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Introduction

As the title indicates, this talk is about Gap Labelling for
Periodic Jacobi Matrices on Trees although | suspect you
The Big Theorem may not be familiar with the notion of Jacobi matrices on
trees nor have heard about gap labelling, even in its general
context so I'll start by discussing both. I'm going to discuss
a new proof of this result, which was originally proven by
Sunada in 1992 who used deep result from the K-theory of
C*-algebras. This new proof is elementary and is only a few
lines.

After discussing periodic Jacobi matrices on trees and this
theorem, I'll discuss the more general context of gap
labelling and the historical model of Floquet theory for Hill’s
equation. Then after describing the tools we'll need, I'll
focus on a miraculous formula that will prove Sunada’s
theorem. If there is time I'll discuss another result for which
our new formula provides a new proof.
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Let T" be a graph with vertex set, V(I'), an edge set, E(I").
We will suppose some familiarity with notions of graph
theory but will remind about some terminology. In
particular, we recall that the degree of a vertex, v € V(T') is
the number of edges, e € E(I"), with v as an endpoint and
that a leafis a vertex of degree 1. It will be convenient to
assume that T is leafless. We will allow infinite graphs but
then require that the degree of every vertex is finite and
that there is an finite upper bound on degrees.

We will assign an orientation for each edge, e, using é for
the oppositely directed edge. o(e) is the initial vertex and
7(e) the final of the directed edge e, so for example,

o(&) = 7(e). We let E denote the set of all edges with
arbitrary assigned orientation so that #(E) = 2#(E).
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Jacobi Matrices on Graphs

A Jacobi matrix on T is defined by Jacobi parameters, i.e. a
potential, b(v) € R, to each vertex and coupling,

Bl a(c) = a(é) > 0, to each edge.

The Jacobi matrix is indexed by pairs of vertices and defines
an operator on (?(V(I')) by taking

bv), fv=w
Hyy = ¢ a(e), if (vw)=-e an edge in E(I)
0, otherwise
If the graph has n-vertices, {1,...,n} with edges between j

and j + 1, this is a classical tridiagonal Jacobi matrix. If the
graph has vertex set Z with neighboring edges, we get a
classical (doubly) infinite Jacobi matrix.
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Periodic Jacobi Matrices on Trees

Now let T" be a finite, leafless graph. Such a graph always
has loops, i.e. is not simply connected. If T" has ¢
independent loops (equivalently, one can drop at most ¢
edges without disconnecting the graph), the fundamental
group is Fy, the nonabelian free group on ¢ generators
(which despite the name is abelian if (and only if) £ = 1).

Let 7 be the universal cover of I". It is a tree. There is a
cover map w: T — I' and a family of deck transformations
isomorphic to F; which acts transitively on each 7~ (v) for
each v € V(I'). Given a Jabobi matrix, Jr, on I', with
Jacobi parameters, b and a, there is a unique lift to Jacobi
parameters on T given by b(0) = b(m(0)), a(€é) = a(n(€)).
We use Hy for associated Jacobi matrix on ¢£2(V(T)). We
call it a periodic Jacobi matrix on 7 and call p = #(V(I'))
its period.
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Two simple and canonical example are where first T" is a
single cycle with p vertices and second where T" has a two
vertices with d edges connecting them. In the first case Hy
is a conventional periodic Jacobi matrix of period p (which
is where our notion of period comes from) - a subject on
which there is truly enormous history and literature which
we will discuss in part below.
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In the second, T is a homogenous tree of degree d, where
each vertex has degree d. This is interesting even in case all
all b are 0 and a's are equal. As constructed, it has period
2. Related is the case where I" has one vertex and ¢ self
loops. In that case, the tree is homogeneous of degree 2/;
Hy is a special case of the last class where the 2/ values of
a occur in { pairs (and b's are all the same). Thus some of
that second class are “secretly” period 1.

The Big Theorem

The model of the homogeneous tree and these models more
generally are connected to modular forms and so this
subject is to interest to mathematical physicists, spectral
theorists and number theorists.
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which commute with Hy. In particular, for every v € V(I),
the spectral measure, dug, for H7 and © are the same for
all v € V(T') with 7(0) = v. We use dp, for these common
values.

The Big Theorem

One defines the density of states measure, dk(E) (and
integrated density of states, aka IDS,
k(E) = dk((—o0, E))), by

k=1 > du
vaV

The big theorem of Sunada (1992), called gap labelling,
says the following
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Theorem [Sunada] In any gap of the spectrum of Hr, the
IDS is an integral multiple of 1/p. In particular, the

Bl spectrum has at most p connected components.

The last statement has a simple proof given the first
sentence. Because dk is a finite sum, one sees that
spec(H7) = supp(dk). Thus if a,b ¢ spec(Hy) with
spectrum in between, we must have that k(b) > k(a) while,
of course, k in constant in each gap. Since there are at
most p — 1 possible values of k in distinct finite gaps, there
are at most p — 1 gaps, so p bands.
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I'll end this introduction by saying a little about Sunada’s
proof. It uses a deep theorem of Pimsner-Voiculescu (1982).
Consider the homogeneous tree of degree 2¢ which is the
Cayley graph of [Fy. It can be seen that the C*-algebra of
the regular representation of this group is the same as the
C*-algebra generated by all Jacobi matrices of period 1 as
described in the second model above (whose tree is the
same). Kadison suggested that this C*-algebra has no
non-trivial projections and this was proven for £ = 1 by
Powers in 1975 and general ¢ by Pimsner-Voiculescu.

The Big Theorem

Sunada first noted that in the general context of operators
on trees of the type we looked at, the sum of diagonal
matrix elements, one from each equivalence class of vertices,
for operators commuting with our action of Iy (a natural
von Neumann algebra) defines a natural normalized trace.
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k(E) is just this normalized trace applied to the spectral
projection P(_., gy(H7). This projection lies in the
Bl (C*-algebra generated by H7 if the projection is of the form
f(H) for a continuous function f and this is true if £ is in
a gap. Thus the Pimsner-Voiculescu theorem implied no
gaps for p = 1.




The Sunada Proof

For period p, Sunada showed these C*- and von Neumann
algebras were twisted tensor products of the p X p matrices
and the p = 1-algebra.

The Big Theorem



The Sunada Proof

For period p, Sunada showed these C*- and von Neumann
algebras were twisted tensor products of the p X p matrices
and the p = 1-algebra. Since the normalized trace of
projections in p X p matrices is 1/p, he could prove the
normalized trace of any projections in the twisted tensor
product had the same property which gives his theorem as a
consequence of Pimsner-Voiculescu.

The Big Theorem



The Sunada Proof

For period p, Sunada showed these C*- and von Neumann
algebras were twisted tensor products of the p X p matrices
and the p = 1-algebra. Since the normalized trace of
projections in p X p matrices is 1/p, he could prove the
normalized trace of any projections in the twisted tensor
product had the same property which gives his theorem as a
consequence of Pimsner-Voiculescu.

The Big Theorem

The Pimsner-Voiculescu theorem is proven by them by using
an exact sequence of K-theory groups.



The Sunada Proof

For period p, Sunada showed these C*- and von Neumann
algebras were twisted tensor products of the p X p matrices
and the p = 1-algebra. Since the normalized trace of
projections in p X p matrices is 1/p, he could prove the
normalized trace of any projections in the twisted tensor
product had the same property which gives his theorem as a
consequence of Pimsner-Voiculescu.

The Big Theorem

The Pimsner-Voiculescu theorem is proven by them by using
an exact sequence of K-theory groups. While Effros and
others have a simpler proof of their theorem, there is no
elementary proof.



The Sunada Proof

For period p, Sunada showed these C*- and von Neumann
algebras were twisted tensor products of the p X p matrices
and the p = 1-algebra. Since the normalized trace of
projections in p X p matrices is 1/p, he could prove the
normalized trace of any projections in the twisted tensor
product had the same property which gives his theorem as a
consequence of Pimsner-Voiculescu.

The Big Theorem

The Pimsner-Voiculescu theorem is proven by them by using
an exact sequence of K-theory groups. While Effros and
others have a simpler proof of their theorem, there is no
elementary proof. This ends the introduction.



The Sunada Proof

For period p, Sunada showed these C*- and von Neumann
algebras were twisted tensor products of the p X p matrices
and the p = 1-algebra. Since the normalized trace of
projections in p X p matrices is 1/p, he could prove the
normalized trace of any projections in the twisted tensor
product had the same property which gives his theorem as a
consequence of Pimsner-Voiculescu.

The Big Theorem

The Pimsner-Voiculescu theorem is proven by them by using
an exact sequence of K-theory groups. While Effros and
others have a simpler proof of their theorem, there is no
elementary proof. This ends the introduction. My goal in
the rest of the talk is our new proof of Sunada’s gap
labelling theorem which is so elementary we think of it as
“the proof from the book”
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Our next subject, also preliminary, is on older results called
gap labelling (all related to what we are calling gap
labelling) focusing on the special case of the finite graph
which is a simple cycle so the tree is just Z and the Jacobi
parameters are ordinary two-sided periodic sequences. That
this kind of operator, at least its continuous analog, has
band spectrum (or more precisely, alternating energy regions
with different qualitative properties) goes back almost 150
years to work of Floquet (1883) and Hill (1886).

Hill's equation is the differential equation on R

—u"(x) + V(z)u(z) = Mu(x)
where X is a (usually) real parameter and V' is a real

periodic function, i.e. V(z + L) = V(x) for all real x and
some L > 0.
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Hill’s Equation

This is, of course, the 1D Schrédinger equation but Hill
(the rare great 19" century American scientist (he worked
at Rutgers, the NJ state university, whose math building is
named after him) was 40 years before Schrédinger and was
studying perturbations of the moon orbit. We will focus on
the discrete analog to which the Floquet-Hill theory
extends, the difference equation for n € Z:

—ap+1u(n + 1) + bpu(n) + apu(n — 1) = Au(n)
which is of course a periodic Jacobi matrix on a tree where
the tree is Z (and if the period is p, the finite graph is a
cyclic of length p.)

We remark there is a version of Floquet theory and gap
labelling for such periodic operators on Z” - an abelian
extension of the 1D theory as opposed to the tree theory
which is a non-Abelian extension.
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where T'(kp; \) = T'(p; \)* because of periodicity. By a
simple calculation, det(T'(p; A)) = 1, so the two eigenvalues
of T'(p; \), called Floquet eigenvalues denoted a1 (), obey
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are unique given (u(0),u(1)). One can write the solution in
terms of a 2 x 2 matrix
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where T'(kp; \) = T'(p; \)* because of periodicity. By a
simple calculation, det(T'(p; A)) = 1, so the two eigenvalues
of T'(p; \), called Floquet eigenvalues denoted a1 (), obey
a_(A) =a (M) If Xis real, the trace is real so either
at(A) = exp(£if(N)), with sin(f(A)) > 0 or ax(N)

= exp(£r(N)), with kK(A) > 0 or ar(N) = —exp(£L(N)).
The solutions of the difference equation on Z, u4, with

initial conditions the eigenfunctions of T'(p; A) are called
Floquet solutions.



Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2.

Floquet Theory
for Hill's
Equation



Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric

multiplicity 1 or 2. That is, for other values of A\, there are
Floguet Theory two Floquet solutions but for this case there might be either

for Hill's
Equation 1 or 2.




Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2. That is, for other values of A\, there are
Floquet Theory two Floquet solutions but for this case there might be either
Eauation 1 or 2. Further analysis proves that 6(\) is related to k(A),
the IDS. Explicitly, one can prove that

cos(0(N)/pm) = cos(k(N)).



Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2. That is, for other values of A\, there are
Floquet Theory two Floquet solutions but for this case there might be either
Eauation 1 or 2. Further analysis proves that 6(\) is related to k(A),
the IDS. Explicitly, one can prove that

cos(0(N)/pm) = cos(k(N)).

Moreover, it is known that spec(H) is precisely the set of A
for which there is a polynomially bounded solution, i.e.
points where the Floquet eigenvalue has magnitude 1 rather
than points where a; (\) > 1.



Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2. That is, for other values of A\, there are
Floquet Theory two Floquet solutions but for this case there might be either
Eauation 1 or 2. Further analysis proves that 6(\) is related to k(A),
the IDS. Explicitly, one can prove that

cos(0(N)/pm) = cos(k(N)).

Moreover, it is known that spec(H) is precisely the set of A
for which there is a polynomially bounded solution, i.e.
points where the Floquet eigenvalue has magnitude 1 rather
than points where a4 (\) > 1. The regions where there are
bounded solutions are called regions of stability and where
there aren't are regions of instability.



Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2. That is, for other values of A\, there are
Floquet Theory two Floquet solutions but for this case there might be either
Eauation 1 or 2. Further analysis proves that 6(\) is related to k(A),
the IDS. Explicitly, one can prove that

cos(0(N)/pm) = cos(k(N)).

Moreover, it is known that spec(H) is precisely the set of A
for which there is a polynomially bounded solution, i.e.
points where the Floquet eigenvalue has magnitude 1 rather
than points where a4 (\) > 1. The regions where there are
bounded solutions are called regions of stability and where
there aren't are regions of instability. Because A — a ()
is continuous, one sees that the spectrum is bands




Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2. That is, for other values of A\, there are
Floquet Theory two Floquet solutions but for this case there might be either
Eauation 1 or 2. Further analysis proves that 6(\) is related to k(A),
the IDS. Explicitly, one can prove that

cos(0(N)/pm) = cos(k(N)).

Moreover, it is known that spec(H) is precisely the set of A
for which there is a polynomially bounded solution, i.e.
points where the Floquet eigenvalue has magnitude 1 rather
than points where a4 (\) > 1. The regions where there are
bounded solutions are called regions of stability and where
there aren't are regions of instability. Because A — a ()
is continuous, one sees that the spectrum is bands and that
a4 = £1 at the edges.




Floquet solution and Floquet multipliers

One subtlety we've avoided is that when AL = +1, the two
“eigenvalues” are equal so we can have geometric
multiplicity 1 or 2. That is, for other values of A\, there are
Floquet Theory two Floquet solutions but for this case there might be either
Eauation 1 or 2. Further analysis proves that 6(\) is related to k(A),
the IDS. Explicitly, one can prove that

cos(0(N)/pm) = cos(k(N)).

Moreover, it is known that spec(H) is precisely the set of A
for which there is a polynomially bounded solution, i.e.
points where the Floquet eigenvalue has magnitude 1 rather
than points where a4 (\) > 1. The regions where there are
bounded solutions are called regions of stability and where
there aren't are regions of instability. Because A — a ()
is continuous, one sees that the spectrum is bands and that
a4 = +1 at the edges. Thus, above formula proves that
k(\) is a multiple of 1/p in each gap, i.e. gap labelling.
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Almost Periodic Gap Labelling

Before leaving the 1D case, we should mention a result
going back to the 1980’s that popularized the name “gap
labelling” in a related but distinct context, namely for
almost periodic classical Jacobi matrices, where a,, and b,
are almost periodic rather than periodic. The most famous
example is the almost Mathieu equation

an = 1,b, = B cos(man + 0) for parameters 3, o, 0§ with «
irrational. For this model, gap labelling says that in a gap,
k(X)) = ma + n for integers m and n (and for the general
case, it lies in the frequency module of the a,b.)

The point is that the set of possible values is dense in [0, 1]
so that if all (or many) values occur, the spectrum is a
Cantor set. The famous ten martini problem (which is a
theorem of Avila-Jitomirskaya with important partial results
by others, especially Puig) is that for all 5 # 0 and all
irrational «, the almost Mathieu spectrum is a Cantor set.
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That concludes the background and we turn to our new
proof. We recall that Green’s function is the name given to
matrix elements of the resolvent of a basic operator.
Specifically, in our case, given e € E(T"), we pick any

€ € E(T) with m(é) = e and let G¢(z) be the matrix
element of (H7 — 2z)~! corresponding to the two vertices of
any € with w(é) = e.

Dropping the edge é from T breaks (2(T) = (*(Tz-)®
?%(Tz+) where £2(Tz+) is the subspace with 7(¢) and
(2(Tz-) is the subspace with o'(€). We let HE be the
operators on (2(V(TZ5)) with the restricted Jacobi
parameters and set

me(z) = 0y, (HF —2)76,-())

and, of course, me(2) = (0y(e), (Hy — 2) 16,2))-
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Schur Complements

The relation between resolvents of direct sums and
resolvents of the summands was studied by Schur (1917)
and is named the theory of Schur complements (called the
method of Feshbach (1962) projections by theoretical
physicists!). Applied to m— and Green’s functions, this

Green’s and

m-function giVCS
1 2
=—2+by — Zafmf(z)
Gu(2) N
feE: o(f)=u
1
=—2+by — Z a?c/mf/(z)
mf(Z) I £ L f
J'eEf'#f

a(f)=7(f)
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Schur Complements

which implies for any e € E that

1 me
Go(e) = ——1

21— a2 }
m; —aZme 1 —aimeme

This suggests a useful object

1 i Go(e)(z) G‘r(e) (Z)

T1- aZme(2)me(z)  me(2) me(2)

Qe(2)

These equations imply the important result (of
Chomsky-Schiitzenberger (1963) - that Chomsky!!), that G
and m are algebraic functions , which implies
(Avni-Breuer-Simon) that there is no signular continuous
spectrum.
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The Floquet Function

The key to the new proof is a remarkable equality involving
a new function we introduced and called the Floquet
function defined by

®(z) = exp <p/log(t —2) dk(t))

Formalas defined originally in the upper half z-plane which clearly has
an analytic continuation to a neighborhood of

C4+ U (R \ spec(H)). We gave it this name because, by
what is known as the Thouless formula, in the 1D case, one
has that ®(\) = (—1)Pa4(N).

Careful analysis of the imaginary part of the log in the gap,
shows that the imaginary part of this last integral if
—prk(Ep) is Ey is a point in a gap.
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A Remarkable Formula

The key to our proof is the following formula involving ®, G

and m (or and Q)

B(:) = eeng) Qe(2) _ [ecrg) Gre)(2)
HueV(g) Gu(z) Huev(g) Gu(2) HeeE(g) me(2)

where the second equality is just the definition of @ (and

the first will be discussed shortly).

The Magic
Formula After finding this formula, we noted that it provided and
almost immediate proof of gap labelling and, with some
effort, the Aomoto Index Theorem. Among ourselves for a
while, we called it the magic formula until one of my
coauthors pointed out that Damanik, Killip and Simon
called a distinct but not totally unrelated relation the magic
formula. So we couldn’t officially continue and named it the
Floquet formula but here, among friends, I'll still use that
other name.
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Proof of the Magic Formula

Call the right side WU(z). The first thing to prove is that as
x — o0 in (0,00), one has that, ¥(—x) = 2P + O(2P~ 1)
and the same for ®(—x). It follows that in that regime,
log(®/¥) = 0(1/x), so it suffices to prove that log(®) and
log(¥) have the same derivative.

Using the Schur complement formula for G, !, one gets a
formula for (log(G))" and from the definition of Q. a

formula for (log(Q.))’ from which one sees that
/

ZeeE(log(Qe)) = ZueV[_Gu + (lOg(Gu))’] so that

> (log(Qe)) = > (log(Gu)) = > —Gl

ecE ueV ueV

The left side is just [log(¥)]" and the right is [log(®)]’
proving the magic formula.
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Proof of Gap Labelling

It is easy to see that the operators HéjE have essential
spectra which are subsets of the essential spectra of Hy (in
fact, one can show the essential spectra are equal). It
follows that these operators have only discrete spectrum in
gaps of H7 so the Green's and m— functions only have
isolated zeros and poles in the gaps (indeed, using that they
The Magic are algebraic, only finitely many). Thus the function, ¥ in
Formula . . . . .

the magic formula, which is built from G,’s and m.'s, is
regular, real, and non-zero at most points in a gap. Thus,
by the magic formula, the argument of ®, which we have
seen is —pmk(E) (for E in the gap) is an integral multiple
of 7 which is gap labelling!!
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Point Spectrum

If there is time, I'll say a few word about our other new
proof. In the 1D case, H does not have any point
spectrum, but in other cases that is not true for example,
one I' of Aomoto where r < g are fixed positive integers. T’
has r + g vertices, r of them red and g green and rg edges
between each pair of red and green vertices. All b =0 and
a = 1. Then 0 is an isolated point of the spectrum of Hy
which is an eigenvalue of infinite multiplicity.
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Statement

Given an eigenvalue, )\, define X7()\) to be the set of
vertices, v € V, so that for some © with 7(0) = v there is
some eigenfunction 1) associated to A, with ¢ () # 0.
Define 0X;(\) to be those v € V not in X;(\) but
neighbors of points in X;()\), and we let E(\) be the set of
edges with both endpoints in X ().
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Statement

Given an eigenvalue, )\, define X7()\) to be the set of
vertices, v € V, so that for some © with 7(0) = v there is
some eigenfunction 1) associated to A, with ¢ () # 0.
Define 0X;(\) to be those v € V not in X;(\) but
neighbors of points in X;()\), and we let E(\) be the set of
edges with both endpoints in X ().

Theorem [Aomoto Index Theorem] The measure dk has a
The Aomoto mass at an eigenvalue, \, of weight I(\)/p where

I(A) = #(X1(AN)) = #(0X1 (V) = #(E(V))

A consequence of this theorem is that if T" has a fixed degree
(equivalently, 7 does), then Hy has no point spectrum.



The original proof of Aomoto is opaque and our new proof
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The original proof of Aomoto is opaque and our new proof
is simpler but there is a 2022 paper of Banks, Garza-Vargas
and Mukhejee with a particularly elegant way to understand
point spectrum including a lovely proof of the index
theorem. Our proof starts by noting that points u in X;
give poles of G, points w in 90X give zeros of GG, and
edges, e € E()), give poles of Q.. If this were all, the
magic formula would imply the Aomoto index theorem
instantly. There can be some “accidental” zeros or poles but
one shows they cancel each other in the magic formula.
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