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In this lecture, I'll sketch some of the key ideas in the theory
of large deviations. Two books on the subject are
Deuschel-Stroock and Dembo—Zeitouni. As both books say,
there is not so much a theory as a set of powerful tools.
While the subject goes back to Laplace, the modern
framework is due to Varadhan, Donsker—Varadhan and
Freidlin-Wentzel in the 1960’s and 1970's. Varadhan got
the Abel Prize for his work on this subject.

We consider a sequence of probability measures, {P,,}2°,
on a space, X. In some of our applications, X will be a
space of measures, so we'll need to avoid getting confused
about measures on measures! Naively, one has a Large
Deviation Principle (aka LDP) if the IP,,—probability that =
is near z¢ is O(e~™(#0)). I is called the rate function. We
allow replacing n in the exponent by a,, called the speed.
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We note that the rate function is uniquely determined by
these conditions because lower semicontinuity implies that
I(x0) = limpinf,cp I(z) where the limit is over the
directed set of all open (or over all closed) neighborhoods of
xg, directed by inverse inclusion. A rate function is called
good if for each positive o, {z | I(x) < a} is compact (note
that by the lower semicontinuity, this set is always closed).

We pause to hint at the key idea of Gamboa, Nagel and
Rouault (GNR). Suppose we have a sequence of probability
measures on the set of probability measure on 9. Since
the Verblunsky map is homeomorphism, it induces a family
of probability measures on the set of Verblunsky
coefficients. Clearly an LDP on one side implies one on the
other. If we can independently compute the rate function
on each side, we get an equality of positive functions, i.e. a
positive sum rule!!!




Two Hilfssatz

The following two elementary results will be useful.

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.
Let ay = N (for £ > 0). Fix Np.

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Let U C R” be open. Let G be continuous on U with
lim,_,guf00y G(2) = 00 and inf ey G(x) = 0.

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Let U C R” be open. Let G be continuous on U with
lim,_,gpufe0y G(2) = 00 and infyey G(7) = 0. Let
F € LY(R¥) with suppF C U, F > 0 and
infyex F(x) > 0 for all compact K C U.

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Let U C R” be open. Let G be continuous on U with
lim,_,gpufe0y G(2) = 00 and infyey G(7) = 0. Let
F € LY(R¥) with suppF C U, F > 0 and
infyer F(x) > 0 for all compact K C U. Let
dPy(z) = Zn' e NC@ F(x)d”x where
Zy = [e NC@F(z)da.

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Let U C R” be open. Let G be continuous on U with
lim,_,gpufe0y G(2) = 00 and infyey G(7) = 0. Let
F € LY(R¥) with suppF C U, F > 0 and
infyer F(x) > 0 for all compact K C U. Let
dPy(z) = Zn' e NC@ F(x)d”x where
N = fe*NG(x)F(ac)d”x. Then Py obeys a LDP
with speed N and good rate function G.

Rate Functions



Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Let U C R” be open. Let G be continuous on U with
lim,_,gpufe0y G(2) = 00 and infyey G(7) = 0. Let
F € LY(R¥) with suppF C U, F > 0 and
infyer F(x) > 0 for all compact K C U. Let
dPy(z) = Zn' e NC@ F(x)d”x where
N = fe*NG(x)F(ac)d”x. Then Py obeys a LDP
with speed N and good rate function G.

Rate Functions

Remarks 1. The assumptions in the second are overly
strong but suffice for the applications we make below.




Two Hilfssatz

The following two elementary results will be useful.

Let ay = N* (for £ > 0). Fix No. Then {Pnn, 13,
obeys a LDP with speed ay and rate function, I, if
and only if {Pn}37_, does

Let U C R” be open. Let G be continuous on U with
lim,_,gpufe0y G(2) = 00 and infyey G(7) = 0. Let
F € LY(R¥) with suppF C U, F > 0 and
infyer F(x) > 0 for all compact K C U. Let
dPy(z) = Zn' e NC@ F(x)d”x where
N = fe*NG(x)F(ac)d”x. Then Py obeys a LDP
with speed N and good rate function G.

Rate Functions

Remarks 1. The assumptions in the second are overly
strong but suffice for the applications we make below.

2. The proofs are straight—forward.
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distribution for N~'Sy = N=1 (X +--- 4+ Xy), where
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LDP with speed N and good rate function I. This is
known as Cramér's Theorem.

Remark. By Jensen's inequality, A is convex and as a sup
of linear functions, so is I(x). If A is everywhere finite, it is
Cl, I(z) = 0 where z = E(¢) and I(z) > 0 for z # Z.
Thus this result amplifies the law of large numbers.
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To see the large deviations upper bound, we note first that
the strict convexity of I(-) implies that the latter is strictly
monotone increasing (resp. decreasing) on [z, 00) (resp.
(—o00,Z])). It is therefore enough to prove the upper bound
on intervals of the form (—oo, z] (with x < Z) or [z, 00)
(with 2 > z). Considering the latter, we have, with A\ > 0,

P(S,/n > z) < E(e™ ™+ ) = ¢=n(e=AR)

where the independence of the X;'s was used in the last
equality. Choosing A = )\, completes the proof of the large
deviations upper bound.
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Since E,(X1) = x, the law of large numbers implies that
for any § > 0, the last integral in converges to 1 as n — oo.
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so, by the definition of A,

P(S,/n € (x—é,x—i—é))—/ Hdpl(xi)
Cramér’s Z?:l J71'/ne(:’:_&’x—’—g) =1

Theorem
n
/ e~ T 2itnd 0 TT d(zs)
S g xi/ne(z—d,x+0) i1

n

> e—n(>\x5+l‘)\x—[\()\$))/ de(gji)
Yimg i /ne(x—8,x+8) ;-

_—n(Ab+I(2) / v
e v(x;)
S xi/ne(x—08,x+0) Zl_Il

Since E,(X1) = x, the law of large numbers implies that
for any § > 0, the last integral in converges to 1 as n — oo.
Taking the limits n — oo first and then § — 0 completes
the proof of the lower bound.
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Some Examples

We'll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let £ be a Gaussian with mean 0
and second moment 1. Then S,, is Gaussian with mean 0
and second moment n~! so

Py (z) = 12X e a2 gy

n
which, by the earlier result on R¥ measures has an LDP

with speed n and rate I(x) = 2% By completing the
square, one computes A()) = A% so
Az — A(A) = 322 — Z(z — X\)? and the sup is exactly $22.
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Example 2 (Cauchy distribution) Let £ have distribution
%ﬁ dz which has numerous pathological features. One
of the more shocking is that the distribution of S, is
independent of n and is just the Cauchy distribution! The
law of large numbers fails but that doesn’t violate the
theorems since E(|¢]) = oco. A little thought shows that
since every open set has positive probability independently

of n, we have that an LDP holds with 7 = 0.

Clearly, A(X\) = oo for A # 0 and A(0) = 0. For any z, the
sup of Az — A()\) occurs at A = 0 so the Legendre
transform is = 0 showing the above calculation is consistent
with Cramér’s theorem.
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Example 3 (Exponential distribution) Relevant to our

considerations later is the average of exponential random

variables. So let {X;}22, be independent, identically

Cramer's distributed random variables (iidrv) with density

Theorem —x . . .
X[0,00)(Z)e~"dx. The cumulant generating function is

0 —log(1 — ifA<1
A(N) = log </ eMe™® dm) = og(l —A), I <
0 o, ifA>1
For z <0, taking A — —oo in Az — A(X), we see that

I(z) = co. If > 0, the X derivative of A\x — A(X) vanishes
at A =1 — 27! at which point Az — A()) has the value

x — 1 —log(z). Thus
x—1—log(z), ifz>0
=1I(x) =
() = I(z) . o< 0

is the (good) rate function. It is no coincidence as we'll see
that G(a) = p(a?).
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Some Examples

We summarize the combination of this calculation and
Cramér’'s Theorem in the theorem below which we'll need in

the last lecture. The gamma distribution is the measure
Cramér's

Theorem giVen by
l@axaflefmﬁ
dGap() = T X[0,00) () dx
For exponential iidrv, n~? Z?Zl X, has distribution
Grn—1,n, so this example allows one to also read off a LDP
for suitable gamma distributions.
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Some Examples

Theorem Let £ be integers with
limpy 0o N"1y = a > 0. Then Yy = N~1 YN, X; with
X iid exponential random variables obeys a LDP with
speed IV and rate function

Paly) = ap(y/a) =y —a —alog(y/a)
Remark This goes beyond the direct use of Cramér in two
ways. First, we note that if real valued Zx have a LDP
with speed N and rate I, then aZy has a LDP with speed
aN and rate af(-/«) by a trivial calculation. Secondly, if
ay =¥¢n/N and ay — 1, then a;,lYN has a LDP with
speed N and rate I if Yy does and the rate function is
continuous.
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Statement of Contraction Principle

Next, we discuss a result known as the contraction principle
which allows one to pull a LDP over under continuous
maps. For most of our basic situation, the maps are
homeomorphisms so it is trivial that LDP's carry over, but
in a few places we'll need the following:

Contraction Principle Let X and Y be Polish spaces and
f: X — Y a continuous function onto Y. Suppose
{Pn}3_, is a family of probability measures on X that
obeys a LDP with speed ay and good rate function I.
Define on Y the function

IN(y) = inf{I(2)| f(z) = y}
Then the family of measures on Y defined by
P)(A) = P (f~[A]) obeys a LDP with speed ax and
good rate function I(5).
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A simple argument shows that I(/) is a good rate function.

If A is open (resp. closed), so is f~![A] and
inf IV (y) = inf T
yeA ) =1 (@)

Contraction
Principle



Proof of Contraction Principle

A simple argument shows that I(/) is a good rate function.
If A is open (resp. closed), so is f~![A] and

inf IV() = inf T
;gA ) me}lgl[A] (@)

et so the LDP bounds for Py carry over to such bounds for
rinciple
P
N
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Projective Limit Theorem

The last topic subject in the general LD theory that we
want to consider the theory of projective limits of LDP’s or
at least a very special case — projective limits are indexed by
directed sets; we'll only consider the case where the directed
set is Z4. We have Polish spaces {X;}22, and X and
continuous maps Tyt X — Xj and Mjt1,5 " Xj+1 — Xj all
onto so that 71 jmjy1 = 7. We require that if

mj(x) = m;(y) for z,y € X and all j, then z = y. In the
abstract discussion, one just needs to be given X; and
mj+1,; and can form X as the subset of [[77; X of those
x = (zj) with 741 j(zj4+1) = ;. One puts the product
topology on X. In the cases of interest, X will be explicitly
given but it agrees with this abstract construction. For a
measure P on X, define 7} (), a measure on X; by

7 (P)(4) = B(r; ' [4]).

J J
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Projective Limit Theorem

Here is a basic theorem due to Dawson—Gartner — there is a
whole chapter in DZ on the subject.

Projective Limit Theorem Let {Px}3_; be a family of
measures on X. Suppose that for each j, {7} (Pn)}%_,
obeys a LDP with speed ay and good rate function, I; on
Pz (s Xj. Let

I(z) = Sl;p{fj(ﬂj ()}

Then I is a good rate function and {Px}%_, obeys a LDP
with speed an and rate function 1.
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Projective Limit Theorem

Remarks 1. The converse, i.e. if {Px}3_; obeys a LDP
then so does each {7} (Pn)}37_;, is trivial by the
contraction principle.

2. The same idea shows that if {7, ;(Pn)}37_; obeys a
LDP, so does {7 (Pn)}3-; and

Ij(x) = inf{Lj41(y) | m;(y) = o}
which shows that I;(m;(x)) is monotone in j so the sup in
the formula for I is a limit.
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Some Examples

Example [R>] Take X; = R/,
X =R*® = {(z1,22,...)|z; € R} which is a Polish space
and 7;(x), = oy, for k =1,...,j. The projective limit
theorem says that to prove a LDP for X, we need only
prove it for the finite dimensional R7.

Example [M_ ;(0D)] Let P be a measure on M ;(9D),
the probability measures on the unit circle. Given
peEMy1(0D) and j =1,2,..., let (1) be the point in
R? with coordinates M(I,g])), k=1,...,27 where

Ili]) _ {&m’ﬂ% <0< 2%}
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Some Examples

Realizing R?’ as a set of measures, we can think of

27

7)) = D w2 X0 (@) de

k=1 i
Thus P induces a measure 7} (IP) on either R? or on
M4 1(OD) supported on a 2/-dimensional subspace. The
(1) determine pu({e*™ |0 < 0 < £}) and so . Clearly
as j — 0o, () converges weakly to f.

In this case
Tt (W)e =y +ye L=1,...,2

Thus, to get a LDP for M ;(0D), we need only prove
2/—dimensional LDPs.
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| want to get a head start on the next lecture by ending this
with at least part of the discussion of a result we'll need
next time. Let U(n) be the n x n unitary matrices. There is
a unique probability measure on U(n) invariant under both
left and right multiplication by any unitary. It is called Haar
measure (although for Lie groups, Hurwitz found the
invariant measure long before Haar's work). For any fixed
unit vector, ¢ € C™, it easy to see that ¢ is cyclic, so for
a.e. U € U(n), it defines a spectral measure on 9C, an
n—point measure, and so n Verblunsky coefficients.

Haar measure thus induces a measure on the 2n — 1 (real)
dimensional set of possible Verblunsky coefficients. Killip
and Nenciu asked and answered what this probability
measure is. They were motivated by a paper of Dmitriu and
Edelman who had asked and answered the analogous
question for GUE and Jacobi parameters.
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Killip—Nenciu Theorem The measure induced by Haar
measure on U(n) on the Verblunsky coefficients
g, .-, Qn_92 €D, a1 € OD is given given by

n—1
d]P)n(CVOa ce 7an—1) = H dHn—Q—j(aj)
j=0

illip-Nenciu {+1
Theorem dry(a) = i(1 — \a|2)éd2a onD; />0
T
- do
dr_1(a =€) = or on 0D
This says the a; are independent. The distribution dky is
exactly the distribution of 2 if z = (21,..., 2zp42) € CF2 s

uniformly distributed on the unit sphere in C**2. That is,
oy is distributed like the first component of the unit sphere
in C", aq in C" 1, etc.
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| want to sketch a proof of this result due to Breuer, Simon
and Zeitouni that is a variant of the original KN proof. As
we'll see, that ay is distributed as the first component of the
unit sphere in C™ will be easy. The subtle step will be the
independence so we begin with the tools needed to see that.

We start with a natural matrix representation of the matrix
with given Verblunsky coefficients. Given a n—point
probability measure i on 9D, we define the GGT matrix,

{6 () Vo< o<oo by

Grp(dp) = (o 200) 0 <k 0 < o0
GGT is a name | introduced in OPUCL after Geronimus
(who had it first in his work on OPUC), Gragg (who
rediscovered it in work in numerical linear algebra) and

Teplyaev (who used it in his study of Anderson localization
for OPUQC).
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If {a; ;L:_& are the Verblunsky coefficients of u, set
a_1 = —1 and find that:

—QyO_1 Hﬁ;lk pj 0k

Gry ({ay "0 =13 pe E=¢+1
0 k>0+2
Killip-Nenciu where, as usual, p; = (1 — |ay|?)"/2. The last which says G

Theorem

is a Hessenberg matrix follows from the obvious fact that
zpy is a polynomial of degree £ + 1. Thus G({c;}}_) is
given by

&g a1pg  Q2pop1 Q3000102
pPo  —Qiog —Qe0pp1  —Q30P1P2
0 p1 —Qo0 —Q3a1p2

0 0 P2 —Qi30
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We turn to my proof of a factorization of G due to Ammar,
Gragg and Reichel (hence AGR Factorization). G can be
thought of as the overlap matrix between the two bases:
BO) = (¢o,...,pn-1) and B™ = (2¢, ..., 20n1).
Define intermediate bases

BY) = (200, - -y 201,05 Pjt1s - -+ Pn)
Kilio-Nenciu They interpolate since they give us the end points at j = n
Theorem and j = 0 (if one notes that ¢§ = ¢p). To see they are
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Gragg and Reichel (hence AGR Factorization). G can be
thought of as the overlap matrix between the two bases:
BO) = (¢o,...,pn-1) and B™ = (2¢, ..., 20n1).
Define intermediate bases

B(]) = (ZQDOa sy P51, (p;v Pj+1y .- 79071)
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Since ;11 L ¢, applying * on degree j + 1 polynomials,
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We turn to my proof of a factorization of G due to Ammar,
Gragg and Reichel (hence AGR Factorization). G can be
thought of as the overlap matrix between the two bases:
BO) = (¢o,...,pn-1) and B™ = (2¢, ..., 20n1).
Define intermediate bases

B(J) = (2@07 sy 2051, tp;v Pitly--- 790n)
Kilio-Nenciu They interpolate since they give us the end points at j = n
Theorem and j = 0 (if one notes that ¢§ = ¢p). To see they are
orthonormal, we first note that
2pj = pjPj+1 + @ P)

i1 = Pt + pip;
Since ;11 L ¢, applying * on degree j + 1 polynomials,
we see that 7 | L z¢; so the above represents a unitary
change of basis on the span of ¢;11 and 7. Inductively
that implies the BY) are orthonormal bases.
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Let @(a) = < ,COM pa > and éj = 1j &) @(Ozj) P ].n_j_g

for j <n—2and ©p_1=1y_1® an_1. Then éj is the
unitary change of basis from BU) to BU*Y . This implies
the AGR factorization:

g(n)({a}?:_&) =0001...0,20,1

Killip-Nenciu This, in turn, implies the crucial:

Theorem

6" ({a}i=5) = (O(a0) & Ln-2) (11 ® "V ({aki]))
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Now, let G be a compact group and H a closed subgroup
of G. Let m: G — G/H be the canonical projection.
Normalized Haar measure, ¢, induces a natural probability
measure, fig /g, on G/H via

payn(A) = pe(n'A))
and this measure is clearly invariant under the action of G
Killip—Nenciu on G/H

Theorem

Let 0 : G/H — G be a choice of representative from each
coset, i.e. m(o(x)) = x. Then £ : G/H x H — G, defined
by ¥(x, h) = o(z)h, is a bijection. If one can choose o to
be continuous, then G will be homeomorphic to G/H x H
under ¥ and often such a homeomorphism doesn't exist,
e.g. if G =U(n) and H = U(n — 1), so we should avoid the
assumption that o is continuous.
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Diaconis-Shahshahani Formula

It is probably true that in general one can make a
measurable choice. Since we'll find an explicit such choice
below for the case of interest we shall simply suppose that o
is measurable.

Diaconis-Shahshahani Formula Suppose o is measurable.
Then under the bijection ¥ of G/H x H and G, the

i Nancs measure [/ g & [LH 8Oes to G-

illip—Nenciu

Theorem To see this, let U € G, x € G/H. Then n(Uo(x)) = Ux
so for some Wy, € H, we have that

Uo(xz) =o(Ux)Wy
so UX(z, W) = E(Uz, Wy W) which, given the invariance
of pig/p under the action of G and of juy under left
multiplication by elements of H, implies the image of the
product measure is invariant under multiplication by U (by
integrating first over W and then z).
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Returning to U(n), fix a unit vector e; € C} (it may be
helpful to think of e; as the first vector, 6; = (1,0,...,0),
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Proof of the Killip—Nenciu Theorem

Returning to U(n), fix a unit vector e; € C} (it may be
helpful to think of e; as the first vector, 6; = (1,0,...,0),
of the canonical basis of C™). The map U +— Ue; is a
surjection of U(n) to C7, the unit sphere in C". The inverse
image of e; is those unitaries of the form U = 1 & W, under
the direct sum decomposition C" = [e1] @ [e1]*, where W
is an arbitrary unitary on [e1]*. Thus the set of W's is
isomorphic to U(n — 1) and, if e; = 41, is canonically equal
to it. This shows that the quotient group U(n)/U(n — 1) of
left cosets of U(n — 1) is exactly C}'. The invariant measure
on CY} is clearly the usual rotation invariant measure.
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To realize U(n) as a product of U(n — 1) and C, we must
pick, for each f € C7, an element o(f) € U(n) so that
o(f)er = f,i.e. o(f) is in the coset associated to f. By
the above noted fact about topological products, we cannot
make this choice continuous in f, but one can make it
measurable, indeed continuous on C} \ {C - €1}, as follows.
Suppose f is not colinear with e;. Then ey, f span a two
dimensional subspace H ;. We can pick another vector

ea € Hy orthonormal to e; specifying it uniquely by
demanding that k = (f,e2) > 0.

We also define 5 = (f,e;1) so that 8 € D and
f = Pe1 + Kkea. Since f is a unit vector kK = /1 — |32
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There is an obvious unitary map on H; that takes e; to f,
namely reflection, ©(3), in the line along e; + f, which is
clearly

1—2(e1 — f,Ye1— f)/llex — fII?

To find its matrix form in the e1, ez basis, we note that its

first column must be ( i ) since it takes e to f. Its
Killip—Nenciu
Theorem second column is then determined by orthonormality and

the desire to have determinant -1 (i.e. a reflection). Thus

_ (B &
o= (1 )
We define the Householder reflection, o(f), on C" to be

O(B) ®1,—2 under C" =H; @ ’HJ% (where 1y, is the size k
identity matrix). o(f) is now as an operator on C™.
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Clearly f — o(f) is continuous on C™ \ {C - e;} and
discontinuous at the points of C - e;. We define
o(Ae1) = A1. We thus have shown that every unitary
U € U(n) can be uniquely written o(f)W where f = Ue;
and W is a unitary map on [e1]*. This maps U(n) Borel
bijectively to C}' x U(n — 1). By the Diaconis-Shahshahani
Formula, under this map, Haar measure on U(n) is the
Killip-Nenciu product of the rotation invariant measure on C} and Haar
measure on U(n — 1).

ayp is defined by zpo = p1y1 + aopo (since ¢ = ¢p), so
(20, o) = . In terms of U and the cyclic vector, ey,

ap = (f,e1) = 3, so the Householder reflection is the
O(ap) @ 1,,—2 of the AGR factorization and we see that the
a distribution is exactly, dx,_2. Moroever the Verblunsky
coefficients of U(n — 1) unitary are just {aj+1}’]7:_g, so by
induction, the Killip—Nenciu Theorem is proven.
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