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celebration and thanksgiving of Larry. | told them I'd known
Larry since the early 1970's when his family and mine were
visiting Weizmann during the same summer and we meet at
Lunenfeld Apartments but that's false (although we did
meet then) because I've known Larry since the fall of 1962!
| was a Freshman at Harvard and took the infamous Math
55 (differential calculus on Banach spaces taught in those
days by Loomis and integral calculus on manifolds taught by
J. d'Anal Math Conseiler de Redaction Shlomo Sternberg)
and Larry was one of the graders. | picked the subject of my
talk today as my one piece of work on classical complex
analysis, the central pillar of Larry’'s work. | hope he enjoys
it. Besides, it is joint with Jonathan Breuer, so 30 years
from now when we honor him, | can reuse it.
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potural the discovery of Weierstrass, in the 1840’s, that the
function defined inside D by

fz) =2 2"
n=0

has a natural boundary on 9D, i.e. cannot be analytically
continued into any bigger set than ID. This is easy to see
because for any rational «, one sees that

lim,4q f(re?™@) = oo.

In general, one is interested in natural boundaries on
arbitrary complex domains, but, in this talk I'll focus only
on ID. Indeed, | will only consider a special situation which
is plenty interesting.
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where the b,, are bounded and lim sup,, |b,,| > 0 which
implies that D is a region of convergence, indeed the radius
of convergence is 1.

Here are some high points of the study of examples like the
n! one with large gaps in their non-zero coefficients
(lacunary series)
Kronecker (1863) essentially the elliptic theta function:
f(z) =200 -
Hadamard (1892) first general gap theorem
f(z) =0 a2z with ngy > (14 0)ny
Fabry (1896) like Hadamard but only needed n;/j — oco.
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Steinhaus (1930) proved for any sequence of the type we
consider if {w,}7°, are iidrv uniformly distributed on 9D,
then f(z) =3 02 bpw, 2™ has a natural boundary on 9D
for a.e. choice of w,. Paley-Zygmund (1932) did the same
where w,, are iidrv +1 with equal probability. There
developed a huge literature on random power series but
prior to Breuer-Simon, they all required independence of the
random coefficients.
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In 1922, Szegé proved the following spectacular theorem

Theorem. Suppose that {b,}>° , is a sequence which takes
only finitely many values. Then either {b,}22, is eventually
periodic in which case f(z) =Y 7 ,bpz" is a rational
function with possible poles at the roots of unity or else f
has 0D as a natural boundary.

And in 1921, Hecke proved that if {x} is the fractional part
of a real number x, then

Theorem For any irrational ¢, we have that

() =3 {na}="
n=0

has a natural boundary.
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The second leg of our talk is the spectral theory of 1D
Schrodinger operators, although we will occasionally discuss
other operators. We have a two sided bounded sequence,

{bn}52 _ ., of real numbers and look at the operator, H, on

n=—oo!

*(Z)
(Hu)(n) =u(n+1) +u(n — 1) + byu(n)

and the operator H (resp. H_) on ¢?({n > 1}) (resp.
2({n < 0})) with u(0) = 0 (resp. u(1) = 0).

The fundamental objects are matrix elements of the
resolvents

G(z) = (8o, (H — 2)""b0),
my(z) = (01, (Hy—2)"'61), m_(2) = (do, (H- —2)""d0)
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and the spectral measures

Go) = /du(az) ma(2) = /d,ui(m)

r—z r—z

Two decompositions of the spectrum concern us. Recall
that any measure can be split into three parts: an
absolutely continuous (a.c.) part f(x)dx, a pure point(p.p.)
and a singular continuous (s.c.) part like the Cantor
measure. By looking at supports of the parts of the spectral
measure (for H, one needs to also look at a spectral
measure associated to 1), the spectrum, o(H) has three
parts, oqc(H), opp(H), 05c(H).
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There is a second decomposition of spectra into the discrete
spectrum, og;s., of isolated eigenvalues of finite multiplicity
and its complement in o, the essential spectrum, oeg. Of
course, oq. and o are part of o5, so this second
decomposition is really of the point spectrum - into discrete,
eigenvalues embedded into continuous spectrum and finally,
pieces of essential spectrum disjoint from the continuous
spectrum with dense set of eigenvalues.

When | started out fifty years ago, motivated by
expectations from atomic and solid state physics, it was
expected that “normal” quantum Hamiltonians should have
some discrete spectrum (representing bound states) and
some a.c. spectrum, typically scattering states and/or
phonons. There was no sc spectrum expected (what Arthur
Wightman, my advisor, called “the no goo hypothesis”)
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and the pp spectrum was the closure of the discrete
spectrum.

One accomplishment of the period from 1972-1985 (in
which | had a serious but not starring role) was the proof
that this picture (and asymptotic completeness) held for
general N-body quantum Hamiltonians but during this
period it also became clear that there were more things in
heaven and earth than the naive spectral theorist dreamed
of.

To distinguish “normal” spectra from situations with some
singular continuous or dense point spectra, the later has
come to be called exotic spectra. A hallmark of such
spectra is the absence of a.c. spectrum.
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Here's a history of developments:

Goldsheid, Molchanov, Pastur (1977) (for a continuum
model) and Kunz-Souillard (1980) (for Anderson type
models, i.e. b, iidrv with some restriction on the
distribution) proved Anderson localization, i.e. dense point
spectrum.

Pearson (1978) proved that sparse potentials (e.g. bumps
at increased spacing, allowed, but not required, to decay
slowly) has purely s.c. spectrum (in the continuum case)

Avron-Simon (1982) proved that the AMO for A > 2

(by, = Acos(man + 6)) has no a.c. spectrum if « is
irrational and is purely singular continuous for o very well
approximated by rationals (the spectral type is now totally
understood depending on Diophantine properties of «).
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The random model and AMO are special cases of a class
called ergodic Schrédinger operators where {w;, }52 _  is an
ergodic stochastic process and b¥ = F(wy,). In this regard

Kotani(1983) (who did continuum models, discrete is Simon
(1983)) proved that if an ergodic Schrodinger operator has
any a.c. spectrum, then b is deterministic (i.e. each

bn,m > 1is a function of {b,}Y___ ). Random are not,
almost periodic is deterministic. (for many years -
Kotani-Last conjecture that the only ergodic Schrodinger
operators with a.c. spectrum are almost periodic,
counter-examples in Avila and Volberg-Yuditskii (2014)).

Kotani (1989) proved that an ergodic Jacobi matrix taking
finitely many values either is periodic or has no a.c.
spectrum.




Exotic Spectra

Simon (1995) in many cases, purely s.c. spectrum is Baire
generic (e.g. the set of {b,,}°°, € X7 [0,1] which have
purely s.c. spectrum is a dense G in the product topology).

Spectral Theory



Exotic Spectra

Simon (1995) in many cases, purely s.c. spectrum is Baire
generic (e.g. the set of {b,,}°°, € X7 [0,1] which have
purely s.c. spectrum is a dense G in the product topology).
Spectral Theory Damanik-Killip proved if f : 9D — R is bounded and
piecewise continuous with a finite number of discontinuities,
one of which has two sided unequal limits. Then for any
irrational ¢ and any 6, the potential b, = f(e2™"*%) leads
to an h with no a.c. spectrum.




Exotic Spectra

Simon (1995) in many cases, purely s.c. spectrum is Baire
generic (e.g. the set of {b,,}°°, € X7 [0,1] which have
purely s.c. spectrum is a dense G in the product topology).
Spectral Theory Damanik-Killip proved if f : 9D — R is bounded and
piecewise continuous with a finite number of discontinuities,
one of which has two sided unequal limits. Then for any
irrational ¢ and any 6, the potential b, = f(e2™"*%) leads
to an h with no a.c. spectrum.

Remling (2011; preprint 2007) proved (this and much more
as I'll discuss) that if a half-line operator has b,, taking only
finitely many values and any a.c. spectrum, then b, is
eventually periodic.
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| hope you'll seen a similarity between our two themes:
natural boundaries and absence of a.c. spectra

sparse potentials are like gap theorems
Anderson localization is like Steinhaus random phases
Damanik-Killip discontinuity is like Hecke

Kotani/Remling finite value theorems are like Szegé's finite
value theorem

Most striking is this last. Perhaps, if I'd known of Szegé's
theorem when Kotani did his work, I'd have had my aha
moment then but | only learned of Szegd's theorem after
Remling which was good because his ideas, which gave a
general understanding of the lack of a.c. spectrum, were the
key to what Breuer and | found.
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The Remling Revolution: Right Limits

One part of Remling’s great theorem is the notion of right
limit introduced by Last-Simon (1999). If H is an half-line
1D Schrédinger operator, a two sided sequence, {cj};?‘;foo,
Spectral Theory is called a right limit of {b;}22,, the sequence defining H,
if and only if there is n;, — oo so that for all j, we have that

Cj = khjilo bnkJrj
The right limits of H, are precisely the two sided operators
Hy + c. R is the set of all right limits.
Last-Simon proved that

Uess(H—l—)Q ﬂ U(H’/‘) O'ac(H—l—)g U Uac(Hr)
H,eR H,.eR
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Reflectionless Potentials

G and m are initially defined for z € C\ R, but as Stieltjes
transforms of measure, it is known that for (Lebesgue) a.e.
x € R, the limits G(z + i0) = lim, o G(x + ic) exists and
one has that Im(G(x +i0)) > 0. A whole line discrete
Schrodinger operator, H is called reflectionless on a set

S C R of positive Lebesgue measure if and only if for a.e.

z € S, one has that

my (x +1i0)"" = m_(z + i0)

This turns out to be equivalent to the diagonal Green's
function G,,,,(z + i0) being pure imaginary for all n. The
name comes from the fact that in the case where b,, goes to
zero rapidly as n — £o00 so that a scattering theory exists,
the scattering theoretic reflection coefficient is zero for
reSs.
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Reflectionless Potentials

There is a dynamic notion of reflectionless due to
Davies-Simon (1978) and Breuer-Ryckman-Simon (2009)
proved it is equivalent to the notion above.

By the definition of m, one can go from {b,}>°; to m4
but one can also go in the other direction, for example,
using the continued fraction expansion:

my(z) =
—z+ b1+ 1
—z+4+by+ —

Thus if H is reflectionless one can go from {b,}0___ to
m_ to my to {b,}22 so the sequence is deterministic.
Indeed, Kotani proved his result on stochastic Schrédinger
with a.c. spectrum being deterministic by proving H
reflectionless on the a.c. spectrum.
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Theorem (Remling (2007)). Let 3 be the essential support
of the a.c. part of a half line Schrédinger operator, H, .
Then X is in the essential support of the a.c. part of the
spectrum of any right limit, H, and H, is reflectionless on
>,

Spectral Theory

His proof is not simple (the exposition in one of my books is
10 dense pages) and no one has found another proof!
Fortunately, his result is suggestive to our needs and the
proof of the complex variables result doesn’t use any ideas
from his proof.
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Definitions

Definition We say that power series f(z) = > > bp2"
with sup,, |b,| < oo has a strong natural boundary on 0D if
and only if, for every interval I C 9D the quantity below is

infinite 20
i0 ‘
su re — 2
Sup /ewa\f( )5 )

Obviously, if f can be analytically continued across an
interval containing I, the integral is finite, so this is a
stronger condition than f having a natural boundary.

Definition A two sided sequence {c,}52 _  is called a
right limit of a bounded one sided sequence {b,}2°, if and
only if there is ny — oo so that for all 7, we have that

c; = lim b ;
T e I
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Definitions

Definition A two sided sequence {c,}5° _  is called
reflectionless on I C 0D if and only if the functions

00 -1
f+(z) = chz”; zeD f-(z) = Z 2"y z € C\D
n=0 n=-—00

have analytic continuations through I so that
fr(z)+ f-(2) =00on C\ (OD\ I). NB: f_(o0) = 0.

For example, if ¢, = 1, then f1(2) = (1 — 2)~! while
f-(2) = —(1 — 2)~ 1 is reflectionless on D\ {1}. And one
can see that a periodic sequence of period p is reflectionless
on any interval containing no pth roots of unity.

Reflectionless sequences are deterministic in that if
{en}2e_ o and {d, }5° _ . are both reflectionless on I and
cn, = dp, for n all n < Ny, then ¢, = d,, for all n.
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Big Theorem of Breuer-Simon

Theorem. Let f(z) =>.,° ,b,2"™ be a power series with
by, bounded. Suppose that I C JD is an open interval so
that the (sup of the) integral in (2) is finite. Then every
right limit of {b,}°°, is reflectionless on I.

Thus, if for any I, we can find a right limit which is not
reflectionless on I, then f has a strong natural boundary on
oD.
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Here is a general gap result
Theorem. Suppose {b,}22, is a bounded sequence so that
there exists, some C, D > 0 and n; — oo so that for all
k<0

lim sup by x| < Ce DIk

Consequences j—o0

liminf |b,;[ > 0
j—o0

Then f(z) = > 07, bnz™ has a strong natural boundary on
oD.

After we completed our work, we discovered a remarkable
1949 paper of Agmon (alas little quoted; only 10
MathSciNet citations) that discussed gap theorems by a
method not unrelated to ours, of course without the
Remling theory analogy.



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize

Consequences



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB.

Consequences



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!!

Consequences



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!l He didn't try to
Consequences apply his method to anything but gap theorems.



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!l He didn't try to
Consequences apply his method to anything but gap theorems.

The proof is easy.



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!l He didn't try to
Consequences apply his method to anything but gap theorems.

The proof is easy. There is a right limit ¢,, with ¢y # 0 and
with ¢, < Ce Pl for all n < 0.



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!l He didn't try to
Consequences apply his method to anything but gap theorems.

The proof is easy. There is a right limit ¢,, with ¢y # 0 and
with ¢, < Ce Pl for all n < 0. The last fact implies that
f— is analytic in {z | |z| > e~ P} so if the right limit is
reflectionless, f is entire.



Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!l He didn't try to
Consequences apply his method to anything but gap theorems.

The proof is easy. There is a right limit ¢,, with ¢y # 0 and
with ¢, < Ce Pl for all n < 0. The last fact implies that
f— is analytic in {z | |z| > e~ P} so if the right limit is
reflectionless, f is entire. Since f_ is bounded, this entire
function is constant.



Consequences

Gap Theorems

His result is more general in that he considers cases where
by, is unbounded or b,, — 0 and he can renormalize but less
general in that he only gets (for our situation) that f is
unbounded in any sector rather than a strong NB. Except
for this last, the above theorem is his!!l He didn't try to
apply his method to anything but gap theorems.

The proof is easy. There is a right limit ¢,, with ¢y # 0 and
with ¢, < Ce Pl for all n < 0. The last fact implies that
f— is analytic in {z | |z| > e~ P} so if the right limit is
reflectionless, f is entire. Since f_ is bounded, this entire
function is constant. But since it is —f_(oc0) = 0 at infinity
and ¢g # 0 at 0, we have a contradiction.
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Stochastic Power Series

Notice that the interval I in the reflectionless condition is
determined by the original power series and so is the same
for all right limits. We thus immediately have:

Determinism Principle If a bounded sequence {b,}2°
has two different right limits {c,}>>_ . and {d,}5% _ so
that ¢, = dy, for all n < 0 but ¢ # do, then Y0 b, 2"
has a strong natural boundary on OD.

Consequences

This immediately implies that any non-deterministic
stochastic power series has a strong natural boundary on
0D (e.g. Markov processes which are new unless
independent) and recovers Steinhaus and Paley-Zygmund.
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Motivated by my results on Baire generic singular
continuous spectrum, Breuer and | used our result to prove

Theorem. Let Q) C C be a compact set with more than
one point. Let Q% be the countable product of copies of
in the weak topology. Then {b € Q> | >"> (b,2"

has a strong natural boundary on OD} is a dense G in Q°°.

Consequences

There is a very interesting open question. In spectral theory,
Baire generic potentials lead to singular continuous
spectrum while random potentials to dense point spectrum.
Is there a difference between the natural boundaries for the
Baire generic and random power series?
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Obviously this lemma and what | called the Determinism
Principle immediately imply a strong version of Szegd's
theorem on natural boundaries in that one can conclude
that the functions have a strong natural boundary. That
result is actually also due to Boas.
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can construct an associated entire function of exponential
type and study that (the key to Agmon's work also).
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Kotani essentially rediscovered Boas' Lemma (and Remling
improved Kotani's variant) with a proof which | think is not
as intuitive as Boas' proof.
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Let F' be the set of finite values with #F = f. Let FP be
the set of all sequences of length p and F), the subset of F”
of those sequences which occur infinitely often in {b,}22.
We claim that, if for each G’ € F), there is a gg € F so that
eventually all copies of G are followed by ¢¢, then {b,}5°
Consequences is eventually periodic. For if GI'l is G with the first element
removed, G; = Glllge € F. Thus G is eventually followed
by ¢c and then by g, . Repeating this p times we see there
isa map 17 : G — G so that eventually, G is followed by
n(G). Pick H € F,, and let H; = n(H) and

H, 11 =n(Hy). Since F, is finite, there must be £ > 1 and
k with Hy o = Hj. Thus eventually every time Hy, occurs
(and it occurs infinitely often), it is followed by

Hyiq,Hyyo, ..., Hpio—1, Hi, which means that eventually
{bn}22, has period p¢!
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Proof of Boas’ Lemma (Skip??)

This contradiction to the assumption that it was not
eventually periodic shows that a map G — ¢¢ doesn't exist
for any p. This implies that for any p, there are right limits
{en}5 o and {d,}° _ o with ¢, = d,, for
n=0,—-1,-2,...,p—1and ¢; # di. The set of right
Consequences limits is compact (in the product topology) so taking

p — 00, we get the required right limits.
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Recall Hecke's example, that for all irrational ¢, the function
f(z) = >0 o{ng}z"™ has a natural boundary. Here is a
proof of a stronger result. Since {{ng}} is dense in
[0,1], we can find nj — oo so that {n;q} 11 and m; — co
so that {m;q} 1 0. £ <0 = {lq} #0,s0 ¢ <0,

{(nj +Oq} = {tq}, {(m; +0)a} — {{q},
but {n;q} — 1, {mjq} =0

Consequences

proving that the function has a strong natural boundary.

Using an extra argument of Damanik-Killip, we get that for
any f: 0D — C is bounded and piecewise continuous with
a finite number of discontinuities, one of which has two
sided unequal limits, one has that for any irrational ¢ and
any 0, the series > 0% | f(e2™"+0)2" has a strong natural
boundary (new in Breuer-Simon).
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M. Reisz’ Lemma

| turn next to some of the ideas in the proof of the main
result of Breuer-Simon. We rely on a classical result proven
by Marcel Riesz (the younger brother of Frigyes Riesz.
Marcel spent his career in Sweden) in 1916.

Theorem. Suppose that {b,}>2, is a bounded sequence
and the function, f, defined by the associated Taylor series
M. Riesz’ Lemma has an analytic continuation to a neighborhood of D U S
and The Proof Where

S={re? | 0<r<Ra<0<p}
for some R > 1,a < 3. Then

N-1

sup 2N f(2) - Z bpz" || < o0
z€S,N=0,1,... j=
The proof is by a clever maximum principal argument (a
standard Larry method).
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Let {cn}pl oo be a right limit of {b,}72 via by, 1k — ¢
Define

fe') —1
@ =S baene N0 = Y bane”
n=0 n=—N

WO o, if f4 and f_ are the functions on D and C U {00} \ D
and The Proof respectively by {c,}5° __, then

I+ 10@) = N f ()
@) = £ 1) = f-2) (3)
respectively on D\ {0} U S for the first equation (by
analytic continuation to .S), uniformly on compacts of I for

the second and uniformly on compacts of C U {oo} \ D for
the last.
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By Riesz' lemma and the Vitali convergence theorem, we
conclude that f+Nj) has a limit on DU S so f has a
continuation to S. Since fJ(rN)(z) + fSN) (2) =2Nf(2) on
S\ D, and the last goes to zero on S\ D, we see that
f++ f-=0o0n S\D. This implies that f; and f_ have

. analytic continuations through I = S N dD so that
Wl (2)+ f_(2) =00n C\ (OD\ 1), ie. {ca}So s
reflectionless, proving the theorem.




Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ).

M. Riesz’ Lemma
and The Proof



Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ). We will prove that the
right limits of the power series are reflectionless across I.

M. Riesz’ Lemma
and The Proof



Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ). We will prove that the
right limits of the power series are reflectionless across I.
By an extension of the usual H'! theory (not by us but, for
example, in Duren's book), one proves that for a.e. ¢ € I,
lim,41 f(re?) = f(e) exists and defines a function in

M. Riesz' Lemma Ll([)_

and The Proof



Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ). We will prove that the
right limits of the power series are reflectionless across I.
By an extension of the usual H'! theory (not by us but, for
example, in Duren's book), one proves that for a.e. ¢ € I,
lim,41 f(re?) = f(e) exists and defines a function in

M. Riesz' Lemma Ll([)_

and The Proof
Let hy = [; e ™0 f(e) 2 5o, by a Riemann-Lebesgue

b2
lemma, lim;,,—o0 hy, = 0.



Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ). We will prove that the
right limits of the power series are reflectionless across I.
By an extension of the usual H'! theory (not by us but, for
example, in Duren's book), one proves that for a.e. ¢ € I,
lim,41 f(re?) = f(e) exists and defines a function in

M. Riesz’ Lemma Ll (I) )
and The Proof

Let hy = [; e ™0 f(e) 2 5o, by a Riemann-Lebesgue
lemma, lim,, o hy, = 0. By using properties of

[, F(e)(e? — 2)7142  one proves that the power series for
by, — hy, can be analytically continued across 1.



Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ). We will prove that the
right limits of the power series are reflectionless across I.
By an extension of the usual H'! theory (not by us but, for
example, in Duren's book), one proves that for a.e. ¢ € I,
lim,41 f(re?) = f(e) exists and defines a function in

M. Riesz' Lemma Ll([)_

and The Proof

Let hy = [; e ™0 f(e) 2 5o, by a Riemann-Lebesgue
lemma, lim,, o hy, = 0. By using properties of

[, F(e)(e? — 2)7142  one proves that the power series for
by, — hy, can be analytically continued across I. So right
limits of b,, — h,, are reflectionless across I.



Strong Natural Boundaries

Suppose the local H! type norm in (2) is finite for a closed
interval surrounding I = (a, ). We will prove that the
right limits of the power series are reflectionless across I.
By an extension of the usual H'! theory (not by us but, for
example, in Duren's book), one proves that for a.e. ¢ € I,
lim,41 f(re?) = f(e) exists and defines a function in

M. Riesz' Lemma Ll([)_

and The Proof

Let hy = [; e ™0 f(e) 2 5o, by a Riemann-Lebesgue
lemma, lim,, o hy, = 0. By using properties of

[, F(e)(e? — 2)7142  one proves that the power series for
by, — hy, can be analytically continued across I. So right
limits of b,, — h,, are reflectionless across I. But since

lim,, o0 by, = 0, these are the same as the right limits of b,,.
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