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Given a measure du = w(x) dz + dus with pure points
{E]i};vjl outside [—2, 2] (with 4+ above 2 and - below -2)
one defines (with m(z) = [(z — 2)~'du(z) and
m(x) = limy o m(z + iy)).
I sin(6)
- log [ — )
@ln) 27 Jo ©8 <Im m(2cos(6))

G(a) = a®> — 1 —log(a?) and

> sin?(#)df

F(E)=4[f°~p7~log(8Y)] E=p+6" |6 >1

The gem will come from the fact that F' > 0, vanishes
exactly at F = 42 and is O((| E| — 2)%/?) there and that
G > 0, vanishes exactly at a = 1 and is O((a — 1)?) there.
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Killip—Simon sum rule

The Killip—Simon rule says that

o

g Qu) + D F(EB;) =) it + 5G(an)

== n=1
An important point is that it always holds although both
sides may be +00. Our main goal in Lecture 2 will be to
sketch a variant of the original proof of this sum rule. |
know of many proofs of Szegé's Theorem but until recently
all proofs of the Killip—Simon sum rule were variants of this
proof. We'll need a Poisson-Jensen formula for certain
meromorphic functions, so | start by recalling the classical
PJ formula in the subtle form found by Smirnov and
Beurling.



Nevanlinna Class and Blaschke

Products

I'll remind you of the classical results without proofs which
you can find in my Basic Complex Analysis, Sections 9.8
and 9.9 and Harmonic Analysis, Sections 5.3, 5.6 and 5.7.

Poisson—Jensen
Formula



Nevanlinna Class and Blaschke

Products

I'll remind you of the classical results without proofs which
you can find in my Basic Complex Analysis, Sections 9.8
and 9.9 and Harmonic Analysis, Sections 5.3, 5.6 and 5.7.
Poisson-Jensen Let f be an analytic function on the unit disk, . We say
Formula that f € N, the Nevanlinna class, if and only if,

27 1
SUPQ<p el fo log, |f(re??)]df < oco.




Poisson—Jensen
Formula

Nevanlinna Class and Blaschke

Products

I'll remind you of the classical results without proofs which
you can find in my Basic Complex Analysis, Sections 9.8
and 9.9 and Harmonic Analysis, Sections 5.3, 5.6 and 5.7.
Let f be an analytic function on the unit disk, . We say
that f € N, the Nevanlinna class, if and only if,

SuPg,<q JiT log, | f(re?)|df < oo. It is a basic fact that if
{z;} is a listing of the zero's of f counting multiplicity, then

FEN=Y (1)) <o




Nevanlinna Class and Blaschke

Products

I'll remind you of the classical results without proofs which
you can find in my Basic Complex Analysis, Sections 9.8
and 9.9 and Harmonic Analysis, Sections 5.3, 5.6 and 5.7.
Poisson-Jensen Let f be an analytic function on the unit disk, . We say
Formula that f € N, the Nevanlinna class, if and only if,

SuPg,<q JiT log, | f(re?)|df < oo. It is a basic fact that if
{z;} is a listing of the zero's of f counting multiplicity, then

FEN=Y (1)) <o
and this implies that the Blaschke product

B(z) = vazl b(z, zj) converges absolutely on the unit disk
to an analytic function vanishing precisely at the z;.




Nevanlinna Class and Blaschke

Products

I'll remind you of the classical results without proofs which
you can find in my Basic Complex Analysis, Sections 9.8
and 9.9 and Harmonic Analysis, Sections 5.3, 5.6 and 5.7.
Poisson-Jensen Let f be an analytic function on the unit disk, . We say
Formula that f € N, the Nevanlinna class, if and only if,

SuPg,<q JiT log, | f(re?)|df < oo. It is a basic fact that if
{z;} is a listing of the zero's of f counting multiplicity, then

FEN=Y (1)) <o
and this implies that the Blaschke product

B(z) = vazl b(z, zj) converges absolutely on the unit disk
to an analytic function vanishing precisely at the z;. Here:

z, ifw=0
b(z,w) = | _ jw|(z—w) w0
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For p > 1, h? is defined like HP but its elements, u, are
real-valued harmonic, rather than analytic functions. If

u € h', then the measure u(re?)df /27 has a weak—* limit
dp and u can be recovered via a Poisson formula.
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By a meromorphic Herglotz function, we mean a function
meromorphic on D, real on (—1,1) with
Imz > 0= Im f(z) > 0. It is easy to see that such
functions have zeros and poles only on (—1,1) and the
zeros and poles are simple and interlace. If one looks at the
lT/ljerfg:norphic product of Blaschke factors and their inverses for the zeros
e and poles in (—r,r), it can be shown that they have a limit
as r T 1 — an analog of alternating sums converging. Let's
suppose f(0) =0 and let B(z) be the limiting product of
zero and pole Blashcke factors other than the zero at 0.
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One can prove that in DN C,, one has that
largzB(z)| < 27 so that arg(f(z)/zB(z)) is bounded on
D. Since arg(g) = Im(log g), M. Riesz's Theorem implies
that log(f(z)/2B(z)) is in all HP? with p < oo so it obeys a

Poisson—Jensen formula (with no singular inner part). Thus
PJ for

Meromorphic Gig + z ; dt9
Herglotz — B . 1 60 R
g 1) =BG ew ([ S towlre5) )

Functions

Taking log's, one gets relations between Taylor coefficients
of log(f(z)/z), certain sums involving logs or powers of
zeros and poles and integrals cos(nf) log | f(e)].
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Recall that m(z) = [ du(z)/(x — 2). It defines a Herglotz
function on C, real on R. The map z + z + 2z~ maps D
to (CU ) \ [-2, 2] flipping the sign of Imz. Thus, if
Oess(J) C [=2,2], M(2) = —m(z + 2z~ !) is what we called
a meromorphic Herglotz function. Its poles are the
eigenvalues of J under the inverse image of the map

2+ 2z + 27! and its zeros are the same for J;. The Taylor
coefficients of log M (z) about zero are related to those of
m(z) at infinity and so polynomials in the Jacobi
parameters. We use mw(z) = lim¢jo Imm(x + ie).

The above procedure thus yields a relation between
polynomials of Jacobi parameters, the difference of
functions of the eigenvalues of J and J; and integral of
log | M (¢')|. Because m(z)~! = by — 2z — a?mq(z), one
finds that |M (¢?)|=2Im M (%) = a?Im M (') so the log
integral is a log of ratios of w and w;.
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P, Sum Rule

What results is a step—by—step sum rule which if iterated
with boundary terms dropped yields the formal sum rules
stated by Case (although, unlike Case, Killip and | had
explicit formulae for the polynomials in the Jacobi
parameters). These C,, step—by—step sum rules, especially
Cy have turned out to be useful in spectral theory, but to
get a gem, one needs positivity and Killip and | found that
none of the Case rules had the required positivity.

However, we discovered that Cy + %02 had the required
positivity. We had no explanation of why this was so but
observed it. We called this the P, sum rule (P for positive)
and it is now known as the Killip—Simon sum rule. The
rather complicated functions F' and G just arose by taking
the functions from the Case sum rule and combining them.
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J,E
where
1 [ Im M; (2 cos(6
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By interlacing, the sum of F' terms is always convergent.
And one can prove that the integral defining @ is always
o -Step to convergent. The log terms in F' and G comes from the
Full Sum Rules leading, i.e. C rule. sin® @ enters as 3[1 — cos(26)], the 1

from Cp and cos(26) from Cs. lIterating
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nothing to prove.
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We'll prove the sum rule by proving two inequalities. First
that

>[50+ 5G(ay)] < QUJ +ZF EF(J

j=1
If either Q(J) or 3_, , F(E]i(,])) is |nf|n|te, then there is
nothing to prove. If both are finite, the same is true for
Q(Jn) and 3, 4 F(Eji(Jn)) so in the iterated
step—by—step sum rule, we can write
Q(J|Jn) = Q(J) — Q(Jy,) and move both J,, terms to the

From

Step_by-Step to other side and drop them to get the inequality for Z?Zl

Full Sum Rules

and then take n — oo. The fact that all functions are
positive is clearly needed in the dropping argument.
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Lower Semicontinuity of the KL

Divergence

Given a pair of probability measures, i and v on the same
space, one defines their Kullback—Leibler (KL) divergence by

log (92) dv, if vis p-a.c.
ot {15 (8 0 e

0, otherwise.

One has H(v | p) > 0 with equality only if 4 = v. The name
Kullback-Leibler (KL) divergence is used by statisticians
and has been taken over in the probability literature. In the
information theory literature it is called the relative entropy
although in some of the statistical mechanics literature its
negative is often called by that name.

Notice that the OPUC Szeg6 integral is precisely

—H(% | ;1) and what we called Q() in the KS sum rule is
precisely H (v | j1) where

dv(x) = (27) (4 — 22)12x_y ) (2)da.
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Divergence

An important property of the KL divergence is lower
semicontinuity. One proves the following variational
principle

H(v|1) = sp (= [ fanr+ [11+oe(san] v

where the sup is taken over all strictly positive continuous
functions. If dv = gdu with g continuous and strictly
positive, then the quantity in the sup when f =g is H and
Jensen's inequality implies the sup is always great than H.
Some approximation arguments complete the proof of the
variation principle. The variational principle says H is a sup
of continuous linear functionals so

H(v|p) is jointly convex and jointly
lower semicontinuous in x4 and v
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is J(™) which builds up by adding on the right, i.e. it has
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The point is that [J(”)]n is the free Jacobi matrix, which
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We get a lower bound on these equal term by replacing the
full eigenvalue sum which might have more and more terms
as n increases by the sum for j = 1,..., K for K fixed.
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the infinite sum (which might be infinite but the summands
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This complements the upper bound and proves the full KS
sum rule.
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Lower Bound on Jacobi Sum

We get a lower bound on these equal term by replacing the
full eigenvalue sum which might have more and more terms
as n increases by the sum for j = 1,..., K for K fixed.
Having done that, take n — oco. The left side converges to
the infinite sum (which might be infinite but the summands
are positive). One can show the spectral measures for J®)
converge weakly to that of J so, by lower semincontinity,
Q(J) is smaller than the liminf. For each fixed j, one can
prove that Ef(J(")) converges to Eji(J) so the sums up to
K converge. Then taking K — oo, we get that

o

>[40+ 1G(ay)] ) + Z F(EX(J

j=1
This complements the upper bound and proves the full KS
sum rule. Note the importance of the positivity of I and G
in proving the lower bound.




Mysteries

While the gem one gets from the P, sum rule is simple and
elegant, the proof has lots of mysteries:

Mysteries



Mysteries

While the gem one gets from the P, sum rule is simple and
elegant, the proof has lots of mysteries:

Why are there any positive combinations?

Mysteries



Mysteries

While the gem one gets from the P, sum rule is simple and
elegant, the proof has lots of mysteries:

Why are there any positive combinations?

It is easy to understand the (4 — 22)~/2 dz of the
Szeg6 condition. It is d under x = cos(h).
Equivalently, it is the potential theoretic equilibrium
measure for [—2, 2]

Mysteries



Mysteries

While the gem one gets from the P, sum rule is simple and
elegant, the proof has lots of mysteries:

Why are there any positive combinations?

It is easy to understand the (4 — 22)~/2 dz of the
Szeg6 condition. It is d under x = cos(h).
Equivalently, it is the potential theoretic equilibrium
measure for [—2, 2] but where the heck does the
(4 — 22)1/2 dz come from?

Mysteries



Mysteries

While the gem one gets from the P, sum rule is simple and
elegant, the proof has lots of mysteries:

Why are there any positive combinations?

It is easy to understand the (4 — 22)~/2 dz of the
Szeg6 condition. It is d under x = cos(h).
Equivalently, it is the potential theoretic equilibrium
measure for [—2, 2] but where the heck does the
(4 — 22)1/2 dz come from?

What does the function

G(a) = a® — 1 — log(a?)
mean?

Mysteries



Mysteries

While the gem one gets from the P, sum rule is simple and
elegant, the proof has lots of mysteries:

Why are there any positive combinations?

It is easy to understand the (4 — 22)~/2 dz of the
Szeg6 condition. It is d under x = cos(h).
Equivalently, it is the potential theoretic equilibrium
measure for [—2, 2] but where the heck does the
(4 — 22)1/2 dz come from?

What does the function

G(a) = a® — 1 — log(a?)
mean?

A What does the function

F(E)=3[8>-B7—logB'; E=p8+p"
mean?

Mysteries



And Now a Word from Our Sponsor

Mysteries




¢ And Now a Word from Our Sponsor

A
5
is by Po
S Eel .
o Real Analysis
; A Comprehensive Course in Analysis, Part 1
=]
=
~
s
n Barry Simon
WAXV%‘ M@M '-"‘1*«\ 4
i) = (2m) 2 / otk x)f(x) &z
Mysteries e
Wi ams.orgookpagessimon

siMoNn

Google simon comprehensive course




And Now a Word from Our Sponsor

A
5
o2
1]
s
n
o Basic Complex Analysis
3 A Comprehensive Course in Analysis, Part 2A
=
n
x
z
@ Barry Simon
<
A
n
[ pr—

S R———

i [AMS on the Web
siMoN2.I (www.ams org

Mysteries T

Google simon comprehensive course




And Now a Word from Our Sponsor

A
H
>
o
<
]
3
3
o Advanced Complex Analysis
9 A Comprehensive Course in Analysis, Part 2B
3
o
« numbr of o
Part 24, Preent Q
h > Barry Simon
in syt mul thoey (mlnding S
he Dirce prime p o
<
n
]
For additoral formation
: i cns o this booke viic
Mysteries el A

981470011015 PAMS on the Web)
siMON22 Www.ams org|

Google simon comprehensive course




And Now a Word from Our Sponsor

"
5
T
o
3 Harmonic Analysis
S A Comprehensive Course in Analysis, Part 3
N
>
=i
2
). harme —
. & Barry Simon
g
1
A — fald”
V1= fela = g [ 1)~ el'=
ANALYSIS
-
I | M £ () > @}] € = 1 flliscaoaen)
e
1 and updates on this book, visit
Mysteries e e et s

FrToETeEE [AMS on the Web|
SIMONS Www.ams org|

Google simon comprehensive course




¢ And Now a Word from Our Sponsor

4 gradue-level
s informati

Operator Theory
A Comprehensive Course in Analysis, Part 4

Barry Simon

o
o
[}
=
i
-
o
=
-
=
n
o
=
~<

ANALYSIS

A= / tdE,
Part

4 N

det(1+24) = [T (1+2M(4))
k=1

For addidonal information
and updates on this book,vst

Mysteries ——e e e

o ETErOTTIOSS AMS on the Web)
SiMONi4 (www.ams.org

Google simon comprehensive




	Killip–Simon reprise
	Poisson–Jensen Formula
	PJ for Meromorphic Herglotz Functions
	Case and P2 Step–by–Step Sum Rules
	From Step–by–Step to Full Sum Rules
	Mysteries

