More Tales of Our Forefathers

Barry Simon
Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.
Some Caveats

This is not a mathematics talk

Introduction

Riemann, Euler, Gauss
Newton, Hilbert, Poincaré
Riesz², Szegő, von Neumann
Kato, Loewner, Verblunsky
Blumenthal, Pick, Tauber
Landau, König, Marcinkiewicz
Krein, Noether, Thomson
Some Caveats

This is not a mathematics talk but it is a talk for mathematicians.
Some Caveats

This is not a mathematics talk but it is a talk for mathematicians. While it is independent of the first talk of this type that I gave (*Tales of Our Forefathers*), I have tried to avoid too much overlap.
Some Caveats

This is not a mathematics talk but it is a talk for mathematicians. While it is independent of the first talk of this type that I gave (Tales of Our Forefathers), I have tried to avoid too much overlap so, in particular, I’ve abbreviated the introduction. I make the same introductory caveats I made last time:
Some Caveats

This is not a mathematics talk but it is a talk for mathematicians. While it is independent of the first talk of this type that I gave (*Tales of Our Forefathers*), I have tried to avoid too much overlap so, in particular, I’ve abbreviated the introduction. I make the same introductory caveats I made last time:

1. I am not a historian and I’ve no faith that all that I’m telling you is true. None of the stories was made up,
Some Caveats

This is not a mathematics talk but it is a talk for mathematicians. While it is independent of the first talk of this type that I gave (Tales of Our Forefathers), I have tried to avoid too much overlap so, in particular, I’ve abbreviated the introduction. I make the same introductory caveats I made last time:

1. I am not a historian and I’ve no faith that all that I’m telling you is true. None of the stories was made up, at least by me.
Some Caveats

This is not a mathematics talk but it is a talk for mathematicians. While it is independent of the first talk of this type that I gave (Tales of Our Forefathers), I have tried to avoid too much overlap so, in particular, I’ve abbreviated the introduction. I make the same introductory caveats I made last time:

1. I am not a historian and I’ve no faith that all that I’m telling you is true. None of the stories was made up, at least by me.

2. I regret that this is mainly about forefathers and not foremothers also, although there will be one female mathematician among 22 mathematicians.
Some Caveats

A third caveat is that I’m an analyst and I learned many of these stories when working on the Notes for a series of Analysis texts that I’ve written, so I’ll be focusing on analysts.
Some Caveats

A third caveat is that I’m an analyst and I learned many of these stories when working on the Notes for a series of Analysis texts that I’ve written, so I’ll be focusing on analysts. Of course, prior to the twentieth century, mathematicians were more universal and so “analysts” means most mathematicians.
Some Caveats

3 A third caveat is that I’m an analyst and I learned many of these stories when working on the Notes for a series of Analysis texts that I’ve written, so I’ll be focusing on analysts. Of course, prior to the twentieth century, mathematicians were more universal and so “analysts” means most mathematicians.

4 Mostly we remember mathematicians by applying their names to theorems and to mathematical objects.
A third caveat is that I’m an analyst and I learned many of these stories when working on the Notes for a series of Analysis texts that I’ve written, so I’ll be focusing on analysts. Of course, prior to the twentieth century, mathematicians were more universal and so “analysts” means most mathematicians.

Mostly we remember mathematicians by applying their names to theorems and to mathematical objects. In this regard, I quote The Arnold Principle. “If a notion bears a personal name, then this name is not the name of the discoverer.”
Three Great Mathematicians

The bulk of the first talk was structured around families and life events like death.
Three Great Mathematicians

The bulk of the first talk was structured around families and life events like death. I decided to start this talk with an amusing parlor game which is admittedly a little silly especially if one takes it too seriously.
Introduction

Riemann, Euler, Gauss
Newton, Hilbert, Poincaré
Riesz², Szegő, von Neumann
Kato, Loewner, Verblunsky
Blumenthal, Pick, Tauber
Landau, König, Marcinkiewicz
Krein, Noether, Thomson

Three Great Mathematicians

The bulk of the first talk was structured around families and life events like death. I decided to start this talk with an amusing parlor game which is admittedly a little silly especially if one takes it too seriously. I’ve also organized the talk around groups of three
Three Great Mathematicians

The bulk of the first talk was structured around families and life events like death. I decided to start this talk with an amusing parlor game which is admittedly a little silly especially if one takes it too seriously. I’ve also organized the talk around groups of three leading to a total of 22 mathematicians.
Three Great Mathematicians

The bulk of the first talk was structured around families and life events like death. I decided to start this talk with an amusing parlor game which is admittedly a little silly especially if one takes it too seriously. I’ve also organized the talk around groups of three leading to a total of 22 mathematicians.

In the modern era, there is enough infrastructure that for the past 50 years, many great mathematicians quickly found important positions and lived rather dull lives.
The bulk of the first talk was structured around families and life events like death. I decided to start this talk with an amusing parlor game which is admittedly a little silly especially if one takes it too seriously. I’ve also organized the talk around groups of three leading to a total of 22 mathematicians.

In the modern era, there is enough infrastructure that for the past 50 years, many great mathematicians quickly found important positions and lived rather dull lives (although there can be political upheavals that change that).
Three Great Mathematicians

The bulk of the first talk was structured around families and life events like death. I decided to start this talk with an amusing parlor game which is admittedly a little silly especially if one takes it too seriously. I’ve also organized the talk around groups of three leading to a total of 22 mathematicians.

In the modern era, there is enough infrastructure that for the past 50 years, many great mathematicians quickly found important positions and lived rather dull lives (although there can be political upheavals that change that). But the lack of many university positions and limited contact between groups means that this is less true of the greats of 150-250 years ago.
Three Great Mathematicians

So the game is who are the three greatest mathematicians.
So the game is who are the three greatest mathematicians. I dare say for most, the top three listed alphabetically are surely Euler, Gauss and Riemann.
So the game is who are the three greatest mathematicians. I dare say for most, the top three listed alphabetically are surely Euler, Gauss and Riemann. But there are six groups of mathematicians when it comes to the orderings!
Three Great Mathematicians

So the game is who are the three greatest mathematicians. I dare say for most, the top three listed alphabetically are surely Euler, Gauss and Riemann. But there are six groups of mathematicians when it comes to the orderings! I wouldn’t make a big deal of my personal choice which you can see on the side.
So the game is who are the three greatest mathematicians. I dare say for most, the top three listed alphabetically are surely Euler, Gauss and Riemann. But there are six groups of mathematicians when it comes to the orderings! I wouldn’t make a big deal of my personal choice which you can see on the side. Many put Gauss first
So the game is who are the three greatest mathematicians. I dare say for most, the top three listed alphabetically are surely Euler, Gauss and Riemann. But there are six groups of mathematicians when it comes to the orderings! I wouldn’t make a big deal of my personal choice which you can see on the side. Many put Gauss first – as I’ll explain it depends what you give Gauss credit for which is a complicated issue.
Georg Friedrich Bernard Riemann (1826–66) began as a student at Göttingen but Gauss was not much concerned with students,
Riemann

Georg Friedrich Bernard Riemann (1826–66) began as a student at Göttingen but Gauss was not much concerned with students, so in 1847 he moved to Berlin where Jacobi, Eisenstein, Steiner, and especially Dirichlet influenced him.
Georg Friedrich Bernard Riemann (1826–66) began as a student at Göttingen but Gauss was not much concerned with students, so in 1847 he moved to Berlin where Jacobi, Eisenstein, Steiner, and especially Dirichlet influenced him. (As unintended payback, Dirichlet got credit for work on harmonic functions such as the Dirichlet problem, Dirichlet principle, and Dirichlet boundary conditions because Riemann learned of them from Dirichlet’s lectures and named them after him.)
Riemann

Georg Friedrich Bernard Riemann (1826–66) began as a student at Göttingen but Gauss was not much concerned with students, so in 1847 he moved to Berlin where Jacobi, Eisenstein, Steiner, and especially Dirichlet influenced him. (As unintended payback, Dirichlet got credit for work on harmonic functions such as the Dirichlet problem, Dirichlet principle, and Dirichlet boundary conditions because Riemann learned of them from Dirichlet’s lectures and named them after him. In fact, Gauss in 1839, Green in 1828, and Thomson had preceded Dirichlet whose work was only published in 1850, after Riemann left Berlin).
Riemann

Riemann returned to Göttingen in 1849 where he spent the rest of his career.
Riemann returned to Göttingen in 1849 where he spent the rest of his career. Among his students was Dedekind.
Riemann returned to Göttingen in 1849 where he spent the rest of his career. Among his students was Dedekind. Riemann always had a sickly constitution and died of complications of pleurisy at the age of only 39.
Riemann returned to Göttingen in 1849 where he spent the rest of his career. Among his students was Dedekind. Riemann always had a sickly constitution and died of complications of pleurisy at the age of only 39. Two of his students, Hankel and Roch, also died at early ages (34 and 26, respectively).
What is perhaps most amazing about Riemann is that he has only about a dozen papers, several of them posthumous.
Riemann

What is perhaps most amazing about Riemann is that he has only about a dozen papers, several of them posthumous. There are six monumental multifaceted masterpieces. One had the Riemann integral as a preliminary to Fourier series, the Riemann–Lebesgue lemma, and Riemann local convergence theorem.
What is perhaps most amazing about Riemann is that he has only about a dozen papers, several of them posthumous. There are six monumental multifaceted masterpieces. One had the Riemann integral as a preliminary to Fourier series, the Riemann–Lebesgue lemma, and Riemann local convergence theorem. Another had his “basic” complex analysis: Cauchy–Riemann equations, Riemann removable singularities, Riemann mapping theorem, and Riemann surfaces of functions.
What is perhaps most amazing about Riemann is that he has only about a dozen papers, several of them posthumous. There are six monumental multifaceted masterpieces. One had the Riemann integral as a preliminary to Fourier series, the Riemann–Lebesgue lemma, and Riemann local convergence theorem. Another had his “basic” complex analysis: Cauchy–Riemann equations, Riemann removable singularities, Riemann mapping theorem, and Riemann surfaces of functions. A single paper has all of Riemann geometry: from metric to geodesics to Riemann curvature.
Riemann

There is the celebrated short paper on the Riemann zeta function, its functional equation, the Riemann hypothesis, and his vision of the complex analytic view of the distribution of primes.
There is the celebrated short paper on the Riemann zeta function, its functional equation, the Riemann hypothesis, and his vision of the complex analytic view of the distribution of primes. And there are papers on higher-dimensional theta functions (and Riemann–Roch) and on the Riemann approach to hypergeometric functions (and monodromy).
I talked about Leonhard Euler (1707–83) in my first talk – the salient points:
I talked about Leonhard Euler (1707–83) in my first talk – the salient points:

- Raised in Basel, his family expected him to become a pastor
I talked about Leonhard Euler (1707–83) in my first talk – the salient points:

- Raised in Basel, his family expected him to become a pastor but Johann Bernoulli convinced Euler’s father to let him become a mathematician.
I talked about Leonhard Euler (1707–83) in my first talk – the salient points:

- Raised in Basel, his family expected him to become a pastor but Johann Bernoulli convinced Euler’s father to let him become a mathematician.

- He spent his career employed by the Academies of Science, first in St. Petersburg (1727-41), then Berlin (1741-66) and then St. Petersburg (1766-83) again.
I talked about Leonhard Euler (1707–83) in my first talk – the salient points:

- Raised in Basel, his family expected him to become a pastor but Johann Bernoulli convinced Euler’s father to let him become a mathematician.
- He spent his career employed by the Academies of Science, first in St. Petersburg (1727-41), then Berlin (1741-66) and then St. Petersburg (1766-83) again.
- A remarkable thing about that is that he was totally blind from 1766 but continued to produce many papers until his death!
He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children)
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.

To show his influence, I want to quote the results of a 1988 poll of the top ten theorems taken by Math Intelligencer which had Euler with 3 of the top 5.
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.

To show his influence, I want to quote the results of a 1988 poll of the top ten theorems taken by Math Intelligencer which had Euler with 3 of the top 5. I’d heard it was top formulae which made sense.
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.

To show his influence, I want to quote the results of a 1988 poll of the top ten theorems taken by Math Intelligencer which had Euler with 3 of the top 5. I’d heard it was top formulae which made sense but it turns out it was the top ten theorems which is crazy.
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.

To show his influence, I want to quote the results of a 1988 poll of the top ten ??? taken by Math Intelligencer which had Euler with 3 of the top 5. I’d heard it was top formulae which made sense but it turns out it was the top ten theorems which is crazy since neither the Cauchy Integral Formula nor Spectral Theorem nor Prime Number Theorem are on the list.
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.

To show his influence, I want to quote the results of a 1988 poll of the top ten ?? ?? taken by Math Intelligencer which had Euler with 3 of the top 5. I’d heard it was top formulae which made sense but it turns out it was the top ten theorems which is crazy since neither the Cauchy Integral Formula nor Spectral Theorem nor Prime Number Theorem are on the list. No matter! Here is the top 5 on the list which does show Euler’s impact
Euler

- He wrote with the help of scribes and mathematical assistants (among them his son and grandson).
- He was remarkably prolific (13 children) in both mathematics and physics with complete works running to 72 volumes, each in the 400–700 page range.

To show his influence, I want to quote the results of a 1988 poll of the top ten ??? taken by Math Intelligencer which had Euler with 3 of the top 5. I’d heard it was top formulae which made sense but it turns out it was the top ten theorems which is crazy since neither the Cauchy Integral Formula nor Spectral Theorem nor Prime Number Theorem are on the list. No matter! Here is the top 5 on the list which does show Euler’s impact – remarkably, all involve mathematicians whose name starts with “Eu”!
Euler

Five Greatest Whatevers

1. Basel formula: $\sum_{j=1}^{\infty} j^{-2} = \pi^2 / 6$ (Euler)
Euler

Five Greatest Whatevers

5. Basel formula: \(\sum_{j=1}^{\infty} j^{-2} = \pi^2 / 6 \) (Euler)

4. Only 5 regular polyhedra (Euclid)
Euler

Five Greatest Whatevers

5 Basel formula: \(\sum_{j=1}^{\infty} j^{-2} = \frac{\pi^2}{6} \) (Euler)
4 Only 5 regular polyhedra (Euclid)
3 Infinitely many primes (Euclid)
Euler

Five Greatest Whatevers

5. Basel formula: \(\sum_{j=1}^{\infty} j^{-2} = \frac{\pi^2}{6} \) (Euler)

4. Only 5 regular polyhedra (Euclid)

3. Infinitely many primes (Euclid)

2. Euler’s Polyhedron formula: \(V + F - E = 2 \)
Euler

Five Greatest Whatevers

5. Basel formula: $\sum_{j=1}^{\infty} j^{-2} = \pi^2 / 6$ (Euler)

4. Only 5 regular polyhedra (Euclid)

3. Infinitely many primes (Euclid)

2. Euler’s Polyhedron formula: $V + F - E = 2$

1. $e^{i\pi} + 1 = 0$ (Euler)
Euler

Five Greatest Whatevers

5 Basel formula: $\sum_{j=1}^{\infty} j^{-2} = \pi^2 / 6$ (Euler)
4 Only 5 regular polyhedra (Euclid)
3 Infinitely many primes (Euclid)
2 Euler’s Polyhedron formula: $V + F - E = 2$
1 $e^{i\pi} + 1 = 0$ (Euler)
Introduction

Riemann, Euler, Gauss

Newton, Hilbert, Poincaré

Riesz, Szegő, von Neumann

Kato, Loewner, Verblunsky

Blumenthal, Pick, Tauber

Landau, König, Marcinkiewicz

Krein, Noether, Thomson

Gauss

Carl Friedrich Gauss (1777-1855) was a young prodigy who came to the attention of the Duke of Brunswick who supported his attendance at what is now the Technical University of Braunschweig,
Carl Friedrich Gauss (1777-1855) was a young prodigy who came to the attention of the Duke of Brunswick who supported his attendance at what is now the Technical University of Braunschweig, then at Göttingen, and finally at Helmstadt, where he submitted his dissertation (his first proof of the fundamental theorem of algebra) to Pfaff.
Carl Friedrich Gauss (1777-1855) was a young prodigy who came to the attention of the Duke of Brunswick who supported his attendance at what is now the Technical University of Braunschweig, then at Göttingen, and finally at Helmstadt, where he submitted his dissertation (his first proof of the fundamental theorem of algebra) to Pfaff.

In 1801, he published his masterpiece, *Disquisitiones Arithmeticae* on number theory and also in that year gained great fame for the following:
the asteroid Ceres was discovered early in that year, but there were only a few observations before the planetoid went behind the sun. With then current techniques, the orbit could not be accurately predicted.
the asteroid Ceres was discovered early in that year, but there were only a few observations before the planetoid went behind the sun. With then current techniques, the orbit could not be accurately predicted. Using what we now call the method of least squares, Gauss determined the orbit well enough for the asteroid to be found.
the asteroid Ceres was discovered early in that year, but there were only a few observations before the planetoid went behind the sun. With then current techniques, the orbit could not be accurately predicted. Using what we now call the method of least squares, Gauss determined the orbit well enough for the asteroid to be found. On the basis of this fame, Gauss, after the death in the Napoleonic wars of the Duke, his patron, was able to get an appointment as director of the observatory at Göttingen.
the asteroid Ceres was discovered early in that year, but there were only a few observations before the planetoid went behind the sun. With then current techniques, the orbit could not be accurately predicted. Using what we now call the method of least squares, Gauss determined the orbit well enough for the asteroid to be found. On the basis of this fame, Gauss, after the death in the Napoleonic wars of the Duke, his patron, was able to get an appointment as director of the observatory at Göttingen. Interestingly enough, both Bessel and Möbius, Gauss’ contemporaries, spent their careers as astronomers.
the asteroid Ceres was discovered early in that year, but there were only a few observations before the planetoid went behind the sun. With then current techniques, the orbit could not be accurately predicted. Using what we now call the method of least squares, Gauss determined the orbit well enough for the asteroid to be found. On the basis of this fame, Gauss, after the death in the Napoleonic wars of the Duke, his patron, was able to get an appointment as director of the observatory at Göttingen. Interestingly enough, both Bessel and Möbius, Gauss’ contemporaries, spent their careers as astronomers.

He spent his career as the observatory director and, in addition to his “pure mathematics”, developed techniques in magnetism, geodesy, and potential theory. Indeed, his work on Gaussian curvature and Gauss’ law (on div and integrals) had roots in this applied work.
Introduction

Gauss

Gauss’ mathematical contributions are staggering.
Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are

1. Turned number theory from a set of ad hoc observations into a systematic field
Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
Introduction

Riemann, Euler, Gauss
Newton, Hilbert, Poincaré
Riesz², Szegő, von Neumann
Kato, Loewner, Verblunsky
Blumenthal, Pick, Tauber
Landau, König, Marcinkiewicz
Krein, Noether, Thomson

Gauss

Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
3. Fundamental Theorem of Algebra
Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are:

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
3. Fundamental Theorem of Algebra
4. Gauss Curvature and Gauss-Bonet Theorem
Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are:

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
3. Fundamental Theorem of Algebra
4. Gauss Curvature and Gauss-Bonnet Theorem
5. Gauss’ law (aka Stokes’ for div) and harmonic functions
Gauss

Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
3. Fundamental Theorem of Algebra
4. Gauss Curvature and Gauss-Bonnet Theorem
5. Gauss’ law (aka Stokes’ for div) and harmonic functions
6. Hypergeometric Functions
Gauss’ mathematical contributions are staggering. Among the contemporaneously published ones are

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
3. Fundamental Theorem of Algebra
4. Gauss Curvature and Gauss-Bonet Theorem
5. Gauss’ law (aka Stokes’ for div) and harmonic functions
6. Hypergeometric Functions
7. Gauss quadrature
Gauss' mathematical contributions are staggering. Among the contemporaneously published ones are

1. Turned number theory from a set of ad hoc observations into a systematic field
2. Quadratic reciprocity and class number problem
3. Fundamental Theorem of Algebra
4. Gauss Curvature and Gauss-Bonet Theorem
5. Gauss' law (aka Stokes' for div) and harmonic functions
6. Hypergeometric Functions
7. Gauss quadrature
8. Least Squares (and Gaussian distribution)
Perhaps more impressive is Gauss’ work which was either never published
Perhaps more impressive is Gauss’ work which was either never published or published after his death, often with his complete works, including:

1. In 1811, Gauss wrote a letter to his friend Bessel that included a statement (without proof) of a version of the Cauchy Integral Theorem (Cauchy only found it in 1825!)
2. In 1832, writing to János Bolyai’s father about the son’s discovery of non-Euclidean geometry, Gauss said he’d known of it for 35 years.
Gauss

Perhaps more impressive is Gauss’ work which was either never published or published after his death, often with his complete works, including:

1 In 1811, Gauss wrote a letter to his friend Bessel that included a statement (without proof) of a version of the Cauchy Integral Theorem
Perhaps more impressive is Gauss’ work which was either never published or published after his death, often with his complete works, including:

1. In 1811, Gauss wrote a letter to his friend Bessel that included a statement (without proof) of a version of the Cauchy Integral Theorem (Cauchy only found it in 1825!)
Perhaps more impressive is Gauss’ work which was either never published or published after his death, often with his complete works, including:

1. In 1811, Gauss wrote a letter to his friend Bessel that included a statement (without proof) of a version of the Cauchy Integral Theorem (Cauchy only found it in 1825!)

2. In 1832, writing to János Bolyai’s father about the son’s discovery of non-Euclidean geometry,
Perhaps more impressive is Gauss’ work which was either never published or published after his death, often with his complete works, including:

1. In 1811, Gauss wrote a letter to his friend Bessel that included a statement (without proof) of a version of the Cauchy Integral Theorem (Cauchy only found it in 1825!)

2. In 1832, writing to János Bolyai’s father about the son’s discovery of non-Euclidean geometry, Gauss said he’d known of it for 35 years.
Gauss discovered what is now called the Fast Fourier Transform even before Fourier’s work on the not-fast Fourier transform.
Gauss discovered what is now called the Fast Fourier Transform even before Fourier’s work on the not-fast Fourier transform. The FFT only appeared in Gauss’ complete works but was essentially forgotten until its rediscovery by Cooley and Tukey in 1965.
Gauss discovered what is now called the Fast Fourier Transform even before Fourier’s work on the not-fast Fourier transform. The FFT only appeared in Gauss’ complete works but was essentially forgotten until its rediscovery by Cooley and Tukey in 1965. The Cooley–Tukey algorithm came at exactly the right time–just as digital computers became powerful enough to compute Fourier transforms of data important in the real world, and there was an explosion of applications.
Gauss discovered what is now called the Fast Fourier Transform even before Fourier’s work on the not-fast Fourier transform. The FFT only appeared in Gauss’ complete works but was essentially forgotten until its rediscovery by Cooley and Tukey in 1965. The Cooley–Tukey algorithm came at exactly the right time—just as digital computers became powerful enough to compute Fourier transforms of data important in the real world, and there was an explosion of applications. In fact, Tukey came up with the basic algorithm as a member of President Kennedy’s Presidential Scientific Advisory Committee to try to figure out a way to analyze seismic data in order to get information on Russian nuclear tests!
Gauss discovered what is now called the Fast Fourier Transform even before Fourier’s work on the not-fast Fourier transform. The FFT only appeared in Gauss’ complete works but was essentially forgotten until its rediscovery by Cooley and Tukey in 1965. The Cooley–Tukey algorithm came at exactly the right time–just as digital computers became powerful enough to compute Fourier transforms of data important in the real world, and there was an explosion of applications. In fact, Tukey came up with the basic algorithm as a member of President Kennedy’s Presidential Scientific Advisory Committee to try to figure out a way to analyze seismic data in order to get information on Russian nuclear tests! Garwin from IBM, also at the meeting, put Tukey in touch with Cooley who actually coded the algorithm.
Gauss discovered the invariant measure for the Gauss map $x \mapsto \{1/x\}$ (unpublished, but not rediscovered before his complete works). This appeared in an 1812 letter to Laplace which also stated without proof the connection to asymptotics of continued fraction expansions.
Gauss

4. Gauss discovered the invariant measure for the Gauss map \(x \mapsto \{1/x\} \) (unpublished, but not rediscovered before his complete works). This appeared in an 1812 letter to Laplace which also stated without proof the connection to asymptotics of continued fraction expansions.

5. Gauss conjectured the prime number theorem when he was 15 but published nothing on it,
Gauss discovered the invariant measure for the Gauss map $x \mapsto \{1/x\}$ (unpublished, but not rediscovered before his complete works). This appeared in an 1812 letter to Laplace which also stated without proof the connection to asymptotics of continued fraction expansions.

Gauss conjectured the prime number theorem when he was 15 but published nothing on it, although he mentioned it in a letter 50 years later!
Gauss

4. Gauss discovered the invariant measure for the Gauss map $x \mapsto \{1/x\}$ (unpublished, but not rediscovered before his complete works). This appeared in an 1812 letter to Laplace which also stated without proof the connection to asymptotics of continued fraction expansions.

5. Gauss conjectured the prime number theorem when he was 15 but published nothing on it, although he mentioned it in a letter 50 years later!

6. In 1827, Abel and Jacobi revolutionized the theory of elliptic integrals by understanding that their inverse functions were doubly periodic (what we now call elliptic functions).
4 Gauss discovered the invariant measure for the Gauss map $x \mapsto \{1/x\}$ (unpublished, but not rediscovered before his complete works). This appeared in an 1812 letter to Laplace which also stated without proof the connection to asymptotics of continued fraction expansions.

5 Gauss conjectured the prime number theorem when he was 15 but published nothing on it, although he mentioned it in a letter 50 years later!

6 In 1827, Abel and Jacobi revolutionized the theory of elliptic integrals by understanding that their inverse functions were doubly periodic (what we now call elliptic functions). But in his notebooks starting about 1796, Gauss had this basic idea, at least for a special case called the Lemniscate integral.
Gauss

A question that has fascinated historians of science is why Gauss left so much unpublished.
A question that has fascinated historians of science is why Gauss left so much unpublished. One factor is summarized by his statement “few but ripe.”
A question that has fascinated historians of science is why Gauss left so much unpublished. One factor is summarized by his statement “few but ripe.” Related is a famous statement that he made about Dirichlet:
A question that has fascinated historians of science is why Gauss left so much unpublished. One factor is summarized by his statement “few but ripe.” Related is a famous statement that he made about Dirichlet: “The total number of Dirichlet’s publications is not large: jewels are not weighed on a grocery scale.”
A question that has fascinated historians of science is why Gauss left so much unpublished. One factor is summarized by his statement “few but ripe.” Related is a famous statement that he made about Dirichlet: “The total number of Dirichlet’s publications is not large: jewels are not weighed on a grocery scale.”

But somehow that hasn’t been enough and there have been persistent stories that his attitude is connected to the reception that his masterpiece *Disquisitiones Arithmeticae* got from the French Academy. W.W. Rouse Ball (1850-1925) claimed in a history of mathematics that Gauss submitted the manuscript in 1800 to the French Academy and they rejected it with a snide description of the work.
There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea.
Gauss

There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception.
There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception. It is known that Gauss had bad relations with Andrian-Marie Legendre (1752-1833), 25 years Gauss’ senior and well established as a major figure in number theory when Gauss was starting out.
Gauss

There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception. It is known that Gauss had bad relations with Andrian-Marie Legendre (1752-1833), 25 years Gauss’ senior and well established as a major figure in number theory when Gauss was starting out.

In this regard there is a poignant side to Legendre’s career.
There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception. It is known that Gauss had bad relations with Andrian-Marie Legendre (1752-1833), 25 years Gauss’ senior and well established as a major figure in number theory when Gauss was starting out.

In this regard there is a poignant side to Legendre’s career. Beginning in 1786, Legendre spent as lot of time on what were then called elliptic functions and now called elliptic integrals.
Gauss

There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception. It is known that Gauss had bad relations with Andrian-Marie Legendre (1752-1833), 25 years Gauss’ senior and well established as a major figure in number theory when Gauss was starting out.

In this regard there is a poignant side to Legendre’s career. Beginning in 1786, Legendre spent a lot of time on what were then called elliptic functions and now called elliptic integrals. In 1825, then over 70, he published the first large volume and in 1826 the second of *Traité des Fonctions Elliptiques*, a project which he’d worked on for many years.
There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception. It is known that Gauss had bad relations with Andrian-Marie Legendre (1752-1833), 25 years Gauss’ senior and well established as a major figure in number theory when Gauss was starting out.

In this regard there is a poignant side to Legendre’s career. Beginning in 1786, Legendre spent as lot of time on what were then called elliptic functions and now called elliptic integrals. In 1825, then over 70, he published the first large volume and in 1826 the second of *Traité des Fonctions Elliptiques*, a project which he’d worked on for many years. Much of this was made obsolete by the discoveries of Abel and Jacobi.
Gauss

There is no direct evidence for this claim and some modern historians of mathematics say there is no validity to the idea but some recent historians mention disappointment with the French reception. It is known that Gauss had bad relations with Andrian-Marie Legendre (1752-1833), 25 years Gauss’ senior and well established as a major figure in number theory when Gauss was starting out.

In this regard there is a poignant side to Legendre’s career. Beginning in 1786, Legendre spent a lot of time on what were then called elliptic functions and now called elliptic integrals. In 1825, then over 70, he published the first large volume and in 1826 the second of *Traité des Fonctions Elliptiques*, a project which he’d worked on for many years. Much of this was made obsolete by the discoveries of Abel and Jacobi – in the year before Legendre died, he published a short third volume in which he said this.
Here is what G. N. Watson (1886-1965) (of Whittaker-Watson and *Bessel Function* fame) had to say in his retiring presidential address of the British Mathematical Association which was entitled *The Marquis and the Land-Agent; A Tale of the Eighteenth Century.*
Here is what G. N. Watson (1886-1965) (of Whittaker-Watson and *Bessel Function* fame) had to say in his retiring presidential address of the British Mathematical Association which was entitled *The Marquis and the Land-Agent; A Tale of the Eighteenth Century*: [I note that the address is about addition formulae for elliptic integrals in which Giulio Carlo de’ Toschi di Fagnano (1682–1766), a marquis, and John Landen (1719–1790), a one–time land agent and later FRS, played roles.]
“It is well known that the reluctance of Gauss to publish his discoveries was due to the rejection of his *Disquisitiones arithmeticae* by the French Academy, the rejection being accompanied by a sneer which, as Rouse Ball has said, would have been unjustifiable even if the work had been as worthless as the referees believed.”
“It is well known that the reluctance of Gauss to publish his discoveries was due to the rejection of his Disquisitiones arithmeticae by the French Academy, the rejection being accompanied by a sneer which, as Rouse Ball has said, would have been unjustifiable even if the work had been as worthless as the referees believed. It is the irony of fate that, but for this sneer, the Traité des fonctions elliptiques, the work of a Frenchman, might have assumed a different and vastly more valuable form,
“It is well known that the reluctance of Gauss to publish his discoveries was due to the rejection of his *Disquisitiones arithmeticae* by the French Academy, the rejection being accompanied by a sneer which, as Rouse Ball has said, would have been unjustifiable even if the work had been as worthless as the referees believed. It is the irony of fate that, but for this sneer, the *Traite des fonctions elliptiques*, the work of a Frenchman, might have assumed a different and vastly more valuable form, and Legendre might have been spared the pain of realizing that many years of his life had been practically wasted, had the method of inversion come to be published when Legendre’s age was fifty instead of seventy-six.”
“It is well known that the reluctance of Gauss to publish his discoveries was due to the rejection of his *Disquisitiones arithmeticae* by the French Academy, the rejection being accompanied by a sneer which, as Rouse Ball has said, would have been unjustifiable even if the work had been as worthless as the referees believed. It is the irony of fate that, but for this sneer, the *Traite des fonctions elliptiques*, the work of a Frenchman, might have assumed a different and vastly more valuable form, and Legendre might have been spared the pain of realizing that many years of his life had been practically wasted, had the method of inversion come to be published when Legendre’s age was fifty instead of seventy-six.”

So much for the impact of not publishing!
Newton

Let’s play one more round. The next three greats aren’t so clear, but for me, they are Newton, Hilbert and Poincaré.
Let’s play one more round. The next three greats aren’t so clear, but for me, they are Newton, Hilbert and Poincaré.

Issac Newton (1642-1726) is of course not only a great mathematician but arguably, the greatest physicist (his only competition is Einstein).
Let’s play one more round. The next three greats aren’t so clear, but for me, they are Newton, Hilbert and Poincaré.

Issac Newton (1642-1726) is of course not only a great mathematician but arguably, the greatest physicist (his only competition is Einstein). It’s not only the laws of mechanics and gravity but also Optiks.
Let’s play one more round. The next three greats aren’t so clear, but for me, they are Newton, Hilbert and Poincaré.

Issac Newton (1642-1726) is of course not only a great mathematician but arguably, the greatest physicist (his only competition is Einstein). It’s not only the laws of mechanics and gravity but also Optiks.

His greatest mathematical discovery was fluxions (aka calculus)
Let’s play one more round. The next three greats aren’t so clear, but for me, they are Newton, Hilbert and Poincaré.

Issac Newton (1642-1726) is of course not only a great mathematician but arguably, the greatest physicist (his only competition is Einstein). It’s not only the laws of mechanics and gravity but also Optiks.

His greatest mathematical discovery was fluxions (aka calculus) but there was also the binomial theorem for fractional powers, repeating divided differences, and classification of cubics.
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization:
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical.
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system!
To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system! As Alexander Pope (1688–1744) put it
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system! As Alexander Pope (1688–1744) put it

\[\textit{Nature and nature’s laws lay hid in night;} \]
To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system! As Alexander Pope (1688–1744) put it

Nature and nature’s laws lay hid in night;
God said "Let Newton be" and all was light.
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system! As Alexander Pope (1688–1744) put it

\[\text{Nature and nature’s laws lay hid in night;} \]
\[\text{God said "Let Newton be" and all was light.} \]

to which Sir John Squire (1884–1958) added
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system! As Alexander Pope (1688–1744) put it

\[
\text{Nature and nature’s laws lay hid in night;} \\
\text{God said "Let Newton be" and all was light.}
\]

to which Sir John Squire (1884–1958) added

\[
\text{It could not last; the Devil shouting "Ho!}
\]
Newton

To only think about subjects though misses Newton’s truly historic contribution to civilization: before him the explanations of Nature were all mainly magical – afterwards, the world became a dynamical system! As Alexander Pope (1688–1744) put it

\begin{quote}
Nature and nature’s laws lay hid in night;
God said "Let Newton be" and all was light.
\end{quote}

to which Sir John Squire (1884–1958) added

\begin{quote}
It could not last; the Devil shouting "Ho!
Let Einstein be!" restored the status quo.
\end{quote}
I won’t focus in detail on the tales of the young Newton who made some of his greatest discoveries while home from Cambridge during a plague scare nor on the priority fight with Leibniz.
I won’t focus in detail on the tales of the young Newton who made some of his greatest discoveries while home from Cambridge during a plague scare nor on the priority fight with Leibniz. Instead, I note that while we think of Newton as the great rationalist, he spent almost as much time studying alchemy as physics,
I won’t focus in detail on the tales of the young Newton who made some of his greatest discoveries while home from Cambridge during a plague scare nor on the priority fight with Leibniz. Instead, I note that while we think of Newton as the great rationalist, he spent almost as much time studying alchemy as physics, and wrote religious tracts.
I won’t focus in detail on the tales of the young Newton who made some of his greatest discoveries while home from Cambridge during a plague scare nor on the priority fight with Leibniz. Instead, I note that while we think of Newton as the great rationalist, he spent almost as much time studying alchemy as physics, and wrote religious tracts (and studied Talmud!).
I won’t focus in detail on the tales of the young Newton who made some of his greatest discoveries while home from Cambridge during a plague scare nor on the priority fight with Leibniz. Instead, I note that while we think of Newton as the great rationalist, he spent almost as much time studying alchemy as physics, and wrote religious tracts (and studied Talmud!). He was a great director of the Mint in his later years.
David Hilbert (1862–1943) was a giant with contributions to algebra, geometry, analysis and logic.
David Hilbert (1862–1943) was a giant with contributions to algebra, geometry, analysis and logic. His students include Bernstein, Blumenthal, Courant, Dehn, Haar, Hecke, Hellinger, Kellogg, Kneser, Lasker (the chess master), Schmidt, Steinhaus, Weyl and Zermelo.
Hilbert

David Hilbert (1862–1943) was a giant with contributions to algebra, geometry, analysis and logic. His students include Bernstein, Blumenthal, Courant, Dehn, Haar, Hecke, Hellinger, Kellogg, Knesser, Lasker (the chess master), Schmidt, Steinhaus, Weyl and Zermelo.

He was born and got his PhD. in Königsberg where he became lifelong friends with Minkowski and Hurwitz.
David Hilbert (1862–1943) was a giant with contributions to algebra, geometry, analysis and logic. His students include Bernstein, Blumenthal, Courant, Dehn, Haar, Hecke, Hellinger, Kellogg, Knesser, Lasker (the chess master), Schmidt, Steinhaus, Weyl and Zermelo.

He was born and got his PhD. in Königsberg where he became lifelong friends with Minkowski and Hurwitz. In 1895, at age 33, with the backing of Felix Klein, he was appointed a Professor in Göttingen where he spent the rest of his career.
David Hilbert (1862–1943) was a giant with contributions to algebra, geometry, analysis and logic. His students include Bernstein, Blumenthal, Courant, Dehn, Haar, Hecke, Hellinger, Kellogg, Knesser, Lasker (the chess master), Schmidt, Steinhaus, Weyl and Zermelo.

He was born and got his PhD. in Königsberg where he became lifelong friends with Minkowski and Hurwitz. In 1895, at age 33, with the backing of Felix Klein, he was appointed a Professor in Göttingen where he spent the rest of his career. There was a not always pleasant competition with the University of Berlin and its faculty.
David Hilbert (1862–1943) was a giant with contributions to algebra, geometry, analysis and logic. His students include Bernstein, Blumenthal, Courant, Dehn, Haar, Hecke, Hellinger, Kellogg, Kneser, Lasker (the chess master), Schmidt, Steinhaus, Weyl and Zermelo.

He was born and got his PhD. in Königsberg where he became lifelong friends with Minkowski and Hurwitz. In 1895, at age 33, with the backing of Felix Klein, he was appointed a Professor in Göttingen where he spent the rest of his career. There was a not always pleasant competition with the University of Berlin and its faculty.

Hilbert’s early work involved aspects of algebra – particularly, invariant theory (Hilbert basis theory) and algebraic number theory.
Introduction

Riemann, Euler, Gauss

Newton, Hilbert, Poincaré

Riesz², Szegő, von Neumann

Kato, Loewner, Verblunsky

Blumenthal, Pick, Tauber

Landau, König, Marcinkiewicz

Krein, Noether, Thomson

Hilbert

His 1899 book *Foundations of Geometry* reexamined Euclidean geometry with, for example, axioms about what it meant for one point on a line to be between two others.
His 1899 book *Foundations of Geometry* reexamined Euclidean geometry with, for example, axioms about what it meant for one point on a line to be between two others.

In many ways, 1900 was a pivotal year for Hilbert.
Hilbert

His 1899 book *Foundations of Geometry* reexamined Euclidean geometry with, for example, axioms about what it meant for one point on a line to be between two others.

In many ways, 1900 was a pivotal year for Hilbert. Not only did he present his famous list of problems but the next year he heard the Swedish mathematician, Erik Holmgren (1872–1943), talk about the work of his Swedish colleague, Ivar Fredholm (1866–1927) on integral equations.
Hilbert

His 1899 book *Foundations of Geometry* reexamined Euclidean geometry with, for example, axioms about what it meant for one point on a line to be between two others.

In many ways, 1900 was a pivotal year for Hilbert. Not only did he present his famous list of problems but the next year he heard the Swedish mathematician, Erik Holmgren (1872–1943), talk about the work of his Swedish colleague, Ivar Fredholm (1866–1927) on integral equations based on the development of a theory of infinite dimensional determinants.
Hilbert

His 1899 book *Foundations of Geometry* reexamined Euclidean geometry with, for example, axioms about what it meant for one point on a line to be between two others.

In many ways, 1900 was a pivotal year for Hilbert. Not only did he present his famous list of problems but the next year he heard the Swedish mathematician, Erik Holmgren (1872–1943), talk about the work of his Swedish colleague, Ivar Fredholm (1866–1927) on integral equations based on the development of a theory of infinite dimensional determinants. In an act of real bravery, the then almost 40 year old Hilbert totally switched fields to analysis and, other than some important work in Logic, spent the bulk of the rest of his career studying analysis, especially integral equations.
Hilbert was very successful although not as successful as he hoped.
Hilbert was very successful although not as successful as he hoped. According to Ernst Hellinger (1883–1950), at that time a student of Hilbert, when Hilbert announced his seminar would be devoted to the study of integral equations, he declared he expected to be able to use them to prove the Riemann hypothesis!
Hilbert was very successful although not as successful as he hoped. According to Ernst Hellinger (1883–1950), at that time a student of Hilbert, when Hilbert announced his seminar would be devoted to the study of integral equations, he declared he expected to be able to use them to prove the Riemann hypothesis! Apparently, he hoped to realize the zeta function as a Fredholm determinant—something he did not succeed at.
Hilbert was very successful although not as successful as he hoped. According to Ernst Hellinger (1883–1950), at that time a student of Hilbert, when Hilbert announced his seminar would be devoted to the study of integral equations, he declared he expected to be able to use them to prove the Riemann hypothesis! Apparently, he hoped to realize the zeta function as a Fredholm determinant—something he did not succeed at.

Because of his background in algebra, he stated everything in terms of quadratic forms, not operators.
Hilbert was very successful although not as successful as he hoped. According to Ernst Hellinger (1883–1950), at that time a student of Hilbert, when Hilbert announced his seminar would be devoted to the study of integral equations, he declared he expected to be able to use them to prove the Riemann hypothesis! Apparently, he hoped to realize the zeta function as a Fredholm determinant—something he did not succeed at.

Because of his background in algebra, he stated everything in terms of quadratic forms, not operators. He emphasized the geometry in L^2 so the name Hilbert space given to the abstraction is appropriate.
Hilbert was very successful although not as successful as he hoped. According to Ernst Hellinger (1883–1950), at that time a student of Hilbert, when Hilbert announced his seminar would be devoted to the study of integral equations, he declared he expected to be able to use them to prove the Riemann hypothesis! Apparently, he hoped to realize the zeta function as a Fredholm determinant—something he did not succeed at.

Because of his background in algebra, he stated everything in terms of quadratic forms, not operators. He emphasized the geometry in L^2 so the name Hilbert space given to the abstraction is appropriate. The high points of his work were the Hilbert–Schmidt Theorem (Schmidt was his student)
Hilbert was very successful although not as successful as he hoped. According to Ernst Hellinger (1883–1950), at that time a student of Hilbert, when Hilbert announced his seminar would be devoted to the study of integral equations, he declared he expected to be able to use them to prove the Riemann hypothesis! Apparently, he hoped to realize the zeta function as a Fredholm determinant—something he did not succeed at.

Because of his background in algebra, he stated everything in terms of quadratic forms, not operators. He emphasized the geometry in L^2 so the name Hilbert space given to the abstraction is appropriate. The high points of his work were the Hilbert–Schmidt Theorem (Schmidt was his student) and the spectral theory for bounded self–adjoint operators.
Henri Poincaré (1854–1912) was not only a mathematician but also a theoretical physicist and philosopher of science.
Henri Poincaré (1854–1912) was not only a mathematician but also a theoretical physicist and philosopher of science. After a first degree at École Polytechnique, he continued his studies at École des Mine and worked as a mining engineer while completing his PhD at the Sorbonne in Mathematics under the direction of Charles Hermite (1822–1901).
Henri Poincaré (1854–1912) was not only a mathematician but also a theoretical physicist and philosopher of science. After a first degree at École Polytechnique, he continued his studies at École des Mine and worked as a mining engineer while completing his PhD at the Sorbonne in Mathematics under the direction of Charles Hermite (1822–1901). His first great work concerned the theory of functions on the disk automorphic under discrete groups of Möbius transformations (which he called Fuchsian groups).
Henri Poincaré (1854–1912) was not only a mathematician but also a theoretical physicist and philosopher of science. After a first degree at École Polytechnique, he continued his studies at École des Mine and worked as a mining engineer while completing his PhD at the Sorbonne in Mathematics under the direction of Charles Hermite (1822–1901). His first great work concerned the theory of functions on the disk automorphic under discrete groups of Möbius transformations (which he called Fuchsian groups). He discovered the Poincaré metric and realized it gave one hyperbolic geometry and so a concrete model of non-Euclidean geometry.
Henri Poincaré (1854–1912) was not only a mathematician but also a theoretical physicist and philosopher of science. After a first degree at École Polytechnique, he continued his studies at École des Mine and worked as a mining engineer while completing his PhD at the Sorbonne in Mathematics under the direction of Charles Hermite (1822–1901). His first great work concerned the theory of functions on the disk automorphic under discrete groups of Möbius transformations (which he called Fuchsian groups). He discovered the Poincaré metric and realized it gave one hyperbolic geometry and so a concrete model of non–Euclidean geometry. In this regard, we have his famous description of this realization:
"At that moment I left Caen where I then lived, to take part in a geological expedition organized by the École des Mines. The circumstances of the journey made me forget my mathematical work; arrived at Coutances we boarded an omnibus for I don’t know what journey."
Poincaré

“At that moment I left Caen where I then lived, to take part in a geological expedition organized by the École des Mines. The circumstances of the journey made me forget my mathematical work; arrived at Coutances we boarded an omnibus for I don’t know what journey. At the moment when I put my foot on the step the idea came to me, without anything in my previous thoughts having prepared me for it; that the transformations I had made use of to define the Fuchsian functions were identical with those of non-Euclidean geometry.”
"At that moment I left Caen where I then lived, to take part in a geological expedition organized by the École des Mines. The circumstances of the journey made me forget my mathematical work; arrived at Coutances we boarded an omnibus for I don’t know what journey. At the moment when I put my foot on the step the idea came to me, without anything in my previous thoughts having prepared me for it; that the transformations I had made use of to define the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify this, I did not have the time for it, since scarcely had I sat down in the bus than I resumed the conversation already begun,
Poincaré

“At that moment I left Caen where I then lived, to take part in a geological expedition organized by the École des Mines. The circumstances of the journey made me forget my mathematical work; arrived at Coutances we boarded an omnibus for I don’t know what journey. At the moment when I put my foot on the step the idea came to me, without anything in my previous thoughts having prepared me for it; that the transformations I had made use of to define the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify this, I did not have the time for it, since scarcely had I sat down in the bus than I resumed the conversation already begun, but I was entirely certain at once. On returning to Caen, I verified the result at leisure to salve my conscience.”
Beginning in 1882, Poincaré published a series of papers on the subject of automorphic functions based on constructing series of functions automorphic up to factor and taking the ratio of two such functions.
Beginning in 1882, Poincaré published a series of papers on the subject of automorphic functions based on constructing series of functions automorphic up to factor and taking the ratio of two such functions. Felix Klein (1849-1925), slightly older and already well-established, had studied automorphic functions by passing to the Riemann surface obtained by taking quotient of the disk by the Fuchsian group.
Beginning in 1882, Poincaré published a series of papers on the subject of automorphic functions based on constructing series of functions automorphic up to factor and taking the ratio of two such functions. Felix Klein (1849-1925), slightly older and already well–established, had studied automorphic functions by passing to the Riemann surface obtained by taking quotient of the disk by the Fuchsian group. At first, they had a friendly correspondence but it turned into a competition and Klein drove himself to keep up so much that he had a nervous breakdown followed by severe depression and didn’t produce first class mathematics afterwards.
Beginning in 1882, Poincaré published a series of papers on the subject of automorphic functions based on constructing series of functions automorphic up to factor and taking the ratio of two such functions. Felix Klein (1849-1925), slightly older and already well–established, had studied automorphic functions by passing to the Riemann surface obtained by taking quotient of the disk by the Fuchsian group. At first, they had a friendly correspondence but it turned into a competition and Klein drove himself to keep up so much that he had a nervous breakdown followed by severe depression and didn’t produce first class mathematics afterwards. Klein objected to the credit Poincaré gave Fuchs
Beginning in 1882, Poincaré published a series of papers on the subject of automorphic functions based on constructing series of functions automorphic up to factor and taking the ratio of two such functions. Felix Klein (1849-1925), slightly older and already well–established, had studied automorphic functions by passing to the Riemann surface obtained by taking quotient of the disk by the Fuchsian group. At first, they had a friendly correspondence but it turned into a competition and Klein drove himself to keep up so much that he had a nervous breakdown followed by severe depression and didn’t produce first class mathematics afterwards. Klein objected to the credit Poincaré gave Fuchs and in reaction, Poincaré called general discrete groups of fractional linear transformations Kleinian groups.
Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work.
Poincaré

Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk.
Poincaré

Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk. Poincaré also was a pioneer in the theory of several complex variables.
Poincaré

Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk. Poincaré also was a pioneer in the theory of several complex variables – in particular he proved that the ball and polydisk are not conformally equivalent, so the Riemann mapping theorem doesn’t extend to more than one variable.
Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk. Poincaré also was a pioneer in the theory of several complex variables – in particular he proved that the ball and polydisk are not conformally equivalent, so the Riemann mapping theorem doesn’t extend to more than one variable.

Poincaré was a pioneer in the study of dynamical systems and its close relative – the theory of differential and difference equations.
Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk. Poincaré also was a pioneer in the theory of several complex variables – in particular he proved that the ball and polydisk are not conformally equivalent, so the Riemann mapping theorem doesn’t extend to more than one variable.

Poincaré was a pioneer in the study of dynamical systems and its close relative – the theory of differential and difference equations. He has several results on asymptotics of solutions.
Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk. Poincaré also was a pioneer in the theory of several complex variables – in particular he proved that the ball and polydisk are not conformally equivalent, so the Riemann mapping theorem doesn’t extend to more than one variable.

Poincaré was a pioneer in the study of dynamical systems and its close relative – the theory of differential and difference equations. He has several results on asymptotics of solutions. He was the first person to understand that hyperbolic systems can have what is now called chaotic behavior.
Poincaré’s accomplishments are vast but rather than make a bulleted list, I’ll pick a subset of areas where he had seminal work. Before leaving complex analysis, I mention the Uniformization Theorem of Koebe and Poincaré that says the only simply connected Riemann surfaces are the plane, Riemann sphere and the disk. Poincaré also was a pioneer in the theory of several complex variables – in particular he proved that the ball and polydisk are not conformally equivalent, so the Riemann mapping theorem doesn’t extend to more than one variable.

Poincaré was a pioneer in the study of dynamical systems and its close relative – the theory of differential and difference equations. He has several results on asymptotics of solutions. He was the first person to understand that hyperbolic systems can have what is now called chaotic behavior. He is the grandfather of chaotic dynamics.
Introduction

Riemann, Euler, Gauss

Newton, Hilbert, Poincaré

Riesz, Szegő, von Neumann

Kato, Loewner, Verblunsky

Blumenthal, Pick, Tauber

Landau, König, Marcinkiewicz

Krein, Noether, Thomson

Poincaré

He has several books about celestial mechanics and his work on the 3-body problem is what first gained him wide fame because he got a prize from the King of Sweden for it.
He has several books about celestial mechanics and his work on the 3-body problem is what first gained him wide fame because he got a prize from the King of Sweden for it. He wrote cogently on the issues underlying statistical mechanics and, in this context, proved the celebrated Poincaré recurrence theorem that if a phase space has finite volume then the system returns arbitrarily close to its initial condition after long times.
He has several books about celestial mechanics and his work on the 3-body problem is what first gained him wide fame because he got a prize from the King of Sweden for it. He wrote cogently on the issues underlying statistical mechanics and, in this context, proved the celebrated Poincaré recurrence theorem that if a phase space has finite volume then the system returns arbitrarily close to its initial condition after long times.

Poincaré was the founder of modern algebraic topology.
He has several books about celestial mechanics and his work on the 3-body problem is what first gained him wide fame because he got a prize from the King of Sweden for it. He wrote cogently on the issues underlying statistical mechanics and, in this context, proved the celebrated Poincaré recurrence theorem that if a phase space has finite volume then the system returns arbitrarily close to its initial condition after long times.

Poincaré was the founder of modern algebraic topology. Following up on work of Schwarz and Klein, he formalized the theory of covering spaces and defined the fundamental group.
Poincaré

He has several books about celestial mechanics and his work on the 3-body problem is what first gained him wide fame because he got a prize from the King of Sweden for it. He wrote cogently on the issues underlying statistical mechanics and, in this context, proved the celebrated Poincaré recurrence theorem that if a phase space has finite volume then the system returns arbitrarily close to its initial condition after long times.

Poincaré was the founder of modern algebraic topology. Following up on work of Schwarz and Klein, he formalized the theory of covering spaces and defined the fundamental group. He invented Homology theory, proved Poincaré duality
Poincaré

He has several books about celestial mechanics and his work on the 3-body problem is what first gained him wide fame because he got a prize from the King of Sweden for it. He wrote cogently on the issues underlying statistical mechanics and, in this context, proved the celebrated Poincaré recurrence theorem that if a phase space has finite volume then the system returns arbitrarily close to its initial condition after long times.

Poincaré was the founder of modern algebraic topology. Following up on work of Schwarz and Klein, he formalized the theory of covering spaces and defined the fundamental group. He invented Homology theory, proved Poincaré duality and stated the Poincaré conjecture (originally as a theorem with an incorrect proof).
Independently of Einstein, he developed much of the formalism of special relativity.
Independently of Einstein, he developed much of the formalism of special relativity – in particular, he was the first to write down Lorentz transformations after which the Poincaré group is named.
Independently of Einstein, he developed much of the formalism of special relativity – in particular, he was the first to write down Lorentz transformations after which the Poincaré group is named. He proved Lorentz invariance of Maxwell’s equation.
Independently of Einstein, he developed much of the formalism of special relativity – in particular, he was the first to write down Lorentz transformations after which the Poincaré group is named. He proved Lorentz invariance of Maxwell’s equation and claimed Lorentz invariance of gravity required the existence of gravity waves (albeit without any of the crucial details of Einstein’s later work).
Independently of Einstein, he developed much of the formalism of special relativity – in particular, he was the first to write down Lorentz transformations after which the Poincaré group is named. He proved Lorentz invariance of Maxwell’s equation and claimed Lorentz invariance of gravity required the existence of gravity waves (albeit without any of the crucial details of Einstein’s later work).

In 1910 there was a big push for him to get the Nobel prize in physics. Of the 58 nominations that year, 34 mentioned Poincaré including six former prize winners.
Independently of Einstein, he developed much of the formalism of special relativity – in particular, he was the first to write down Lorentz transformations after which the Poincaré group is named. He proved Lorentz invariance of Maxwell’s equation and claimed Lorentz invariance of gravity required the existence of gravity waves (albeit without any of the crucial details of Einstein’s later work).

In 1910 there was a big push for him to get the Nobel prize in physics. Of the 58 nominations that year, 34 mentioned Poincaré including six former prize winners. Behind the scenes Mittag-Leffler used his influence, but in the end the prize went to van der Waals.
Independently of Einstein, he developed much of the formalism of special relativity – in particular, he was the first to write down Lorentz transformations after which the Poincaré group is named. He proved Lorentz invariance of Maxwell’s equation and claimed Lorentz invariance of gravity required the existence of gravity waves (albeit without any of the crucial details of Einstein’s later work).

In 1910 there was a big push for him to get the Nobel prize in physics. Of the 58 nominations that year, 34 mentioned Poincaré including six former prize winners. Behind the scenes Mittag-Leffler used his influence, but in the end the prize went to van der Waals. It is conjectured that two factors were a preference for experiment over theory and the fact that Poincaré didn’t have a single notable achievement but several.
Poincaré

That said, he was continued for further consideration and might have gotten the prize later if he hadn’t died two years later at age only 58.
Poincaré

That said, he was continued for further consideration and might have gotten the prize later if he hadn’t died two years later at age only 58.

We end our discussion by mentioning despite the new-fangledness of his work on chaos and algebraic topology, Poincaré was often opposed to new ideas in analysis.
Poincaré

That said, he was continued for further consideration and might have gotten the prize later if he hadn’t died two years later at age only 58.

We end our discussion by mentioning despite the new-fangledness of his work on chaos and algebraic topology, Poincaré was often opposed to new ideas in analysis. He was an opponent of Cantor’s work, unlike Hilbert, who was a big supporter.
That said, he was continued for further consideration and might have gotten the prize later if he hadn’t died two years later at age only 58.

We end our discussion by mentioning despite the new-fangledness of his work on chaos and algebraic topology, Poincaré was often opposed to new ideas in analysis. He was an opponent of Cantor’s work, unlike Hilbert, who was a big supporter. Indeed, he is reputed to have said: “Point set topology is a disease from which the human race will soon recover” by which he meant Cantor’s work.
That said, he was continued for further consideration and might have gotten the prize later if he hadn’t died two years later at age only 58.

We end our discussion by mentioning despite the new-fangledness of his work on chaos and algebraic topology, Poincaré was often opposed to new ideas in analysis. He was an opponent of Cantor’s work, unlike Hilbert, who was a big supporter. Indeed, he is reputed to have said: “Point set topology is a disease from which the human race will soon recover” by which he meant Cantor’s work. While this does describe his attitude and this quote is so widely accepted you could purchase a coffee cup with the quote at one time, the historian Jeremy Gray questions if he ever said it!
He also said “We have seen a rabble of functions arise whose only job, it seems, is to look as little as possible like decent and useful functions. No more continuity, or perhaps continuity but no derivatives...
He also said “We have seen a rabble of functions arise whose only job, it seems, is to look as little as possible like decent and useful functions. No more continuity, or perhaps continuity but no derivatives. . . Yesterday, if a new function was invented it was to serve some practical end; today they are specially invented only to show up the arguments of our fathers, and they will never have any other use.”
Hungary

In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany.
In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany. In the 20th, we need to add the U.S., England and, perhaps Russia – all large countries.
Introduction

Riemann, Euler, Gauss
Newton, Hilbert, Poincaré
Riesz2, Szegő, von Neumann
Kato, Loewner, Verblunsky
Blumenthal, Pick, Tauber
Landau, König, Marcinkiewicz
Krein, Noether, Thomson

Hungary

In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany. In the 20th, we need to add the U.S., England and, perhaps Russia – all large countries. With a theme of trios of mathematicians, it’s natural to look at small countries.
In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany. In the 20th, we need to add the U.S., England and, perhaps Russia – all large countries. With a theme of trios of mathematicians, it’s natural to look at small countries. If I were picking two, the choice of the second wouldn’t be clear but without a doubt, there a largest small country mathematically speaking
Hungary

In the 18^{th} century, the centers of mathematics were France and wherever Euler happened to be and in the 19^{th} France and Germany. In the 20^{th}, we need to add the U.S., England and, perhaps Russia – all large countries. With a theme of trios of mathematicians, it’s natural to look at small countries. If I were picking two, the choice of the second wouldn’t be clear but without a doubt, there a largest small country mathematically speaking – Hungary!
In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany. In the 20th, we need to add the U.S., England and, perhaps Russia – all large countries. With a theme of trios of mathematicians, it’s natural to look at small countries. If I were picking two, the choice of the second wouldn’t be clear but without a doubt, there a largest small country mathematically speaking – Hungary!

Picking only three mathematicians isn’t easy but the deepest ones, at least from the first half of the last century, are clearly Riesz, Szegő and von Neumann.
Hungary

In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany. In the 20th, we need to add the U.S., England and, perhaps Russia – all large countries. With a theme of trios of mathematicians, it’s natural to look at small countries. If I were picking two, the choice of the second wouldn’t be clear but without a doubt, there a largest small country mathematically speaking – Hungary!

Picking only three mathematicians isn’t easy but the deepest ones, at least from the first half of the last century, are clearly Riesz, Szegő and von Neumann. Of course, there were Riesz brothers so I get to discuss four and up the total number to 22.
In the 18th century, the centers of mathematics were France and wherever Euler happened to be and in the 19th France and Germany. In the 20th, we need to add the U.S., England and, perhaps Russia – all large countries. With a theme of trios of mathematicians, it’s natural to look at small countries. If I were picking two, the choice of the second wouldn’t be clear but without a doubt, there a largest small country mathematically speaking – Hungary!

Picking only three mathematicians isn’t easy but the deepest ones, at least from the first half of the last century, are clearly Riesz, Szegő and von Neumann. Of course, there were Riesz brothers so I get to discuss four and up the total number to 22. Remarkably, F. Riesz was a student with Lipót Fejér (1880–1959) but the other three – M. Riesz, Szegő and von Neumann – were all students of Fejér.
Frigyes Riesz (1880–1956) was a Jewish–Hungarian mathematician whose students included Horvath, Radó, Rényi and Sz-Nagy.
Frigyes Riesz (1880–1956) was a Jewish–Hungarian mathematician whose students included Horvath, Radó, Rényi and Sz-Nagy. He did his studies in ETH, Zürich and Budapest and then went to Göttingen where he was very much influenced by Hilbert.
F. Riesz

Frigyes Riesz (1880–1956) was a Jewish–Hungarian mathematician whose students included Horvath, Radó, Rényi and Sz-Nagy. He did his studies in ETH, Zürich and Budapest and then went to Göttingen where he was very much influenced by Hilbert.

In 1911, he was appointed to the University of Kolozsvar but in 1920, in accord with the Treaty of Trianon, Transylvania was ceded to Romania.
F. Riesz

Frigyes Riesz (1880–1956) was a Jewish–Hungarian mathematician whose students included Horvath, Radó, Rényi and Sz-Nagy. He did his studies in ETH, Zürich and Budapest and then went to Göttingen where he was very much influenced by Hilbert.

In 1911, he was appointed to the University of Kolozsvar but in 1920, in accord with the Treaty of Trianon, Transylvania was ceded to Romania. The town of Kolozsvar was renamed Cluj. A new university was established in Hungary, at Szeged and the faculty from Kolozsvar invited to join. Riesz and Haar founded the Bolyai Institute there.
Frigyes Riesz (1880–1956) was a Jewish–Hungarian mathematician whose students included Horvath, Radó, Rényi and Sz-Nagy. He did his studies in ETH, Zürich and Budapest and then went to Göttingen where he was very much influenced by Hilbert.

In 1911, he was appointed to the University of Kolozsvar but in 1920, in accord with the Treaty of Trianon, Transylvania was ceded to Romania. The town of Kolozsvar was renamed Cluj. A new university was established in Hungary, at Szeged and the faculty from Kolozsvar invited to join. Riesz and Haar founded the Bolyai Institute there. Riesz very much wanted a position in Budapest, Hungary’s greatest university but there was policy of limiting Jewish professors to one in each department and Fejér was also Jewish.
In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest.
In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest. Riesz survived the second World War despite round-ups of those of Jewish heritage.
In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest. Riesz survived the second World War despite round-ups of those of Jewish heritage. At first he was protect by his high status and he moved to Budapest during the height of the round-ups in Szeged.
In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest. Riesz survived the second World War despite round-ups of those of Jewish heritage. At first he was protect by his high status and he moved to Budapest during the height of the round-ups in Szeged and he returned to Szeged when round-ups were started in Budapest.
F. Riesz

In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest. Riesz survived the second World War despite round-ups of those of Jewish heritage. At first he was protect by his high status and he moved to Budapest during the height of the round-ups in Szeged and he returned to Szeged when round-ups were started in Budapest. Shortly after the Russians occupied Szeged.
F. Riesz

In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest. Riesz survived the second World War despite round-ups of those of Jewish heritage. At first he was protect by his high status and he moved to Budapest during the height of the round-ups in Szeged and he returned to Szeged when round-ups were started in Budapest. Shortly after the Russians occupied Szeged.

Riesz and his brother as well as Haar, König and Fejér never married and he told his student Kalmar that he shouldn’t marry but instead devote his life to science.
In 1945, with the Russian occupation, antisemitism somewhat diminished and Riesz moved to Budapest. Riesz survived the second World War despite round-ups of those of Jewish heritage. At first he was protect by his high status and he moved to Budapest during the height of the round-ups in Szeged and he returned to Szeged when round-ups were started in Budapest. Shortly after the Russians occupied Szeged.

Riesz and his brother as well as Haar, König and Fejér never married and he told his student Kalmar that he shouldn’t marry but instead devote his life to science. As one of Riesz’ students reports: “However, Kalmar did get married. This made Riesz lose his temper to some extent. For a while he was nervous and impatient to Kalmar.”
Then he calmed down. Kalmar’s wife was also an able mathematician, and Riesz liked her, as all of us did.
F. Riesz

Then he calmed down. Kalmar’s wife was also an able mathematician, and Riesz liked her, as all of us did. Riesz could see that Kalmar’s scientific goals had not been hurt by marriage.”
Then he calmed down. Kalmar’s wife was also an able mathematician, and Riesz liked her, as all of us did. Riesz could see that Kalmar’s scientific goals had not been hurt by marriage.”

His 1955 textbook, *Leçons d’Analyse Fonctionnelles* with Bela Szokefalvi–Nagy was long a mainstay.
F. Riesz

Then he calmed down. Kalmar’s wife was also an able mathematician, and Riesz liked her, as all of us did. Riesz could see that Kalmar’s scientific goals had not been hurt by marriage.”

His 1955 textbook, *Leçons d’Analyse Fonctionnelles* with Bela Szokefalvi–Nagy was long a mainstay. They wrote it in French because Riesz’ other primary languages were German (not acceptable after the war) and English (not acceptable under Soviet occupation). It was soon translated into English though.
F. Riesz

Then he calmed down. Kalmar’s wife was also an able mathematician, and Riesz liked her, as all of us did. Riesz could see that Kalmar’s scientific goals had not been hurt by marriage.”

His 1955 textbook, *Leçons d’Analyse Fonctionnelles* with Bela Szokefalvi–Nagy was long a mainstay. They wrote it in French because Riesz’ other primary languages were German (not acceptable after the war) and English (not acceptable under Soviet occupation). It was soon translated into English though. Riesz had been polishing it for many years as this story from Ray Lorch shows: “Riesz was a dangerous man with whom to collaborate in writing a paper or a book. He was constantly having new ideas on how to proceed, and the latest brain child was the favorite.
This would lead to disconcerting results for the collaborator, who was perpetually out of step. An example was told me by Tibor Rado, his ex-assistant. During the academic year, Riesz would lecture on measure theory and functional analysis. Rado would take copious notes.
This would lead to disconcerting results for the collaborator, who was perpetually out of step. An example was told me by Tibor Rado, his ex-assistant. During the academic year, Riesz would lecture on measure theory and functional analysis. Rado would take copious notes. When summer arrived, Riesz would depart for a cooler spot. Rado would sweat it out for three months, writing up at Riesz’s request all the material, to be in publishable form in the fall.
This would lead to disconcerting results for the collaborator, who was perpetually out of step. An example was told me by Tibor Rado, his ex-assistant. During the academic year, Riesz would lecture on measure theory and functional analysis. Rado would take copious notes. When summer arrived, Riesz would depart for a cooler spot. Rado would sweat it out for three months, writing up at Riesz’s request all the material, to be in publishable form in the fall. At the end of September Riesz would put in his first day at the Institute, and Rado would come to the library to greet his superior, proudly carrying a stack of eight hundred pages, which he placed in Riesz’ lap with great satisfaction.
This would lead to disconcerting results for the collaborator, who was perpetually out of step. An example was told me by Tibor Rado, his ex-assistant. During the academic year, Riesz would lecture on measure theory and functional analysis. Rado would take copious notes. When summer arrived, Riesz would depart for a cooler spot. Rado would sweat it out for three months, writing up at Riesz's request all the material, to be in publishable form in the fall. At the end of September Riesz would put in his first day at the Institute, and Rado would come to the library to greet his superior, proudly carrying a stack of eight hundred pages, which he placed in Riesz’ lap with great satisfaction. Riesz glanced at the bundle, recognized what it was, and raised his eyes with a mixture of kindness and thankfulness, and at the same time with a spark of merriment, as if he had pulled off a fast one.
“Oh, very good, very good. Yes, this is very nice, really nice. But let me tell you. During the summer I had an idea. We will do it all another way. You will see as I give the course. You will like it.”
F. Riesz

“Oh, very good, very good. Yes, this is very nice, really nice. But let me tell you. During the summer I had an idea. We will do it all another way. You will see as I give the course. You will like it.” This took place many years in a row. The book was not written until Riesz, probably under the pressure of advancing age, wrote the book in collaboration with Bela Szokefalvi-Nagy some 18 years later.”
F. Riesz

“Oh, very good, very good. Yes, this is very nice, really nice. But let me tell you. During the summer I had an idea. We will do it all another way. You will see as I give the course. You will like it.” This took place many years in a row. The book was not written until Riesz, probably under the pressure of advancing age, wrote the book in collaboration with Bela Szokefalvi-Nagy some 18 years later.”

F. Riesz was a giant of functional analysis with contributions from 1907 for 30 years.
“Oh, very good, very good. Yes, this is very nice, really nice. But let me tell you. During the summer I had an idea. We will do it all another way. You will see as I give the course. You will like it.” This took place many years in a row. The book was not written until Riesz, probably under the pressure of advancing age, wrote the book in collaboration with Bela Szokefalvi-Nagy some 18 years later.”

F. Riesz was a giant of functional analysis with contributions from 1907 for 30 years. Among his contributions are
F. Riesz

1 First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
5. Riesz–Markov (dual of $C([0, 1])$)
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
5. Riesz–Markov (dual of $C([0, 1])$)
6. Riesz–Fisher theorem (L^2 convergence of Fourier series and completeness)
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
5. Riesz–Markov (dual of $C([0, 1])$)
6. Riesz–Fisher theorem (L^2 convergence of Fourier series and completeness)
7. Hölder’s inequality for integrals
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
5. Riesz–Markov (dual of $\mathcal{C}([0, 1])$)
6. Riesz–Fisher theorem (L^2 convergence of Fourier series and completeness)
7. Hölder’s inequality for integrals
8. Definition and duality for L^p spaces
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
5. Riesz–Markov (dual of $C([0, 1])$)
6. Riesz–Fisher theorem (L^2 convergence of Fourier series and completeness)
7. Hölder’s inequality for integrals
8. Definition and duality for L^p spaces
9. Weak-* compactness of unit ball in L^p
F. Riesz

1. First formal definition of metric space (Fréchet had the notion but Riesz emphasized triangle inequality)
2. First definition of connected set
3. Compactness as finite intersection property
4. Riesz representation (dual of Hilbert space)
5. Riesz–Markov (dual of $C([0, 1])$)
6. Riesz–Fisher theorem (L^2 convergence of Fourier series and completeness)
7. Hölder’s inequality for integrals
8. Definition and duality for L^p spaces
9. Weak-* compactness of unit ball in L^p
10. Definition of Hardy spaces (H^p) and Riesz factorization
F. Riesz

11 Heglotz Representation Theorem (independently and at same time)
F. Riesz

1. Heglotz Representation Theorem (independently and at same time)

2. Fejér-Riesz Theorem (factorization of positive Laurent series)
F. Riesz

1. Heglotz Representation Theorem (independently and at the same time)
2. Fejér-Riesz Theorem (factorization of positive Laurent series)
3. F.&M. Riesz Theorem
F. Riesz

11 Heglotz Representation Theorem (independently and at same time)
12 Fejér-Riesz Theorem (factorization of positive Laurent series)
13 F.&M. Riesz Theorem
14 Replaced quadratic forms by general operator theory on NLS
F. Riesz

1. Heglotz Representation Theorem (independently and at same time)
2. Fejér-Riesz Theorem (factorization of positive Laurent series)
3. F.&M. Riesz Theorem
4. Replaced quadratic forms by general operator theory on NLS
5. Resolution of Identity form of Spectral Theorem
F. Riesz

11 Heglotz Representation Theorem (independently and at same time)
12 Fejér-Riesz Theorem (factorization of positive Laurent series)
13 F.&M. Riesz Theorem
14 Replaced quadratic forms by general operator theory on NLS
15 Resolution of Identity form of Spectral Theorem
16 Definition of Compact Operator
F. Riesz

11 Heglotz Representation Theorem (independently and at same time)
12 Fejér-Riesz Theorem (factorization of positive Laurent series)
13 F.&M. Riesz Theorem
14 Replaced quadratic forms by general operator theory on NLS
15 Resolution of Identity form of Spectral Theorem
16 Definition of Compact Operator
17 Riesz–Schauder Theorem
F. Riesz

- Heglotz Representation Theorem (independently and at same time)
- Fejér-Riesz Theorem (factorization of positive Laurent series)
- F.&M. Riesz Theorem
- Replaced quadratic forms by general operator theory on NLS
- Resolution of Identity form of Spectral Theorem
- Definition of Compact Operator
- Riesz–Schauder Theorem
- Riesz Products
F. Riesz

11 Heglotz Representation Theorem (independently and at same time)

12 Fejér-Riesz Theorem (factorization of positive Laurent series)

13 F.&M. Riesz Theorem

14 Replaced quadratic forms by general operator theory on NLS

15 Resolution of Identity form of Spectral Theorem

16 Definition of Compact Operator

17 Riesz–Schauder Theorem

18 Riesz Products

19 Orthogonal Projections by Minimization
F. Riesz

20 Definition and basic theory of subharmonic functions
F. Riesz

20. Definition and basic theory of subharmonic functions
21. Riesz decomposition of subharmonic functions
F. Riesz

20 Definition and basic theory of subharmonic functions
21 Riesz decomposition of subharmonic functions
22 Projections associated to components of spectrum
F. Riesz

20 Definition and basic theory of subharmonic functions
21 Riesz decomposition of subharmonic functions
22 Projections associated to components of spectrum
23 Riesz Spaces (vector lattices) and their duality
F. Riesz

- [20] Definition and basic theory of subharmonic functions
- [21] Riesz decomposition of subharmonic functions
- [22] Projections associated to components of spectrum
- [23] Riesz Spaces (vector lattices) and their duality
- [24] Polar Decomposition Proof of Spectral Theorem
F. Riesz

20 Definition and basic theory of subharmonic functions
21 Riesz decomposition of subharmonic functions
22 Projections associated to components of spectrum
23 Riesz Spaces (vector lattices) and their duality
24 Polar Decomposition Proof of Spectral Theorem
25 Riesz Sunshine Lemma
F. Riesz

20. Definition and basic theory of subharmonic functions
21. Riesz decomposition of subharmonic functions
22. Projections associated to components of spectrum
23. Riesz Spaces (vector lattices) and their duality
24. Polar Decomposition Proof of Spectral Theorem
25. Riesz Sunshine Lemma
26. Riesz Maximal Equality
F. Riesz

20 Definition and basic theory of subharmonic functions
21 Riesz decomposition of subharmonic functions
22 Projections associated to components of spectrum
23 Riesz Spaces (vector lattices) and their duality
24 Polar Decomposition Proof of Spectral Theorem
25 Riesz Sunshine Lemma
26 Riesz Maximal Equality
27 HL Maximal Inequality \Rightarrow \text{ Lebesgue Differentiation}
F. Riesz

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Definition and basic theory of subharmonic functions</td>
</tr>
<tr>
<td>21</td>
<td>Riesz decomposition of subharmonic functions</td>
</tr>
<tr>
<td>22</td>
<td>Projections associated to components of spectrum</td>
</tr>
<tr>
<td>23</td>
<td>Riesz Spaces (vector lattices) and their duality</td>
</tr>
<tr>
<td>24</td>
<td>Polar Decomposition Proof of Spectral Theorem</td>
</tr>
<tr>
<td>25</td>
<td>Riesz Sunshine Lemma</td>
</tr>
<tr>
<td>26</td>
<td>Riesz Maximal Equality</td>
</tr>
<tr>
<td>27</td>
<td>HL Maximal Inequality \Rightarrow Lebesgue Differentiation</td>
</tr>
<tr>
<td>28</td>
<td>Riesz Convolution Rearrangement Inequality</td>
</tr>
</tbody>
</table>
Marcel Riesz (1886–1969) was a Jewish–Hungarian mathematician whose students included Cramér, Hille, Frostman, Thorin, Gårding, and Hörmander.
Marcel Riesz (1886–1969) was a Jewish–Hungarian mathematician whose students included Cramér, Hille, Frostman, Thorin, Gårding, and Hörmander. He was Frigyes’ younger brother and did his studies in Budapest under Fejér.
Introduction

Riemann, Euler, Gauss
Newton, Hilbert, Poincaré
Riesz², Szegő, von Neumann
Kato, Loewner, Verblunsky
Blumenthal, Pick, Tauber
Landau, König, Marcinkiewicz
Krein, Noether, Thomson

M. Riesz

Marcel Riesz (1886–1969) was a Jewish–Hungarian mathematician whose students included Cramér, Hille, Frostman, Thorin, Gårding, and Hörmander. He was Frigyes’ younger brother and did his studies in Budapest under Fejér.

The year after getting his PhD., he was invited to visit by Mittag-Leffler and spent the rest of his career in Sweden – in Stockholm from 1908 until moving to Lund in 1926 where he stayed until his retirement in 1952.
M. Riesz

Marcel Riesz (1886–1969) was a Jewish–Hungarian mathematician whose students included Cramér, Hille, Frostman, Thorin, Gårding, and Hörmander. He was Frigyes’ younger brother and did his studies in Budapest under Fejér.

The year after getting his PhD., he was invited to visit by Mittag-Leffler and spent the rest of his career in Sweden – in Stockholm from 1908 until moving to Lund in 1926 where he stayed until his retirement in 1952.

Undoubtedly, his most famous result is the L^p–boundedness, $1 < p < \infty$ of the Hilbert transform of which Hardy wrote to him in 1923:
Marcel Riesz (1886–1969) was a Jewish–Hungarian mathematician whose students included Cramér, Hille, Frostman, Thorin, Gårding, and Hörmander. He was Frigyes’ younger brother and did his studies in Budapest under Fejér.

The year after getting his PhD., he was invited to visit by Mittag-Leffler and spent the rest of his career in Sweden – in Stockholm from 1908 until moving to Lund in 1926 where he stayed until his retirement in 1952. Undoubtedly, his most famous result is the L^p–boundedness, $1 < p < \infty$ of the Hilbert transform of which Hardy wrote to him in 1923: “Some months ago you wrote “...I have proved that two conjugate... L^p functions, $p > 1$.”
M. Riesz

Marcel Riesz (1886–1969) was a Jewish–Hungarian mathematician whose students included Cramér, Hille, Frostman, Thorin, Gårding, and Hörmander. He was Frigyes’ younger brother and did his studies in Budapest under Fejér.

The year after getting his PhD., he was invited to visit by Mittag-Leffler and spent the rest of his career in Sweden – in Stockholm from 1908 until moving to Lund in 1926 where he stayed until his retirement in 1952.

Undoubtedly, his most famous result is the L^p–boundedness, $1 < p < \infty$ of the Hilbert transform of which Hardy wrote to him in 1923: “Some months ago you wrote “...I have proved that two conjugate... L^p functions, $p > 1$.” I want the proof. Both I and my pupil Titchmarsh have tried in vain to prove it.”
M. Riesz

Riesz proved this theorem in 1928 in order to show L^p convergence of Fourier series.
M. Riesz

Riesz proved this theorem in 1928 in order to show L^p convergence of Fourier series. He proved the result for $p = 2n, n = 1, 2, \ldots$ by using $\int f^p(e^{i\theta})d\theta/2\pi = f(0)^p$ and used a special case of what is now called the Riesz–Thorin theorem (after his conjecture in this paper proven by his student Thorin).
M. Riesz

Riesz proved this theorem in 1928 in order to show L^p convergence of Fourier series. He proved the result for $p = 2n, n = 1, 2, \ldots$ by using $\int f^p(e^{i\theta})d\theta/2\pi = f(0)^p$ and used a special case of what is now called the Riesz–Thorin theorem (after his conjecture in this paper proven by his student Thorin). Interestingly enough, in 1925, Kolmogorov had proven that the Hilbert transform of an L^1 function is in weak-L^1
M. Riesz

Riesz proved this theorem in 1928 in order to show L^p convergence of Fourier series. He proved the result for $p = 2n, n = 1, 2, \ldots$ by using $\int f^p(e^{i\theta})d\theta/2\pi = f(0)^p$ and used a special case of what is now called the Riesz–Thorin theorem (after his conjecture in this paper proven by his student Thorin). Interestingly enough, in 1925, Kolmogorov had proven that the Hilbert transform of an L^1 function is in weak-L^1 and with current interpolation theory this implies Riesz’ result. Besides this signal result, M. Riesz:
M. Riesz

Riesz proved this theorem in 1928 in order to show L^p convergence of Fourier series. He proved the result for $p = 2n, n = 1, 2, \ldots$ by using $\int f^p(e^{i\theta}) d\theta / 2\pi = f(0)^p$ and used a special case of what is now called the Riesz–Thorin theorem (after his conjecture in this paper proven by his student Thorin). Interestingly enough, in 1925, Kolmogorov had proven that the Hilbert transform of an L^1 function is in weak-L^1 and with current interpolation theory this implies Riesz’ result. Besides this signal result, M. Riesz:

1. Wrote definitive book on Dirichlet Series with Hardy
M. Riesz

Riesz proved this theorem in 1928 in order to show L^p convergence of Fourier series. He proved the result for $p = 2n, n = 1, 2, \ldots$ by using $\int f^p(e^{i\theta})d\theta/2\pi = f(0)^p$ and used a special case of what is now called the Riesz–Thorin theorem (after his conjecture in this paper proven by his student Thorin).

Interestingly enough, in 1925, Kolmogorov had proven that the Hilbert transform of an L^1 function is in weak-L^1 and with current interpolation theory this implies Riesz’ result. Besides this signal result, M. Riesz:

1. Wrote definitive book on Dirichlet Series with Hardy
2. Defined Riesz means (connected to Bochner-Riesz conjecture)
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
4. Solvability of Hamburger moment problem
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
4. Solvability of Hamburger moment problem
5. Riesz–Thorin interpolation
M. Riesz

1. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
2. Solvability of Hamburger moment problem
3. Riesz–Thorin interpolation
4. Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$

Marcel like his brother was a lifelong bachelor but I was told the following story by an attendee at an OP conference in Budapest. One evening a group went out to a cafe and were chatting about math. A young woman approached them and said "Excuse me but we are from Sweden and decided you must be mathematicians. Our grandfather was from Hungary and was a mathematician. We wonder if you've heard of him. His name was Marcel Riesz."
M. Riesz

- Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
- Solvability of Hamburger moment problem
- Riesz–Thorin interpolation
- Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$
- F&M Riesz Theorem
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
4. Solvability of Hamburger moment problem
5. Riesz–Thorin interpolation
6. Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$
7. F&M Riesz Theorem

Marcel like his brother was a lifelong bachelor but I was told the following story by an attendee at an OP conference in Budapest.
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
4. Solvability of Hamburger moment problem
5. Riesz–Thorin interpolation
6. Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$
7. F&M Riesz Theorem

Marcel like his brother was a lifelong bachelor but I was told the following story by an attendee at an OP conference in Budapest. One evening a group went out to a cafe and were chatting about math.
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)
4. Solvability of Hamburger moment problem
5. Riesz–Thorin interpolation
6. Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$
7. F&M Riesz Theorem

Marcel like his brother was a lifelong bachelor but I was told the following story by an attendee at an OP conference in Budapest. One evening a group went out to a cafe and were chatting about math. A young woman approached them and said “Excuse me but we are from Sweden and decided you must be mathematicians. Our grandfather was from Hungary and was a mathematician.”
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)

4. Solvability of Hamburger moment problem

5. Riesz–Thorin interpolation

6. Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$

7. F&M Riesz Theorem

Marcel like his brother was a lifelong bachelor but I was told the following story by an attendee at an OP conference in Budapest. One evening a group went out to a cafe and were chatting about math. A young woman approached them and said “Excuse me but we are from Sweden and decided you must be mathematicians. Our grandfather was from Hungary and was a mathematician. We wonder if you’ve heard of him.”
M. Riesz

3. Hahn–Banach type theorem for positive functionals (even before the work of Hahn and Banach!)

4. Solvability of Hamburger moment problem

5. Riesz–Thorin interpolation

6. Riesz criterion for compactness of subsets in $L^p(\mathbb{R}^n)$

7. F&M Riesz Theorem

Marcel like his brother was a lifelong bachelor but I was told the following story by an attendee at an OP conference in Budapest. One evening a group went out to a cafe and were chatting about math. A young woman approached them and said “Excuse me but we are from Sweden and decided you must be mathematicians. Our grandfather was from Hungary and was a mathematician. We wonder if you’ve heard of him. His name was Marcel Riesz.”
Gábor Szegő (1895-1985) was also a Hungarian–Jewish mathematician.
Gábor Szegő (1895-1985) was also a Hungarian–Jewish mathematician. In 1913, when he was an undergraduate at the University of Budapest, his friend George Pólya (1887-1985), then a postdoc in Berlin, returned to Budapest for the holidays and told Szegő his conjecture about the asymptotics of Toeplitz determinants. When the paper was published the next year, Szegő was serving on the front as a lieutenant in the Austrian army. Remarkably, he found the second term in the asymptotics of Toeplitz determinants (sometimes called the strong Szegő theorem) in 1953, 39 years after he found the first term!
Gábor Szegő (1895-1985) was also a Hungarian–Jewish mathematician. In 1913, when he was an undergraduate at the University of Budapest, his friend George Polya (1887-1985), then a postdoc in Berlin, returned to Budapest for the holidays and told Szegő his conjecture about the asymptotics of Toeplitz determinants and shortly thereafter in 1914 when Szegő was 19, he proved what is often called Szegő’s theorem, a subject he and others (e.g. me!) have often returned to.
Gábor Szegő (1895-1985) was also a Hungarian–Jewish mathematician. In 1913, when he was an undergraduate at the University of Budapest, his friend George Polya (1887-1985), then a postdoc in Berlin, returned to Budapest for the holidays and told Szegő his conjecture about the asymptotics of Toeplitz determinants and shortly thereafter in 1914 when Szegő was 19, he proved what is often called Szegő’s theorem, a subject he and others (e.g. me!) have often returned to. When the paper was published the next year, Szegő was serving on the front as a lieutenant in the Austrian army.
Gábor Szegő (1895-1985) was also a Hungarian–Jewish mathematician. In 1913, when he was an undergraduate at the University of Budapest, his friend George Polya (1887-1985), then a postdoc in Berlin, returned to Budapest for the holidays and told Szegő his conjecture about the asymptotics of Toeplitz determinants and shortly thereafter in 1914 when Szegő was 19, he proved what is often called Szegő’s theorem, a subject he and others (e.g. me!) have often returned to. When the paper was published the next year, Szegő was serving on the front as a lieutenant in the Austrian army. Remarkably, he found the second term in the asymptotics of Toeplitz determinants (sometimes called the strong Szegő theorem).
Szegő

Gábor Szegő (1895-1985) was also a Hungarian–Jewish mathematician. In 1913, when he was an undergraduate at the University of Budapest, his friend George Polya (1887-1985), then a postdoc in Berlin, returned to Budapest for the holidays and told Szegő his conjecture about the asymptotics of Toeplitz determinants and shortly thereafter in 1914 when Szegő was 19, he proved what is often called Szegő’s theorem, a subject he and others (e.g. me!) have often returned to. When the paper was published the next year, Szegő was serving on the front as a lieutenant in the Austrian army. Remarkably, he found the second term in the asymptotics of Toeplitz determinants (sometimes called the strong Szegő theorem) in 1953, 39 years after he found the first term!
After a degree in Budapest and then a postdoc in Berlin, he was appointed a professor in Königsberg in 1926.
Szegő

After a degree in Budapest and then a postdoc in Berlin, he was appointed a professor in Königsberg in 1926 but after the rise of the Nazis, he fled to the US, first to Washington University in St. Louis in 1936.
After a degree in Budapest and then a postdoc in Berlin, he was appointed a professor in Königsberg in 1926 but after the rise of the Nazis, he fled to the US, first to Washington University in St. Louis in 1936 and then, he was chair of the Stanford math department from 1938.
After a degree in Budapest and then a postdoc in Berlin, he was appointed a professor in Königsberg in 1926 but after the rise of the Nazis, he fled to the US, first to Washington University in St. Louis in 1936 and then, he was chair of the Stanford math department from 1938. He turned what was a provincial department into a world class one.
After a degree in Budapest and then a postdoc in Berlin, he was appointed a professor in Königsberg in 1926 but after the rise of the Nazis, he fled to the US, first to Washington University in St. Louis in 1936 and then, he was chair of the Stanford math department from 1938. He turned what was a provincial department into a world class one. He was the founder of the theory of orthogonal polynomials on the unit circle and the great expert on classical orthogonal polynomials.
Szegő

After a degree in Budapest and then a postdoc in Berlin, he was appointed a professor in Königsberg in 1926 but after the rise of the Nazis, he fled to the US, first to Washington University in St. Louis in 1936 and then, he was chair of the Stanford math department from 1938. He turned what was a provincial department into a world class one. He was the founder of the theory of orthogonal polynomials on the unit circle and the great expert on classical orthogonal polynomials. He was one of the great classical analysts of the 20th century.
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences.
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.”
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club."
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal.”
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal and Paul tried to fix that. One day, I got a call:
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal and Paul tried to fix that. One day, I got a call: Peter, this is Saunders,
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal and Paul tried to fix that. One day, I got a call: Peter, this is Saunders, who is this Polya?”
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal and Paul tried to fix that. One day, I got a call: Peter, this is Saunders, who is this Polya? Polya was elected but by then Szegő had Parkinsons and that was considered disqualifying.”
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal and Paul tried to fix that. One day, I got a call: Peter, this is Saunders, who is this Polya? Polya was elected but by then Szegő had Parkinsons and that was considered disqualifying. And, you know, I think Szegő was the deeper mathematician.”
About 10 years ago, I gave a talk at NYU about Loewner’s theorem on monotone matrix functions and expressed some sadness that he was never elected a member of the US National Academy of Sciences. Peter Lax was in the audience and said: “You know, neither was Szegő.” I was incredulous but a check at the NAS website confirmed this, so I asked Lax about it the next day.

“You know that in those days, the Academy was an old boys’ club. I’m not sure there was anyone in math from Stanford until Paul Cohen was elected after he got the Fields Medal and Paul tried to fix that. One day, I got a call: Peter, this is Saunders, who is this Polya? Polya was elected but by then Szegő had Parkinsons and that was considered disqualifying. And, you know, I think Szegő was the deeper mathematician.” (in which assessment I agree).
John von Neumann (1903-1957) was born János Neumann in Budapest.
John von Neumann (1903-1957) was born János Neumann in Budapest. His father, a wealthy Jewish banker, purchased a title when János was 10 and eventually, János added the German “von”.

János was Johann when he worked in Germany and after coming to the United States became John, universally called Johnny. Johnny was a child prodigy and his father arranged tutoring—the stories say that both Szegő and Fekete tutored him and both were very impressed. He was the ultimate double major. He registered as a math student in Budapest and at the same time studied chemistry, first in Berlin and later in Zürich, returning to Budapest only to ace his math exams. And he didn't hesitate to discuss math, for example, with Weyl in Zürich when he was officially a chemistry student.
John von Neumann (1903-1957) was born János Neumann in Budapest. His father, a wealthy Jewish banker, purchased a title when János was 10 and eventually, János added the German “von”. János was Johann when he worked in Germany and after coming to the United States became John, universally called Johnny.
John von Neumann (1903-1957) was born János Neumann in Budapest. His father, a wealthy Jewish banker, purchased a title when János was 10 and eventually, János added the German “von”. János was Johann when he worked in Germany and after coming to the United States became John, universally called Johnny.

Johnny was a child prodigy and his father arranged tutoring—the stories say that both Szegő and Fekete tutored him and both were very impressed.
von Neumann

John von Neumann (1903-1957) was born János Neumann in Budapest. His father, a wealthy Jewish banker, purchased a title when János was 10 and eventually, János added the German “von”. János was Johann when he worked in Germany and after coming to the United States became John, universally called Johnny.

Johnny was a child prodigy and his father arranged tutoring—the stories say that both Szegő and Fekete tutored him and both were very impressed. He was the ultimate double major. He registered as a math student in Budapest and at the same time studied chemistry, first in Berlin and later in Zürich, returning to Budapest only to ace his math exams.
John von Neumann (1903-1957) was born János Neumann in Budapest. His father, a wealthy Jewish banker, purchased a title when János was 10 and eventually, János added the German “von”. János was Johann when he worked in Germany and after coming to the United States became John, universally called Johnny.

Johnny was a child prodigy and his father arranged tutoring—the stories say that both Szegő and Fekete tutored him and both were very impressed. He was the ultimate double major. He registered as a math student in Budapest and at the same time studied chemistry, first in Berlin and later in Zürich, returning to Budapest only to ace his math exams. And he didn’t hesitate to discuss math, for example, with Weyl in Zürich when he was officially a chemistry student.
In 1926, von Neumann got a diploma in chemistry from the ETH and a Ph.D. from Budapest for revolutionary work in set theory including formulating the now standard definition of infinite ordinal numbers.
In 1926, von Neumann got a diploma in chemistry from the ETH and a Ph.D. from Budapest for revolutionary work in set theory including formulating the now standard definition of infinite ordinal numbers. He then moved to be a privatdozent in Berlin and then Hamburg having spent a year during that period in Göttingen studying with Hilbert.
In 1926, von Neumann got a diploma in chemistry from the ETH and a Ph.D. from Budapest for revolutionary work in set theory including formulating the now standard definition of infinite ordinal numbers. He then moved to be a privatdozent in Berlin and then Hamburg having spent a year during that period in Göttingen studying with Hilbert.

In 1930, uneasy with both the limited job market in Germany and the unstable political situation, he went to the US initially as a visitor, then Professor at Princeton University and from 1933 until his death at the Institute for Advanced Study.
In 1926, von Neumann got a diploma in chemistry from the ETH and a Ph.D. from Budapest for revolutionary work in set theory including formulating the now standard definition of infinite ordinal numbers. He then moved to be a privatdozent in Berlin and then Hamburg having spent a year during that period in Göttingen studying with Hilbert. In 1930, uneasy with both the limited job market in Germany and the unstable political situation, he went to the US initially as a visitor, then Professor at Princeton University and from 1933 until his death at the Institute for Advanced Study. He died of cancer at the age of only 53,
In 1926, von Neumann got a diploma in chemistry from the ETH and a Ph.D. from Budapest for revolutionary work in set theory including formulating the now standard definition of infinite ordinal numbers. He then moved to be a privatdozent in Berlin and then Hamburg having spent a year during that period in Göttingen studying with Hilbert.

In 1930, uneasy with both the limited job market in Germany and the unstable political situation, he went to the US initially as a visitor, then Professor at Princeton University and from 1933 until his death at the Institute for Advanced Study. He died of cancer at the age of only 53, which some think might have been caused by his war work on the atomic bomb project.
To fans of unbounded operators, von Neumann’s great 1927 paper stands out.
To fans of unbounded operators, von Neumann’s great 1927 paper stands out. It had all the basics for the first time (although about the same time, Wintner had related ideas):
To fans of unbounded operators, von Neumann’s great 1927 paper stands out. It had all the basics for the first time (although about the same time, Wintner had related ideas): the notions of closed operators and closure (in terms of sequences rather than graphs).
To fans of unbounded operators, von Neumann’s great 1927 paper stands out. It had all the basics for the first time (although about the same time, Wintner had related ideas): the notions of closed operators and closure (in terms of sequences rather than graphs) and of self-adjointness, deficiency indices, the spectral theorem.
To fans of unbounded operators, von Neumann’s great 1927 paper stands out. It had all the basics for the first time (although about the same time, Wintner had related ideas): the notions of closed operators and closure (in terms of sequences rather than graphs) and of self-adjointness, deficiency indices, the spectral theorem and the theory of self-adjoint extensions with its consequences for positive operators (he had what I’ve called the Krein extension and some call the Krein–von Neumann extension)
von Neumann

To fans of unbounded operators, von Neumann’s great 1927 paper stands out. It had all the basics for the first time (although about the same time, Wintner had related ideas): the notions of closed operators and closure (in terms of sequences rather than graphs) and of self-adjointness, deficiency indices, the spectral theorem and the theory of self-adjoint extensions with its consequences for positive operators (he had what I’ve called the Krein extension and some call the Krein–von Neumann extension) and the consequence for operators commuting with a complex conjugate.
To fans of unbounded operators, von Neumann’s great 1927 paper stands out. It had all the basics for the first time (although about the same time, Wintner had related ideas): the notions of closed operators and closure (in terms of sequences rather than graphs) and of self-adjointness, deficiency indices, the spectral theorem and the theory of self-adjoint extensions with its consequences for positive operators (he had what I’ve called the Krein extension and some call the Krein–von Neumann extension) and the consequence for operators commuting with a complex conjugate. It did not have the idea of using graphs to simplify the analysis—that appeared in his 1932 paper.
von Neumann

During the 1927-1930 period, von Neumann developed this theory and its applications to quantum mechanics which included his work on quantum measurement and quantum statistical mechanics.
During the 1927-1930 period, von Neumann developed this theory and its applications to quantum mechanics which included his work on quantum measurement and quantum statistical mechanics. This is an impressive opus for a life's work, let alone a three-year period.
During the 1927-1930 period, von Neumann developed this theory and its applications to quantum mechanics which included his work on quantum measurement and quantum statistical mechanics. This is an impressive opus for a life's work, let alone a three-year period. But the remarkable thing is that he was doing a lot of other mathematics at the same time. This includes his joint work with Wigner on eigenvalue crossing and on embedded bound states,
During the 1927-1930 period, von Neumann developed this theory and its applications to quantum mechanics which included his work on quantum measurement and quantum statistical mechanics. This is an impressive opus for a life's work, let alone a three-year period. But the remarkable thing is that he was doing a lot of other mathematics at the same time. This includes his joint work with Wigner on eigenvalue crossing and on embedded bound states, the continuation of his earlier work on the foundations of mathematics (set theory),
During the 1927-1930 period, von Neumann developed this theory and its applications to quantum mechanics which included his work on quantum measurement and quantum statistical mechanics. This is an impressive opus for a life's work, let alone a three-year period. But the remarkable thing is that he was doing a lot of other mathematics at the same time. This includes his joint work with Wigner on eigenvalue crossing and on embedded bound states, the continuation of his earlier work on the foundations of mathematics (set theory), his founding of the subject of game theory and the first work on the existence of equilibria in economics,
During the 1927-1930 period, von Neumann developed this theory and its applications to quantum mechanics which included his work on quantum measurement and quantum statistical mechanics. This is an impressive opus for a life's work, let alone a three-year period. But the remarkable thing is that he was doing a lot of other mathematics at the same time. This includes his joint work with Wigner on eigenvalue crossing and on embedded bound states, the continuation of his earlier work on the foundations of mathematics (set theory), his founding of the subject of game theory and the first work on the existence of equilibria in economics, and his discovery that the Banach-Tarski paradox is connected to the nonamenability of the rotation group in three or more dimensions.
Besides this array of work done in the 1920s, he founded the theory of operator algebras,
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure.
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics,
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics, did foundational work in lattice theory,
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics, did foundational work in lattice theory, and was a founder, arguable, the founder, of modern computer science (the standard architecture of modern digital computers is named after him).
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics, did foundational work in lattice theory, and was a founder, arguable, the founder, of modern computer science (the standard architecture of modern digital computers is named after him). He did numerical analysis (Monte Carlo method), hydrodynamics, and work on cellular automata.
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics, did foundational work in lattice theory, and was a founder, arguable, the founder, of modern computer science (the standard architecture of modern digital computers is named after him). He did numerical analysis (Monte Carlo method), hydrodynamics, and work on cellular automata. He was a key figure in the development of nuclear energy, initially as an important leader in the Manhattan Project.
Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics, did foundational work in lattice theory, and was a founder, arguable, the founder, of modern computer science (the standard architecture of modern digital computers is named after him). He did numerical analysis (Monte Carlo method), hydrodynamics, and work on cellular automata. He was a key figure in the development of nuclear energy, initially as an important leader in the Manhattan Project. It was his calculations that led to the decision to detonate the atomic bombs dropped on Japan at high altitude to cause maximum damage.
von Neumann

Besides this array of work done in the 1920s, he founded the theory of operator algebras, was the initiator of modern ergodic theory, and he did work on Haar measure. He coauthored a basic book on mathematical economics, did foundational work in lattice theory, and was a founder, arguably, the founder, of modern computer science (the standard architecture of modern digital computers is named after him). He did numerical analysis (Monte Carlo method), hydrodynamics, and work on cellular automata. He was a key figure in the development of nuclear energy, initially as an important leader in the Manhattan Project. It was his calculations that led to the decision to detonate the atomic bombs dropped on Japan at high altitude to cause maximum damage. After the war, he did joint work with Teller and Ulam that led to the nuclear physics behind the H-bomb.
Peter Lax pointed out that if there were Nobel Prizes in the relevant areas and if von Neumann had lived long enough, he’d have been a likely winner of four:
Peter Lax pointed out that if there were Nobel Prizes in the relevant areas and if von Neumann had lived long enough, he’d have been a likely winner of four: in mathematics, physics, computer science and economics.
Peter Lax pointed out that if there were Nobel Prizes in the relevant areas and if von Neumann had lived long enough, he’d have been a likely winner of four: in mathematics, physics, computer science and economics. In any event there have been many prizes in the application of game theory to economics, a subject in which von Neumann was the pioneer.
Peter Lax pointed out that if there were Nobel Prizes in the relevant areas and if von Neumann had lived long enough, he’d have been a likely winner of four: in mathematics, physics, computer science and economics. In any event there have been many prizes in the application of game theory to economics, a subject in which von Neumann was the pioneer.

I want to end my discussion of von Neumann with some fascinating history behind the von Neumann and Birkhoff ergodic theorems.
Peter Lax pointed out that if there were Nobel Prizes in the relevant areas and if von Neumann had lived long enough, he’d have been a likely winner of four: in mathematics, physics, computer science and economics. In any event there have been many prizes in the application of game theory to economics, a subject in which von Neumann was the pioneer.

I want to end my discussion of von Neumann with some fascinating history behind the von Neumann and Birkhoff ergodic theorems. In early 1931, Bernard Osgood Koopman (1900–81) published a short note that explained that measure-preserving dynamics induced unitary operators on $L^2(\Omega, d\mu)$ and suggested that the newly discovered (by Stone and von Neumann) spectral resolution and eigenvectors/eigenvalues might be significant, but he didn’t do anything further with this.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems. The year before, when Koopman realized this, he did tell von Neumann who, within a few months, found what is called the von Neumann or mean ergodic theorem.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems. The year before, when Koopman realized this, he did tell von Neumann who, within a few months, found what is called the von Neumann or mean ergodic theorem. His proof relied on the spectral theorem.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems. The year before, when Koopman realized this, he did tell von Neumann who, within a few months, found what is called the von Neumann or mean ergodic theorem. His proof relied on the spectral theorem. von Neumann mentioned his result to Eberhard Hopf (1902–83) who found the proof you'll find in most books.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems. The year before, when Koopman realized this, he did tell von Neumann who, within a few months, found what is called the von Neumann or mean ergodic theorem. His proof relied on the spectral theorem. von Neumann mentioned his result to Eberhard Hopf (1902–83) who found the proof you’ll find in most books. If one knows the spectral theorem, von Neumann’s proof is simple and elegant.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems. The year before, when Koopman realized this, he did tell von Neumann who, within a few months, found what is called the von Neumann or mean ergodic theorem. His proof relied on the spectral theorem. von Neumann mentioned his result to Eberhard Hopf (1902–83) who found the proof you’ll find in most books. If one knows the spectral theorem, von Neumann’s proof is simple and elegant. But since that result was not yet that widely known, Hopf’s proof was regarded as more accessible and simpler.
That said, by realizing that operator theory could be used to study the issue of the ergodic hypothesis, Koopman was the godfather of the ergodic theorems. The year before, when Koopman realized this, he did tell von Neumann who, within a few months, found what is called the von Neumann or mean ergodic theorem. His proof relied on the spectral theorem. von Neumann mentioned his result to Eberhard Hopf (1902–83) who found the proof you’ll find in most books. If one knows the spectral theorem, von Neumann’s proof is simple and elegant. But since that result was not yet that widely known, Hopf’s proof was regarded as more accessible and simpler.

At the beginning of October 1931, von Neumann, then in Princeton, went to New York where Koopman was on the Columbia faculty and told Koopman of his result to confirm that Koopman had not found it independently.
Koopman was enthusiastic and suggested that von Neumann publish his result in the Proceedings of the National Academy of Sciences (PNAS), where Koopman’s note had appeared.
Koopman was enthusiastic and suggested that von Neumann publish his result in the Proceedings of the National Academy of Sciences (PNAS), where Koopman’s note had appeared. At a meeting of the American Mathematical Society in New York, von Neumann told Stone and Hopf of his result.
Koopman was enthusiastic and suggested that von Neumann publish his result in the Proceedings of the National Academy of Sciences (PNAS), where Koopman’s note had appeared. At a meeting of the American Mathematical Society in New York, von Neumann told Stone and Hopf of his result (and Hopf found his proof shortly thereafter; at von Neumann’s request, he submitted his proof to PNAS, requesting that his paper only appear after von Neumann’s).
Koopman was enthusiastic and suggested that von Neumann publish his result in the Proceedings of the National Academy of Sciences (PNAS), where Koopman’s note had appeared. At a meeting of the American Mathematical Society in New York, von Neumann told Stone and Hopf of his result (and Hopf found his proof shortly thereafter; at von Neumann’s request, he submitted his proof to PNAS, requesting that his paper only appear after von Neumann’s).

Still later in October, Koopman and George David Birkhoff (1884-1944) came to Princeton for the opening of (old) Fine Hall. There, Koopman and von Neumann told Birkhoff of von Neumann’s result, knowing of Birkhoff’s long interest in the quasi-ergodic hypothesis.
Within six weeks, Birkhoff had the special case of what is now called the Birkhoff or individual ergodic theorem at least when the flow came from analytic differential equations on a compact analytic manifold with invariant measure. This, too, he published in PNAS.
Within six weeks, Birkhoff had the special case of what is now called the Birkhoff or individual ergodic theorem at least when the flow came from analytic differential equations on a compact analytic manifold with invariant measure. This, too, he published in PNAS. This brings us to the priority fight, or perhaps, since it is mild as these things go, I should say priority spat.
Within six weeks, Birkhoff had the special case of what is now called the Birkhoff or individual ergodic theorem at least when the flow came from analytic differential equations on a compact analytic manifold with invariant measure. This, too, he published in PNAS. This brings us to the priority fight, or perhaps, since it is mild as these things go, I should say priority spat. Still, the feelings engendered at the time were intense enough that thirty-five years later, when I was a graduate student at Princeton, I heard the story.
Within six weeks, Birkhoff had the special case of what is now called the Birkhoff or individual ergodic theorem at least when the flow came from analytic differential equations on a compact analytic manifold with invariant measure. This, too, he published in PNAS. This brings us to the priority fight, or perhaps, since it is mild as these things go, I should say priority spat. Still, the feelings engendered at the time were intense enough that thirty-five years later, when I was a graduate student at Princeton, I heard the story.

The issue is that while Birkhoff was clearly motivated by von Neumann, who was first, Birkhoff was more senior, a member of the National Academy,
Within six weeks, Birkhoff had the special case of what is now called the Birkhoff or individual ergodic theorem at least when the flow came from analytic differential equations on a compact analytic manifold with invariant measure. This, too, he published in PNAS. This brings us to the priority fight, or perhaps, since it is mild as these things go, I should say priority spat. Still, the feelings engendered at the time were intense enough that thirty-five years later, when I was a graduate student at Princeton, I heard the story.

The issue is that while Birkhoff was clearly motivated by von Neumann, who was first, Birkhoff was more senior, a member of the National Academy, and a good friend of the managing editor of the PNAS (who held the post for almost fifty years!), Harvard chemist, E. B. Wilson.
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later.
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later. For background, you need to realize that Birkhoff was a senior professor, then forty-seven years old.
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later. For background, you need to realize that Birkhoff was a senior professor, then forty-seven years old. Koopman and Stone had been his students (both in 1926).
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later. For background, you need to realize that Birkhoff was a senior professor, then forty-seven years old. Koopman and Stone had been his students (both in 1926) and Hopf was his postdoc at the time (Hopf moved to MIT to be near Wiener—he’s the Hopf of the Wiener–Hopf method).
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later. For background, you need to realize that Birkhoff was a senior professor, then forty-seven years old. Koopman and Stone had been his students (both in 1926) and Hopf was his postdoc at the time (Hopf moved to MIT to be near Wiener—he’s the Hopf of the Wiener–Hopf method). Von Neumann was younger (he was twenty-eight when he found the theorem, and like Hopf, Koopman, and Stone, a 1926 Ph.D.), foreign and Jewish.
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later. For background, you need to realize that Birkhoff was a senior professor, then forty-seven years old. Koopman and Stone had been his students (both in 1926) and Hopf was his postdoc at the time (Hopf moved to MIT to be near Wiener—he’s the Hopf of the Wiener–Hopf method). Von Neumann was younger (he was twenty-eight when he found the theorem, and like Hopf, Koopman, and Stone, a 1926 Ph.D.), foreign and Jewish. But he was hardly a powerless postdoc—
And Wilson arranged for Birkhoff’s paper to jump the queue and appear in the 1931 volume rather than the 1932 volume and with an earlier communication date! While Birkhoff mentioned von Neumann, the implication is that von Neumann’s work was at best independent and possibly later. For background, you need to realize that Birkhoff was a senior professor, then forty-seven years old. Koopman and Stone had been his students (both in 1926) and Hopf was his postdoc at the time (Hopf moved to MIT to be near Wiener—he’s the Hopf of the Wiener–Hopf method). Von Neumann was younger (he was twenty–eight when he found the theorem, and like Hopf, Koopman, and Stone, a 1926 Ph.D.), foreign and Jewish. But he was hardly a powerless postdoc—he was recognized as a wunderkind and was a protégé of Oswald Veblen (1880–1960) who had attracted von Neumann to Princeton as the Jones Professor.
von Neumann

Veblen was shortly afterwards the founding head of the math department at the Institute for Advanced Study, and von Neumann one of his first appointments there.
Veblen was shortly afterwards the founding head of the math department at the Institute for Advanced Study, and von Neumann one of his first appointments there. If anyone was more established in American mathematics than Birkhoff, it was Veblen—he and Birkhoff were both students of E. H. Moore at Chicago, and Veblen, who was slightly older, a postdoc when Birkhoff was a graduate student.
Veblen was shortly afterwards the founding head of the math department at the Institute for Advanced Study, and von Neumann one of his first appointments there. If anyone was more established in American mathematics than Birkhoff, it was Veblen—he and Birkhoff were both students of E. H. Moore at Chicago, and Veblen, who was slightly older, a postdoc when Birkhoff was a graduate student. A historian who has studied the case conjectures that H. P. Robertson (1903–1961) asked von Neumann to write a letter so that Robertson in turn could show it to Veblen.
Veblen was shortly afterwards the founding head of the math department at the Institute for Advanced Study, and von Neumann one of his first appointments there. If anyone was more established in American mathematics than Birkhoff, it was Veblen—he and Birkhoff were both students of E. H. Moore at Chicago, and Veblen, who was slightly older, a postdoc when Birkhoff was a graduate student. A historian who has studied the case conjectures that H. P. Robertson (1903–1961) asked von Neumann to write a letter so that Robertson in turn could show it to Veblen. In any event, it appears that Veblen, perhaps with the help of Koopman and Stone, got Birkhoff to agree to write a paper with Koopman in PNAS.
Veblen was shortly afterwards the founding head of the math department at the Institute for Advanced Study, and von Neumann one of his first appointments there. If anyone was more established in American mathematics than Birkhoff, it was Veblen—he and Birkhoff were both students of E. H. Moore at Chicago, and Veblen, who was slightly older, a postdoc when Birkhoff was a graduate student. A historian who has studied the case conjectures that H. P. Robertson (1903–1961) asked von Neumann to write a letter so that Robertson in turn could show it to Veblen. In any event, it appears that Veblen, perhaps with the help of Koopman and Stone, got Birkhoff to agree to write a paper with Koopman in PNAS with nothing but a description of the history and which clearly stated von Neumann’s priority.
Veblen was shortly afterwards the founding head of the math department at the Institute for Advanced Study, and von Neumann one of his first appointments there. If anyone was more established in American mathematics than Birkhoff, it was Veblen—he and Birkhoff were both students of E. H. Moore at Chicago, and Veblen, who was slightly older, a postdoc when Birkhoff was a graduate student. A historian who has studied the case conjectures that H. P. Robertson (1903–1961) asked von Neumann to write a letter so that Robertson in turn could show it to Veblen. In any event, it appears that Veblen, perhaps with the help of Koopman and Stone, got Birkhoff to agree to write a paper with Koopman in PNAS with nothing but a description of the history and which clearly stated von Neumann’s priority. So the story had a happy ending.
Next, I turn to three personal heroes: Kato, Loewner and Verblunsky.
Next, I turn to three personal heroes: Kato, Loewner and Verblunsky.

We celebrate the 100th anniversary of the birth of Tosio Kato (1917–1999) this year.
Next, I turn to three personal heros: Kato, Loewner and Verblunsky.

We celebrate the 100th anniversary of the birth of Tosio Kato (1917–1999) this year. He founded the theory of Schrödinger operators with his proof of the self–adjointness of atomic Hamiltonains in 1951.
Next, I turn to three personal heros: Kato, Loewner and Verblunsky.

We celebrate the 100^{th} anniversary of the birth of Tosio Kato (1917–1999) this year. He founded the theory of Schrödinger operators with his proof of the self-adjointness of atomic Hamiltonians in 1951.

Two years earlier, as a graduate student, he had published fundamental work on eigenvalue perturbation recovering and extending earlier work of Rellich.
Next, I turn to three personal heros: Kato, Loewner and Verblunsky.

We celebrate the 100th anniversary of the birth of Tosio Kato (1917–1999) this year. He founded the theory of Schrödinger operators with his proof of the self–adjointness of atomic Hamiltonians in 1951.

Two years earlier, as a graduate student, he had published fundamental work on eigenvalue perturbation recovering and extending earlier work of Rellich. He was only a graduate student at age 32 because he had spent much of the War years in the countryside under bad conditions that caused him to contract tuberculosis.
Later when he first tried to visit the US, his TB would have prevented him from getting a visa but a mathematician from University of Michigan, Chuck Dolph, learned of the problem.
Later when he first tried to visit the US, his TB would have prevented him from getting a visa but a mathematician from University of Michigan, Chuck Dolph, learned of the problem. Fortunately Dolph knew the scientific attache in the US embassy in Tokyo who arranged the visa.
Later when he first tried to visit the US, his TB would have prevented him from getting a visa but a mathematician from University of Michigan, Chuck Dolph, learned of the problem. Fortunately Dolph knew the scientific attache in the US embassy in Tokyo who arranged the visa. Dolph later said this was his greatest contribution to American mathematics.
Later when he first tried to visit the US, his TB would have prevented him from getting a visa but a mathematician from University of Michigan, Chuck Dolph, learned of the problem. Fortunately Dolph knew the scientific attache in the US embassy in Tokyo who arranged the visa. Dolph later said this was his greatest contribution to American mathematics.
Kato was a graduate student in Physics and on the faculty in the Physics department in Tokyo until he moved to Berkeley as a Professor of Mathematics in 1962.
Kato

Kato was a graduate student in Physics and on the faculty in the Physics department in Tokyo until he moved to Berkeley as a Professor of Mathematics in 1962. I’ve often wondered what his colleagues in Tokyo made of him.
Kato was a graduate student in Physics and on the faculty in the Physics department in Tokyo until he moved to Berkeley as a Professor of Mathematics in 1962. I’ve often wondered what his colleagues in Tokyo made of him.

Kato submitted his great paper (for which he got the Wiener prize) to Physical Review which couldn’t figure out what to do with it and lost the manuscript during the process.
Kato

Kato was a graduate student in Physics and on the faculty in the Physics department in Tokyo until he moved to Berkeley as a Professor of Mathematics in 1962. I’ve often wondered what his colleagues in Tokyo made of him.

Kato submitted his great paper (for which he got the Wiener prize) to Physical Review which couldn’t figure out what to do with it and lost the manuscript during the process (in those pre-Xerox, pre-TeX days, this was a problem!). Eventually, von Neumann was consulted and had it transferred to Transactions of the AMS (I’ve often thought he should have picked the Annals!).
Kato

Kato was a graduate student in Physics and on the faculty in the Physics department in Tokyo until he moved to Berkeley as a Professor of Mathematics in 1962. I’ve often wondered what his colleagues in Tokyo made of him.

Kato submitted his great paper (for which he got the Wiener prize) to Physical Review which couldn’t figure out what to do with it and lost the manuscript during the process (in those pre-Xerox, pre-TeX days, this was a problem!). Eventually, von Neumann was consulted and had it transferred to Transactions of the AMS (I’ve often thought he should have picked the Annals!). As Kato remarked, the proof isn’t hard and it is puzzling why it took over 20 years for this problem, which was clearly a central one once von Neumann wrote his book on Quantum Theory, to be solved.
Introduction

Kato was a graduate student in Physics and on the faculty in the Physics department in Tokyo until he moved to Berkeley as a Professor of Mathematics in 1962. I’ve often wondered what his colleagues in Tokyo made of him.

Kato submitted his great paper (for which he got the Wiener prize) to Physical Review which couldn’t figure out what to do with it and lost the manuscript during the process (in those pre-Xerox, pre-TeX days, this was a problem!). Eventually, von Neumann was consulted and had it transferred to Transactions of the AMS (I’ve often thought he should have picked the Annals!). As Kato remarked, the proof isn’t hard and it is puzzling why it took over 20 years for this problem, which was clearly a central one once von Neumann wrote his book on Quantum Theory, to be solved. Perhaps a factor was that von Neumann thought the problem impossibly hard and let people know it.
Kato produced a cornucopia of wonderful results in the theory of Schrödinger operators (my favorites involve Kato smoothness and Kato’s inequality)
Kato produced a cornucopia of wonderful results in the theory of Schrödinger operators (my favorites involve Kato smoothness and Kato’s inequality) and, in his later years, deep results in non-linear PDE’s.
Karel Löwner (1893-1968) was born in what is now the Czech republic, then part of the Austro–Hungarian empire.
Karel Löwner (1893-1968) was born in what is now the Czech republic, then part of the Austro–Hungarian empire. He attended a German speaking gymnasium and the German speaking Charles University in Prague for two degrees, and changed his name to Karl.
Karel Löwner (1893-1968) was born in what is now the Czech republic, then part of the Austro–Hungarian empire. He attended a German speaking gymnasium and the German speaking Charles University in Prague for two degrees, and changed his name to Karl.

He got his PhD. in 1917 under the supervision of Alexander Pick (1859-1942). He was a postdoc in Berlin much influenced by von Neumann and Szegő then more senior postdocs.
Karel Löwner (1893-1968) was born in what is now the Czech republic, then part of the Austro-Hungarian empire. He attended a German speaking gymnasium and the German speaking Charles University in Prague for two degrees, and changed his name to Karl. He got his PhD. in 1917 under the supervision of Alexander Pick (1859-1942). He was a postdoc in Berlin much influenced by von Neumann and Szegő then more senior postdocs. He returned to Prague as a Professor in 1929 where he was very active in left wing politics.
Karel Löwner (1893-1968) was born in what is now the Czech republic, then part of the Austro–Hungarian empire. He attended a German speaking gymnasium and the German speaking Charles University in Prague for two degrees, and changed his name to Karl.

He got his PhD. in 1917 under the supervision of Alexander Pick (1859-1942). He was a postdoc in Berlin much influenced by von Neumann and Szegő then more senior postdocs. He returned to Prague as a Professor in 1929 where he was very active in left wing politics. In 1935, he started to learn English because he was apprehensive about the political situation and he got married.
Loewner

Karel Löwner (1893-1968) was born in what is now the Czech republic, then part of the Austro–Hungarian empire. He attended a German speaking gymnasium and the German speaking Charles University in Prague for two degrees, and changed his name to Karl.

He got his PhD. in 1917 under the supervision of Alexander Pick (1859-1942). He was a postdoc in Berlin much influenced by von Neumann and Szegő then more senior postdocs. He returned to Prague as a Professor in 1929 where he was very active in left wing politics. In 1935, he started to learn English because he was apprehensive about the political situation and he got married. When the Nazis invaded Prague on March 15, 1939, as one of their first acts, they arrested Löwner not because of his Jewish status but because of his political activity.
Loewner

His wife badgered the local Gestapo head until after two weeks he agreed to free Karl if they paid an exit tax and left the country.
Loewner

His wife badgered the local Gestapo head until after two weeks he agreed to free Karl if they paid an exit tax and left the country. I recall a younger colleague of Löwner at Stanford telling me his memory of Mrs. Loewner was as a real estate agent,
Loewner

His wife badgered the local Gestapo head until after two weeks he agreed to free Karl if they paid an exit tax and left the country. I recall a younger colleague of Löwner at Stanford telling me his memory of Mrs. Loewner was as a real estate agent, a different persona from staring down a Gestapo officer!
Loewner

His wife badgered the local Gestapo head until after two weeks he agreed to free Karl if they paid an exit tax and left the country. I recall a younger colleague of Löwner at Stanford telling me his memory of Mrs. Loewner was as a real estate agent, a different persona from staring down a Gestapo officer!

Löwner came to the United States and changed his name to Charles Loewner.
His wife badgered the local Gestapo head until after two weeks he agreed to free Karl if they paid an exit tax and left the country. I recall a younger colleague of Löwner at Stanford telling me his memory of Mrs. Loewner was as a real estate agent, a different persona from staring down a Gestapo officer!

Löwner came to the United States and changed his name to Charles Loewner. von Neumann found him a position at the University of Louisville, then Brown and Syracuse until Szegő brought him to Stanford in 1951. As Bers (one of his students; others are Roger Horn and Adriano Garsia) said: “This was the right place for him and his family. He loved the California weather and the California nature. The house in Los Altos was the first real home the Loewners had since Prague.
Loewner

His wife badgered the local Gestapo head until after two weeks he agreed to free Karl if they paid an exit tax and left the country. I recall a younger colleague of Löwner at Stanford telling me his memory of Mrs. Loewner was as a real estate agent, a different persona from staring down a Gestapo officer!

Löwner came to the United States and changed his name to Charles Loewner. von Neumann found him a position at the University of Louisville, then Brown and Syracuse until Szegő brought him to Stanford in 1951. As Bers (one of his students; others are Roger Horn and Adriano Garsia) said: “This was the right place for him and his family. He loved the California weather and the California nature. The house in Los Altos was the first real home the Loewners had since Prague. . . . He was a magnificent lecturer and students flocked to his courses and to his famous problem seminar.”
Loewner had two great contributions among the only 6 papers he wrote before coming to the US.
Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!).
Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the $n=2$ case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down.
Loewner

Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the n=2 case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down. He proved a wonderful theorem specifying all matrix monotone functions (which isn’t even mentioned in his Wikipedia entry).
Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the $n=2$ case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down. He proved a wonderful theorem specifying all matrix monotone functions (which isn’t even mentioned in his Wikipedia entry – arrghh!).
Loewner

Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the n=2 case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down. He proved a wonderful theorem specifying all matrix monotone functions (which isn’t even mentioned in his Wikipedia entry – arrghh!).

Since he died, his stock has soared with greater and greater appreciation.
Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the \(n=2 \) case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down. He proved a wonderful theorem specifying all matrix monotone functions (which isn’t even mentioned in his Wikipedia entry – arrghhh!).

Since he died, his stock has soared with greater and greater appreciation. deBranges’ solution of the full Bieberbach conjecture used his ideas.
Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the \(n=2 \) case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down. He proved a wonderful theorem specifying all matrix monotone functions (which isn’t even mentioned in his Wikipedia entry – arrghhh!).

Since he died, his stock has soared with greater and greater appreciation. deBranges’ solution of the full Bieberbach conjecture used his ideas and then his differential equation was a part of SLE, one of the more central subjects of probability theory and statistical physics since 2000.
Loewner

Loewner had two great contributions among the only 6 papers he wrote before coming to the US (in the 1950’s he published more because he said that was what the NSF was paying him to do!). He proved the $n=2$ case of the Bieberbach conjecture by introducing flows in the set of univalent functions determined by a differential equation that he wrote down. He proved a wonderful theorem specifying all matrix monotone functions (which isn’t even mentioned in his Wikipedia entry – arrghh!).

Since he died, his stock has soared with greater and greater appreciation. deBranges’ solution of the full Bieberbach conjecture used his ideas and then his differential equation was a part of SLE, one of the more central subjects of probability theory and statistical physics since 2000. Schramm named it SLE for Stochastic Loewner Evolution.
Loewner

(and I joked it was meant to be Schramm’s Lovely Evolution).
Loewner

(and I joked it was meant to be Schramm’s Lovely Evolution). Since Schramm’s untimely death it has stood for Schramm–Loewner Evolution.
Loewner

(and I joked it was meant to be Schramm’s Lovely Evolution). Since Schramm’s untimely death it has stood for Schramm–Loewner Evolution.

Loewner’s remarkable theorem on matrix monotone functions has gotten a growing fan club.
Loewner

(and I joked it was meant to be Schramm’s Lovely Evolution). Since Schramm’s untimely death it has stood for Schramm–Loewner Evolution.

Loewner’s remarkable theorem on matrix monotone functions has gotten a growing fan club. For example, I am writing a monograph on the subject which I describe as a love poem to Loewner’s Theorem.
I conclude the discussion of Loewner with a wonderful quote from his student Lipman Bers: “Loewner was a man whom everybody liked, perhaps because he was a man at peace with himself.”
I conclude the discussion of Loewner with a wonderful quote from his student Lipman Bers: “Loewner was a man whom everybody liked, perhaps because he was a man at peace with himself. He conducted a life-long passionate love affair with mathematics, but was neither competitive, nor jealous, nor vain.”
I conclude the discussion of Loewner with a wonderful quote from his student Lipman Bers: “Loewner was a man whom everybody liked, perhaps because he was a man at peace with himself. He conducted a life-long passionate love affair with mathematics, but was neither competitive, nor jealous, nor vain. His kindness and generosity in scientific matters, to students and colleagues alike, were proverbial. He seemed to be incapable of malice. His manners were mild and even diffident, but those hid a will of steel.”
I conclude the discussion of Loewner with a wonderful quote from his student Lipman Bers: “Loewner was a man whom everybody liked, perhaps because he was a man at peace with himself. He conducted a life-long passionate love affair with mathematics, but was neither competitive, nor jealous, nor vain. His kindness and generosity in scientific matters, to students and colleagues alike, were proverbial. He seemed to be incapable of malice. His manners were mild and even diffident, but those hid a will of steel. Without being religious he strongly felt his Jewish identity. Without forgetting his native Czech he spoke pure and precise German ... Without having any illusions about Soviet Russia he was a man of the left. He was a good storyteller, with a sense of humour which was at once Jewish and humanistic.
I conclude the discussion of Loewner with a wonderful quote from his student Lipman Bers: “Loewner was a man whom everybody liked, perhaps because he was a man at peace with himself. He conducted a life-long passionate love affair with mathematics, but was neither competitive, nor jealous, nor vain. His kindness and generosity in scientific matters, to students and colleagues alike, were proverbial. He seemed to be incapable of malice. His manners were mild and even diffident, but those hid a will of steel. Without being religious he strongly felt his Jewish identity. Without forgetting his native Czech he spoke pure and precise German ... Without having any illusions about Soviet Russia he was a man of the left. He was a good storyteller, with a sense of humour which was at once Jewish and humanistic. But first and foremost he was a mathematician.”
Samuel Verblunsky (1906–1996) was born in London on June 25, 1906. His father was a tailor of Jewish-Polish extraction.
Verblunsky

Samuel Verblunsky (1906–1996) was born in London on June 25, 1906. His father was a tailor of Jewish-Polish extraction. He entered Magdalene College, Cambridge in 1924 with a scholarship, scored a First in both parts of Tripos, did his doctoral research with Littlewood, and stayed on as a fellow.
Samuel Verblunsky (1906–1996) was born in London on June 25, 1906. His father was a tailor of Jewish-Polish extraction. He entered Magdalene College, Cambridge in 1924 with a scholarship, scored a First in both parts of Tripos, did his doctoral research with Littlewood, and stayed on as a fellow. His obituary in the Magdalene College magazine remarks dryly of his fellowship: “At the time of his election, it emerged that he had never used a telephone and never been in a taxi, evidence of a modest life style which one older don thought ‘unpropitious’.”
Samuel Verblunsky (1906–1996) was born in London on June 25, 1906. His father was a tailor of Jewish-Polish extraction. He entered Magdalene College, Cambridge in 1924 with a scholarship, scored a First in both parts of Tripos, did his doctoral research with Littlewood, and stayed on as a fellow. His obituary in the Magdalene College magazine remarks dryly of his fellowship: “At the time of his election, it emerged that he had never used a telephone and never been in a taxi, evidence of a modest life style which one older don thought ‘unpropitious’.” He was quite prolific in his early years – for example, he published 8 papers in 1930 while he was still a graduate student.
Samuel Verblunsky (1906–1996) was born in London on June 25, 1906. His father was a tailor of Jewish-Polish extraction. He entered Magdalene College, Cambridge in 1924 with a scholarship, scored a First in both parts of Tripos, did his doctoral research with Littlewood, and stayed on as a fellow. His obituary in the Magdalene College magazine remarks dryly of his fellowship: “At the time of his election, it emerged that he had never used a telephone and never been in a taxi, evidence of a modest life style which one older don thought ‘unpropitious’.” He was quite prolific in his early years – for example, he published 8 papers in 1930 while he was still a graduate student. These days, he is best known for a pair of papers *On positive harmonic functions* based on presentations he made to the LMS in 1933 and 1935.
Verblunsky spent most of his career at Queen’s University, Belfast.
Verblunsky spent most of his career at Queen’s University, Belfast. He probably thought he’d be remembered for the reading room at the LMS named for the bequest he left when he died in 1996 at age 90.
Verblunsky spent most of his career at Queen’s University, Belfast. He probably thought he’d be remembered for the reading room at the LMS named for the bequest he left when he died in 1996 at age 90.

In 2002, I began to wonder who had first written about Szegő’s theorem as a sum rule.
Verblunsky

Verblunsky spent most of his career at Queen’s University, Belfast. He probably thought he’d be remembered for the reading room at the LMS named for the bequest he left when he died in 1996 at age 90.

In 2002, I began to wonder who had first written about Szegő’s theorem as a sum rule. I asked Paul Nevai, who replied that he didn’t know – but it was an interesting question and so he sent out an e-mail blast to about a dozen experts.
Verblunsky spent most of his career at Queen’s University, Belfast. He probably thought he’d be remembered for the reading room at the LMS named for the bequest he left when he died in 1996 at age 90.

In 2002, I began to wonder who had first written about Szegő’s theorem as a sum rule. I asked Paul Nevai, who replied that he didn’t know – but it was an interesting question and so he sent out an e-mail blast to about a dozen experts. Leonid Golinskii, whose father had been a student of Geronimus, replied that he wasn’t sure and that he hadn’t seen the paper (since his library didn’t have Proc. LMS), but he’d heard it might be “… ” and he gave the reference to Verblunsky’s second paper.
Verblunsky spent most of his career at Queen’s University, Belfast. He probably thought he’d be remembered for the reading room at the LMS named for the bequest he left when he died in 1996 at age 90.

In 2002, I began to wonder who had first written about Szegő’s theorem as a sum rule. I asked Paul Nevai, who replied that he didn’t know – but it was an interesting question and so he sent out an e-mail blast to about a dozen experts. Leonid Golinskii, whose father had been a student of Geronimus, replied that he wasn’t sure and that he hadn’t seen the paper (since his library didn’t have Proc. LMS), but he’d heard it might be “…” and he gave the reference to Verblunsky’s second paper. I got hold of this and the earlier one and read them with fascination.
It was hard going, but as I absorbed the papers, it became clear that there was an enormous number of ideas in these papers that had become important, but then forgotten and later rediscovered!
It was hard going, but as I absorbed the papers, it became clear that there was an enormous number of ideas in these papers that had become important, but then forgotten and later rediscovered! So added to the agenda was making sure Verblunsky got the credit so long denied him!
Verblunsky

It was hard going, but as I absorbed the papers, it became clear that there was an enormous number of ideas in these papers that had become important, but then forgotten and later rediscovered! So added to the agenda was making sure Verblunsky got the credit so long denied him! These papers never explicitly mentioned orthogonal polynomials but since positive harmonic functions (normalized by $u(0) = 1$) are in 1–1 correspondence with probability measures on the circle, there is close connection.
Verblunsky

It was hard going, but as I absorbed the papers, it became clear that there was an enormous number of ideas in these papers that had become important, but then forgotten and laterrediscovered! So added to the agenda was making sure Verblunsky got the credit so long denied him! These papers never explicitly mentioned orthogonal polynomials but since positive harmonic functions (normalized by $u(0) = 1$) are in 1–1 correspondence with probability measures on the circle, there is close connection.

The recursion parameters for OPUC didn’t have a standard name – the most common was reflection coefficients which was awful.
It was hard going, but as I absorbed the papers, it became clear that there was an enormous number of ideas in these papers that had become important, but then forgotten and later rediscovered! So added to the agenda was making sure Verblunsky got the credit so long denied him! These papers never explicitly mentioned orthogonal polynomials but since positive harmonic functions (normalized by $u(0) = 1$) are in 1–1 correspondence with probability measures on the circle, there is close connection.

The recursion parameters for OPUC didn’t have a standard name – the most common was reflection coefficients which was awful. Verblunsky didn’t have the recursion relation but had a set of natural coefficients which turn out to be the same,
It was hard going, but as I absorbed the papers, it became clear that there was an enormous number of ideas in these papers that had become important, but then forgotten and later rediscovered! So added to the agenda was making sure Verblunsky got the credit so long denied him! These papers never explicitly mentioned orthogonal polynomials but since positive harmonic functions (normalized by $u(0) = 1$) are in 1–1 correspondence with probability measures on the circle, there is close connection.

The recursion parameters for OPUC didn’t have a standard name – the most common was reflection coefficients which was awful. Verblunsky didn’t have the recursion relation but had a set of natural coefficients which turn out to be the same, so I called them Verblunsky coefficients.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}. This had been rediscovered several times in the seventy years since Verblunsky’s paper – if it had any name it was “Favard’s Theorem for the Circle”.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}. This had been rediscovered several times in the seventy years since Verblunsky’s paper – if it had any name it was “Favard’s Theorem for the Circle”. This was a crazy name.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}. This had been rediscovered several times in the seventy years since Verblunsky’s paper – if it had any name it was “Favard’s Theorem for the Circle”. This was a crazy name. In 1935, Favard had proven a similar result about probability measures on \mathbb{R} (with finite moments) and Jacobi parameters, a result already in Stieltjes in 1895 and Stone in 1932.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}. This had been rediscovered several times in the seventy years since Verblunsky’s paper – if it had any name it was “Favard’s Theorem for the Circle”. This was a crazy name. In 1935, Favard had proven a similar result about probability measures on \mathbb{R} (with finite moments) and Jacobi parameters, a result already in Stieltjes in 1895 and Stone in 1932. So since Favard already had more credit than he deserved and since Verblunsky’s paper was before his, I named the result Verblunsky’s Theorem.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}. This had been rediscovered several times in the seventy years since Verblunsky’s paper – if it had any name it was “Favard’s Theorem for the Circle”. This was a crazy name. In 1935, Favard had proven a similar result about probability measures on \mathbb{R} (with finite moments) and Jacobi parameters, a result already in Stieltjes in 1895 and Stone in 1932. So since Favard already had more credit than he deserved and since Verblunsky’s paper was before his, I named the result Verblunsky’s Theorem.

Since then there are more than 110 MathSciNet references to Verblunsky’s Theorem or Coefficients.
Verblunsky also had the fundamental result that there is a 1–1 correspondence between non-trivial probability measures and sequences of Verblunsky coefficients in \mathbb{D}. This had been rediscovered several times in the seventy years since Verblunsky’s paper – if it had any name it was “Favard’s Theorem for the Circle”. This was a crazy name. In 1935, Favard had proven a similar result about probability measures on \mathbb{R} (with finite moments) and Jacobi parameters, a result already in Stieltjes in 1895 and Stone in 1932. So since Favard already had more credit than he deserved and since Verblunsky’s paper was before his, I named the result Verblunsky’s Theorem.

Since then there are more than 110 MathSciNet references to Verblunsky’s Theorem or Coefficients. So I guess not only is Verblunsky a personal favorite of mine, I must be personal favorite of his.
Nazi Mayhem

History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems.
History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems. With death camps, the Nazis are much worse but it is only by such an awful benchmark that the Soviet mayhem looks measured.
Nazi Mayhem

History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems. With death camps, the Nazis are much worse but it is only by such an awful benchmark that the Soviet mayhem looks measured. Since so many central European mathematicians were Jewish, the impact on mathematics was noticeable.
Nazi Mayhem

History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems. With death camps, the Nazis are much worse but it is only by such an awful benchmark that the Soviet mayhem looks measured. Since so many central European mathematicians were Jewish, the impact on mathematics was noticeable. I start with three murdered in the camps, all in Theresienstadt, where the Germans tended to send intellectuals:
Nazi Mayhem

History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems. With death camps, the Nazis are much worse but it is only by such an awful benchmark that the Soviet mayhem looks measured. Since so many central European mathematicians were Jewish, the impact on mathematics was noticeable. I start with three murdered in the camps, all in Theresienstadt, where the Germans tended to send intellectuals: Otto Blumenthal (1876-1944), murdered at age 68 on 12 November 1944,
Nazi Mayhem

History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems. With death camps, the Nazis are much worse but it is only by such an awful benchmark that the Soviet mayhem looks measured. Since so many central European mathematicians were Jewish, the impact on mathematics was noticeable. I start with three murdered in the camps, all in Theresienstadt, where the Germans tended to send intellectuals: Otto Blumenthal (1876-1944), murdered at age 68 on 12 November 1944, Georg Alexander Pick (1859-1942), murdered at age 82 on 26 July 1942,
Nazi Mayhem

History of 20th century mathematics cannot avoid facing the horror of the impact of the Nazi and Communist systems. With death camps, the Nazis are much worse but it is only by such an awful benchmark that the Soviet mayhem looks measured. Since so many central European mathematicians were Jewish, the impact on mathematics was noticeable. I start with three murdered in the camps, all in Theresienstadt, where the Germans tended to send intellectuals: Otto Blumenthal (1876-1944), murdered at age 68 on 12 November 1944, Georg Alexander Pick (1859-1942), murdered at age 82 on 26 July 1942, and Alfred Tauber (1866-1942), murdered at age 75 on 26 July 1942.
Nazi Mayhem

There is another trio that I won’t honor by including them in the official list: Bieberbach, Blaschke and Teichmüller, truly evil men.
There is another trio that I won’t honor by including them in the official list: Bieberbach, Blaschke and Teichmüller, truly evil men. Teichmüller was the most virulent. An SA member from 1931, when he was 18, he led student protests against Jewish professors.
Nazi Mayhem

There is another trio that I won’t honor by including them in the official list: Bieberbach, Blaschke and Teichmüller, truly evil men. Teichmüller was the most virulent. An SA member from 1931, when he was 18, he led student protests against Jewish professors. By the direct order of Hitler, he joined the Army and was killed on the Eastern front.
There is another trio that I won’t honor by including them in the official list: Bieberbach, Blaschke and Teichmüller, truly evil men. Teichmüller was the most virulent. An SA member from 1931, when he was 18, he led student protests against Jewish professors. By the direct order of Hitler, he joined the Army and was killed on the Eastern front. The irony is that he might have been forgotten mathematically if Lipman Bers (1914-1993) hadn’t decided to name many objects after him.
Nazi Mayhem

There is another trio that I won’t honor by including them in the official list: Bieberbach, Blaschke and Teichmüller, truly evil men. Teichmüller was the most virulent. An SA member from 1931, when he was 18, he led student protests against Jewish professors. By the direct order of Hitler, he joined the Army and was killed on the Eastern front. The irony is that he might have been forgotten mathematically if Lipman Bers (1914-1993) hadn’t decided to name many objects after him. Bers, a Latvian by birth and student of Loewner, barely escaped the Nazis – moving to Paris from Prague for a postdoc just after the Munich agreement and to Marseille just ten days before the fall of Paris.
Nazi Mayhem

There is another trio that I won’t honor by including them in the official list: Bieberbach, Blaschke and Teichmüller, truly evil men. Teichmüller was the most virulent. An SA member from 1931, when he was 18, he led student protests against Jewish professors. By the direct order of Hitler, he joined the Army and was killed on the Eastern front. The irony is that he might have been forgotten mathematically if Lipman Bers (1914-1993) hadn’t decided to name many objects after him. Bers, a Latvian by birth and student of Loewner, barely escaped the Nazis – moving to Paris from Prague for a postdoc just after the Munich agreement and to Marseille just ten days before the fall of Paris. He managed to get a visa to the US there and later became a Professor at Columbia, President of the AMS and chair of the math section of the National Academy of Sciences.
Nazi Mayhem

Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen.
Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen. He wrote often about racist theories and actively persecuted Jewish mathematicians pressuring them to resign from German honorary societies.
Nazi Mayhem

Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen. He wrote often about racist theories and actively persecuted Jewish mathematicians pressuring them to resign from German honorary societies. Blaschke was the least bad of the three but there is one story that convinces me he must have been pretty bad.
Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen. He wrote often about racist theories and actively persecuted Jewish mathematicians pressuring them to resign from German honorary societies. Blaschke was the least bad of the three but there is one story that convinces me he must have been pretty bad.

Szegő had a reputation of being soft-spoken and a gentle man.
Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen. He wrote often about racialist theories and actively persecuted Jewish mathematicians pressuring them to resign from German honorary societies. Blaschke was the least bad of the three but there is one story that convinces me he must have been pretty bad.

Szegő had a reputation of being soft-spoken and a gentleman. He used to regularly teach the complex analysis course at Stanford.
Nazi Mayhem

Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen. He wrote often about racist theories and actively persecuted Jewish mathematicians pressuring them to resign from German honorary societies. Blaschke was the least bad of the three but there is one story that convinces me he must have been pretty bad.

Szegő had a reputation of being soft-spoken and a gentle man. He used to regularly teach the complex analysis course at Stanford. One day a student came to him and asked: “Professor Szegő, how come what all the other professors call Blaschke products, you call just products?”
Bieberbach was long a major power in German mathematics – for example, he was a long time editor of Mathematische Annalen. He wrote often about racist theories and actively persecuted Jewish mathematicians pressuring them to resign from German honorary societies. Blaschke was the least bad of the three but there is one story that convinces me he must have been pretty bad.

Szegő had a reputation of being soft-spoken and a gentle man. He used to regularly teach the complex analysis course at Stanford. One day a student came to him and asked: “Professor Szegő, how come what all the other professors call Blaschke products, you call just products?” Szegő replied “I will not say that man’s name.”
Otto Blumenthal was Hilbert’s first research student at Göttingen and spent most of his career at Aachen.
Otto Blumenthal was Hilbert’s first research student at Göttingen and spent most of his career at Aachen. He is noted for having figured out that the key to Joukowsky’s work in aerodynamics was the map $z \mapsto z + z^{-1}$ that now bears Joukowsky’s name.
Otto Blumenthal was Hilbert’s first research student at Göttingen and spent most of his career at Aachen. He is noted for having figured out that the key to Joukowsky’s work in aerodynamics was the map $z \mapsto z + z^{-1}$ that now bears Joukowsky’s name. After being dismissed from his positions in Germany, including managing editor of Mathematische Annalen, he fled to the Netherlands but after the German conquest of that country he wound up in concentration camps.
Georg Pick

Pick was Viennese born there with his PhD. from their university.
Pick was Viennese born there with his PhD. from their university. He spent most of his career at the Charles University of Prague which was German speaking.
Georg Pick

Pick was Viennese born there with his PhD. from their university. He spent most of his career at the Charles University of Prague which was German speaking. There he served as Dean and was instrumental in Einstein's first professorship.
Georg Pick

Pick was Viennese born there with his PhD. from their university. He spent most of his career at the Charles University of Prague which was German speaking. There he served as Dean and was instrumental in Einstein's first professorship. He retired in 1927 and returned to Vienna, fleeing from there after the
Pick was Viennese born there with his PhD. from their university. He spent most of his career at the Charles University of Prague which was German speaking. There he served as Dean and was instrumental in Einstein’s first professorship. He retired in 1927 and returned to Vienna, fleeing from there after the Anschluss. He fled back to Prague but was arrested after the German invasion there.
Georg Pick

Pick was Viennese born there with his PhD. from their university. He spent most of his career at the Charles University of Prague which was German speaking. There he served as Dean and was instrumental in Einstein’s first professorship. He retired in 1927 and returned to Vienna, fleeing from there after the Anschluss. He fled back to Prague but was arrested after the German invasion there.

Pick is best known for solving the problem $f(z_j) = w_j$ for Herglotz functions from which we get Pick functions, Pick’s Theorem, Pick matrix and Pick interpolation.
Tauber was born in Bratislava but spent most of his adult life in Vienna.
Alfred Tauber

Tauber was born in Bratislava but spent most of his adult life in Vienna. Unable to find an academic position, he worked from 1892 until 1908 for an insurance company and then spent the rest of his career as a Professor of Actuarial Science. He was arrested on June 28, 1942 and the death date of July 26, 1942 is not certain.
Alfred Tauber

Tauber was born in Bratislava but spent most of his adult life in Vienna. Unable to find an academic position, he worked from 1892 until 1908 for an insurance company and then spent the rest of his career as a Professor of Actuarial Science. He was arrested on June 28, 1942 and the death date of July 26, 1942 is not certain.

Undoubtedly, Tauber is best known for a result proven in 1897.
Tauber was born in Bratislava but spent most of his adult life in Vienna. Unable to find an academic position, he worked from 1892 until 1908 for an insurance company and then spent the rest of his career as a Professor of Actuarial Science. He was arrested on June 28, 1942 and the death date of July 26, 1942 is not certain.

Undoubtedly, Tauber is best known for a result proven in 1897. Many years before, Abel had proven
\[
\lim_{N \to \infty} \sum_{n=1}^{N} a_n = \alpha \Rightarrow \lim_{r \uparrow 1} \sum_{n=0}^{\infty} a_n r^n = \alpha.
\]
Alfred Tauber

Tauber was born in Bratislava but spent most of his adult life in Vienna. Unable to find an academic position, he worked from 1892 until 1908 for an insurance company and then spent the rest of his career as a Professor of Actuarial Science. He was arrested on June 28, 1942 and the death date of July 26, 1942 is not certain.

Undoubtedly, Tauber is best known for a result proven in 1897. Many years before, Abel had proven
\[\lim_{N \to \infty} \sum_{n=1}^{N} a_n = \alpha \Rightarrow \lim_{r \uparrow 1} \sum_{n=0}^{\infty} a_n r^n = \alpha. \]
Tauber proved the converse under the additional condition that \(\lim na_n = 0. \)
Starting 15 years later, Hardy and Littlewood proved numerous theorems where one showed a converse of an easy result under additional conditions by the name “Tauberian theorem”.
Starting 15 years later, Hardy and Littlewood proved numerous theorems where one showed a converse of an easy result under additional conditions by the name “Tauberian theorem”. In his great 1932 paper that has his Tauberian theorem, Wiener remarked:
Starting 15 years later, Hardy and Littlewood proved numerous theorems where one showed a converse of an easy result under additional conditions by the name “Tauberian theorem”. In his great 1932 paper that has his Tauberian theorem, Wiener remarked: “I feel it would be far more appropriate to term these theorems Hardy–Littlewood theorems, were it not that usage has sanctioned the other appellation.”
The Nazis destroyed a lot more lives than those they murdered in the camps. Two of this trio are representative of what happened and the third involves the Soviet system.
The Nazis destroyed a lot more lives than those they murdered in the camps. Two of this trio are representative of what happened and the third involves the Soviet system.

Edmund Landau (1877-1938) was a Jewish German mathematician.
The Nazis destroyed a lot more lives than those they murdered in the camps. Two of this trio are representative of what happened and the third involves the Soviet system.

Edmund Landau (1877-1938) was a Jewish German mathematician. His mother was from the Jacoby family of very wealthy bankers so he was independently wealthy for his entire life.
The Nazis destroyed a lot more lives than those they murdered in the camps. Two of this trio are representative of what happened and the third involves the Soviet system.

Edmund Landau (1877-1938) was a Jewish German mathematician. His mother was from the Jacoby family of very wealthy bankers so he was independently wealthy for his entire life. His father was a famous medical doctor and descendent of Yechezkel ben Yehuda Landau (1713–1793), a famous Prague Rabbi often called by the name of his great book of Jewish law Noda Biyhudah.
The Nazis destroyed a lot more lives than those they murdered in the camps. Two of this trio are representative of what happened and the third involves the Soviet system.

Edmund Landau (1877-1938) was a Jewish German mathematician. His mother was from the Jacoby family of very wealthy bankers so he was independently wealthy for his entire life. His father was a famous medical doctor and descendental of Yechezkel ben Yehuda Landau (1713–1793), a famous Prague Rabbi often called by the name of his great book of Jewish law Noda Biyhudah. From early in his career, Landau was noted for his clear, well-organized, precise and formal writing and lectures.
Landau submitted his thesis in analytic number theory to the University of Berlin in 1899 although his formal advisor Fröbenius frowned on the subject.
Landau submitted his thesis in analytic number theory to the University of Berlin in 1899 although his formal advisor Fröbenius frowned on the subject. He was privatdozent at Berlin from 1899 until 1909 when he moved to Göttingen after the sudden death of Minkowski.
Landau submitted his thesis in analytic number theory to the University of Berlin in 1899 although his formal advisor Fröbenius frowned on the subject. He was privatdozent at Berlin from 1899 until 1909 when he moved to Göttingen after the sudden death of Minkowski. The final choice for Minkowski’s successor was between Oskar Perron (1880-1975) and Landau and Felix Klein made the choice saying
Landau submitted his thesis in analytic number theory to the University of Berlin in 1899 although his formal advisor Fröbenius frowned on the subject. He was privatdozent at Berlin from 1899 until 1909 when he moved to Göttingen after the sudden death of Minkowski. The final choice for Minkowski’s successor was between Oskar Perron (1880-1975) and Landau and Felix Klein made the choice saying “Oh, Perron is such a wonderful person. Everybody loves him. Landau is very disagreeable, very difficult to get along with. But we, being a group as we are, it is better that we have a man who is not easy.”
Landau submitted his thesis in analytic number theory to the University of Berlin in 1899 although his formal advisor Fröbenius frowned on the subject. He was privatdozent at Berlin from 1899 until 1909 when he moved to Göttingen after the sudden death of Minkowski. The final choice for Minkowski’s successor was between Oskar Perron (1880-1975) and Landau and Felix Klein made the choice saying “Oh, Perron is such a wonderful person. Everybody loves him. Landau is very disagreeable, very difficult to get along with. But we, being a group as we are, it is better that we have a man who is not easy.” In any event Landau was arrogant which will be significant shortly – as a historian wrote:
Landau

Landau submitted his thesis in analytic number theory to the University of Berlin in 1899 although his formal advisor Fröbenius frowned on the subject. He was privatdozent at Berlin from 1899 until 1909 when he moved to Göttingen after the sudden death of Minkowski. The final choice for Minkowski’s successor was between Oskar Perron (1880-1975) and Landau and Felix Klein made the choice saying “Oh, Perron is such a wonderful person. Everybody loves him. Landau is very disagreeable, very difficult to get along with. But we, being a group as we are, it is better that we have a man who is not easy.” In any event Landau was arrogant which will be significant shortly – as a historian wrote: “Landau was also something of a cynical snob. The story is well known that he used to tell people who would ask for his address in Göttingen, You’ll find it easily; it’s the most splendid house in the city.”
Landau's first major result was his 1903 proof of the prime number theorem, first proven by Hadamard and de la Vallée-Poussin independently in 1896.
Landau's first major result was his 1903 proof of the prime number theorem, first proven by Hadamard and de la Vallée-Poussin independently in 1896. Not only was his proof much simpler but the earlier proofs required that the zeta function with the pole removed was entire while Landau’s proof (and most since) only needed analyticity in a neighborhood of the closed half plane $\Re(z) \geq 1$.
Landau’s first major result was his 1903 proof of the prime number theorem, first proven by Hadamard and de la Vallée-Poussin independently in 1896. Not only was his proof much simpler but the earlier proofs required that the zeta function with the pole removed was entire while Landau’s proof (and most since) only needed analyticity in a neighborhood of the closed half plane $\Re(z) \geq 1$. He also made fundamental contributions to the direct proofs of Picard’s theorem.
Landau’s first major result was his 1903 proof of the prime number theorem, first proven by Hadamard and de la Vallée-Poussin independently in 1896. Not only was his proof much simpler but the earlier proofs required that the zeta function with the pole removed was entire while Landau’s proof (and most since) only needed analyticity in a neighborhood of the closed half plane $\Re(z) \geq 1$. He also made fundamental contributions to the direct proofs of Picard’s theorem and he wrote the definitive book in analytic number theory.
Landau

Landau’s first major result was his 1903 proof of the prime number theorem, first proven by Hadamard and de la Vallée-Poussin independently in 1896. Not only was his proof much simpler but the earlier proofs required that the zeta function with the pole removed was entire while Landau’s proof (and most since) only needed analyticity in a neighborhood of the closed half plane $\Re(z) \geq 1$. He also made fundamental contributions to the direct proofs of Picard’s theorem and he wrote the definitive book in analytic number theory.

In the early 1920’s Landau was a supporter of the idea of establishing a Hebrew University in Jerusalem and he considered immigrating to Palestine so much so that he taught himself Hebrew and gave a talk in Hebrew at the dedication of the Math Institute there in 1925.
Landau

Landau’s first major result was his 1903 proof of the prime number theorem, first proven by Hadamard and de la Vallée-Poussin independently in 1896. Not only was his proof much simpler but the earlier proofs required that the zeta function with the pole removed was entire while Landau’s proof (and most since) only needed analyticity in a neighborhood of the closed half plane $\Re(z) \geq 1$. He also made fundamental contributions to the direct proofs of Picard’s theorem and he wrote the definitive book in analytic number theory.

In the early 1920’s Landau was a supporter of the idea of establishing a Hebrew University in Jerusalem and he considered immigrating to Palestine so much so that he taught himself Hebrew and gave a talk in Hebrew at the dedication of the Math Institute there in 1925. He began negotiating with Judah Magnes (1877-1948)
Introduction

Landau

who ran the University as part of a triumvirate with two distinguished external members.
who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor.
Landau who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck.
Landau

who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck. Magnes was so taken with Landau that he offered him both a professorship and the position of Rector.
who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck. Magnes was so taken with Landau that he offered him both a professorship and the position of Rector. But the other two members of the triumvirate objected to the rectorship part
who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck. Magnes was so taken with Landau that he offered him both a professorship and the position of Rector. But the other two members of the triumvirate objected to the rectorship part – perhaps because they objected to not being consulted
who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck. Magnes was so taken with Landau that he offered him both a professorship and the position of Rector. But the other two members of the triumvirate objected to the rectorship part – perhaps because they objected to not being consulted or perhaps because they knew Landau and found him arrogant.
who ran the University as part of a triumvirate with two
distinguished external members. Landau spent 1928 as a
visiting Professor in Jerusalem where he used the first name
Yechezkel like his distinguished ancestor. It looked like he
would stay but then disaster struck. Magnes was so taken
with Landau that he offered him both a professorship and
the position of Rector. But the other two members of the
triumvirate objected to the rectorship part – perhaps
because they objected to not being consulted or perhaps
because they knew Landau and found him arrogant. Unable
to win the argument on his own, Magnes showed the
correspondence to Landau hoping he’d get involved.
who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck. Magnes was so taken with Landau that he offered him both a professorship and the position of Rector. But the other two members of the triumvirate objected to the rectorship part – perhaps because they objected to not being consulted or perhaps because they knew Landau and found him arrogant. Unable to win the argument on his own, Magnes showed the correspondence to Landau hoping he’d get involved. Instead, Landau resigned the offered professorship and returned to Göttingen.
who ran the University as part of a triumvirate with two distinguished external members. Landau spent 1928 as a visiting Professor in Jerusalem where he used the first name Yechezkel like his distinguished ancestor. It looked like he would stay but then disaster struck. Magnes was so taken with Landau that he offered him both a professorship and the position of Rector. But the other two members of the triumvirate objected to the rectorship part – perhaps because they objected to not being consulted or perhaps because they knew Landau and found him arrogant. Unable to win the argument on his own, Magnes showed the correspondence to Landau hoping he’d get involved. Instead, Landau resigned the offered professorship and returned to Göttingen. By the way the other two members of the triumvirate were Chaim Weizmann and Albert Einstein.
Returning to Germany at the end of 1928 was not such a wise move. Hitler came to power on Jan. 30, 1933 and by April 7, there was a law in place allowing the removal of Jewish teachers from Universities. On Nov. 2, 1933, Landau tried to give his first lecture of the fall quarter. Teichmüller objected to the teaching of Jewish calculus rather than Aryan calculus and organized student members of the SA who prevented any students from entering the lecture hall.
Landau

Returning to Germany at the end of 1928 was not such a wise move. Hitler came to power on Jan. 30, 1933 and by April 7, there was a law in place allowing the removal of Jewish teachers from Universities. On Nov. 2, 1933, Landau tried to give his first lecture of the fall quarter. Teichmüller objected to the teaching of Jewish calculus rather than Aryan calculus and organized student members of the SA who prevented any students from entering the lecture hall. Landau decided he had no option but to retire at age only 56.
Returning to Germany at the end of 1928 was not such a wise move. Hitler came to power on Jan. 30, 1933 and by April 7, there was a law in place allowing the removal of Jewish teachers from Universities. On Nov. 2, 1933, Landau tried to give his first lecture of the fall quarter. Teichmüller objected to the teaching of Jewish calculus rather than Aryan calculus and organized student members of the SA who prevented any students from entering the lecture hall. Landau decided he had no option but to retire at age only 56. He moved to Berlin, a broken man and died there in 1938.
Returning to Germany at the end of 1928 was not such a wise move. Hitler came to power on Jan. 30, 1933 and by April 7, there was a law in place allowing the removal of Jewish teachers from Universities. On Nov. 2, 1933, Landau tried to give his first lecture of the fall quarter. Teichmüller objected to the teaching of Jewish calculus rather than Aryan calculus and organized student members of the SA who prevented any students from entering the lecture hall. Landau decided he had no option but to retire at age only 56. He moved to Berlin, a broken man and died there in 1938.

Among the other German Jewish mathematicians fired from their jobs and unable to find suitable jobs outside Germany (although both emigrated to Palestine) were Schur and Toeplitz.
Dénes Kőnig (1884–1944) was born and got his degrees in Budapest.
Dénes Kőnig (1884–1944) was born and got his degrees in Budapest. He is regarded as one of the founders of modern graph theory.
Dénes Kőnig (1884–1944) was born and got his degrees in Budapest. He is regarded as one of the founders of modern graph theory. While his family was Jewish, he was raised a Christian so he did not feel too vulnerable during the first part of the War.
Dénes Kőnig (1884–1944) was born and got his degrees in Budapest. He is regarded as one of the founders of modern graph theory. While his family was Jewish, he was raised a Christian so he did not feel too vulnerable during the first part of the War but after the German occupation on March 19, 1944, he felt threatened enough that he committed suicide by throwing himself out of his window rather than be deported to a camp.
Dénes Kőnig (1884–1944) was born and got his degrees in Budapest. He is regarded as one of the founders of modern graph theory. While his family was Jewish, he was raised a Christian so he did not feel too vulnerable during the first part of the War but after the German occupation on March 19, 1944, he felt threatened enough that he committed suicide by throwing himself out of his window rather than be deported to a camp.

Friedrich Hartogs (1874–1943), a founding father of the theory of several complex variables...
Dénes Kőnig (1884–1944) was born and got his degrees in Budapest. He is regarded as one of the founders of modern graph theory. While his family was Jewish, he was raised a Christian so he did not feel too vulnerable during the first part of the War but after the German occupation on March 19, 1944, he felt threatened enough that he committed suicide by throwing himself out of his window rather than be deported to a camp.

Friedrich Hartogs (1874-1943), a founding father of the theory of several complex variables and Felix Hausdorff (1868-1942), the founder of point set topology and Hausdorff dimension also committed suicide rather than get shipped off to camps (both by overdoses of barbiturates).
Marcinkiewicz

The Russians were also evil!

The Russians were also evil!

Jósef Marcinkiewicz (1910–1940), a Polish mathematician, a student of Antoni Zygmund (1900–1992), is best known for the Marcinkiewicz interpolation theorem. It was announced in 1939. Before he could publish the details, the Second World War broke out. Marcinkiewicz was a Polish nationalist and, despite the fact that his colleagues in England, where he was working, urged him to stay, he returned to Poland to take up his commission as an officer in the Polish army reserves.
The Russians were also evil! Jósef Marcinkiewicz (1910–1940), a Polish mathematician, a student of Antoni Zygmund (1900–1992), is best known for the Marcinkiewicz interpolation theorem. It was announced in 1939.
Marcinkiewicz

The Russians were also evil! Jósef Marcinkiewicz (1910–1940), a Polish mathematician, a student of Antoni Zygmund (1900–1992), is best known for the Marcinkiewicz interpolation theorem. It was announced in 1939. Before he could publish the details, the Second World War broke out.
Marcinkiewicz

The Russians were also evil! Józef Marcinkiewicz (1910–1940), a Polish mathematician, a student of Antoni Zygmund (1900–1992), is best known for the Marcinkiewicz interpolation theorem. It was announced in 1939. Before he could publish the details, the Second World War broke out. Marcinkiewicz was a Polish nationalist and, despite the fact that his colleagues in England, where he was working, urged him to stay, he returned to Poland to take up his commission as an officer in the Polish army reserves.
Marcinkiewicz

He was captured by the Russians and taken to a POW camp.
Marcinkiewicz

He was captured by the Russians and taken to a POW camp. With an eye to the aftermath of the war, the Russians systematically killed captured Polish officers and intelligentsia, including a notorious massacre in the Katyn Forest in March 1940 of over 20,000.
Marcinkiewicz

He was captured by the Russians and taken to a POW camp. With an eye to the aftermath of the war, the Russians systematically killed captured Polish officers and intelligentsia, including a notorious massacre in the Katyn Forest in March 1940 of over 20,000. It is believed that Marcinkiewicz was killed there or somewhat later in 1940.
He was captured by the Russians and taken to a POW camp. With an eye to the aftermath of the war, the Russians systematically killed captured Polish officers and intelligentsia, including a notorious massacre in the Katyn Forest in March 1940 of over 20,000. It is believed that Marcinkiewicz was killed there or somewhat later in 1940. Before he left for the war, he had given some mathematical manuscripts to his parents for safekeeping, but his parents were arrested by the Russians and sent to a camp where they died of hunger.
Marcinkiewicz

He was captured by the Russians and taken to a POW camp. With an eye to the aftermath of the war, the Russians systematically killed captured Polish officers and intelligentsia, including a notorious massacre in the Katyn Forest in March 1940 of over 20,000. It is believed that Marcinkiewicz was killed there or somewhat later in 1940. Before he left for the war, he had given some mathematical manuscripts to his parents for safekeeping, but his parents were arrested by the Russians and sent to a camp where they died of hunger. In 1956, Zygmund published the details of his results.
My final trio is a bonus selection. I start with a bonus personal hero:

Mark Grigorievich Krein (1907–1989) was a Jewish Ukrainian mathematician born in Kiev. In 1924, he ran away to the University in Odessa and except for a brief period of evacuation during the Second World War, spent the rest of life in Odessa, a town on the Black Sea. His students include Berezansky, Glazman, Gohberg (but see below), Milman, Naimark, Rutman and Sakhnovich. He got his degree in 1929 and in the 1930's, he ran a world center of functional analysis out of the University of Odessa collaborating often with his friend Naum Akhiezer (1901-1980) who was based in Kharkiv.
My final trio is a bonus selection. I start with a bonus personal hero:

Mark Grigorievich Krein (1907–1989) was a Jewish Ukrainian mathematician born in Kiev. In 1924, he ran away to the University in Odessa and except for a brief period of evacuation during the Second World War, spent the rest of life in Odessa, a town on the Black Sea.
My final trio is a bonus selection. I start with a bonus personal hero:

Mark Grigorievich Krein (1907–1989) was a Jewish Ukrainian mathematician born in Kiev. In 1924, he ran away to the University in Odessa and except for a brief period of evacuation during the Second World War, spent the rest of life in Odessa, a town on the Black Sea. His students include Berezansky, Glazman, Gohberg (but see below), Milman, Naimark, Rutman and Saksnoich.
My final trio is a bonus selection. I start with a bonus personal hero:

Mark Grigorievich Krein (1907–1989) was a Jewish Ukrainian mathematician born in Kiev. In 1924, he ran away to the University in Odessa and except for a brief period of evacuation during the Second World War, spent the rest of life in Odessa, a town on the Black Sea. His students include Berezansky, Glazman, Gohberg (but see below), Milman, Naimark, Rutman and Sakhnovich.

He got his degree in 1929 and in the 1930’s, he ran a world center of functional analysis out of the University of Odessa collaborating often with his friend Naum Akhiezer (1901-1980) who was based in Kharkiv.
After the war, he suffered terribly from official Ukrainian anti–semitism. He was accused of having Zionist tendencies on the basis of having so many Jewish students in the 30’s.
After the war, he suffered terribly from official Ukrainian anti-semitism. He was accused of having Zionist tendencies on the basis of having so many Jewish students in the 30’s. He was dismissed from his University posts and spent the rest of his career in lower status institutions.
Krein

After the war, he suffered terribly from official Ukrainian anti-semitism. He was accused of having Zionist tendencies on the basis of having so many Jewish students in the 30’s. He was dismissed from his University posts and spent the rest of his career in lower status institutions. He was forbidden to have Jewish students so that Gohberg who regarded himself as Krein’s student wasn’t officially. He still drew good students and collaborators and ran a lively seminar.

Krein worked in a wide array of specialties: convex sets in Banach spaces, orthogonal polynomials, moment problems, Banach algebras and representation theory, prediction theory, operator algebras, self-adjoint extension theory, trace class scattering theory, Toeplitz operators, J contractive functions and trace ideals.
After the war, he suffered terribly from official Ukrainian anti-semitism. He was accused of having Zionist tendencies on the basis of having so many Jewish students in the 30’s. He was dismissed from his University posts and spent the rest of his career in lower status institutions. He was forbidden to have Jewish students so that Gohberg who regarded himself as Krein’s student wasn’t officially. He still drew good students and collaborators and ran a lively seminar.
Krein

After the war, he suffered terribly from official Ukrainian anti-semitism. He was accused of having Zionist tendencies on the basis of having so many Jewish students in the 30’s. He was dismissed from his University posts and spent the rest of his career in lower status institutions. He was forbidden to have Jewish students so that Gohberg who regarded himself as Krein’s student wasn’t officially. He still drew good students and collaborators and ran a lively seminar.

Krein worked in a wide array of specialties: convex sets in Banach spaces, orthogonal polynomials, moment problems, Banach algebras and representation theory, prediction theory, operator algebras, self-adjoint extension theory, trace class scattering theory, Toeplitz operators, J contractive functions and trace ideals.
Krein

In each of these areas, he wrote seminal papers.
In each of these areas, he wrote seminal papers. He was not allowed to accept any invitations outside the Soviet Union and it was difficult for foreigners to see him.
Krein

In each of these areas, he wrote seminal papers. He was not allowed to accept any invitations outside the Soviet Union and it was difficult for foreigners to see him. One of the few exceptions was the 1966 Moscow ICM where he was a speaker.
In each of these areas, he wrote seminal papers. He was not allowed to accept any invitations outside the Soviet Union and it was difficult for foreigners to see him. One of the few exceptions was the 1966 Moscow ICM where he was a speaker.

In 1939, he was made a corresponding member of the Ukrainian Academy of Sciences but never a full member.
Krein

In each of these areas, he wrote seminal papers. He was not allowed to accept any invitations outside the Soviet Union and it was difficult for foreigners to see him. One of the few exceptions was the 1966 Moscow ICM where he was a speaker.

In 1939, he was made a corresponding member of the Ukrainian Academy of Sciences but never a full member. He won the 1982 Wolf Prize.
In each of these areas, he wrote seminal papers. He was not allowed to accept any invitations outside the Soviet Union and it was difficult for foreigners to see him. One of the few exceptions was the 1966 Moscow ICM where he was a speaker.

In 1939, he was made a corresponding member of the Ukrainian Academy of Sciences but never a full member. He won the 1982 Wolf Prize (but he couldn’t attend the prize ceremony) and, in 1979, he was made a foreign member of the US Academy of Sciences.
I end my discussion of Krein with two funny stories.
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals.
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope.
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle.

One day, Gohberg met Sahknovich, another of Krein’s students who asked him “How is the book going?” “Well, it is 85 percent ready,” Gohberg replied. “Then why do you look so sad? That is wonderful.” “Yes,” Gohberg answered, “but if you had asked me yesterday I would have said it was 95 percent ready.”

In 1981, I visited Moscow and Leningrad and I was told the following joke in both places. A delegation from the American Academy of Sciences makes an official visit to the Ukrainian Academy of Sciences.
Krein

I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle. One day, Gohberg met Sahknovich, another of Krein’s students who asked him “How is the book going?”
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle. One day, Gohberg met Sahkovich, another of Krein’s students who asked him “How is the book going?” “Well, it is 85 percent ready,” Gohberg replied.
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle. One day, Gohberg met Sahkovich, another of Krein’s students who asked him “How is the book going?” “Well, it is 85 percent ready,” Gohberg replied. “Then why do you look so sad? That is wonderful.”
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle. One day, Gohberg met Sahknoovich, another of Krein’s students who asked him “How is the book going?” “Well, it is 85 percent ready,” Gohberg replied. “Then why do you look so sad? That is wonderful.” “Yes,” Gohberg answered, “but if you had asked me yesterday I would have said it was 95 percent ready.”
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle. One day, Gohberg met Sahknovich, another of Krein’s students who asked him “How is the book going?” “Well, it is 85 percent ready,” Gohberg replied. “Then why do you look so sad? That is wonderful.” “Yes,” Gohberg answered, “but if you had asked me yesterday I would have said it was 95 percent ready.”

In 1981, I visited Moscow and Leningrad and I was told the following joke in both places.
I end my discussion of Krein with two funny stories. Gohberg was a coauthor of several books with Krein including a wonderful one on trace ideals. Like F. Riesz, Krein kept wanting to expand and change the scope. Gohberg explained the following true story became something of a joke in Krein’s circle. One day, Gohberg met Sahknovich, another of Krein’s students who asked him “How is the book going?” “Well, it is 85 percent ready,” Gohberg replied. “Then why do you look so sad? That is wonderful.” “Yes,” Gohberg answered, “but if you had asked me yesterday I would have said it was 95 percent ready.”

In 1981, I visited Moscow and Leningrad and I was told the following joke in both places. A delegation from the American Academy of Sciences makes an official visit to the Ukrainian Academy of Sciences.
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?”
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.”
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?”
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?” “We decided that any Academy where Mark Krein is only a corresponding member must be the greatest academy in the world.”
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?” “We decided that any Academy where Mark Krein is only a corresponding member must be the greatest academy in the world.”

There is a postscript to this story that shows the danger of “telephone”.

Krein
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?” “We decided that any Academy where Mark Krein is only a corresponding member must be the greatest academy in the world.”

There is a postscript to this story that shows the danger of “telephone”. When I returned from the Soviet Union, I often repeated this last joke.
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?” “We decided that any Academy where Mark Krein is only a corresponding member must be the greatest academy in the world.”

There is a postscript to this story that shows the danger of “telephone”. When I returned from the Soviet Union, I often repeated this last joke. I know I told it to Lax but I think not Nirenberg.
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?” “We decided that any Academy where Mark Krein is only a corresponding member must be the greatest academy in the world.”

There is a postscript to this story that shows the danger of “telephone”. When I returned from the Soviet Union, I often repeated this last joke. I know I told it to Lax but I think not Nirenberg. About 25 years later, I sat at the same table as Nirenberg at a banquet at Shmuel Agmon’s 85th birthday conference and he said to me:
Towards the end of their visit, the Academy President approaches the American head and, quite nervously, exclaims: “We wonder what you think of our Academy?” “Oh, we’ve talked about that and decided the Ukrainian Academy must be the best Academy in the world.” Relieved, the President smiles: “I’m so glad to hear that but why did you reach that conclusion?” “We decided that any Academy where Mark Krein is only a corresponding member must be the greatest academy in the world.”

There is a postscript to this story that shows the danger of “telephone”. When I returned from the Soviet Union, I often repeated this last joke. I know I told it to Lax but I think not Nirenberg. About 25 years later, I sat at the same table as Nirenberg at a banquet at Shmuel Agmon’s 85th birthday conference and he said to me: “You know my favorite Barry Simon story is the time you told the Ukrainian Academy. . . .”
Emmy Noether (1882–1935) was a German Jewish mathematician. Her great–grandfather, Elias Samuel, was forced to change his name by a Napoleonic edict and her grandfather’s name changed from Hertz Samuel to Hermann Nöther. Later her father, Max, changed the spelling to Noether.
Emmy Noether (1882–1935) was a German Jewish mathematician. Her great–grandfather, Elias Samuel, was forced to change his name by a Napoleonic edict and her grandfather’s name changed from Hertz Samuel to Hermann Nöther. Later her father, Max, changed the spelling to Noether. Her father (1844–1921) was a mathematician of the school of Albert Clebsch (1833–1872) which included Paul Gordan (1837–1912) who will play a role shortly (they are of course remembered for the Clebsch–Gordan coefficients).
Emmy Noether (1882–1935) was a German Jewish mathematician. Her great–grandfather, Elias Samuel, was forced to change his name by a Napoleonic edict and her grandfather’s name changed from Hertz Samuel to Hermann Nöther. Later her father, Max, changed the spelling to Noether. Her father (1844-1921) was a mathematician of the school of Albert Clebsch (1833-1872) which included Paul Gordan (1837-1912) who will play a role shortly (they are of course remembered for the Clebsch–Gordan coefficients). Gordan’s approach was very computational – as Weyl wrote of him:
Emmy Noether (1882–1935) was a German Jewish mathematician. Her great-grandfather, Elias Samuel, was forced to change his name by a Napoleonic edict and her grandfather’s name changed from Hertz Samuel to Hermann Nöther. Later her father, Max, changed the spelling to Noether. Her father (1844-1921) was a mathematician of the school of Albert Clebsch (1833-1872) which included Paul Gordan (1837-1912) who will play a role shortly (they are of course remembered for the Clebsch–Gordan coefficients). Gordan’s approach was very computational – as Weyl wrote of him: “There exist papers of his where twenty pages of formulas are not interrupted by a single text word; it is told that in all his papers he himself wrote the formulas only, the text being added by his friends.”
When Hilbert solved a major problem in invariant theory with an existence proof rather than an explicit construction, Gordan announced:
Noether

When Hilbert solved a major problem in invariant theory with an existence proof rather than an explicit construction, Gordan announced: “This is not mathematics, but theology.”
When Hilbert solved a major problem in invariant theory with an existence proof rather than an explicit construction, Gordan announced: "This is not mathematics, but theology."

When Emmy was 18, she obtained a certificate that would have allowed her to teach French and English and it was assumed she’d become a school teacher. But she decided to pursue University studies.
When Hilbert solved a major problem in invariant theory with an existence proof rather than an explicit construction, Gordan announced: “This is not mathematics, but theology.”

When Emmy was 18, she obtained a certificate that would have allowed her to teach French and English and it was assumed she’d become a school teacher. But she decided to pursue University studies. She was one of two women among almost 1000 at the University of Erlangen (where she lived and her father was a mathematics professor) and was not able to officially get course credit unless, with the explicit permission of the Professor, she could take examinations.
When Hilbert solved a major problem in invariant theory with an existence proof rather than an explicit construction, Gordan announced: “This is not mathematics, but theology.”

When Emmy was 18, she obtained a certificate that would have allowed her to teach French and English and it was assumed she’d become a school teacher. But she decided to pursue University studies. She was one of two women among almost 1000 at the University of Erlangen (where she lived and her father was a mathematics professor) and was not able to officially get course credit unless, with the explicit permission of the Professor, she could take examinations. After about two years, her interests shifted to mathematics perhaps because of her younger brother Fritz (who later discovered the index of integral operators).
In 1903 she spent a semester in Göttingen listening to lectures of Blumenthal, Hilbert, Klein and Minkowski.
In 1903 she spent a semester in Göttingen listening to lectures of Blumenthal, Hilbert, Klein and Minkowski. She spent only a semester there because it became possible for women to enroll in Erlangen.
In 1903 she spent a semester in Göttingen listening to lectures of Blumenthal, Hilbert, Klein and Minkowski. She spent only a semester there because it became possible for women to enroll in Erlangen. In 1907 she submitted a thesis to Erlangen entitled *On complete systems of invariants for ternary biquadratic forms* under the direction of Gordan.
In 1903 she spent a semester in Göttingen listening to lectures of Blumenthal, Hilbert, Klein and Minkowski. She spent only a semester there because it became possible for women to enroll in Erlangen. In 1907 she submitted a thesis to Erlangen entitled *On complete systems of invariants for ternary biquadratic forms* under the direction of Gordan. It was very much in the Gordan calculational invariant theory mold ending with a table listing explicitly 331 covariant variants for a ternary quartic form.
In 1903 she spent a semester in Göttingen listening to lectures of Blumenthal, Hilbert, Klein and Minkowski. She spent only a semester there because it became possible for women to enroll in Erlangen. In 1907 she submitted a thesis to Erlangen entitled *On complete systems of invariants for ternary biquadratic forms* under the direction of Gordan. It was very much in the Gordan calculational invariant theory mold ending with a table listing explicitly 331 covariant variants for a ternary quartic form. In his memorial address, Weyl speculated about the horror Gordan would have felt at the later embrace of abstraction by his student.
In 1903 she spent a semester in Göttingen listening to lectures of Blumenthal, Hilbert, Klein and Minkowski. She spent only a semester there because it became possible for women to enroll in Erlangen. In 1907 she submitted a thesis to Erlangen entitled *On complete systems of invariants for ternary biquadratic forms* under the direction of Gordan. It was very much in the Gordan calculational invariant theory mold ending with a table listing explicitly 331 covariant variants for a ternary quartic form. In his memorial address, Weyl speculated about the horror Gordan would have felt at the later embrace of abstraction by his student.

She continued to write papers in Erlangen with no official connection to the University until 1916 when she was invited to Göttingen.
Klein and especially Hilbert had become interested in the general theory of relativity and they thought that her expertise in invariant theory could be useful.
Klein and especially Hilbert had become interested in the general theory of relativity and they thought that her expertise in invariant theory could be useful. Initially she received no appointment nor salary and Hilbert’s attempt to get her appointed privatdozent failed but included a famous exchange during a meeting of the faculty senate on the issue. His opponents argued:
Klein and especially Hilbert had become interested in the general theory of relativity and they thought that her expertise in invariant theory could be useful. Initially she received no appointment nor salary and Hilbert’s attempt to get her appointed privatdozent failed but included a famous exchange during a meeting of the faculty senate on the issue. His opponents argued: “How can it be allowed that a woman become a Privatdozent? Having become a Privatdozent, she can then become a professor and a member of the University Senate.”
Klein and especially Hilbert had become interested in the general theory of relativity and they thought that her expertise in invariant theory could be useful. Initially she received no appointment nor salary and Hilbert’s attempt to get her appointed privatdozent failed but included a famous exchange during a meeting of the faculty senate on the issue. His opponents argued: “How can it be allowed that a woman become a Privatdozent? Having become a Privatdozent, she can then become a professor and a member of the University Senate. Is it permitted that a woman enter the Senate? What will our soldiers think when they return to the University and find that they are expected to learn at the feet of a woman?” To which Hilbert replied:
Klein and especially Hilbert had become interested in the general theory of relativity and they thought that her expertise in invariant theory could be useful. Initially she received no appointment nor salary and Hilbert’s attempt to get her appointed privatdozent failed but included a famous exchange during a meeting of the faculty senate on the issue. His opponents argued: “How can it be allowed that a woman become a Privatdozent? Having become a Privatdozent, she can then become a professor and a member of the University Senate. Is it permitted that a woman enter the Senate? What will our soldiers think when they return to the University and find that they are expected to learn at the feet of a woman?” To which Hilbert replied: “I do not see that the sex of the candidate is an argument against her admission as a Privatdozent.”
Klein and especially Hilbert had become interested in the general theory of relativity and they thought that her expertise in invariant theory could be useful. Initially she received no appointment nor salary and Hilbert’s attempt to get her appointed privatdozent failed but included a famous exchange during a meeting of the faculty senate on the issue. His opponents argued: “How can it be allowed that a woman become a Privatdozent? Having become a Privatdozent, she can then become a professor and a member of the University Senate. Is it permitted that a woman enter the Senate? What will our soldiers think when they return to the University and find that they are expected to learn at the feet of a woman?” To which Hilbert replied: “I do not see that the sex of the candidate is an argument against her admission as a Privatdozent. After all, the Senate is not a bathhouse.”
Initially, Noether was the lecturer in a course officially taught by Hilbert
Initially, Noether was the lecturer in a course officially taught by Hilbert but within a few years, Hilbert got her appointed a privatdozent obtaining a small stipend for her.
Initially, Noether was the lecturer in a course officially taught by Hilbert but within a few years, Hilbert got her appointed a privatdozent obtaining a small stipend for her.

Her first great result is in mathematical physics and is unknown to many mathematicians although rightfully celebrated among physicists.
Noether

Initially, Noether was the lecturer in a course officially taught by Hilbert but within a few years, Hilbert got her appointed a privatdozent obtaining a small stipend for her.

Her first great result is in mathematical physics and is unknown to many mathematicians although rightfully celebrated among physicists. What is called Noether’s Theorem among physicists asserts the equivalence of conserved quantities and continuous symmetry.
Initially, Noether was the lecturer in a course officially taught by Hilbert but within a few years, Hilbert got her appointed a privatdozent obtaining a small stipend for her.

Her first great result is in mathematical physics and is unknown to many mathematicians although rightfully celebrated among physicists. What is called Noether’s Theorem among physicists asserts the equivalence of conserved quantities and continuous symmetry. For classical systems with finitely many degrees of freedom, this is an almost trivial consequence of Poisson brackets and Hamiltonian flows but Noether discussed it from a Lagrangian least action point of view and also a field theory context.
Noether

Initially, Noether was the lecturer in a course officially taught by Hilbert but within a few years, Hilbert got her appointed a privatdozent obtaining a small stipend for her.

Her first great result is in mathematical physics and is unknown to many mathematicians although rightfully celebrated among physicists. What is called Noether’s Theorem among physicists asserts the equivalence of conserved quantities and continuous symmetry. For classical systems with finitely many degrees of freedom, this is an almost trivial consequence of Poisson brackets and Hamiltonian flows but Noether discussed it from a Lagrangian least action point of view and also a field theory context. But even in the finite degree classical case, her result was new.
Noether

Initially, Noether was the lecturer in a course officially taught by Hilbert but within a few years, Hilbert got her appointed a privatdozent obtaining a small stipend for her.

Her first great result is in mathematical physics and is unknown to many mathematicians although rightfully celebrated among physicists. What is called Noether’s Theorem among physicists asserts the equivalence of conserved quantities and continuous symmetry. For classical systems with finitely many degrees of freedom, this is an almost trivial consequence of Poisson brackets and Hamiltonian flows but Noether discussed it from a Lagrangian least action point of view and also a field theory context. But even in the finite degree classical case, her result was new – for example she was the first to understand that conservation of angular momentum was connected with rotational invariance of the laws of motion.
Einstein wrote in a letter to Hilbert:
Einstein wrote in a letter to Hilbert: “Yesterday I received a very interesting paper on invariants from Miss Noether. I’m impressed that these things can be seen in such a general way.
Einstein wrote in a letter to Hilbert: “Yesterday I received a very interesting paper on invariants from Miss Noether. I’m impressed that these things can be seen in such a general way. It would do the old guard at Göttingen no harm to be sent back to school under Miss Noether. She certainly knows what she is doing.”
Einstein wrote in a letter to Hilbert: “Yesterday I received a very interesting paper on invariants from Miss Noether. I’m impressed that these things can be seen in such a general way. It would do the old guard at Göttingen no harm to be sent back to school under Miss Noether. She certainly knows what she is doing.”

It must be emphasized that this idea has been a touchstone of modern theoretical physics.
Einstein wrote in a letter to Hilbert: “Yesterday I received a very interesting paper on invariants from Miss Noether. I’m impressed that these things can be seen in such a general way. It would do the old guard at Göttingen no harm to be sent back to school under Miss Noether. She certainly knows what she is doing.”

It must be emphasized that this idea has been a touchstone of modern theoretical physics. Once quantum mechanics was discovered and Poisson brackets were replaced by commutators, the theorem shone even brighter and symmetry became a basic building block of new discoveries in particle physics.
Einstein wrote in a letter to Hilbert: “Yesterday I received a very interesting paper on invariants from Miss Noether. I’m impressed that these things can be seen in such a general way. It would do the old guard at Göttingen no harm to be sent back to school under Miss Noether. She certainly knows what she is doing.”

It must be emphasized that this idea has been a touchstone of modern theoretical physics. Once quantum mechanics was discovered and Poisson brackets were replaced by commutators, the theorem shone even brighter and symmetry became a basic building block of new discoveries in particle physics. As one physicist put it: “Noether’s theorem to me is as important a theorem in our understanding of the world as the Pythagorean theorem.”
I am not alone in having been profoundly influenced by this theorem.
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz.
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz who didn’t mention Noether’s name.
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz who didn’t mention Noether’s name. It was the first time I saw breathtaking beauty in mathematical physics and I told all my friends about it with great excitement.
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz who didn’t mention Noether’s name. It was the first time I saw breathtaking beauty in mathematical physics and I told all my friends about it with great excitement. I’m embarrassed to say that once I learned it was called Noether’s theorem, I assumed it must be due to her father Max (who I knew was some kind of physical scientist)
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz who didn’t mention Noether’s name. It was the first time I saw breathtaking beauty in mathematical physics and I told all my friends about it with great excitement. I’m embarrassed to say that once I learned it was called Noether’s theorem, I assumed it must be due to her father Max (who I knew was some kind of physical scientist) because I couldn’t imagine a connection to the so abstract person whose name appeared in my Algebra classes.
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz who didn’t mention Noether’s name. It was the first time I saw breathtaking beauty in mathematical physics and I told all my friends about it with great excitement. I’m embarrassed to say that once I learned it was called Noether’s theorem, I assumed it must be due to her father Max (who I knew was some kind of physical scientist) because I couldn’t imagine a connection to the so abstract person whose name appeared in my Algebra classes.

This brings me to the period of her contributions to Algebra which make her one of the greatest mathematicians of the 20th century.
I am not alone in having been profoundly influenced by this theorem. As a Freshman at Harvard, I read about this result in the mechanics book of Landau and Lifschitz who didn’t mention Noether’s name. It was the first time I saw breathtaking beauty in mathematical physics and I told all my friends about it with great excitement. I’m embarrassed to say that once I learned it was called Noether’s theorem, I assumed it must be due to her father Max (who I knew was some kind of physical scientist) because I couldn’t imagine a connection to the so abstract person whose name appeared in my Algebra classes.

This brings me to the period of her contributions to Algebra which make her one of the greatest mathematicians of the 20th century. Together with Brauer and Artin, two younger mathematicians greatly affected by her, she pioneered the idea of algebra as abstractly defined structures.
Noether

This is an idea that is so central, one forgets it wasn’t always there.
This is an idea that is so central, one forgets it wasn’t always there. She had great influence on many other young mathematicians who were called Noether’s boys, among them Alexandroff and van der Waerden.
Noether

This is an idea that is so central, one forgets it wasn’t always there. She had great influence on many other young mathematicians who were called Noether’s boys, among them Alexandroff and van der Waerden. Here is what Weyl had to say:
Noether

This is an idea that is so central, one forgets it wasn’t always there. She had great influence on many other young mathematicians who were called Noether’s boys, among them Alexandroff and van der Waerden. Here is what Weyl had to say:

“When I was called permanently to Göttingen in 1930, I earnestly tried to obtain a better position for her, because I was ashamed to occupy such a preferred position beside her whom I knew to be my superior as a mathematician in many respects.
This is an idea that is so central, one forgets it wasn’t always there. She had great influence on many other young mathematicians who were called Noether’s boys, among them Alexandroff and van der Waerden. Here is what Weyl had to say:

“When I was called permanently to Göttingen in 1930, I earnestly tried to obtain a better position for her, because I was ashamed to occupy such a preferred position beside her whom I knew to be my superior as a mathematician in many respects. I did not succeed... Tradition, prejudice, external considerations weighted the balance against her scientific merits and scientific greatness, by that time denied by no one.
This is an idea that is so central, one forgets it wasn’t always there. She had great influence on many other young mathematicians who were called Noether’s boys, among them Alexandroff and van der Waerden. Here is what Weyl had to say:

“When I was called permanently to Göttingen in 1930, I earnestly tried to obtain a better position for her, because I was ashamed to occupy such a preferred position beside her whom I knew to be my superior as a mathematician in many respects. I did not succeed... Tradition, prejudice, external considerations weighted the balance against her scientific merits and scientific greatness, by that time denied by no one. In my Göttingen years, 1930-1933, she was without doubt the strongest center of mathematical activity there, considering both the fertility of her scientific research program and her influence upon a large circle of pupils.”
Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra.
Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra. Moreover, she made important contributions to algebraic topology.
Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra. Moreover, she made important contributions to algebraic topology. As Hilton tells the story in his *A Brief, Subjective History of Homology*. . . :
 Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra. Moreover, she made important contributions to algebraic topology. As Hilton tells the story in his *A Brief, Subjective History of Homology*...:

“Emmy Noether recognized that what Alexandroff and Hopf were talking about, and what Lefschetz had talked about, should not be thought of as numbers but should be thought of as Abelian groups.
Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra. Moreover, she made important contributions to algebraic topology. As Hilton tells the story in his *A Brief, Subjective History of Homology*...:

“Emmy Noether recognized that what Alexandroff and Hopf were talking about, and what Lefschetz had talked about, should not be thought of as numbers but should be thought of as Abelian groups. So really one should credit Emmy Noether, not with the discovery of these topological invariants, but with understanding their mathematical place.
Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra. Moreover, she made important contributions to algebraic topology. As Hilton tells the story in his *A Brief, Subjective History of Homology*...:

“Emmy Noether recognized that what Alexandroff and Hopf were talking about, and what Lefschetz had talked about, should not be thought of as numbers but should be thought of as Abelian groups. So really one should credit Emmy Noether, not with the discovery of these topological invariants, but with understanding their mathematical place. Thus Emmy Noether recognized the homology groups,
Noether

Besides the championing of abstraction, Noether had specific contributions to ideal theory and to non–commutative algebra. Moreover, she made important contributions to algebraic topology. As Hilton tells the story in his *A Brief, Subjective History of Homology* . . . :

“Emmy Noether recognized that what Alexandroff and Hopf were talking about, and what Lefschetz had talked about, should not be thought of as numbers but should be thought of as Abelian groups. So really one should credit Emmy Noether, not with the discovery of these topological invariants, but with understanding their mathematical place. Thus Emmy Noether recognized the homology groups, and that the Betti numbers and torsion coefficients were merely numerical invariants of isomorphism classes of finitely-generated Abelian groups.”
Noether had always lived on a meager stipend
Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach.
Noether

Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach. Alexandroff tried to get her a position in Moscow but it was held up by the bureaucracy.
Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach. Alexandroff tried to get her a position in Moscow but it was held up by the bureaucracy. With help from the Rockefeller Foundation, she took a position at Bryn Mawr, a small women’s college in eastern Pennsylvania.
Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach. Alexandroff tried to get her a position in Moscow but it was held up by the bureaucracy. With help from the Rockefeller Foundation, she took a position at Bryn Mawr, a small women’s college in eastern Pennsylvania. It was not too far from Princeton and, at Veblen’s invitation, she gave lectures at the Institute for Advanced Study.
Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach. Alexandroff tried to get her a position in Moscow but it was held up by the bureaucracy. With help from the Rockefeller Foundation, she took a position at Bryn Mawr, a small women’s college in eastern Pennsylvania. It was not too far from Princeton and, at Veblen’s invitation, she gave lectures at the Institute for Advanced Study (although of Princeton University she wrote that she was not welcome at the “men’s university, where nothing female is admitted”).
Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach. Alexandroff tried to get her a position in Moscow but it was held up by the bureaucracy. With help from the Rockefeller Foundation, she took a position at Bryn Mawr, a small women’s college in eastern Pennsylvania. It was not too far from Princeton and, at Veblen’s invitation, she gave lectures at the Institute for Advanced Study (although of Princeton University she wrote that she was not welcome at the “men’s university, where nothing female is admitted”). In 1935, at age 53, she died during convalescence from surgery.
Noether had always lived on a meager stipend but, as a Jew, with the rise of the Nazi she lost the right to that and to the right to teach. Alexandroff tried to get her a position in Moscow but it was held up by the bureaucracy. With help from the Rockefeller Foundation, she took a position at Bryn Mawr, a small women’s college in eastern Pennsylvania. It was not too far from Princeton and, at Veblen’s invitation, she gave lectures at the Institute for Advanced Study (although of Princeton University she wrote that she was not welcome at the “men’s university, where nothing female is admitted”). In 1935, at age 53, she died during convalescence from surgery. We have lovely memorial lectures of Weyl, Alexandroff and van der Waerden and Einstein wrote a letter to the editor of the New York Times which was essentially an obituary.
Here is what Alexandroff said about her in a memorial address:

"Such was Emmy Noether, the greatest of women mathematicians, a great scientist, an amazing teacher, and an unforgettable person... True, Weyl has said that 'the Graces did not stand at her cradle,' and he is right, if one has in mind the generally known heaviness of her appearance. But here Weyl is speaking of her not only as a great scholar, but also as a great woman. And she was that—her femininity appeared in that gentle and subtle lyricism which lay at the heart of the far-flung but never superficial concerns which she maintained for people, for her profession, and for the interests of all mankind. She loved people, science, life, with all the warmth, all the cheerfulness, all the unselfishness, and all the tenderness of which a deeply sensitive—and feminine—soul is capable."
Here is what Alexandroff said about her in a memorial address: "Such was Emmy Noether, the greatest of women mathematicians, a great scientist, an amazing teacher, and an unforgettable person."
Here is what Alexandroff said about her in a memorial address: “Such was Emmy Noether, the greatest of women mathematicians, a great scientist, an amazing teacher, and an unforgettable person . . . True, Weyl has said that ‘the Graces did not stand at her cradle,’ and he is right, if one has in mind the generally known heaviness of her appearance. But here Weyl is speaking of her not only as a great scholar, but also as a great woman.”
Here is what Alexandroff said about her in a memorial address: “Such was Emmy Noether, the greatest of women mathematicians, a great scientist, an amazing teacher, and an unforgettable person . . . True, Weyl has said that ‘the Graces did not stand at her cradle,’ and he is right, if one has in mind the generally known heaviness of her appearance. But here Weyl is speaking of her not only as a great scholar, but also as a great woman. And she was that—her femininity appeared in that gentle and subtle lyricism which lay at the heart of the far-flung but never superficial concerns which she maintained for people, for her profession, and for the interests of all mankind.
Here is what Alexandroff said about her in a memorial address: “Such was Emmy Noether, the greatest of women mathematicians, a great scientist, an amazing teacher, and an unforgettable person . . . True, Weyl has said that ‘the Graces did not stand at her cradle,’ and he is right, if one has in mind the generally known heaviness of her appearance. But here Weyl is speaking of her not only as a great scholar, but also as a great woman. And she was that—her femininity appeared in that gentle and subtle lyricism which lay at the heart of the far-flung but never superficial concerns which she maintained for people, for her profession, and for the interests of all mankind. She loved people, science, life, with all the warmth, all the cheerfulness, all the unselfishness, and all the tenderness of which a deeply sensitive—and feminine—soul is capable.
I can’t resist ending my discussion of Emmy Noether with one image I found on the internet
I can’t resist ending my discussion of Emmy Noether with one image I found on the internet.
Scotish mathematician William Thomson (1824–1907) is our last bonus. He was a the son of a math professor at the University of Glasgow.
Scotish mathematician William Thomson (1824–1907) is our last bonus. He was the son of a math professor at the University of Glasgow. A bit of a prodigy, he published his first papers while an undergraduate at Cambridge at age 17.
Thomson

Scotish mathematician William Thomson (1824–1907) is our last bonus. He was a son of a math professor at the University of Glasgow. A bit of a prodigy, he published his first papers while an undergraduate at Cambridge at age 17. In 1846, the chair of natural philosophy at Glasgow opened up and Thompson’s father used his influence to get his 22 year old son appointed, a position he occupied for over 50 years.
Scotish mathematician William Thomson (1824–1907) is our last bonus. He was a the son of a math professor at the University of Glasgow. A bit of a prodigy, he published his first papers while an undergraduate at Cambridge at age 17. In 1846, the chair of natural philosophy at Glasgow opened up and Thompson’s father used his influence to get his 22 year old son appointed, a position he occupied for over 50 years.

He has two notable mathematical contributions.
Scotish mathematician William Thomson (1824–1907) is our last bonus. He was a the son of a math professor at the University of Glasow. A bit of a prodigy, he published his first papers while an undergraduate at Cambridge at age 17. In 1846, the chair of natural philosophy at Glasow opened up and Thompson’s father used his influence to get his 22 year old son appointed, a position he occupied for over 50 years.

He has two notable mathematical contributions. One is that together with Gauss and Green, he was key participant in an understanding in the higher dimensional analogs of the fundamental theorem of calculus.
Thomson

Scottish mathematician William Thomson (1824–1907) is our last bonus. He was a the son of a math professor at the University of Glasgow. A bit of a prodigy, he published his first papers while an undergraduate at Cambridge at age 17. In 1846, the chair of natural philosophy at Glasgow opened up and Thompson’s father used his influence to get his 22 year old son appointed, a position he occupied for over 50 years.

He has two notable mathematical contributions. One is that together with Gauss and Green, he was key participant in an understanding in the higher dimensional analogs of the fundamental theorem of calculus. He was impacted by Green’s work and found what is now usually called Stokes’ Theorem.
Scotish mathematician William Thomson (1824–1907) is our last bonus. He was a the son of a math professor at the University of Glasgow. A bit of a prodigy, he published his first papers while an undergraduate at Cambridge at age 17. In 1846, the chair of natural philosophy at Glasgow opened up and Thompson’s father used his influence to get his 22 year old son appointed, a position he occupied for over 50 years.

He has two notable mathematical contributions. One is that together with Gauss and Green, he was key participant in an understanding in the higher dimensional analogs of the fundamental theorem of calculus. He was impacted by Green’s work and found what is now usually called Stokes’ Theorem. So why does it have Stokes’ name?
In a postscript to a letter (dated July 2, 1850) that Thomson wrote to an academic friend at Cambridge, George Stokes (1819–1903), he mentioned the theorem but neither gave a proof of it nor mentioned Green’s related work.
In a postscript to a letter (dated July 2, 1850) that Thomson wrote to an academic friend at Cambridge, George Stokes (1819–1903), he mentioned the theorem but neither gave a proof of it nor mentioned Green’s related work. In February, 1854 Stokes made the proof of the theorem a Smith’s Prize examination question at Cambridge on a test taken by a youthful James Clerk Maxwell (1831–1879).
In a postscript to a letter (dated July 2, 1850) that Thomson wrote to an academic friend at Cambridge, George Stokes (1819–1903), he mentioned the theorem but neither gave a proof of it nor mentioned Green’s related work. In February, 1854 Stokes made the proof of the theorem a Smith’s Prize examination question at Cambridge on a test taken by a youthful James Clerk Maxwell (1831–1879) who later developed the mathematical theory of electromagnetics in his 1873 masterpiece *Electricity and Magnetism* where, in a footnote to article 24, he attributes the theorem to Stokes whose name has every afterwards graced the theorem!
Thomson

His other main mathematical contribution involves the basics of potential theory and harmonic functions.
Thomson

His other main mathematical contribution involves the basics of potential theory and harmonic functions. In 1867, William Thomson and Peter Tait (1831-1901), in their *Treatise on Natural Philosophy* introduced the name “spherical harmonic” because the two–dimensional analogs were $\cos(m\theta), \sin(m\theta)$, which are the standard “harmonic function” in the sense of musical harmonics.
Thomson

His other main mathematical contribution involves the basics of potential theory and harmonic functions. In 1867, William Thomson and Peter Tait (1831-1901), in their *Treatise on Natural Philosophy* introduced the name “spherical harmonic” because the two–dimensional analogs were \(\cos(m\theta), \sin(m\theta) \), which are the standard “harmonic function” in the sense of musical harmonics. In the end, their name spherical harmonic not only stuck but led to the more general term “harmonic function”.
Thomson

His other main mathematical contribution involves the basics of potential theory and harmonic functions. In 1867, William Thomson and Peter Tait (1831-1901), in their *Treatise on Natural Philosophy* introduced the name “spherical harmonic” because the two–dimensional analogs were $\cos(m\theta), \sin(m\theta)$, which are the standard “harmonic function” in the sense of musical harmonics. In the end, their name spherical harmonic not only stuck but led to the more general term “harmonic function”.

Thomson published over 600 papers, was elected to the Royal Society in 1851 (when he was 27) and served as its President from 1890-1895.
Thomson

His other main mathematical contribution involves the basics of potential theory and harmonic functions. In 1867, William Thomson and Peter Tait (1831-1901), in their *Treatise on Natural Philosophy* introduced the name “spherical harmonic” because the two–dimensional analogs were $\cos(m\theta), \sin(m\theta)$, which are the standard “harmonic function” in the sense of musical harmonics. In the end, their name spherical harmonic not only stuck but led to the more general term “harmonic function”.

Thomson published over 600 papers, was elected to the Royal Society in 1851 (when he was 27) and served as its President from 1890-1895. Naming harmonic functions is kinda neat and he sounds like he had impressive credentials but you may be puzzled why I picked as my final choice someone you’ve probably never heard of and who doesn’t seem in a league with the other 21.
I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton!
I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton! For Thompson made important contributions to physics, especially the foundations of thermodynamics.
Thomson

I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton! For Thompson made important contributions to physics, especially the foundations of thermodynamics. Moreover, he was a key figure in the first successful transatlantic cable which used his designs for some of its hardware.
I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton! For Thompson made important contributions to physics, especially the foundations of thermodynamics. Moreover, he was a key figure in the first successful transatlantic cable which used his designs for some of its hardware. For this, Thomson was knighted in 1866 and made a Baron in 1892.
I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton! For Thompson made important contributions to physics, especially the foundations of thermodynamics. Moreover, he was a key figure in the first successful transatlantic cable which used his designs for some of its hardware. For this, Thomson was knighted in 1866 and made a Baron in 1892. He took his baronial name after the river that traversed the University of Glasgow campus,
I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton! For Thompson made important contributions to physics, especially the foundations of thermodynamics. Moreover, he was a key figure in the first successful transatlantic cable which used his designs for some of its hardware. For this, Thomson was knighted in 1866 and made a Baron in 1892. He took his baronial name after the river that traversed the University of Glasgow campus, the Kelvin.
I’ll add to the mystery by mentioning that at the end of the 19th century, Thomson was widely regarded as Britain’s greatest scientist since Newton! For Thompson made important contributions to physics, especially the foundations of thermodynamics. Moreover, he was a key figure in the first successful transatlantic cable which used his designs for some of its hardware. For this, Thomson was knighted in 1866 and made a Baron in 1892. He took his baronial name after the river that traversed the University of Glasgow campus, the Kelvin. So Thomson ≡ Lord Kelvin.
One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right!
One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but ’vector’ is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.”
Thomson

One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but ’vector’ is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.” He pushed widely incorrect estimates of the age of the Earth and of the Sun.
One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but 'vector' is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.” He pushed widely incorrect estimates of the age of the Earth and of the Sun. He opposed Darwin’s theory.
One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but ‘vector’ is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.” He pushed widely incorrect estimates of the age of the Earth and of the Sun. He opposed Darwin’s theory. He fought Rutherford’s theory of radioactivity saying it was an unphysical phenomena.
One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but ’vector’ is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.” He pushed widely incorrect estimates of the age of the Earth and of the Sun. He opposed Darwin’s theory. He fought Rutherford’s theory of radioactivity saying it was an unphysical phenomena. However he apparently never said the quote widely attributed to him (just before the start of the century of relativity and quantum mechanics):
One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but ‘vector’ is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.” He pushed widely incorrect estimates of the age of the Earth and of the Sun. He opposed Darwin’s theory. He fought Rutherford’s theory of radioactivity saying it was an unphysical phenomena. However he apparently never said the quote widely attributed to him (just before the start of the century of relativity and quantum mechanics): “There is nothing new to be discovered in physics now.
Thomson

One of Kelvin’s biographers said that during the first half of Thomson’s career he seemed incapable of being wrong while during the second half of his career he seemed incapable of being right! In 1896, he wrote to FitzGerald “Symmetrical equations are good in their place, but ’vector’ is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature.” He pushed widely incorrect estimates of the age of the Earth and of the Sun. He opposed Darwin’s theory. He fought Rutherford’s theory of radioactivity saying it was an unphysical phenomena. However he apparently never said the quote widely attributed to him (just before the start of the century of relativity and quantum mechanics): “There is nothing new to be discovered in physics now. Our future discoveries must be looked for in the sixth place of decimals.”
Final Thoughts

I hope you’ve learned that our forefathers are fascinating as people and that you’ll consider using Mr. Google and Ms. Wikipedia to look up the names you find on theorems.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, it presents the infinities of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and L^p spaces. Finally, it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and Lp spaces. Finally, it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy’s view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic germs, and Jacob, as well as Weierstrass, elliptic functions.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuchsian differential equations, asymptotic methods (including Euler’s method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuchsian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing pointwise limits (going beyond the usual focus on the Hardy-Littlewood maximal function by including ergodic theorems and martingale convergence), harmonic functions and potential theory, frames and wavelets, H^p spaces (including bounded mean oscillation (BMO)) and, in the final chapter, lots of inequalities, including Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of unbounded self-adjoint operators. There is also an introduction to the theory of orthogonal polynomials and a long chapter on Banach algebras, including the commutative and non-commutative Gel’fand-Naimark theorems and Fourier analysis on general locally compact abelian groups.