotic completeness holds in that
there is only a.c. spectrum. The VS sum rules implies in
going from ¢! to ¢? Verblunsky coefficients, one can have
arbitrary mixed spectral types.

In the late 1990's unaware of the OPUC literature, my
rese2arch group was studying 1D Schrodinger operators,
—dd? + V() and the difference between L' and L2

Szeg6—

Verblunsky Sum conditions. Deift—Killip had proven there was a.c. spectrum

Rule
for L? and showing there were examples with mixed

spectrum was one of the problems in my list at the 2000
ICMP. Little did | know that an analogous problem had
been solved in 1935!



Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL.

Szeg6 for OPRL



Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL. The map
z 5 2+ 271 maps OD to [—2,2] (via € — 2cos @)

Szeg6 for OPRL



Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL. The map
z > 2+ 271 maps OD to [—2,2] (via € — 2cos#) and so
measures, p, on [—2, 2] to measures, p, on JD which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at £1).

Szeg6 for OPRL



Szeg6 for OPRL

Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL. The map
z > 2+ 271 maps OD to [—2,2] (via € — 2cos#) and so
measures, p, on [—2, 2] to measures, p, on JD which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at +1). In 1922, Szegé found a relation of
the OPRL for p to the OPUC for p and this allowed later
authors to prove a version of Szeg6's theorem for

dp = w(z) dz + dus (with s(z) = (4 — 22)~71/?):




Szeg6 for OPRL

Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL. The map
z > 2+ 271 maps OD to [—2,2] (via € — 2cos#) and so
measures, p, on [—2, 2] to measures, p, on JD which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at +1). In 1922, Szegé found a relation of
the OPRL for p to the OPUC for p and this allowed later
authors to prove a version of Szeg6's theorem for

dp = w(z) dz + dus (with s(z) = (4 — 22)~71/?):

n 2
.. dx
hnrggolfjl:[laj — VZexp (/_2 log |7rs(:c)w(:n)|5(:c)47r>




Szeg6 for OPRL

Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL. The map
z > 2+ 271 maps OD to [—2,2] (via € — 2cos#) and so
measures, p, on [—2, 2] to measures, p, on JD which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at +1). In 1922, Szegé found a relation of
the OPRL for p to the OPUC for p and this allowed later
authors to prove a version of Szeg6's theorem for

dp = w(z) dz + dus (with s(z) = (4 — 22)~71/?):

n 2
. dz
hgggfjli[l a; = V2exp (/_2 log |7rs(:n)w(m)|5(:v)47r>

The condition for the finiteness of the integral is called the
Szegd condition:




Szeg6 for OPRL

Szeg6 Condition

Here is one version of Szegé's Theorem for OPRL. The map
z > 2+ 271 maps OD to [—2,2] (via € — 2cos#) and so
measures, p, on [—2, 2] to measures, p, on JD which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at +1). In 1922, Szegé found a relation of
the OPRL for p to the OPUC for p and this allowed later
authors to prove a version of Szeg6's theorem for

dp = w(z) dz + dus (with s(z) = (4 — 22)~71/?):

n 2
. dz
hgggfjli[l a; = V2exp (/_2 log |7rs(:n)w(m)|5(:v)47r>

The condition for the finiteness of the integral is called the
Szegd condition:

2
/ log |w(z)|(4 — 22)" Y2 dz > —o0
-2
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ian a; > —00 <= / log |w(z)|(4 — 22)"Y2 dx
n =1 _9
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the Jacobi parameters;

Szeg6 for OPRL



Szeg6 for OPRL

Szeg6 Condition

This doesn’t yield a gem because

n 2
ianaj > —00 = / log |w(z)|(4 — 22)"Y2 dx

only holds under the a priori condition that y is supported
inside [—2,2] and this is not simply expressible in terms of
the Jacobi parameters; for example, it doesn't only depend
on the parameters near co and can be changed by
modifying a single a or b.



Killip—Simon Theorem

In 2001 (published 2003), Killip and | proved the following
gem which we regard as an OPRL analog of the
Verblunsky—Szegé gem where {Ef};vjl are the eigenvalues
outside [—2,2] (with + above 2 and - below -2):

Killip—Simon Sum
Rule



Killip—Simon Sum
Rule

Killip—Simon Theorem

In 2001 (published 2003), Killip and | proved the following
gem which we regard as an OPRL analog of the
Verblunsky—Szegé gem where {E]i}jvjl are the eigenvalues
outside [—2,2] (with + above 2 and - below -2):

Killip-Simon Theorem If dy = w(x)dx + dus is a measure
of compact support on R and {ay, b, }32; its Jacobi
parameters, then

oo

Z|aj—1|2+b?<oo
j=1



Killip—Simon Sum
Rule

Killip—Simon Theorem

In 2001 (published 2003), Killip and | proved the following
gem which we regard as an OPRL analog of the
Verblunsky—Szegé gem where {E]i}jvjl are the eigenvalues
outside [—2,2] (with + above 2 and - below -2):

Killip-Simon Theorem If dy = w(x)dx + dus is a measure
of compact support on R and {ay, b, }32; its Jacobi

parameters, then
oo

Z|aj—1|2+b?<oo
j=1
if and only if the essential support of u is [—2,2] and

2
/1og NV4—22dr > —o0 Z(|Ej[|—2)3/2<oo

2 jt
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Killip—Simon Theorem

This result on Jacobi Hilbert-Schmidt perturbations of the
free Jacobi matrix should be compared with a celebrated
theorem of von-Neumann that any bounded self-adjoint
operator has a Hilbert-Schmidt perturbation with only dense
point spectrum!

We called f_22 log(w(z))V4 — 22 dz > —oo the quasi-Szegd
condition since the square root appeared to the +1/2 power
rather than the —1/2 in the Szeg6 condition. We called
Z]i(]E]ﬂ —2)3/2 < o0 a Lieb-Thirring condition since it
is the discrete analog of the celebrated inequality from
which Lieb and Thirring proved stability of matter, viz for
~A+V(z)on L2(RY) (ford =1, p = 1)

Killip-Simon Sum Z |En|P < C’/ |V(x)|p+d/2 dr

Rule
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The gem comes from a sum rule. Let
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2m in(6 .
Qp) = % o log (—Imn:(2(co)s(0))> sin?(6)d®,
G(a) = a®> — 1 —log(a?) and
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Killip—Simon Sum Rule

The gem comes from a sum rule. Let

Qp) = % o27r log (%) sin”(6)de,

G(a) = a® — 1 —log(a?) and

F(E) = §[°~ 572 -log(8Y)]  E=p+5" |8]>1

Then the Killip-Simon sum rule says

() + Y F(ES Z + 1G(ay)
J,E

As with the Szeg6—Verblunsky sum rule, an important point
is that it always holds although both sides may be +o0.
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The gem comes from the fact that F' > 0, vanishes exactly
at F =42 and is O((|E| — 2)%/?) there and that G > 0,
vanishes exactly at @ = 1 and is O((a — 1)?) there.
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The gem comes from the fact that F' > 0, vanishes exactly
at F =42 and is O((|E| — 2)%/?) there and that G > 0,
vanishes exactly at @ = 1 and is O((a — 1)?) there.

The positivity of the terms is essential to be sure that there
aren’t cancelations. Case had an infinite number of sum
rules that he stated (without indication of when they hold
nor rigorous proof), coming from terms of a suitable Taylor
series, but none was positive. What Killip-Simon realized is
that Cy + %CQ had only positive terms although it was
mysterious why this sum is positive and so unclear how to
generate positive sum rules.



Killip-Simon Sum Rule

The gem comes from the fact that F' > 0, vanishes exactly
at F =42 and is O((|E| — 2)%/?) there and that G > 0,
vanishes exactly at @ = 1 and is O((a — 1)?) there.

The positivity of the terms is essential to be sure that there
aren’t cancelations. Case had an infinite number of sum
rules that he stated (without indication of when they hold
nor rigorous proof), coming from terms of a suitable Taylor
series, but none was positive. What Killip-Simon realized is
that Cy + %CQ had only positive terms although it was
mysterious why this sum is positive and so unclear how to
generate positive sum rules.

As in the OPUC case, this sum rule implies the existence of
Hilbert—Schmidt perturbations with mixed spectrum.

Killip—Simon Sum
Rule
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