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Larry!

I am pleased that the organizers invited me to talk at this
celebration and thanksgiving of Larry.

I told them I’d known
Larry since the early 1970’s when his family and mine were
visiting Weizmann during the same summer and we meet at
Lunenfeld Apartments but that’s false (although we did
meet then) because I’ve known Larry since the fall of 1962!
I was a Freshman at Harvard and took the infamous Math
55 (differential calculus on Banach spaces taught in those
days by Loomis and integral calculus on manifolds taught by
J. d’Anal Math Conseiler de Redaction Shlomo Sternberg)
and Larry was one of the graders. I picked the subject of my
talk today as my one piece of work on classical complex
analysis, the central pillar of Larry’s work. I hope he enjoys
it. Besides, it is joint with Jonathan Breuer, so 30 years
from now when we honor him, I can reuse it.
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Weierstrass and All That: Gap Theorems

Let me begin by reminding (telling?) you about some
pre-1940 work on natural boundaries.

Our story starts with
the discovery of Weierstrass, in the 1840’s, that the
function defined inside D by

f(z) =

∞∑
n=0

zn!

has a natural boundary on ∂D, i.e. cannot be analytically
continued into any bigger set than D. This is easy to see
because for any rational α, one sees that
limr↑1 f(re2πiα) =∞.

In general, one is interested in natural boundaries on
arbitrary complex domains, but, in this talk I’ll focus only
on D. Indeed, I will only consider a special situation which
is plenty interesting.
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Weierstrass and All That: Gap Theorems

We will only look at sequences {bn}∞n=0 and functions

f(z) =

∞∑
n=0

bnz
n (1)

where the bn are bounded and lim supn |bn| > 0 which
implies that D is a region of convergence, indeed the radius
of convergence is 1.

Here are some high points of the study of examples like the
n! one with large gaps in their non-zero coefficients
(lacunary series)
Kronecker (1863) essentially the elliptic theta function:

f(z) =
∑∞

n=0 z
n2

Hadamard (1892) first general gap theorem
f(z) =

∑∞
n=0 ajz

nj with nk+1 ≥ (1 + δ)nk
Fabry (1896) like Hadamard but only needed nj/j →∞.
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Random Power Series

Steinhaus (1930) proved for any sequence of the type we
consider if {ωn}∞n=0 are iidrv uniformly distributed on ∂D,
then f(z) =

∑∞
n=0 bnωnz

n has a natural boundary on ∂D
for a.e. choice of ωn.

Paley-Zygmund (1932) did the same
where ωn are iidrv ±1 with equal probability. There
developed a huge literature on random power series but
prior to Breuer-Simon, they all required independence of the
random coefficients.
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Theorems of Szegő and Hecke

In 1922, Szegő proved the following spectacular theorem

Theorem. Suppose that {bn}∞n=0 is a sequence which takes
only finitely many values. Then either {bn}∞n=0 is eventually
periodic in which case f(z) =

∑∞
n=0 bnz

n is a rational
function with possible poles at the roots of unity or else f
has ∂D as a natural boundary.

And in 1921, Hecke proved that if {x} is the fractional part
of a real number x, then
Theorem For any irrational q, we have that

f(z) =
∞∑
n=0

{nq}zn

has a natural boundary.
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The second leg of our talk is the spectral theory of 1D
Schrödinger operators, although we will occasionally discuss
other operators.

We have a two sided bounded sequence,
{bn}∞n=−∞, of real numbers and look at the operator, H, on
`2(Z)

(Hu)(n) = u(n+ 1) + u(n− 1) + bnu(n)

and the operator H+ (resp. H−) on `2({n ≥ 1}) (resp.
`2({n ≤ 0})) with u(0) = 0 (resp. u(1) = 0).

The fundamental objects are matrix elements of the
resolvents

G(z) = 〈δ0, (H − z)−1δ0〉,
m+(z) = 〈δ1, (H+−z)−1δ1〉, m−(z) = 〈δ0, (H− − z)−1δ0〉
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and the spectral measures

G(z) =

∫
dµ(x)

x− z
m±(z) =

∫
dµ±(x)

x− z

Two decompositions of the spectrum concern us. Recall
that any measure can be split into three parts: an
absolutely continuous (a.c.) part f(x)dx, a pure point(p.p.)
and a singular continuous (s.c.) part like the Cantor
measure. By looking at supports of the parts of the spectral
measure (for H, one needs to also look at a spectral
measure associated to δ1), the spectrum, σ(H) has three
parts, σac(H), σpp(H), σsc(H).
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There is a second decomposition of spectra into the discrete
spectrum, σdisc, of isolated eigenvalues of finite multiplicity
and its complement in σ, the essential spectrum, σess.

Of
course, σac and σsc are part of σess, so this second
decomposition is really of the point spectrum - into discrete,
eigenvalues embedded into continuous spectrum and finally,
pieces of essential spectrum disjoint from the continuous
spectrum with dense set of eigenvalues.

When I started out fifty years ago, motivated by
expectations from atomic and solid state physics, it was
expected that “normal” quantum Hamiltonians should have
some discrete spectrum (representing bound states) and
some a.c. spectrum, typically scattering states and/or
phonons. There was no sc spectrum expected (what Arthur
Wightman, my advisor, called “the no goo hypothesis”)
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and the pp spectrum was the closure of the discrete
spectrum.

One accomplishment of the period from 1972-1985 (in
which I had a serious but not starring role) was the proof
that this picture (and asymptotic completeness) held for
general N -body quantum Hamiltonians but during this
period it also became clear that there were more things in
heaven and earth than the naive spectral theorist dreamed
of.

To distinguish “normal” spectra from situations with some
singular continuous or dense point spectra, the later has
come to be called exotic spectra. A hallmark of such
spectra is the absence of a.c. spectrum.
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Here’s a history of developments:

Goldsheid, Molchanov, Pastur (1977) (for a continuum
model) and Kunz-Souillard (1980) (for Anderson type
models, i.e. bn iidrv with some restriction on the
distribution) proved Anderson localization, i.e. dense point
spectrum.
Pearson (1978) proved that sparse potentials (e.g. bumps
at increased spacing, allowed, but not required, to decay
slowly) has purely s.c. spectrum (in the continuum case)
Avron-Simon (1982) proved that the AMO for λ > 2
(bn = λ cos(παn+ θ)) has no a.c. spectrum if α is
irrational and is purely singular continuous for α very well
approximated by rationals (the spectral type is now totally
understood depending on Diophantine properties of α).
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The random model and AMO are special cases of a class
called ergodic Schrödinger operators where {ωn}∞n=−∞ is an
ergodic stochastic process and bωn = F (ωn). In this regard

Kotani(1983) (who did continuum models, discrete is Simon
(1983)) proved that if an ergodic Schrodinger operator has
any a.c. spectrum, then b is deterministic (i.e. each
bn, n ≥ 1 is a function of {bn}0n=−∞). Random are not,
almost periodic is deterministic. (for many years -
Kotani-Last conjecture that the only ergodic Schrödinger
operators with a.c. spectrum are almost periodic,
counter-examples in Avila and Volberg-Yuditskii (2014)).
Kotani (1989) proved that an ergodic Jacobi matrix taking
finitely many values either is periodic or has no a.c.
spectrum.
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Simon (1995) in many cases, purely s.c. spectrum is Baire
generic (e.g. the set of {bn}∞n=1 ∈×∞n=1[0, 1] which have
purely s.c. spectrum is a dense Gδ in the product topology).

Damanik-Killip proved if f : ∂D 7→ R is bounded and
piecewise continuous with a finite number of discontinuities,
one of which has two sided unequal limits. Then for any
irrational q and any θ, the potential bn = f(e2πin+θ) leads
to an h with no a.c. spectrum.
Remling (2011; preprint 2007) proved (this and much more
as I’ll discuss) that if a half-line operator has bn taking only
finitely many values and any a.c. spectrum, then bn is
eventually periodic.
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Aha!!!

I hope you’ll seen a similarity between our two themes:
natural boundaries and absence of a.c. spectra

sparse potentials are like gap theorems
Anderson localization is like Steinhaus random phases
Damanik-Killip discontinuity is like Hecke
Kotani/Remling finite value theorems are like Szegő’s finite
value theorem

Most striking is this last. Perhaps, if I’d known of Szegő’s
theorem when Kotani did his work, I’d have had my aha
moment then but I only learned of Szegő’s theorem after
Remling which was good because his ideas, which gave a
general understanding of the lack of a.c. spectrum, were the
key to what Breuer and I found.
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The Remling Revolution: Right Limits

One part of Remling’s great theorem is the notion of right
limit introduced by Last-Simon (1999).

If H+ is an half-line
1D Schrödinger operator, a two sided sequence, {cj}∞j=−∞,
is called a right limit of {bj}∞j=1, the sequence defining H+,
if and only if there is nk →∞ so that for all j, we have that

cj = lim
k→∞

bnk+j

The right limits of H+ are precisely the two sided operators
H0 + c. R is the set of all right limits.

Last-Simon proved that

σess(H+) ⊇
⋂

Hr∈R
σ(Hr) σac(H+) ⊆

⋃
Hr∈R

σac(Hr)
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Reflectionless Potentials

G and m± are initially defined for z ∈ C \R,

but as Stieltjes
transforms of measure, it is known that for (Lebesgue) a.e.
x ∈ R, the limits G(x+ i0) ≡ limε↓0G(x+ iε) exists and
one has that Im(G(x+ i0)) ≥ 0. A whole line discrete
Schrödinger operator, H is called reflectionless on a set
S ⊂ R of positive Lebesgue measure if and only if for a.e.
x ∈ S, one has that

m+(x+ i0)−1 = m−(x+ i0)

This turns out to be equivalent to the diagonal Green’s
function Gnn(x+ i0) being pure imaginary for all n. The
name comes from the fact that in the case where bn goes to
zero rapidly as n→ ±∞ so that a scattering theory exists,
the scattering theoretic reflection coefficient is zero for
x ∈ S.
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Reflectionless Potentials

There is a dynamic notion of reflectionless due to
Davies-Simon (1978)

and Breuer-Ryckman-Simon (2009)
proved it is equivalent to the notion above.

By the definition of m+, one can go from {bn}∞n=1 to m+

but one can also go in the other direction, for example,
using the continued fraction expansion:

m+(z) =
1

−z + b1 +
1

−z + b2 +
1

· · ·

Thus if H is reflectionless one can go from {bn}0n=−∞ to
m− to m+ to {bn}∞n=1 so the sequence is deterministic.
Indeed, Kotani proved his result on stochastic Schrödinger
with a.c. spectrum being deterministic by proving H
reflectionless on the a.c. spectrum.
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The Remling Revolution: His Big Theorem

Theorem (Remling (2007)). Let Σ be the essential support
of the a.c. part of a half line Schrödinger operator, H+.

Then Σ is in the essential support of the a.c. part of the
spectrum of any right limit, Hr and Hr is reflectionless on
Σ.

His proof is not simple (the exposition in one of my books is
10 dense pages) and no one has found another proof!
Fortunately, his result is suggestive to our needs and the
proof of the complex variables result doesn’t use any ideas
from his proof.
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Definitions

Definition We say that power series f(z) =
∑∞

n=0 bnz
n

with supn |bn| <∞ has a strong natural boundary on ∂D if
and only if, for every interval I ⊂ ∂D the quantity below is
infinite

sup
0<r<1

∫
eiθ∈I

∣∣∣f (reiθ)∣∣∣ dθ
2π

(2)

Obviously, if f can be analytically continued across an
interval containing I, the integral is finite, so this is a
stronger condition than f having a natural boundary.

Definition A two sided sequence {cn}∞n=−∞ is called a
right limit of a bounded one sided sequence {bn}∞n=0 if and
only if there is nk →∞ so that for all j, we have that

cj = lim
k→∞

bnk+j
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interval containing I, the integral is finite, so this is a
stronger condition than f having a natural boundary.

Definition A two sided sequence {cn}∞n=−∞ is called a
right limit of a bounded one sided sequence {bn}∞n=0 if and
only if there is nk →∞ so that for all j, we have that

cj = lim
k→∞

bnk+j
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Definition A two sided sequence {cn}∞n=−∞ is called
reflectionless on I ⊂ ∂D

if and only if the functions

f+(z) =
∞∑
n=0

cnz
n; z ∈ D f−(z) =

−1∑
n=−∞

cnz
n; z ∈ C\D

have analytic continuations through I so that
f+(z) + f−(z) = 0 on C \ (∂D \ I). NB: f−(∞) = 0.

For example, if cn ≡ 1, then f+(z) = (1− z)−1 while
f−(z) = −(1− z)−1 is reflectionless on ∂D \ {1}. And one
can see that a periodic sequence of period p is reflectionless
on any interval containing no pth roots of unity.

Reflectionless sequences are deterministic in that if
{cn}∞n=−∞ and {dn}∞n=−∞ are both reflectionless on I and
cn = dn for n all n < N0, then cn = dn for all n.
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Big Theorem of Breuer-Simon

Theorem. Let f(z) =
∑∞

n=0 bnz
n be a power series with

bn bounded. Suppose that I ⊂ ∂D is an open interval so
that the (sup of the) integral in (2) is finite. Then every
right limit of {bn}∞n=0 is reflectionless on I.

Thus, if for any I, we can find a right limit which is not
reflectionless on I, then f has a strong natural boundary on
∂D.
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Gap Theorems

Here is a general gap result

Theorem. Suppose {bn}∞n=0 is a bounded sequence so that
there exists, some C,D > 0 and nj →∞ so that for all
k < 0

lim sup
j→∞

|bnj+k| ≤ Ce
−D|k|

lim inf
j→∞

|bnj | > 0

Then f(z) =
∑∞

n=0 bnz
n has a strong natural boundary on

∂D.

After we completed our work, we discovered a remarkable
1949 paper of Agmon (alas little quoted; only 10
MathSciNet citations) that discussed gap theorems by a
method not unrelated to ours, of course without the
Remling theory analogy.
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His result is more general in that he considers cases where
bn is unbounded or bn → 0 and he can renormalize

but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!! He didn’t try to
apply his method to anything but gap theorems.

The proof is easy. There is a right limit cn with c0 6= 0 and
with cn ≤ Ce−D|n| for all n < 0. The last fact implies that
f− is analytic in {z | |z| > e−D} so if the right limit is
reflectionless, f+ is entire. Since f− is bounded, this entire
function is constant. But since it is −f−(∞) = 0 at infinity
and c0 6= 0 at 0, we have a contradiction.
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Stochastic Power Series

Notice that the interval I in the reflectionless condition is
determined by the original power series and so is the same
for all right limits.

We thus immediately have:

Determinism Principle If a bounded sequence {bn}∞n=0

has two different right limits {cn}∞n=−∞ and {dn}∞n=−∞ so
that cn = dn for all n < 0 but c0 6= d0, then

∑∞
n=0 bnz

n

has a strong natural boundary on ∂D.

This immediately implies that any non-deterministic
stochastic power series has a strong natural boundary on
∂D (e.g. Markov processes which are new unless
independent) and recovers Steinhaus and Paley-Zygmund.
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New Genericity Results

Motivated by my results on Baire generic singular
continuous spectrum, Breuer and I used our result to prove

Theorem. Let Ω ⊂ C be a compact set with more than
one point. Let Ω∞ be the countable product of copies of Ω
in the weak topology. Then {b ∈ Ω∞ |

∑∞
n=0 bnz

n

has a strong natural boundary on ∂D} is a dense Gδ in Ω∞.

There is a very interesting open question. In spectral theory,
Baire generic potentials lead to singular continuous
spectrum while random potentials to dense point spectrum.
Is there a difference between the natural boundaries for the
Baire generic and random power series?
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Szegő’s Theorem

The key is

Boas’ Lemma If {bn}∞n=0 is a sequence taking finitely
many values which is not eventually periodic, then there
exist right limits {cn}∞n=−∞ and {dn}∞n=−∞ so that cn = dn
for all n ≤ 0 and c1 6= d1.

Obviously this lemma and what I called the Determinism
Principle immediately imply a strong version of Szegő’s
theorem on natural boundaries in that one can conclude
that the functions have a strong natural boundary. That
result is actually also due to Boas.
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Szegő’s theorem appear in Boas’ 1954 book on Entire
functions.

The subject appears there because from bn one
can construct an associated entire function of exponential
type and study that (the key to Agmon’s work also).

Kotani essentially rediscovered Boas’ Lemma (and Remling
improved Kotani’s variant) with a proof which I think is not
as intuitive as Boas’ proof.
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Proof of Boas’ Lemma (Skip??)

Let F be the set of finite values with #F = f .

Let F p be
the set of all sequences of length p and Fp the subset of F p

of those sequences which occur infinitely often in {bn}∞n=0.
We claim that, if for each G ∈ Fp there is a qG ∈ F so that
eventually all copies of G are followed by qG, then {bn}∞n=0

is eventually periodic. For if G[1] is G with the first element
removed, G1 = G[1]qG ∈ F . Thus G is eventually followed
by qG and then by qG1 . Repeating this p times we see there
is a map η : G → G so that eventually, G is followed by
η(G). Pick H ∈ Fp and let H1 = η(H) and
Hn+1 = η(Hn). Since Fp is finite, there must be ` ≥ 1 and
k with Hk+` = Hk. Thus eventually every time Hk occurs
(and it occurs infinitely often), it is followed by
Hk+1, Hk+2, . . . ,Hk+`−1, Hk which means that eventually
{bn}∞n=0 has period p`!
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This contradiction to the assumption that it was not
eventually periodic shows that a map G 7→ qG doesn’t exist
for any p.

This implies that for any p, there are right limits
{cn}∞n=−∞ and {dn}∞n=−∞ with cn = dn for
n = 0,−1,−2, . . . , p− 1 and c1 6= d1. The set of right
limits is compact (in the product topology) so taking
p→∞, we get the required right limits.
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Hecke’s Example

Recall Hecke’s example, that for all irrational q, the function
f(z) =

∑∞
n=0{nq}zn has a natural boundary.

Here is a
proof of a stronger result. Since {{nq}}∞n=0 is dense in
[0, 1], we can find nj →∞ so that {njq} ↑ 1 and mj →∞
so that {mjq} ↓ 0. ` < 0⇒ {`q} 6= 0, so ` < 0,

{(nj + `)q} → {`q}, {(mj + `)q} → {`q},
but {njq} → 1, {mjq} → 0

proving that the function has a strong natural boundary.

Using an extra argument of Damanik-Killip, we get that for
any f : ∂D 7→ C is bounded and piecewise continuous with
a finite number of discontinuities, one of which has two
sided unequal limits, one has that for any irrational q and
any θ, the series

∑∞
n=0 f(e2πin+θ)zn has a strong natural

boundary (new in Breuer-Simon).
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M. Reisz’ Lemma

I turn next to some of the ideas in the proof of the main
result of Breuer-Simon.

We rely on a classical result proven
by Marcel Riesz (the younger brother of Frigyes Riesz.
Marcel spent his career in Sweden) in 1916.
Theorem. Suppose that {bn}∞n=0 is a bounded sequence
and the function, f , defined by the associated Taylor series
has an analytic continuation to a neighborhood of D ∪ S
where

S = {reiθ | 0 < r ≤ R,α ≤ θ ≤ β}
for some R > 1, α < β. Then

sup
z∈S,N=0,1,...

∣∣∣∣∣∣z−N
f(z)−

N−1∑
j=0

bnz
n

∣∣∣∣∣∣ <∞
The proof is by a clever maximum principal argument (a
standard Larry method).
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Let {cn}∞n=−∞ be a right limit of {bn}∞n=0 via bNj+k → cj .

Define

f
(N)
+ (z) =

∞∑
n=0

bn+Nz
n f

(N)
− (z) =

−1∑
n=−N

bn+Nz
n

so, if f+ and f− are the functions on D and C ∪ {∞} \ D
respectively by {cn}∞n=−∞, then

f
(N)
+ (z) + f

(N)
− (z) = z−Nf(z);

f
(Nj)
+ (z)→ f+(z); f

(Nj)
− (z)→ f−(z) (3)

respectively on D \ {0} ∪ S for the first equation (by
analytic continuation to S), uniformly on compacts of D for
the second and uniformly on compacts of C ∪ {∞} \ D for
the last.
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By Riesz’ lemma and the Vitali convergence theorem, we
conclude that f (Nj)+ has a limit on D ∪ S so f+ has a
continuation to S.

Since f (N)
+ (z) + f

(N)
− (z) = z−Nf(z) on

S \ D, and the last goes to zero on S \ D, we see that
f+ + f− = 0 on S \ D. This implies that f+ and f− have
analytic continuations through I = S ∩ ∂D so that
f+(z) + f−(z) = 0 on C \ (∂D \ I), i.e. {cn}∞n=−∞ is
reflectionless, proving the theorem.
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Suppose the local H1 type norm in (2) is finite for a closed
interval surrounding I = (α, β).

We will prove that the
right limits of the power series are reflectionless across I.
By an extension of the usual H1 theory (not by us but, for
example, in Duren’s book), one proves that for a.e. eiθ ∈ I,
limr↑1 f(reiθ) ≡ f(eiθ) exists and defines a function in
L1(I).

Let hn =
∫
I e
−inθf(eiθ) dθ2π so, by a Riemann-Lebesgue

lemma, limn→∞ hn = 0. By using properties of∫
I f(eiθ)(eiθ − z)−1 dθ2π , one proves that the power series for
bn − hn can be analytically continued across I. So right
limits of bn − hn are reflectionless across I. But since
limn→∞ hn = 0, these are the same as the right limits of bn.
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bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
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locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
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Haar measure, and equilibrium measures in potential theory.
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Part 2A is devoted to basic complex analysis. It inter-
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functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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