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(with some song and dance to handle measures which don’t
have compact support) and suppose we have a sequence of
probability measures on X with an LDP. The Verblunsky
and Jacobi maps are continuous to sequences of Verblunsky
coefficients or Jacobi parameters and so one has an LDP on
sequence space. But the rate functions are clearly the same,
so we have the equality of a function of the spectral
measures and of a function of the parameters and as rate
functions, these functions are automatically

sum rules and demanding they be finite gives us a gem.
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measures should come from random matrix measures with a
cyclic vector in the limit as the matrix dimension goes to
infinity.

GNR Approach

Of course, the issue becomes to effectively compute the rate
function on both sides and alas, we haven't yet found a
magic way to do these calculations in a general context.

The reception of the GNR paper illustrates the dangers of
working in between two disparate areas. They wrote the
paper in a way that only experts on large deviations could
understand it, but such experts didn't understand the
spectral theory context.
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consulted Ofer Zeitouni, who said he'd looked quickly at the
paper and there didn't seem to be much new there! In fact,
the calculations of rate functions on the two sides wasn't so
far from prior calculations of rate functions. What was new
was the realization that because a rate function could be
computed in two ways, one is able to prove interesting
equalities. So they had some troubles getting published
what | regard as one of the more interesting recent papers
in spectral theory. In the end, Jonathan, Ofer and | used
their methods to study higher order sum rules and we also
wrote a pedagogic translation of their paper accessible to
spectral theorists.
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To be explicit about the random matrix models:

GNR Approach m the Szegé—Verblunsky sum rule comes from CUE, aka
Circular Unitary Ensemble, the family on the spectral
measures induced by Haar measure on U(n).

m the Killip-Simon sum rules comes from GUE, aka
Gaussian Unitary Ensemble, the measure on random
n x n self-adjoint matrices has {ReMi(f)}lgigjgn and
{ImMi(f)}lgiqgn Gaussian iid with mean zero and

E((M{V]2) = nt,

2
(GNR use GOE rather than GUE but that only means our
sum rules are twice theirs). Note the curious fact that on
the support of the measures P,, (which is easily seen to be
the measures with at most n pure points (only)), we have
that I = oo because there is no a.c. part.
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In the rest of the lectures, we'll describe the CUE proof in
some detail and then sketch the GUE proof. We begin by
describing the set of Verblunsky coefficients and the
topology on it. Let

n—2 o]
Yoo =D® Y, = HD x 0D Y:YOOUUYn
7=0 n=1

The topology is metrizable with convergence given by

ol — () with a(®) € YV, «— a§n) — oz§°°) for all j
and if a(®) ¢ Y,,, then for eventually, a(m

€ Yoo U (U2, Yn) and ol — o™ j=0,...,m 1.
This topology is such that the map from probability

measures to Y is a homeomorphism.

Let X =D™. Then the map H : X — Y by dropping all
«a; after the first one in JD is continuous.
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Let Py by the measure on X given by the Killip—Nenciu
formula on the first IV factors and a point mass at 0 on the
remaining coordinates. Let X be D’ and i X = X;
projection onto the first j coordinates. By our result on and
LDP for measures of the form F(z)e"N¢(®#)d"z, we see
that 77 (Pn) obeys and LDP with speed NV and rate
Ij({ak}f;g) =— Zi;é log(1 — |a|?). It follows by the
projective limit theorem that P has an LDP with speed N
and rate function I({a}52) = — > po g log(1 — |ag/?).

Given the map H from the set of allowed Verblunsky
coefficients and X, one notes that the Killip—Nenciu
Theorem says that ]P’%{) is precisely the measure on VCs
induced by Haar measure on U(n). Applying the contraction
principle, we see these measures obey an LDP with rate [

as above, one side of the Szegé—Verblunsky sum rule.
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eigenvalues as U and (@;(TUU 1), e1) = (Up;(U), e1).
Since U +— UUU " leaves Haar measure invariant, we see
that the distribution of the unit vector

(<901(U)761>a <902(U)7 61>7 R ((pn(U), 61)) eC"is
invariant under unitary transformations, which implies it is
the Euclidean measure restricted to the sphere. By using
the fact that that d?z = 1d6d(|z|?) (which shows it is
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empirical measure, namely

Szegé M 1 &
Zego easure
Side ,u(E) = — E Ox,
n 4 J
7=1

where \; are the atoms of ;. That is, we drop the weights
from the spectral measure.

IP,, induces a distribution IP’,(lE) on point measures of the

above form, essentially given by the Weyl Integration
Formula.
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LDP for the Empirical Measure

One has the following result of Ben Arous and Guionnet —
their results discuss GUE, not CUE — the analog for CUE
uses the same ideas and is even simpler:

Sous BAG Theorem IP%E) obeys a LDP with speed n? and good
Zego easure

Side rate function
I(w) = - / log(| — w]) dps(z) dys(w)

Remark. In the formula for I, z and w lie in the unit circle
and |z — w| is a two dimensional distance. This is a 2D
Coulomb energy. There is a close connection between this
result and Johansson's proof of the Strong Szegé Theorem.
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LDP for the Empirical Measure

We will not give a formal proof of the BAG Theorem but
instead indicate the basic intuition. For distinct \;s,

H |e’i91' _ eiaj |2 — eXp (—T'LQJn()\I, ey )\n))

Szeg6 Measure i<j
Side
Jo(A1se s :——Zlog
1<J
1
= log(h — Ay
i#]

If 1(E) is an n—point measure near ;1 and the A have
reasonable local spacing, the final sum, which is a discrete
Coulomb energy should be near the integral which gives a
continuum Coulomb energy.
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This gives a distribution, IP’,(l)‘), on measures and we'll prove
these measures obey a LDP with speed n and rate function
H(%,,u), the KL divergence. A full analysis depends on
proving for each € > 0, j and k = 1,...,2/, the probability
that ‘%#(@ A e 19) — 1] > € (with

I,ij) = {2m0 | % <f< 2% ) goes to zero faster than
exponentially in n.
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Slightly Simplified Problem

The weights and eigenvalues are independent. We'll
consider a fixed triangular array of eigenvalues
{)\én)}lgggn; nel,.. where we suppose that

Z 5,\“” _>

weakly. We distribute Welghts unlformly on the simplex and

look at
{welicy — ZWQM = pin(wy)
(=1
This gives a distribution, IP),(l)‘), on measures and we'll prove
these measures obey a LDP with speed n and rate function
H(%,,u), the KL divergence. A full analysis depends on

proving for each € > 0, j and k = 1,...,2/, the probability
that \%#(5 A e 19) — 1] > € (with

I,Sj) = {2m0 | % <f< 2% ) goes to zero faster than
exponentially in n. This depends on the BAG Theorem.
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The proof will be to use projective limits with the maps
i M4 1(0D) — R? given by p1 — p(dy 1Y )) We'll get a
LDP for the projections using our LDP for sums of
exponential random variables and control the sup of the
S i projected rate functions by a general continuity result. It is

this last fact that will show singular parts of the measure
only change the rate by their impact on the total weight of
the a.c. part.

Foreach j=1,... and k=1,...,2 let I,g]) be given as
above and 7; (1) the measure with constant a.c. weight on
each I,g]) which gives the same weight to each I,gj) as [i.
This is exactly the setup we described in Lecture 3 for an

example of projective limits.
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constant a.c. weight on each I(j) so that

Mn I(J Z wy
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Given {wg}y_,, let fi},(wy) be the measure on AD with
constant a.c. weight on each I(J) so that

i (1) = > wy

(n) - 7(5)
N ern?

Thus we have that 7;(u,(we)) = [ (wy). The wj are
almost independent except for the bothersome
normalization condition. We will deal this by noting that if
{W;}}_, are iidrv with exponential distribution, then

wj = W;/ > 1_, Wy, are distributed uniformly on a simplex.
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We will be able to prove a LDP for subsums of W's and
then use the contraction principle to pass to w's.

So let @Lj) be the measure on R%’ but where now the wy
are replaced by iid exponential random variables, W,. Thus,

S_zegéi Measure N(J) . . 97
Side P/ is the probability measure for the R -valued random
variable given by
Br= > W
AmMert?

Fix j and take n — oco. By our analysis of sums of
exponential iidrvs, Pﬁf)_,obeys a LDP with speed n and rate
function at the point 5 = {3,}7_, € R?
27
p(B) = [(Be—277) — 277 log(2/8y)]

(=1
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Recall that given two probability measures 11 and v on the
same space, their KL divergence, H(u|v), is given by the
negative of a log integral. Write 5, = s, with

8= Eg;l BB, so that  lies in a 27-simplex. Write pz for

Szeg6 Measure

S the probability measure giving uniform weight s to I,gj) and
let v be normalized Lebesgue measure on the circle (i.e. uz
for the 5 with equal components, 277). Then ¢ can be
rewritten:

p(B) =B —1—log(B) + H(v|us)
Note this is the sum of a function of 3 only and a function
of the s's only. This is a consequence of the fact that for
independent exponential random variables, > | X, is
independent of {X;/ SN Xk}é-vzl. It makes the use of the
contraction principle (which, in general, is already simple),
extremely simple.
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For fixed \'s, let PY) = s (IP’( )) This is just the

contraction of PYY) under the map G(f3) = 3/8 from R? to
the 2/—simplex. By the contraction principle and

égfo[ﬁ —1—1log(8)] =0

(as it must as the rate function, for averages of
exponentials), we see that for each fixed 7, Py
LDP with speed n and rate function H(v|uz).
Given the projection theorem, the following completes the
proof that the measure theory rate function is H(v|u).
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obeys a

Key Fact. Let p be an arbitrary probability measure on 9D
and v = %. Then

lim H (7;(v)|m;(p)) = H(vp)

k—o0
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Limit Theorem for KL Divergences

Before turning to the proof of the Key Fact, a quick remark:
mj(v) = v for this v. We write it this way because with a
slight change in the proof, it holds for any v (and p). This
extended version is needed for the Killip—Simon theorem
and other cases where the limiting empirical measure is not
unweighted Lebesgue measure.

We'll prove the limit result in two parts. We'll prove a
general upper bound: H(7;(v)|mj(p)) < H(v|un). (By
slightly expanding the argument, one sees that
H(m;(v)|mj(p)) is monotone increasing in j.)

The other direction — that

H(v|p) < liminf H(7;(v)|mj(p)) comes from weak
convergence, lim7;(n) = n (for any probability measure 1)
and the lower semi—continuity.
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function h and probability measure dn(y), we have that

Szegd Measure - /log h( )dn = - 10g (/ h dn )
Side

In just the same way that this implies that H(v|u) > 0, it
implies that

;o (@)
_ J _ J J
[ o ot @) 2752 > —tog (/1))

k



Limit Theorem for KL Divergences

To get the upper bound, note that by convexity of
y — —logy and Jensen's inequality, for any positive
function h and probability measure dn(y), we have that

Szegd Measure - /log h( )dn = - 10g (/ h dn )
Side

In just the same way that this implies that H(v|u) > 0, it
implies that

-do L 0G)
_ J _ J J
/I,(j) log(w(6)) 2 o > —log (2 p(dy ))

Summing this yields the upper bound.



Killip Simon via LDP

The large deviation proof of the Killip—Simon sum rule is
similar to the one | just presented for Szeg6—Verblunsky
sum rule with some changes and additions which we briefly
describe.

Killip Simon via
LDP



Killip Simon via LDP

The large deviation proof of the Killip—Simon sum rule is
similar to the one | just presented for Szeg6—Verblunsky
sum rule with some changes and additions which we briefly
describe.

One uses GUE instead of CUE. Thus the measure on
Killip Simon via random n x n self-adjoint matrices has

P {ReMi(;l)}lS,-San and {ImMi(Jﬁ)}lgi<an Gaussian iid

with mean zero and E([Ml(ln)]Q) =n"1
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Killip Simon via LDP

The eigenvalue distribution has A\; € R with
distribution

2| _—nd " A2
[T = A2 | e == (4.1)
1<J
Killip Simon via
LDP

so the empirical measure converges to the equilibrium
measure in a quadratic external field, i.e. the minimizer
for — [log |z — y| du(z) du(y) + 2 [ 2* du(z). Itis
well-known that this minimizer is the semicircle law
dvg(z) =711 — $2)1/2X[—1,1} (x)dz. To agree with
the Killip—Simon notation, one rescales the matrix so
the support is [—2, 2].
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The empirical measure converges to vy. By mimicking
the argument above, the contribution of the part of the
spectral measure on [—2,2] is just H(vy|p). Thus the
weight in the Killip—Simon quasi—-Szegé integral is
exactly the Wigner semicircle weight.
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due to the weight having a smaller integral. But if the
point is outside [—2, 2], there is a contribution due to
the location, \g, of the eigenvalue. By looking at the

Killip Simon via log of the part of the weight depending on A, one sees

HoF that the decrease in the eigenvalue density involves g

interacting with n eigenvalues. The decrease is

approximately exp(—nF'(\g)) where F is the potential
in the quadratic external field in the equilibrium
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[ As we've seen, a single point in the measure, if the
point is in the bulk, involves the increase of H(v|u)
due to the weight having a smaller integral. But if the
point is outside [—2, 2], there is a contribution due to
the location, \g, of the eigenvalue. By looking at the

Killip Simon via log of the part of the weight depending on A, one sees

HoF that the decrease in the eigenvalue density involves g

interacting with n eigenvalues. The decrease is

approximately exp(—nF'(\g)) where F is the potential
in the quadratic external field in the equilibrium
measure (this idea is due to Ben Arous, Dembo and

Guionnet). It is known that this function is the same

as the Killip—Simon F'.
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For finitely many eigenvalues outside [—2, 2] you just
get the sums of single costs since the interaction
between eigenvalues is O(1), not O(n). Handling
infinitely many eigenvalues converging to 42 requires a
careful use of projective limits.

R [@ For the coefficient side, Killip-Nenciu is replaced by

LbP earlier results of Dumitriu—Edelman (whose work

motivated Killip and Nenciu) who found the

distribution of Jacobi parameters for GUE and GOE.

The {b;}_; are Gaussian (with O(n) widths leading

to the b2 term in the Killip-Simon sum rule). The

{a2 - 1 are gamma distributed, essentially behaving

||ke sums of exponential random variables and so we

get the G(a;) terms. Thus G occurs in the sum rule as
the rate function for suitable gamma distributions.
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There is a technical issue involving the equality of the
two sides of the sum rule that we want to discuss,
addressed in related ways by Gamboa-Rouault and by
BSZ. The natural setting for the LDP for measures is
the space, X', of all probability measures on R, and for

Killip Simon via Jacobi parameters the Polish space Y/ = [R x (0, 00)]>®

HoF with finite sequences added to it. The issue is that the

inverse Jacobi map isn't defined for all measures but

only those with all moments finite and, in general, this
inverse map is many—to—one in certain cases where the
measure has unbounded support. BSZ handle this by

restricting to measures supported in [—k — 2,k + 2]

and its image under the Jacobi map.
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We can now solve the mysteries:

Mysteries Solved

Why are there any positive combinations? This is the
basic GNR theory of positive sum rules.
It is easy to understand the (4 — x2)~1/2 dx of the
Szegd condition but where the heck does the
(4 — 22)Y/2 dx come from? This is the Wigner
semi—circle law; essentially the measure is the potential
theory equilibrium measure in quadratic external field.
What does the function
G(a) = a* — 1 —log(a?)

mean?  As we've seen, this is the rate function for
square roots of sums of exponential RVs.
What does the function

F(B) =118~ p% ~logB'; E=p+p"
mean?  This is the Coulomb potential of the Wigner
semi—circle distribution plus a quadratic external field.
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made a conjecture concerning
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where
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dn(0) = Z7' JJ(1 — cos(6 — 6;))™ido
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where Z is a normalization factor to make dn into a
probability measure. There developed a huge literature on
these so called higher order sum rules for OPUC and OPRL
including papers by Denissov, Golinskii, Kupin, Laptev et al,
Lukic and Nazarov et al.



Higher Order Sum Rules

The key to understanding such sum rules (for OPUC) in the
context of large deviations is to replace Haar measure, dPy,

by

Further
Developements



Higher Order Sum Rules

The key to understanding such sum rules (for OPUC) in the
context of large deviations is to replace Haar measure, dPy,

by

N
Zylexp |[-N Y V()| dPy
j=1

Further
Developements



Higher Order Sum Rules

The key to understanding such sum rules (for OPUC) in the
context of large deviations is to replace Haar measure, dPy,

by

N
Zylexp |[-N Y V()| dPy
j=1
where V' is a function on 0D and {)\j}éyzl are the

Further eigenvalues.

Developements



Higher Order Sum Rules

The key to understanding such sum rules (for OPUC) in the

context of large deviations is to replace Haar measure, dPy,
by

N
Zylexp |[-N Y V()| dPy
j=1
where V' is a function on 0D and {)\j}éyzl are the
B — eigenvalues. It is well known in the random matrix literature

that when V is nice enough, we will get dn as the empirical
measure if



Higher Order Sum Rules

The key to understanding such sum rules (for OPUC) in the
context of large deviations is to replace Haar measure, dPy,
by

N

Zylexp |[-N Y V()| dPy
j=1
where V' is a function on 0D and {)\j}éyzl are the

B — eigenvalues. It is well known in the random matrix literature

that when V is nice enough, we will get dn as the empirical
measure if

V() =2 / log e — ¢ dn(4)
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In a forthcoming paper BSZ study this when dn is given as
above. In the cases we study, V(') is a finite linear
combination of cos(m#). In terms of U, if €% are the
eigenvalues, > %, cos(mf;) = Re(Tr(U™)) which one can
write in terms of Verblunsky coefficients using the CMV (or
the GGT) representation of U. We obtain a large deviations
proof of the (1 — cos(#)) sum rule of Simon and the gems
of Simon—Zlatos. In addition, we prove a partial special case
of a conjecture of Lukic that replaces a wrong conjecture of
Simon, providing evidence for Lukic's conjecture.
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Higher Order Sum Rules

GNR have a paper that discusses in some detail the case
V(6) = cos(#) where the random matrix model has been
studied by Gross—Witten whose names GNR apply to the
model. They note that formally the large deviations
argument leads to a sum rule but for technical reasons, they
aren't able to provide a proof. By using some results from
the theory of OPUC, we do prove sum rules in this and the
Further other cases.

Developements
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Finite Gap OPUC

There has been very little work on Killip—Simon type
theorems for finite gap sets in OPUC. In a recent preprint,
GNR obtain a sum rule and gem for
¢e={e|a < <21 —a}for 0 <a< . Forreal a, the
Verblunsky side has the expected 3" |o; — a|? form but for
general o, it has the form 3" |v; — a|? where 7; is a
non—local function of the a's. In particular, it is not clear if
the finiteness of their Verblunsky side only depends on the
behavior near j = co. At least for the real case, it would be
interesting to get the sum rule via the Poisson—Jensen
methods used in the original Killip—Simon proof. It would
also be interesting to understand the ~;’s in a more
conventional setting.

Understanding perturbations of periodic and the more
general finite gap OPUC remains open.
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Half Line Schrédinger Operators

Finally, we note that Killip—Simon have proven a sum rule
and gem for half-line Schrédinger operators when

V € L?((0,00);dx). It would be very interesting to find a
large deviation proof of this result. In particular, what is the
analog of random matrix models for the study of
Schrédinger operators?
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