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Intuitive Ideas

In this lecture, I’ll sketch some of the key ideas in the theory
of large deviations. Two books on the subject are
Deuschel–Stroock and Dembo–Zeitouni.

As both books say,
there is not so much a theory as a set of powerful tools.
While the subject goes back to Laplace, the modern
framework is due to Varadhan, Donsker–Varadhan and
Freidlin–Wentzel in the 1960’s and 1970’s. Varadhan got
the Abel Prize for his work on this subject.

We consider a sequence of probability measures, {Pn}∞n=1,
on a space, X. In some of our applications, X will be a
space of measures, so we’ll need to avoid getting confused
about measures on measures! Naively, one has a Large
Deviation Principle (aka LDP) if the Pn–probability that x
is near x0 is O(e−nI(x0)). I is called the rate function. We
allow replacing n in the exponent by an called the speed.
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Let {PN}∞N=1 be a sequence of probability measures on a
Polish space, X (complete metric space; the theory of
measures on Polish spaces is discussed in Section 4.14 of
my Real Analysis book).

Let I be a non–negative function
on X and {aN}∞N=1 a sequence of positive numbers with
aN →∞. We say that {PN}∞N=1 obeys a LDP with rate
function, I : X → [0,∞], and speed {aN}∞N=1 if and only if

1 I is non-negative and lower semicontinuous on X
2 For every open set, U ⊂ X, we have that

lim inf
N→∞

1

aN
logPN (U) ≥ − inf

x∈U
I(x)

3 For every closed set, K ⊂ X, we have that

lim sup
N→∞

1

aN
logPN (K) ≤ − inf

x∈K
I(x)
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We note that the rate function is uniquely determined by
these conditions because lower semicontinuity implies that
I(x0) = limB infx∈B I(x) where the limit is over the
directed set of all open (or over all closed) neighborhoods of
x0, directed by inverse inclusion.

A rate function is called
good if for each positive α, {x | I(x) ≤ α} is compact (note
that by the lower semicontinuity, this set is always closed).

We pause to hint at the key idea of Gamboa, Nagel and
Rouault (GNR). Suppose we have a sequence of probability
measures on the set of probability measure on ∂D. Since
the Verblunsky map is homeomorphism, it induces a family
of probability measures on the set of Verblunsky
coefficients. Clearly an LDP on one side implies one on the
other. If we can independently compute the rate function
on each side, we get an equality of positive functions, i.e. a
positive sum rule!!!
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Two Hilfssatz

The following two elementary results will be useful.

1 Let aN = N ` (for ` > 0). Fix N0. Then {PN+N0}∞N=1

obeys a LDP with speed aN and rate function, I, if
and only if {PN}∞N=1 does

2 Let U ⊂ Rν be open. Let G be continuous on U with
limx→∂U∪{∞}G(x) =∞ and infx∈U G(x) = 0. Let
F ∈ L1(Rν) with suppF ⊂ U,F ≥ 0 and
infx∈K F (x) > 0 for all compact K ⊂ U . Let
dPN (x) = Z−1

N e−NG(x)F (x)dνx where
ZN =

∫
e−NG(x)F (x)dνx. Then PN obeys a LDP

with speed N and good rate function G.

Remarks 1. The assumptions in the second are overly
strong but suffice for the applications we make below.

2. The proofs are straight–forward.
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Statement of Cramér’s Theorem

Given a random variable, ξ, let

Λ(λ) = logE(eλξ)

be its cumulant generating function and

I(x) = sup
λ∈R

(λx− Λ(λ))

its Legendre transform. Let PN be the probability
distribution for N−1SN ≡ N−1(X1 + · · ·+XN ), where
{Xj}∞j=1 are independent copies of ξ. Then PN obeys a
LDP with speed N and good rate function I. This is
known as Cramér’s Theorem.

Remark. By Jensen’s inequality, Λ is convex and as a sup
of linear functions, so is I(x). If Λ is everywhere finite, it is
C1, I(x̄) = 0 where x̄ = E(ξ) and I(x) > 0 for x 6= x̄.
Thus this result amplifies the law of large numbers.
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Proof of Cramér’s Theorem

We sketch the proof in case Λ(λ) <∞ for all λ and the
image of ξ is the whole real line.

Under these conditions, a
bit of calculus and convex analysis shows that I(x) is
non-negative, strictly convex, with I(x̄) = 0 where
x̄ = E(ξ), and further that

I(x) = xλx − Λ(λx)withΛ′(λx) = x and λx ≥ 0 iff x ≥ x̄

The key point is that a solution to the equation Λ′(λx) = x
exists; it is mostly here that we use the assumptions that
the image of ξ is R and that Dom(Λ) = R.

We start with the proof of the upper bound on probabilities.
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Proof of Cramér’s Theorem

To see the large deviations upper bound, we note first that
the strict convexity of I(·) implies that the latter is strictly
monotone increasing (resp. decreasing) on [x̄,∞) (resp.
(−∞, x̄])).

It is therefore enough to prove the upper bound
on intervals of the form (−∞, x] (with x < x̄) or [x,∞)
(with x > x̄). Considering the latter, we have, with λ ≥ 0,

P(Sn/n ≥ x) ≤ E(e−nλx+λSn) = e−n(λx−Λ(λ))

where the independence of the Xi’s was used in the last
equality. Choosing λ = λx completes the proof of the large
deviations upper bound.
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Proof of Cramér’s Theorem

To see the lower bound, it is enough to show that

lim
δ→0

lim inf
n→∞

1

n
logP(Sn/n ∈ (x− δ, x+ δ)) = −I(x)

To see this, introduce the probability distribution ν by
setting dν/dP1(y) = eλxy−Λ(λx). Then,

Eν(X1) =

∫
yeλxy−Λ(λx)dP1(y)

= e−Λ(λx) d

dλ
eΛ(λ)

∣∣∣
λ=λx

= Λ′(λx) = x
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so, by the definition of λx

P(Sn/n ∈ (x− δ, x+ δ)) =

∫
∑n

i=1 xi/n∈(x−δ,x+δ)

n∏
i=1

dP1(xi)

=

∫
∑n

i=1 xi/n∈(x−δ,x+δ)
e−λx

∑n
i=1 xi+nΛ(λx)

n∏
i=1

dν(xi)

≥ e−n(λxδ+xλx−Λ(λx))

∫
∑n

i=1 xi/n∈(x−δ,x+δ)

n∏
i=1

dν(xi)

= e−n(λxδ+I(x))

∫
∑n

i=1 xi/n∈(x−δ,x+δ)

n∏
i=1

dν(xi)

Since Eν(X1) = x, the law of large numbers implies that
for any δ > 0, the last integral in converges to 1 as n→∞.
Taking the limits n→∞ first and then δ → 0 completes
the proof of the lower bound.
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Some Examples

We’ll consider three examples, two where we can compute
the rate function directly

(and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer)

and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1.

Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2.

By completing the
square, one computes Λ(λ) = 1

2λ
2 so

λx− Λ(λ) = 1
2x

2 − 1
2(x− λ)2 and the sup is exactly 1

2x
2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2

so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

We’ll consider three examples, two where we can compute
the rate function directly (and check that Cramér gives the
same answer) and a last one relevant to the final lecture.

Example 1 (Gaussian) Let ξ be a Gaussian with mean 0
and second moment 1. Then Sn is Gaussian with mean 0
and second moment n−1 so

dPn(x) =

√
2π

n
e−nx

2/2dx

which, by the earlier result on Rν measures has an LDP
with speed n and rate I(x) = 1

2x
2. By completing the

square, one computes Λ(λ) = 1
2λ

2 so
λx− Λ(λ) = 1

2x
2 − 1

2(x− λ)2 and the sup is exactly 1
2x

2.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

Some Examples

Example 2 (Cauchy distribution) Let ξ have distribution
1
π

1
1+x2

dx which has numerous pathological features.

One
of the more shocking is that the distribution of Sn is
independent of n and is just the Cauchy distribution! The
law of large numbers fails but that doesn’t violate the
theorems since E(|ξ|) =∞. A little thought shows that
since every open set has positive probability independently
of n, we have that an LDP holds with I ≡ 0.

Clearly, Λ(λ) =∞ for λ 6= 0 and Λ(0) = 0. For any x, the
sup of λx− Λ(λ) occurs at λ = 0 so the Legendre
transform is ≡ 0 showing the above calculation is consistent
with Cramér’s theorem.
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Example 3 (Exponential distribution) Relevant to our
considerations later is the average of exponential random
variables. So let {Xj}∞j=1 be independent, identically
distributed random variables (iidrv) with density
χ[0,∞)(x)e−xdx. The cumulant generating function is

Λ(λ) = log

(∫ ∞
0

eλxe−x dx

)
=

{
− log(1− λ), if λ < 1

∞, if λ ≥ 1

For x ≤ 0, taking λ→ −∞ in λx− Λ(λ), we see that
I(x) =∞. If x > 0, the λ derivative of λx− Λ(λ) vanishes
at λ = 1− x−1 at which point λx− Λ(λ) has the value
x− 1− log(x). Thus

ϕ(x) ≡ I(x) =

{
x− 1− log(x), if x > 0

∞, if x ≤ 0

is the (good) rate function. It is no coincidence as we’ll see
that G(a) = ϕ(a2).
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We summarize the combination of this calculation and
Cramér’s Theorem in the theorem below which we’ll need in
the last lecture. The gamma distribution is the measure
given by

dGα,β(x) =
βαxα−1e−xβ

Γ(α)
χ[0,∞)(x) dx

For exponential iidrv, n−1
∑n

j=1Xn has distribution
Gn−1,n, so this example allows one to also read off a LDP
for suitable gamma distributions.
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Theorem Let `N be integers with
limN→∞N

−1`N = α > 0.

Then YN ≡ N−1
∑`N

j=1Xj with
Xj iid exponential random variables obeys a LDP with
speed N and rate function

ϕα(y) ≡ αϕ(y/α) = y − α− α log(y/α)

Remark This goes beyond the direct use of Cramér in two
ways. First, we note that if real valued ZN have a LDP
with speed N and rate I, then αZN has a LDP with speed
αN and rate αI(·/α) by a trivial calculation. Secondly, if
αN = `N/N and αN → 1, then α−1

N YN has a LDP with
speed N and rate I if YN does and the rate function is
continuous.
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Next, we discuss a result known as the contraction principle
which allows one to pull a LDP over under continuous
maps.

For most of our basic situation, the maps are
homeomorphisms so it is trivial that LDP’s carry over, but
in a few places we’ll need the following:

Contraction Principle Let X and Y be Polish spaces and
f : X → Y a continuous function onto Y . Suppose
{PN}∞N=1 is a family of probability measures on X that
obeys a LDP with speed aN and good rate function I.
Define on Y the function

I(f)(y) = inf{I(x) | f(x) = y}
Then the family of measures on Y defined by
P(f)
N (A) = PN (f−1[A]) obeys a LDP with speed aN and

good rate function I(f).
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Proof of Contraction Principle

A simple argument shows that I(f) is a good rate function.
If A is open (resp. closed), so is f−1[A] and

inf
y∈A

I(f)(y) = inf
x∈f−1[A]

I(x)

so the LDP bounds for PN carry over to such bounds for
P(f)
N .
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Projective Limit Theorem

The last topic subject in the general LD theory that we
want to consider the theory of projective limits of LDP’s

or
at least a very special case – projective limits are indexed by
directed sets; we’ll only consider the case where the directed
set is Z+. We have Polish spaces {Xj}∞j=1 and X and
continuous maps πj : X → Xj and πj+1,j : Xj+1 → Xj all
onto so that πj+1,jπj+1 = πj . We require that if
πj(x) = πj(y) for x, y ∈ X and all j, then x = y. In the
abstract discussion, one just needs to be given Xj and
πj+1,j and can form X as the subset of

∏∞
j=1Xj of those

x = (xj) with πj+1,j(xj+1) = xj . One puts the product
topology on X. In the cases of interest, X will be explicitly
given but it agrees with this abstract construction. For a
measure P on X, define π∗j (P), a measure on Xj by
π∗j (P)(A) = P(π−1

j [A]).
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Projective Limit Theorem

Here is a basic theorem due to Dawson–Gärtner

– there is a
whole chapter in DZ on the subject.

Projective Limit Theorem Let {PN}∞N=1 be a family of
measures on X. Suppose that for each j, {π∗j (PN )}∞N=1

obeys a LDP with speed aN and good rate function, Ij on
Xj . Let

I(x) = sup
j
{Ij(πj(x))}

Then I is a good rate function and {PN}∞N=1 obeys a LDP
with speed aN and rate function I.
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Projective Limit Theorem

Remarks 1. The converse, i.e. if {PN}∞N=1 obeys a LDP
then so does each {π∗j (PN )}∞N=1, is trivial by the
contraction principle.

2. The same idea shows that if {π∗j+1(PN )}∞N=1 obeys a
LDP, so does {π∗j (PN )}∞N=1 and

Ij(x) = inf{Ij+1(y) |πj(y) = x}
which shows that Ij(πj(x)) is monotone in j so the sup in
the formula for I is a limit.
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Some Examples

Example [R∞] Take Xj = Rj ,
X = R∞ = {(x1, x2, . . . ) |xj ∈ R} which is a Polish space
and πj(x)k = xk for k = 1, . . . , j.

The projective limit
theorem says that to prove a LDP for X, we need only
prove it for the finite dimensional Rj .

Example [M+,1(∂D)] Let P be a measure onM+,1(∂D),
the probability measures on the unit circle. Given
µ ∈M+,1(∂D) and j = 1, 2, . . . , let πj(µ) be the point in
R2j with coordinates µ(I

(j)
k ), k = 1, . . . , 2j where

I
(j)
k = {e2πiθ | k−1

2j
≤ θ < k

2j
}.
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Some Examples

Realizing R2j as a set of measures, we can think of

πj(µ) =

2j∑
k=1

µ(I
(j)
k )2jχ

I
(j)
k

(x) dx

Thus P induces a measure π∗j (P) on either R2j or on
M+,1(∂D) supported on a 2j–dimensional subspace. The
πj(µ) determine µ({e2πiθ | 0 ≤ θ < k

2j
}) and so µ. Clearly

as j →∞, πj(µ) converges weakly to µ.

In this case
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I want to get a head start on the next lecture by ending this
with at least part of the discussion of a result we’ll need
next time.

Let U(n) be the n× n unitary matrices. There is
a unique probability measure on U(n) invariant under both
left and right multiplication by any unitary. It is called Haar
measure (although for Lie groups, Hurwitz found the
invariant measure long before Haar’s work). For any fixed
unit vector, ϕ ∈ Cn, it easy to see that ϕ is cyclic, so for
a.e. U ∈ U(n), it defines a spectral measure on ∂C, an
n–point measure, and so n Verblunsky coefficients.
Haar measure thus induces a measure on the 2n− 1 (real)
dimensional set of possible Verblunsky coefficients. Killip
and Nenciu asked and answered what this probability
measure is. They were motivated by a paper of Dmitriu and
Edelman who had asked and answered the analogous
question for GUE and Jacobi parameters.
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Killip–Nenciu Theorem The measure induced by Haar
measure on U(n) on the Verblunsky coefficients
α0, . . . , αn−2 ∈ D, αn−1 ∈ ∂D is given given by

dP̃n(α0, . . . , αn−1) =
n−1∏
j=0

dκn−2−j(αj)

dκ`(α) =
`+ 1

π
(1− |α|2)`d2α on D; ` ≥ 0

dκ−1(α = eiθ) =
dθ

2π
on ∂D

This says the αj are independent. The distribution dκ` is
exactly the distribution of z1 if z ≡ (z1, . . . , z`+2) ∈ C`+2 is
uniformly distributed on the unit sphere in C`+2. That is,
α0 is distributed like the first component of the unit sphere
in Cn, α1 in Cn−1, etc.
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GGT Matrix

I want to sketch a proof of this result due to Breuer, Simon
and Zeitouni that is a variant of the original KN proof.

As
we’ll see, that α1 is distributed as the first component of the
unit sphere in Cn will be easy. The subtle step will be the
independence so we begin with the tools needed to see that.

We start with a natural matrix representation of the matrix
with given Verblunsky coefficients. Given a n–point
probability measure µ on ∂D, we define the GGT matrix,
{G(n)

k` (dµ)}0≤k,`<∞ by

G(n)
k` (dµ) = 〈ϕk, zϕ`〉 0 ≤ k, ` <∞

GGT is a name I introduced in OPUC1 after Geronimus
(who had it first in his work on OPUC), Gragg (who
rediscovered it in work in numerical linear algebra) and
Teplyaev (who used it in his study of Anderson localization
for OPUC).
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rediscovered it in work in numerical linear algebra) and
Teplyaev (who used it in his study of Anderson localization
for OPUC).
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Cramér’s
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Contraction
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Killip–Nenciu
Theorem

GGT Matrix

If {αj}n−1
j=0 are the Verblunsky coefficients of µ, set

α−1 = −1 and find that:

G(n)
k` ({αj}n−1

j=0 ) =


−ᾱ`αk−1

∏`−1
j=k ρj 0 ≤ k ≤ `

ρ` k = `+ 1

0 k ≥ `+ 2

where, as usual, ρ` = (1− |α`|2)1/2. The last which says G
is a Hessenberg matrix follows from the obvious fact that
zϕ` is a polynomial of degree `+ 1. Thus G({αj}nj=0) is
given by

ᾱ0 ᾱ1ρ0 ᾱ2ρ0ρ1 ᾱ3ρ0ρ1ρ2 . . .
ρ0 −ᾱ1α0 −ᾱ2α0ρ1 −ᾱ3α0ρ1ρ2 . . .
0 ρ1 −ᾱ2α1 −ᾱ3α1ρ2 . . .
0 0 ρ2 −ᾱ3α2 . . .
. . . . . . . . . . . . . . .


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AGR Factorization

We turn to my proof of a factorization of G due to Ammar,
Gragg and Reichel (hence AGR Factorization).

G can be
thought of as the overlap matrix between the two bases:
B(0) = (ϕ0, . . . , ϕn−1) and B(n) = (zϕ0, . . . , zϕn−1).
Define intermediate bases

B(j) = (zϕ0, . . . , zϕj−1, ϕ
∗
j , ϕj+1, . . . , ϕn)

They interpolate since they give us the end points at j = n
and j = 0 (if one notes that ϕ∗0 = ϕ0). To see they are
orthonormal, we first note that

zϕj = ρjϕj+1 + ᾱjϕ
∗
j

ϕ∗j+1 = −αjϕj+1 + ρjϕ
∗
j

Since ϕj+1 ⊥ ϕ∗j , applying ∗ on degree j + 1 polynomials,
we see that ϕ∗j+1 ⊥ zϕj so the above represents a unitary
change of basis on the span of ϕj+1 and ϕ∗j . Inductively
that implies the B(j) are orthonormal bases.
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∗
j

ϕ∗j+1 = −αjϕj+1 + ρjϕ
∗
j

Since ϕj+1 ⊥ ϕ∗j , applying ∗ on degree j + 1 polynomials,
we see that ϕ∗j+1 ⊥ zϕj so the above represents a unitary
change of basis on the span of ϕj+1 and ϕ∗j . Inductively
that implies the B(j) are orthonormal bases.



Rate Functions

Cramér’s
Theorem

Contraction
Principle

Projective Limits

Killip–Nenciu
Theorem

AGR Factorization

We turn to my proof of a factorization of G due to Ammar,
Gragg and Reichel (hence AGR Factorization). G can be
thought of as the overlap matrix between the two bases:
B(0) = (ϕ0, . . . , ϕn−1) and B(n) = (zϕ0, . . . , zϕn−1).
Define intermediate bases

B(j) = (zϕ0, . . . , zϕj−1, ϕ
∗
j , ϕj+1, . . . , ϕn)

They interpolate since they give us the end points at j = n
and j = 0 (if one notes that ϕ∗0 = ϕ0). To see they are
orthonormal, we first note that

zϕj = ρjϕj+1 + ᾱjϕ
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Let Θ(α) =

(
ᾱ ρ
ρ −α

)

and Θ̃j = 1j ⊕Θ(αj)⊕ 1n−j−2

for j ≤ n− 2 and Θ̃n−1 = 1n−1 ⊕ ᾱn−1. Then Θ̃j is the
unitary change of basis from B(j) to B(j+1). This implies
the AGR factorization:

G(n)({α}n−1
j=0 ) = Θ̃0Θ̃1 . . . Θ̃n−2Θ̃n−1

This, in turn, implies the crucial:

G(n)({α}n−1
j=0 ) = (Θ(α0)⊕ 1n−2)

(
11 ⊕ G(n−1)({α}n−1

j=1 )
)
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ᾱ ρ
ρ −α

)
and Θ̃j = 1j ⊕Θ(αj)⊕ 1n−j−2

for j ≤ n− 2 and Θ̃n−1 = 1n−1 ⊕ ᾱn−1. Then Θ̃j is the
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Now, let G be a compact group and H a closed subgroup
of G.

Let π : G→ G/H be the canonical projection.
Normalized Haar measure, µG, induces a natural probability
measure, µG/H , on G/H via

µG/H(A) = µG(π−1[A])

and this measure is clearly invariant under the action of G
on G/H.

Let σ : G/H → G be a choice of representative from each
coset, i.e. π(σ(x)) = x. Then Σ : G/H ×H → G, defined
by Σ(x, h) = σ(x)h, is a bijection. If one can choose σ to
be continuous, then G will be homeomorphic to G/H ×H
under Σ and often such a homeomorphism doesn’t exist,
e.g. if G = U(n) and H = U(n− 1), so we should avoid the
assumption that σ is continuous.
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Diaconis-Shahshahani Formula

It is probably true that in general one can make a
measurable choice. Since we’ll find an explicit such choice
below for the case of interest we shall simply suppose that σ
is measurable.

Diaconis-Shahshahani Formula Suppose σ is measurable.
Then under the bijection Σ of G/H ×H and G, the
measure µG/H ⊗ µH goes to µG.

To see this, let U ∈ G, x ∈ G/H. Then π(Uσ(x)) = Ux
so for some WU,x ∈ H, we have that

Uσ(x) = σ(Ux)WU,x

so UΣ(x,W ) = Σ(Ux,WU,xW ) which, given the invariance
of µG/H under the action of G and of µH under left
multiplication by elements of H, implies the image of the
product measure is invariant under multiplication by U (by
integrating first over W and then x).
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Proof of the Killip–Nenciu Theorem

Returning to U(n), fix a unit vector e1 ∈ Cn1 (it may be
helpful to think of e1 as the first vector, δ1 = (1, 0, . . . , 0),
of the canonical basis of Cn).

The map U 7→ Ue1 is a
surjection of U(n) to Cn1 , the unit sphere in Cn. The inverse
image of e1 is those unitaries of the form U = 1⊕W , under
the direct sum decomposition Cn = [e1]⊕ [e1]⊥, where W
is an arbitrary unitary on [e1]⊥. Thus the set of W ′s is
isomorphic to U(n− 1) and, if e1 = δ1, is canonically equal
to it. This shows that the quotient group U(n)/U(n− 1) of
left cosets of U(n− 1) is exactly Cn1 . The invariant measure
on Cn1 is clearly the usual rotation invariant measure.
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Proof of the Killip–Nenciu Theorem

To realize U(n) as a product of U(n− 1) and Cn1 , we must
pick, for each f ∈ Cn1 , an element σ(f) ∈ U(n) so that
σ(f)e1 = f ,

i.e. σ(f) is in the coset associated to f . By
the above noted fact about topological products, we cannot
make this choice continuous in f , but one can make it
measurable, indeed continuous on Cn1 \ {C · e1}, as follows.
Suppose f is not colinear with e1. Then e1, f span a two
dimensional subspace Hf . We can pick another vector
e2 ∈ Hf orthonormal to e1 specifying it uniquely by
demanding that κ ≡ 〈f, e2〉 > 0.

We also define β ≡ 〈f, e1〉 so that β ∈ D and
f = β̄e1 + κe2. Since f is a unit vector κ =

√
1− |β|2.
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Proof of the Killip–Nenciu Theorem

There is an obvious unitary map on Hf that takes e1 to f ,
namely reflection, Θ(β), in the line along e1 + f , which is
clearly

1− 2〈e1 − f, ·〉(e1 − f)/‖e1 − f‖2

To find its matrix form in the e1, e2 basis, we note that its

first column must be
(
β̄
κ

)
since it takes e1 to f . Its

second column is then determined by orthonormality and
the desire to have determinant -1 (i.e. a reflection). Thus

Θ(β) =

(
β̄ κ
κ −β

)
We define the Householder reflection, σ(f), on Cn to be
Θ(β)⊕ 1n−2 under Cn = Hf ⊕H⊥f (where 1k is the size k
identity matrix). σ(f) is now as an operator on Cn.
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Θ(β)⊕ 1n−2 under Cn = Hf ⊕H⊥f (where 1k is the size k
identity matrix). σ(f) is now as an operator on Cn.
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Proof of the Killip–Nenciu Theorem

Clearly f 7→ σ(f) is continuous on Cn \ {C · e1} and
discontinuous at the points of C · e1.

We define
σ(λe1) = λ1. We thus have shown that every unitary
U ∈ U(n) can be uniquely written σ(f)W where f = Ue1

and W is a unitary map on [e1]⊥. This maps U(n) Borel
bijectively to Cn1 × U(n− 1). By the Diaconis-Shahshahani
Formula, under this map, Haar measure on U(n) is the
product of the rotation invariant measure on Cn1 and Haar
measure on U(n− 1).

α0 is defined by zϕ0 = ρ1ϕ1 + ᾱ0ϕ0 (since ϕ∗0 = ϕ0), so
〈zϕ0, ϕ0〉 = α0. In terms of U and the cyclic vector, e1,
α0 = 〈f, e1〉 = β, so the Householder reflection is the
Θ(α0)⊕ 1n−2 of the AGR factorization and we see that the
α0 distribution is exactly, dκn−2. Moroever the Verblunsky
coefficients of U(n− 1) unitary are just {αj+1}n−2

j=0 , so by
induction, the Killip–Nenciu Theorem is proven.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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