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What is spectral theory?

Spectral theory is the general theory of the relation of the
fundamental parameters of an object and its “spectral”
characteristics.

Spectral characteristics means eigenvalues or scattering
data or, more generally, spectral measures.

Examples include

Can you hear the shape of a drum ?
Computer tomography
Isospectral manifold for the harmonic oscillator
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What is spectral theory?

The direct problem goes from the object to spectra.

The inverse problem goes backwards.
The direct problem is typically easy while the inverse
problem is typically hard.
For example, the domain of definition of the harmonic
oscillator isospectral “manifold” is unknown. It is not even
known if it is connected!



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

What is spectral theory?

The direct problem goes from the object to spectra.
The inverse problem goes backwards.

The direct problem is typically easy while the inverse
problem is typically hard.
For example, the domain of definition of the harmonic
oscillator isospectral “manifold” is unknown. It is not even
known if it is connected!



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

What is spectral theory?

The direct problem goes from the object to spectra.
The inverse problem goes backwards.
The direct problem is typically easy while the inverse
problem is typically hard.

For example, the domain of definition of the harmonic
oscillator isospectral “manifold” is unknown. It is not even
known if it is connected!



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

What is spectral theory?

The direct problem goes from the object to spectra.
The inverse problem goes backwards.
The direct problem is typically easy while the inverse
problem is typically hard.
For example, the domain of definition of the harmonic
oscillator isospectral “manifold” is unknown. It is not even
known if it is connected!



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

OPs

Orthogonal polynomials on the real line (OPRL) and on the
unit circle (OPUC) are particularly useful because the
inverse problems are easy—indeed the inverse problem is the
OP definition as we’ll see.

OPs also enter in many application—both specific
polynomials and the general theory.
Indeed, my own interest came from studying discrete
Schrödinger operators on `2(Z)(

Hu
)
n

= un+1 + un−1 + V un

and the realization that when restricted to Z+, one had a
special case of OPRL.
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OPRL basics

µ will be a probability measure on R. We’ll always suppose
that µ has bounded support [a, b] which is not a finite set of
points. (We then say that µ is non-trivial.) This implies
that 1, x, x2, . . . are independent since∫
|P (x)|2 dµ = 0⇒ µ is supported on the zeroes of P .

Apply Gram Schmidt to 1, x, . . . and get monic polynomials

Pj(x) = xj + αj,1x
j−1 + . . .

and orthonormal (ON) polynomials

pj = Pj/‖Pj‖
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OPRL basics

More generally we can do the same for any probability
measure of bounded support on C.

One difference from the case of R, the linear combination of
{xj}∞j=0 are dense in L2(R, dµ) by Weierstrass. This may or
may not be true if supp(dµ) 6⊂ R.
If dµ = dθ/2π on ∂D, the span of {zj}∞j=0 is not dense in
L2 (but is only H2). Perhaps, surprisingly, there are
measures dµ on ∂D for which they are dense (e.g., µ purely
singular).
More significantly, the argument we’ll give for our recursion
relation fails if supp(dµ) 6⊂ R.
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OPRL basics

Since Pk is monic and {Pj}k+1
j=0 span polynomials of degree

at most k + 1, we have

xPk = Pk+1 +

k∑
j=0

Bk,j Pj

Clearly
Bk,j = 〈Pj , xPk〉/‖Pj‖2

Now we use
〈Pj , xPk〉 = 〈xPj , Pk〉

(need dµ on R!!)
If j < k − 1, this is zero.
If j = k − 1, 〈Pk−1, xPk〉 = 〈xPk−1, Pk〉 = ‖Pk‖2.
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OPRL basics

Thus (P−1 ≡ 0); {aj}∞j=1, {bj}∞j=1 : Jacobi recursion

xPN = PN+1 + bN+1PN + a2NPN−1

bN ∈ R, aN = ‖PN‖/‖PN−1‖

These are called Jacobi parameters. This implies
‖PN‖ = aN aN−1 . . . a1 (since ‖P0‖ = 1).

This, in turn, implies pn = Pn/a1 . . . an obeys

xpn = an+1pn+1 + bn+1pn + anpn−1
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OPRL basics

We have thus solved the inverse problem, i.e., µ is the
spectral data and {an, bn}∞n=1 are the descriptors of the
object.

In the orthonormal basis {pn}∞n=0, multiplication by x has
the matrix

J =


b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
...

...
...

...
. . .


called a Jacobi matrix.
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Favard’s Theorem

Since

bn =

∫
xp2n−1(x) dµ, an =

∫
xpn−1(x)pn(x) dµ

supp(µ) ⊂ [−R,R]⇒ |bn| ≤ R, |an| ≤ R.

Conversely, if supn
(
|an|+ |bn|

)
= α <∞, J is a bounded

matrix of norm at most 3α. In that case, the spectral
theorem implies there is a measure dµ so that

〈(1, 0, . . .)t, J `(1, 0, . . .)t〉 =

∫
x`dµ(x)

If one uses Gram-Schmidt to orthonormalize
{J `(1, 0, . . .)t}∞`=0, one finds µ has Jacobi matrix exactly
given by J .
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Favard’s Theorem

We have thus proven Favard’s Theorem (his paper was in
1935; really due to Stieltjes in 1894 or to Stone in 1932).

Favard’s Theorem.There is a one–one correspondence
between bounded Jacobi parameters

{an, bn}∞n=1 ∈
[
(0,∞)× R

]∞
and non-trivial probability measures, µ, of bounded support
via:

µ⇒ {an, bn} (OP recursion)

{an, bn} ⇒ µ (Spectral Theorem)

There are also results for µ’s with unbounded support so
long as

∫
xn dµ <∞. In this case, {an, bn} ⇒ µ may not

be unique because J may not be essentially self-adjoint on
vectors of finite support.
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m–function

By the above construction, one has that

m(z) ≡
∫
dµ(x)

x− z
= 〈δ1, (J − z)−1δ1〉

Let JN be the N ×N matrix obtained by keeping the top
N rows and leftmost N columns of J . Then it is easy to
prove that

m(z) = lim
N→∞

〈δ1, (JN − z)−1δ1〉

We denote the quantity inside the limit as
mN (z; a1, . . . , aN−1; b1, . . . , bN ).
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Coefficient stripping

Let DN (z; a1, . . . , aN−1; b1, . . . , bN ) = det(JN − z) so that
Cramér’s rule says that

mN (z; a1, . . . , bN ) =
DN−1(z; a2, . . . , aN−1; b2, . . . , bN )

DN (z; a1, . . . , aN−1; b1, . . . , bN )

where we look at the determinant of a once stripped matrix
obtained by removing the first row and column. By
expanding det(JN − z) in minors in the first column we get

DN (z; a1, . . . , bN ) = (b1 − z)DN−1(z; a2, . . . , bN )

− a21DN−2(z; a3, . . . , bN )

Dividing by DN−1(z; a2, . . . , bN ) and taking N →∞ after
using the formula for m as a ratio of D’s, we see that
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Coefficient stripping m–function
formula

m(z)−1 = b1 − z − a21m1(z)

where m1 is the m–function of the once stripped infinite
Jacobi matrix. This provides another was to recover Jacobi
paramters from a measure: go from the measure to m to
a1, b1 and m1 (and so inductively all Jacobi parameters) by
looking at Taylor coefficients of m(z)−1 near infinity. By
iterating, one gets a continued fraction expansion:

m(z) =
1

b1 − z +
a21

b2 − z +
a22

b3 − z + · · ·
The convergence theorems for continued fractions lets one
go from Jacobi parameters to measure. One consequence of
the single stripping formula is that the poles of m1 (i.e. the
pure points of µ1) are precisely the zeros of m.
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OPUC basics

Let dµ be a non-trivial probability measure on ∂D. As in
the OPRL case, we use Gram-Schmidt to define monic OPs,
Φn(z) and ON OP’s ϕn(z).

In the OPRL case, if z is multiplication by the underlying
variable, z∗ = z. This is replaced by z∗z = 1.

In the OPRL case, Pn+1 − xPn ⊥ {1, x, . . . , xn−2}.
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In the OPUC case, Φn+1 − zΦn ⊥ {z, . . . , zn}, since

〈zΦ, zj〉 = 〈Φ, zj−1〉

if j ≥ 1.

In the OPRL case, we used deg P = n and
P ⊥ {1, x, . . . , xn−2} ⇒ P = c1Pn + c2Pn−1.

In the OPUC case, we want to characterize deg P = n,
P ⊥ {z, z2, . . . , zn}.
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Define ∗ on degree n polynomials to themselves by

Q∗(z) = znQ

(
1

z̄

)
(bad but standard notation!) or

Q(z) =
n∑
j=0

cjz
j ⇒ Q∗(z) =

n∑
j=0

cn−j z
j

Then, ∗ is antiunitary and so for deg Q = n

Q ⊥ {1, . . . , zn−1} ⇔ Q = cΦn

is equivalent to

Q ⊥ {z, . . . , zn} ⇔ Q = cΦ∗n
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Thus, we see, there are parameters {αn}∞n=0 (called
Verblunsky coefficients) so that

Φn+1(z) = zΦn − αnΦ∗n(z)

This is the Szegő Recursion (History: Szegő and Geronimus
in 1939; Verblunsky in 1935–36)

Applying ∗ for deg n+ 1 polynomials to this yields

Φ∗n+1(z) = Φ∗n(z)− αnzΦn

The strange looking −ᾱn rather than say +αn is to have
the αn be the Schur parameter of the Schur function of µ
(Geronimus); also the Verblunsky parameterization then
agrees with αn. These are discussed in [OPUC1].
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The strange looking −ᾱn rather than say +αn is to have
the αn be the Schur parameter of the Schur function of µ
(Geronimus); also the Verblunsky parameterization then
agrees with αn. These are discussed in [OPUC1].



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

Szegő recursion and Verblunsky coefficients

Φn monic ⇒ constant term in Φ∗n is 1 ⇒ Φ∗n(0) = 1.

This plus Φn+1 = zΦn − ᾱnΦ∗n(z) implies

−Φn+1(0) = αn

i.e., Φn determines αn−1.
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For OPRL, we saw ‖Pn+1‖/‖Pn‖ = an+1. We are looking
for the analog for OPUC.

Szegő Recursion ⇒ Φn+1 + ᾱnΦ∗n = zΦn

Φn+1 ⊥ Φ∗n ⇒ ‖Φn+1‖2 + |αn|2 ‖Φ∗n‖2 = ‖zΦn‖2

Multiplication by z unitary plus ∗ antiunitary ⇒

‖Φn+1‖2 = ρ2n ‖Φn‖2; ρ2n = 1− |αn|2

which implies |αn| < 1 (i.e., αn ∈ D) and

‖Φn‖ = ρn−1 · · · ρ0
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(
ϕn+1

ϕ∗n+1

)
= An(z)

(
ϕn
ϕ∗n

)
x; An = ρ−1n

(
z −ᾱn

−αn z 1

)

detAn 6= 0 if z 6= 0, so we can get ϕn (Φn) from ϕn+1

(Φn+1) by

zΦn = ρ−2n
[
Φn+1 + ᾱnΦ∗n+1

]
Φ∗n = ρ−2n

[
Φn+1 + αnΦn+1

]
This implies that Φn determines {αj}n−1j=0 since we’ve seen
it determines αn−1, then by the above inverse Szegő
recursion, Φn−1, and then inductively all the smaller α’s.
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Verblunsky’s Theorem

There is a one-one correspondence, called the Verblunsky
map, from measures of infinite support and sequences in D.

We’ve seen how to go from measures to Verblunsky
coefficients. One way of going in the opposite direction is to
prove that for any {βj}n−1j=0 in Dn, if the β’s are used to
form OPs up to order n, then the measure dθ/2π|ϕn(eiθ)|2
is a measure with Verblunsky coefficients
αj = βj ; j = 0, . . . , n− 1 and αj = 0; j ≥ n. Given an
infinite sequence in D∞, one proves these measures
converge to a measure with the given Verblunsky
coefficients.
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Verblunsky’s Theorem

For measures with exactly n pure points, there are only n
non–trivial OPs, and n α’s. αn−1 ∈ ∂D. One has
‖Φk‖ = ρ0 . . . ρk−1 where ρj =

√
1− |αj |2

which explains
why in the n–point case where ‖Φn‖ = 0 we have
|αn−1| = 1. For this set of n point measures, the set of
measures and the set of Verblunsky coefficients is 2n− 1
(real) dimensional.
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Szegő’s Theorem: Toeplitz version

Szegő’s Theorem concerns probability measures on ∂D of
the form

dµ(θ) = w(θ)
dθ

2π
+ dµs(θ)

where dµs is singular w.r.t. dθ.

The Toeplitz determinant
Dn(dµ) is the n x n determinant with

ck` ≡
∫
ei(k−`)θdµ(θ) = 〈e−ik·, e−i`·〉L2(dµ)

In 1915, Szegő proved that

lim
n→∞

Dn(dµ)1/n = exp

[∫
log(w(θ)) dθ2π

]
While this is true in general, Szegő only proved it when
dµs = 0.
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Szegő’s Theorem concerns probability measures on ∂D of
the form

dµ(θ) = w(θ)
dθ

2π
+ dµs(θ)

where dµs is singular w.r.t. dθ. The Toeplitz determinant
Dn(dµ) is the n x n determinant with

ck` ≡
∫
ei(k−`)θdµ(θ) = 〈e−ik·, e−i`·〉L2(dµ)

In 1915, Szegő proved that

lim
n→∞

Dn(dµ)1/n = exp

[∫
log(w(θ)) dθ2π

]
While this is true in general, Szegő only proved it when
dµs = 0.
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Szegő’s Theorem: OPUC version

In 1920, Szegő realized that, because a Toeplitz matrix is
just the Gram matrix of {zj}n−1j=0 , it is also the Gram matrix
of {Φj}n−1j=0 which is diagonal so

Dn =

n−1∏
j=0

‖Φj‖2

so using that ‖Φj‖ is monotone decreasing (by a variational
argument), one has an equivalent form of his theorem,
namely

lim
n→∞

‖Φn‖2 = exp

[∫
log(w(θ) dθ2π

]
But the recursion relation was only published by Szegő in
1939, so he didn’t have a form in term’s of αn and ρn.
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Szegő’s Theorem: Szegő-Verblunsky
sum rule

In two remarkable 1935-36 papers, long unappreciated,
Samuel Verblunsky (then just past his PhD. under
Littlewood)

first of all extended Szegő’s theorem to allow a
singular part, introduced the αn in a different form than as
recursion coefficients and wrote Szegő’s theorem as a sum
rule

∞∑
j=0

log(1− |αj |2) =

∫
log(w(θ))

dθ

2π

It is critical that this always holds although both sides may
be −∞. This implies what I’ve called a “spectral theory
gem”

∞∑
j=0

|αj |2 <∞ ⇐⇒
∫

log(w(θ))
dθ

2π
> −∞

In particular,
∑∞

j=0 |αj |2 <∞⇒ Σac = ∂D.
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Szegő’s Theorem: Szegő-Verblunsky
sum rule

What makes the gems so interesting is that they allow
arbitrary singular parts of the measures so long as the Szegő
condition holds, i.e.

∫
log(w(θ)) dθ2π > −∞.

If∑∞
j=0 |αj | <∞, one can show that there is a scattering

theory and strong asymptotic completeness holds in that
there is only a.c. spectrum. The VS sum rules implies in
going from `1 to `2 Verblunsky coefficients, one can have
arbitrary mixed spectral types.

In the late 1990’s unaware of the OPUC literature, my
research group was studying 1D Schrodinger operators,
− d2

dx2
+ V (x) and the difference between L1 and L2

conditions. Deift–Killip had proven there was a.c. spectrum
for L2 and showing there were examples with mixed
spectrum was one of the problems in my list at the 2000
ICMP. Little did I know that an analogous problem had
been solved in 1935!
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Szegő Condition

Here is one version of Szegő’s Theorem for OPRL.

The map
z 7→ z + z−1 maps ∂D to [−2, 2] (via eiθ 7→ 2 cos θ) and so
measures, µ, on [−2, 2] to measures, ρ, on ∂D which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at ±1). In 1922, Szegő found a relation of
the OPRL for µ to the OPUC for ρ and this allowed later
authors to prove a version of Szegő’s theorem for
dµ = w(x) dx+ dµs (with s(x) = (4− x2)−1/2):

lim inf
n→∞

n∏
j=1

aj =
√

2 exp

(∫ 2

−2
log |πs(x)w(x)|s(x)

dx

4π

)
The condition for the finiteness of the integral is called the
Szegő condition:∫ 2

−2
log |w(x)|(4− x2)−1/2 dx > −∞
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Szegő Condition

This doesn’t yield a gem because

inf
n

n∏
j=1

aj > −∞ ⇐⇒
∫ 2

−2
log |w(x)|(4− x2)−1/2 dx

only holds under the a priori condition that µ is supported
inside [−2, 2] and this is not simply expressible in terms of
the Jacobi parameters; for example, it doesn’t only depend
on the parameters near ∞ and can be changed by
modifying a single a or b.
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Killip–Simon Theorem

In 2001 (published 2003), Killip and I proved the following
gem which we regard as an OPRL analog of the
Verblunsky–Szegő gem where {E±j }

N±
j=1 are the eigenvalues

outside [−2, 2] (with + above 2 and - below -2):

Killip-Simon Theorem If dµ = w(x)dx+ dµs is a measure
of compact support on R and {an, bn}∞n=1 its Jacobi
parameters, then

∞∑
j=1

|aj − 1|2 + b2j <∞

if and only if the essential support of µ is [−2, 2] and∫ 2

−2
log(w(x))

√
4− x2 dx > −∞

∑
j,±

(|E±j |−2)3/2 <∞
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Killip–Simon Theorem

This result on Jacobi Hilbert-Schmidt perturbations of the
free Jacobi matrix should be compared with a celebrated
theorem of von-Neumann that any bounded self-adjoint
operator has a Hilbert-Schmidt perturbation with only dense
point spectrum!

We called
∫ 2
−2 log(w(x))

√
4− x2 dx > −∞ the quasi-Szegő

condition since the square root appeared to the +1/2 power
rather than the −1/2 in the Szegő condition. We called∑

j,±(|E±j | − 2)3/2 <∞ a Lieb-Thirring condition since it
is the discrete analog of the celebrated inequality from
which Lieb and Thirring proved stability of matter, viz for
−∆ + V (x) on L2(Rd) (for d = 1, p = 1)∑

|En|p ≤ C
∫
|V (x)|p+d/2 dx



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

Killip–Simon Theorem

This result on Jacobi Hilbert-Schmidt perturbations of the
free Jacobi matrix should be compared with a celebrated
theorem of von-Neumann that any bounded self-adjoint
operator has a Hilbert-Schmidt perturbation with only dense
point spectrum!

We called
∫ 2
−2 log(w(x))

√
4− x2 dx > −∞ the quasi-Szegő

condition since the square root appeared to the +1/2 power
rather than the −1/2 in the Szegő condition.

We called∑
j,±(|E±j | − 2)3/2 <∞ a Lieb-Thirring condition since it

is the discrete analog of the celebrated inequality from
which Lieb and Thirring proved stability of matter, viz for
−∆ + V (x) on L2(Rd) (for d = 1, p = 1)∑

|En|p ≤ C
∫
|V (x)|p+d/2 dx



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

Killip–Simon Theorem

This result on Jacobi Hilbert-Schmidt perturbations of the
free Jacobi matrix should be compared with a celebrated
theorem of von-Neumann that any bounded self-adjoint
operator has a Hilbert-Schmidt perturbation with only dense
point spectrum!

We called
∫ 2
−2 log(w(x))

√
4− x2 dx > −∞ the quasi-Szegő

condition since the square root appeared to the +1/2 power
rather than the −1/2 in the Szegő condition. We called∑

j,±(|E±j | − 2)3/2 <∞ a Lieb-Thirring condition since it
is the discrete analog of the celebrated inequality from
which Lieb and Thirring proved stability of matter,

viz for
−∆ + V (x) on L2(Rd) (for d = 1, p = 1)∑

|En|p ≤ C
∫
|V (x)|p+d/2 dx



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

Killip–Simon Theorem

This result on Jacobi Hilbert-Schmidt perturbations of the
free Jacobi matrix should be compared with a celebrated
theorem of von-Neumann that any bounded self-adjoint
operator has a Hilbert-Schmidt perturbation with only dense
point spectrum!

We called
∫ 2
−2 log(w(x))

√
4− x2 dx > −∞ the quasi-Szegő

condition since the square root appeared to the +1/2 power
rather than the −1/2 in the Szegő condition. We called∑

j,±(|E±j | − 2)3/2 <∞ a Lieb-Thirring condition since it
is the discrete analog of the celebrated inequality from
which Lieb and Thirring proved stability of matter, viz for
−∆ + V (x) on L2(Rd) (for d = 1, p = 1)∑

|En|p ≤ C
∫
|V (x)|p+d/2 dx



What is spectral
theory?

OPs

OPRL basics

Favard’s Theorem

m–Function
Expansion

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Szegő–
Verblunsky Sum
Rule

Szegő for OPRL

Killip–Simon Sum
Rule

Killip–Simon Sum Rule

The gem comes from a sum rule. Let
Q(µ) = 1

2π

∫ 2π
0 log

(
sin(θ)

Imm(2 cos(θ))

)
sin2(θ)dθ,

G(a) = a2 − 1− log(a2) and

F (E) ≡ 1
4 [β2−β−2− log(β4)] E = β+β−1 |β| > 1

Then the Killip-Simon sum rule says

Q(µ) +
∑
j,±

F (E±j ) =
∞∑
n=1

1
4b

2
n + 1

2G(an)

As with the Szegő–Verblunsky sum rule, an important point
is that it always holds although both sides may be +∞.
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Killip-Simon Sum Rule

The gem comes from the fact that F ≥ 0, vanishes exactly
at E = ±2 and is O((|E| − 2)3/2) there and that G ≥ 0,
vanishes exactly at a = 1 and is O((a− 1)2) there.

The positivity of the terms is essential to be sure that there
aren’t cancelations. Case had an infinite number of sum
rules that he stated (without indication of when they hold
nor rigorous proof), coming from terms of a suitable Taylor
series, but none was positive. What Killip-Simon realized is
that C0 + 1

2C2 had only positive terms although it was
mysterious why this sum is positive and so unclear how to
generate positive sum rules.

As in the OPUC case, this sum rule implies the existence of
Hilbert–Schmidt perturbations with mixed spectrum.
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And Now a Word from Our Sponsor

SIMON/1
AMS on the Web  
www.ams.org

816 pages on 50lb stock  •  Backspace: 2 5/16''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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