
The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Periodic Jacobi Matrices on Trees

Barry Simon
IBM Professor of Mathematics and Theoretical Physics, Emeritus

California Institute of Technology
Pasadena, CA, U.S.A.

Joint Work with Nir Avni (Northwestern) and Jonathan Breuer (HUJI)
Work in Progress



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Periodic Jacobi Matrices on Trees

Barry Simon
IBM Professor of Mathematics and Theoretical Physics, Emeritus

California Institute of Technology
Pasadena, CA, U.S.A.

Joint Work with Nir Avni (Northwestern) and Jonathan Breuer (HUJI)

Work in Progress



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Periodic Jacobi Matrices on Trees

Barry Simon
IBM Professor of Mathematics and Theoretical Physics, Emeritus

California Institute of Technology
Pasadena, CA, U.S.A.

Joint Work with Nir Avni (Northwestern) and Jonathan Breuer (HUJI)
Work in Progress



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Introduction

This talk will discuss the setup of periodic Jacobi matrices
on trees, mainly on trees of constant degree.

There is
almost no discussion of this subject in the mathematical
physics literature although there has been some beautiful
work of some Japanese mathematicians. There are three
significant results, one of which is not previously explicitly in
the literature. Avni, Breuer and I have been studying this
subject for over three years and have found interesting
conjectures and some illuminating examples but, so far, few
new results. So the purpose of this talk is to convince
others to also waste time on this fascinating subject!

Our main guide has been the case of a tree of constant
degree two, i.e. conventional 1D Jacobi matrices. Here the
theory is well known, beautiful and very deep, so I begin
with a brief summary of the results there to set the stage.
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The DOS and Gap Labelling

The operator acts on `2(Z),

depends on a pair of two–sided
infinite sequences {bn}∞n=−∞ and {an}∞n=−∞ with
bn ∈ R, an > 0, and for some period p, one has
bn+p = bn, an+p = an for all n ∈ Z. The basic operator has
the form

(Hu)n = an+1un+1 + bnun + anun−1

H commutes with the action of translations by p units
(Uu)n = un+p so if µj is the spectral measure at δj , one
has that µj+p = µj and it is natural to define the density of
states (DOS), dν, and integrated DOS (IDS), k, by

dν = p−1
p∑
j=1

dµj ; k(E) = ν(−∞, E)

It is obvious that spec(H) = supp(dν).
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The DOS and Gap Labelling

1 The DOS can also be computed by counting
eigenvalues in balls of size mp with periodic or
Dirichlet BC.

This was first emphasized by Pastur in a
more general context and sometimes attributed to
Avron-Simon, who had a particularly simple proof.

2 spec(H) is a finite number of disjoint closed
bands, at most p. This goes back to the dawn of
quantum mechanics.

3 (gap labelling) k in any gap of the spectrum is a
multiple of 1/p. Again this goes back to the dawn of
quantum mechanics although its important extension
to the almost periodic case goes back to
Johnson–Moser, Avron–Simon and Bellisard in the
early 1980s.
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Spectral Properties

The basic result is that the spectrum is purely absolutely
continuous,

but for reasons that will become obvious, I
break this into two statements.

4 There is no singular continuous spectrum.
5 There is no pure point spectrum.

The essence of purely a.c. spectrum is the occurrence of
Bloch waves which again goes back to the dawn of
quantum mechanics (or even earlier if you think about
Floquet theory). Mathematically precise versions for Rn go
back to Gel’fand in the late 1940’s and for the absence of
pure point spectrum (flat bands) for n ≥ 2 to Thomas in
the 1980’s. I emphasize though, that only n = 1 is a tree
and so relevant to our discussion!



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Spectral Properties

The basic result is that the spectrum is purely absolutely
continuous, but for reasons that will become obvious, I
break this into two statements.

4 There is no singular continuous spectrum.
5 There is no pure point spectrum.

The essence of purely a.c. spectrum is the occurrence of
Bloch waves which again goes back to the dawn of
quantum mechanics (or even earlier if you think about
Floquet theory). Mathematically precise versions for Rn go
back to Gel’fand in the late 1940’s and for the absence of
pure point spectrum (flat bands) for n ≥ 2 to Thomas in
the 1980’s. I emphasize though, that only n = 1 is a tree
and so relevant to our discussion!



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Spectral Properties

The basic result is that the spectrum is purely absolutely
continuous, but for reasons that will become obvious, I
break this into two statements.

4 There is no singular continuous spectrum.

5 There is no pure point spectrum.

The essence of purely a.c. spectrum is the occurrence of
Bloch waves which again goes back to the dawn of
quantum mechanics (or even earlier if you think about
Floquet theory). Mathematically precise versions for Rn go
back to Gel’fand in the late 1940’s and for the absence of
pure point spectrum (flat bands) for n ≥ 2 to Thomas in
the 1980’s. I emphasize though, that only n = 1 is a tree
and so relevant to our discussion!



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Spectral Properties

The basic result is that the spectrum is purely absolutely
continuous, but for reasons that will become obvious, I
break this into two statements.

4 There is no singular continuous spectrum.
5 There is no pure point spectrum.

The essence of purely a.c. spectrum is the occurrence of
Bloch waves which again goes back to the dawn of
quantum mechanics (or even earlier if you think about
Floquet theory). Mathematically precise versions for Rn go
back to Gel’fand in the late 1940’s and for the absence of
pure point spectrum (flat bands) for n ≥ 2 to Thomas in
the 1980’s. I emphasize though, that only n = 1 is a tree
and so relevant to our discussion!



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Spectral Properties

The basic result is that the spectrum is purely absolutely
continuous, but for reasons that will become obvious, I
break this into two statements.

4 There is no singular continuous spectrum.
5 There is no pure point spectrum.

The essence of purely a.c. spectrum is the occurrence of
Bloch waves which again goes back to the dawn of
quantum mechanics

(or even earlier if you think about
Floquet theory). Mathematically precise versions for Rn go
back to Gel’fand in the late 1940’s and for the absence of
pure point spectrum (flat bands) for n ≥ 2 to Thomas in
the 1980’s. I emphasize though, that only n = 1 is a tree
and so relevant to our discussion!



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Spectral Properties

The basic result is that the spectrum is purely absolutely
continuous, but for reasons that will become obvious, I
break this into two statements.

4 There is no singular continuous spectrum.
5 There is no pure point spectrum.

The essence of purely a.c. spectrum is the occurrence of
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Analyticity of the m- and Green’s
functions

The Green’s function is Gn(z) = 〈δn, (H − z)δn〉.

If we
replace an−1 by 0, then H decomposes into a direct sum,
H+
n acting on `2(n,∞) and H−n−1 acting on `2(−∞, n− 1)

and we define
m±n (z) = 〈δn, H±n δn〉

6 For all n, Gn(z) and m±n (z) have analytic
continuations from C\spec(H) to a finitely
sheeted Riemann surface with a discrete set of
branch points.

7 These functions are hyperelliptic and, in
particular, have only square root branch points
and the surface is two sheeted.
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Analyticity of the m- and Green’s
functions

8 The branch points are all in R at edges of the
spectrum.

There are no poles of G away from the
branch points and all poles of m± are in the
bounded spectral gaps of one sheet or the other
or at the branch points. There is one pole in each
“gap”.

These results follow by writing down an explicit quadratic
equation for the m-functions and analyzing it using, in part,
the monotonicity of G in gaps and the fact that poles of m
correspond to zeros of G.
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Universality of the DOS

Two periodic Jacobi matrices are called isospectral if they
have the same spectrum.

9 Two isospectral Jacobi matrices have the same
period and same DOS.

10 The DOS of a periodic Jacobi matrix = potential
theoretic equilibrium measure, aka harmonic
measure, of its spectrum.

The second of these implies the first. For mathematical
physicists, these facts are connected to the Thouless
formula and the fact that pure a.c. spectrum implies the
Lyaponov exponent is zero on the spectrum. In the OP
community, it is connected to the theory of regular Jacobi
matrices as developed especially by Stahl–Totik. We’ll see
that these results plus gap labelling restrict the sets that
can be spectra of periodic Jacobi matrices.
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Borg and Borg–Hochstadt Theorems

11 (Borg’s Theorem) If a periodic Jacobi matrix has
no gaps in its spectrum, then a and b are
constant

12 (Hochstadt Theorem) If the IDS of a periodic
Jacobi matrix has a value j/p in each gap of the
spectrum, then the period is (a divisor of) p

Both Borg (1946) and Hochstadt (1984) proved their
results for Hill’s equation (i.e. continuum Schrödinger
operators) but it is known to hold for the Jacobi case.
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Structure of the Isospectral Manifold

The set of n band sets ∪nj=1[αj , βj ] is described by 2n real
numbers so a manifold of dimension 2n.

But they are not
all possible spectra of periodic Jacobi matrices because a
general set has arbitrary real harmonic measures of the
bands while the periodic case has rational harmonic
measures. This places n− 1 constraints on the set (not n
because it suffices that n− 1 harmonic measures be
rational).

13 The dimension of allowed periodic spectra of
period n is n + 1

14 The isospectral family associated to an n-band
periodic spectral set is a manifold of dimension
n− 1
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Structure of the Isospectral Manifold

15 The isospectral family associated to a given
n-band periodic spectral set is a torus of
dimension n− 1

16 The torus can be described by giving the position
of the poles of m+

1 on the two sheeted Riemann
surface, one in each gap

There are several beautiful underlying structures connected
with these facts. One involves the Toda flow and gives the
nested tori the structure of a completely integrable
Hamiltonian system. Another views the isospectral torus as
the Jacobian variety of hyperelliptic surface.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Structure of the Isospectral Manifold

15 The isospectral family associated to a given
n-band periodic spectral set is a torus of
dimension n− 1

16 The torus can be described by giving the position
of the poles of m+

1 on the two sheeted Riemann
surface,

one in each gap

There are several beautiful underlying structures connected
with these facts. One involves the Toda flow and gives the
nested tori the structure of a completely integrable
Hamiltonian system. Another views the isospectral torus as
the Jacobian variety of hyperelliptic surface.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Structure of the Isospectral Manifold

15 The isospectral family associated to a given
n-band periodic spectral set is a torus of
dimension n− 1

16 The torus can be described by giving the position
of the poles of m+

1 on the two sheeted Riemann
surface, one in each gap

There are several beautiful underlying structures connected
with these facts. One involves the Toda flow and gives the
nested tori the structure of a completely integrable
Hamiltonian system. Another views the isospectral torus as
the Jacobian variety of hyperelliptic surface.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Structure of the Isospectral Manifold

15 The isospectral family associated to a given
n-band periodic spectral set is a torus of
dimension n− 1

16 The torus can be described by giving the position
of the poles of m+

1 on the two sheeted Riemann
surface, one in each gap

There are several beautiful underlying structures connected
with these facts.

One involves the Toda flow and gives the
nested tori the structure of a completely integrable
Hamiltonian system. Another views the isospectral torus as
the Jacobian variety of hyperelliptic surface.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Structure of the Isospectral Manifold

15 The isospectral family associated to a given
n-band periodic spectral set is a torus of
dimension n− 1

16 The torus can be described by giving the position
of the poles of m+

1 on the two sheeted Riemann
surface, one in each gap

There are several beautiful underlying structures connected
with these facts. One involves the Toda flow and gives the
nested tori the structure of a completely integrable
Hamiltonian system.

Another views the isospectral torus as
the Jacobian variety of hyperelliptic surface.
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Boundary Conditions

While it is often expressed in terms of Floquet boundary
conditions,

it is better for our purposes to consider the
group of symmetries Wn = Un where U is the symmetry
Uuj = uj+p so WnH = HWn.

17 The representation of {Wn}n∈Z acting on `2(Z) is
a direct integral of all the irreps of Z , each with
multiplicity p

18 H is a direct integral of p× p matrices
H(θ); eiθ ∈ ∂D so that

spec(H) =
⋃

eiθ∈∂D

spec(H(θ))
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Gap Edges

19 The edges of gaps correspond to eigenvalues of
H(θ) for θ = 0, π,

that is periodic and antiperiodic
boundary conditions

There is a detailed analysis; the largest periodic eigenvalue
is simple and is the top of spec(H), the next two are
antiperiodic and they are unequal if and only if there is a
gap with IDS value (p− 1)/p, the next two are periodic . . .
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Gap Edges

One consequence of the gap edge result is

20 Generically, all gaps are open

One looks at the set in R2p of all possible a’s and b’s
for which there are gaps where the IDS is j/p for all
j = 1, . . . , p− 1. It is easy to see it is open and this
says it is dense. In 1976, I noted the analog holds for
continuum Schrödinger operators.

In this Jacobi case, more is true using ideas that go
back to Wigner–von Neumann

21 The set where all gaps are not open is a real
variety of codimension 2.
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The Discriminant

We’d be remiss if we didn’t mention the discriminant, ∆(z)

22 There is a polynomial, ∆(z), of degree p so that

spec(H) = ∆−1[−2,2]

In the math physics literature, ∆ arises as the trace of a
transfer matrix while in the OP literature as a Chebyshev
polynomial. This is a key tool in some proofs of the above
results.
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Basic Definitions

A graph is a collection of points, aka vertices, and
connectors, aka edges.

Each edge has two ends which are
vertices. There is a natural topological space associated to
a graph and we always suppose it is connected. We want to
allow edges that start and end at the same vertex (aka
self–loops) and definitely want to allow multiple edges
between a given pair of vertices.

A graph which is simply connected is called a tree. The
degree of a vertex is the number of edges with that vertex
as an end. A leaf is a vertex of degree one and we will only
consider graphs with no leaves. Thus, our trees are always
infinite. Of course, trees have no self loops and at most one
edge between two vertices. A graph with constant degree is
called regular.

We will most often consider regular graphs.
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Jacobi Matrices

A Jacobi matrix on a graph, G, is associated to a set of real
numbers {bj}j∈V assigned to each vertex and strictly
positive reals {aα}α∈E assigned to each edge.

Because we
will only consider finite graphs or infinite trees with periodic
parameters, the a’s and b’s are bounded sets. The Jacobi
matrix acts on `2(V ) ≡ H(G), the vector space of square
summable sequences indexed by the vertices of the graph. It
has matrix elements

Hjk =


bj , if j = k;∑

α aα, if j 6= k are ends of one or more edges
α which we sum over;

0, if no edges have i and j as ends.

If there are self–loops, one needs to modify this.
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parameters, the a’s and b’s are bounded sets.

The Jacobi
matrix acts on `2(V ) ≡ H(G), the vector space of square
summable sequences indexed by the vertices of the graph. It
has matrix elements

Hjk =


bj , if j = k;∑

α aα, if j 6= k are ends of one or more edges
α which we sum over;

0, if no edges have i and j as ends.

If there are self–loops, one needs to modify this.
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Periodic Jacobi Matrices on Trees

Let G be a finite graph (with no leaves).

Its universal cover,
T is a tree and if G has constant degree, so does T , i.e. it
is a regular tree.

Now let J be a Jacobi matrix on G. There is a unique
Jacobi matrix, H, on T so that if Ξ : T → G is the
covering map and Bj , Aα the Jacobi parameters of J and
bj , aα of H, then bj = BΞ(j), aα = AΞ(α). Any deck
transformation, G ∈ Γ, the set of deck transformations on
T , induces a unitary on H(T ) and these unitaries all
commute with H. We call H a periodic Jacobi matrix and
set p, the number of vertices of G to be its period,
although, as I’ll explain, there is some question if this is the
right definition of period! We let e be the number of edges.
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Free Groups

If G has m independent loops

(equivalently, one can drop m
edges and turn G into a connected finite tree), then the
fundamental group of G is the free nonabelian group with m
generators, Fm. So that is the natural symmetry of our
periodic trees.

The free Jacobi matrix on a tree is the one with all b’s 0
and all a’s 1. In this regard, there is a strange distinction
between regular trees of constant degree d depending on
whether d is even or odd! The graph with one vertex and k
self loops has degree d = 2k. Its universal cover is the
regular graph of degree d = 2k and its free Laplacian is a
period 1 Jacobi matrix. But there is no graph with a single
vertex of odd degree, so, with our definition, the free Jacobi
matrix on an odd degree homogenous tree is of period 2!!!
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Free Groups

The point is the free group with k generators acts freely
(i.e. no fixed point for non-identity elements) and
transitively on the degree 2k regular tree.

There is no such
symmetry group on any odd degree regular tree although by
looking at the cover of the two vertex, no self loop, d edge
graph, one sees that Fd−1 acts freely on the degree d
regular tree but with two orbits rather than transitively. One
can add an extra generator to get a transitive symmetry
group but the action is no longer free.
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DOS

The definition of the DOS, dν (and so IDS, k) is obvious.

For each vertex, J ∈ G, the spectral measure for H, dµj is
the same for all j ∈ T with Ξ(j) = J . So the DOS is
defined by picking one dµj for each J ∈ G, summing over J
and dividing by the number of vertices in G.

Pick a base point, j0 ∈ T and define the ball, Λr, as the set
of all vertices in T with distance at most r from j0.
Because the number of boundary points in Λr is comparable
to the total number of points in Λr, you cannot get dν as
a limit eigenvalue counting measures with free boundary
conditions but
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DOS

Fact 1 For any subgroup, Γ0 of Γ of finite index, the
quotient of the tree by Γ0 is a finite graph G0 which is a
finite cover of G.

There is an induced Jacobi matrix, J0 on
G0 called JΓ0 with Γ0 boundary conditions. There exist
nested sequences of Γ0’s whose intersection is empty, and
for any such sequence, the eigenvalue counting measures for
JΓ0 converge to the DOS.
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DOS and Normalized Traces

An important tool in understanding the DOS involves some
natural operator algebras.

Fix a finite graph G with
universal cover tree T . The set of Jacobi matrices is a
subset of the vector space of operators on H(G) which
generates a subspace of dimension the number of vertices
plus number of edges. A basis consists of “Jacobi” matrices
with a single a or b = 1 and the others all = 0 (I put Jacobi
in quotes because all the a’s aren’t strictly positive). Each
lifts to an operator on T . Let A(T ,Ξ) be the algebra
generated by these operators, C(T ,Ξ) its operator closure
and V(T ,Ξ) its weak-star closure - they are respectively a
C∗ and a von–Neumann algebra. These algebras depend on
more than T which is why we include the covering map in
the notation.
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DOS and Normalized Traces

All these operators commute with the action of the
symmetry group Fm,

so their diagonal matrix elements are
constant on orbits and we can form a normalized trace, Tr,
which obeys Tr(1) = 1 and Tr(AB) = Tr(BA). If PΩ(H)
are the spectral projections one has that

PΩ(H) ∈ V(T ,Ξ) a, b /∈ spec(H)⇒ P(a,b)(H) ∈ C(T ,Ξ)

because then the projection is a continuous function of H
which can be approximated by polynomials. Moreover

k(E) = Tr(P(−∞,E)(H))
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Sunada

In 1992, Toshikazu Sunada proved a gap labelling theorem.

The main focus of his paper was on continuum Schrödinger
operator on C∞ manifolds periodic under the action of
certain non–abelian group (notably hyperbolic groups). He
proved the spectrum has a band structure. The last two
sentences in his introduction note that

A discrete (graph-theoretical) analogue of periodic
Schrödinger operators can be treated in much the same
way. Actually, the proof of an analogue of Theorem 1 is
almost self–evident since the discrete Schrödinger operator
itself lies in (a specific C∗ algebra from his paper).

Because in this discrete case, the trace can be normalized,
he gets a full gap labelling result although nothing is noted
explicitly.
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Projections in C(T )

Theorem (Sunada) For a period p periodic Jacobi matrix
on a tree, k(E) in any gap has a value which is a multiple
of 1/p. This implies the spectrum has at most p bands.

Given the above formula for k, this result is a corollary of

Theorem (Sunada) If Ξ is a covering map from a tree to a
graph with p vertices, then for any projection, P ∈ C(T ,Ξ),
its normalized trace, Tr(P ), is a multiple of 1/p.
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Projections in C(T )

The basis for Sunada’s result is a theorem of
Pimsner–Voiculescu (1982) that proved a conjecture of
Kadison.

There is a famous exposition of this result by
Effros based, in part, on simplifications in the proof by
Connes and Cuntz. Formal finite sums,

∑
α fαγα of

elements in Fm acts naturally on `2(Fm). The reduced C∗

algebra, C∗red(Fm), of Fm is the norm closure of these
operators. The PV Theorem asserts that this algebra has no
non–trivial projections. For the case m = 1, via Fourier
transform, this C∗–algebra is just continuous functions on
the circle and the PV theorem is equivalent to the fact that
the circle is connected.
If the coefficients fα are replaced by p× p matrices and the
action is on `2(Fm,Cp), one gets projections coming from
the matrix part so the normalized trace has values that are
multiples of 1/p. This leads to Sunada’s result.
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G and M

Let H be a bounded Jacobi matrix on a tree, T .

If α is an
edge with ends j, k, then removing the edge α disconnects
T into two components, T αj and T αk , containing j and k
respectively. They are also trees although if either vertex
has degree 2, they may have a leaf. We let H(T αj ) be the
obvious Jacobi matrix acting on `2(T αj ) and similar for
H(T αk ). Define

Gj(z) = 〈δj , (H−z)−1δj〉 mα
j = 〈δj , (H(T αj )−z)−1δj〉

and similarly for mα
k . These are defined as analytic

functions on C \ (A,B) if A and B are the bottom and top
of spec(H). They are also analytic at infinity and in the
gaps of the suitable spectra. One can show that the three
operators have the same essential spectra, so all are
meromorphic on C \ ess spec(H).
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Schur Complements

We want to derive the equations for G and m.

These have
often appeared in the literature on trees, especially on
random discrete Schrödinger operators on trees, albeit many
times with incorrect signs! A particularly clean method
involves Banachiewicz’ formula from the theory of Schur
complements. One has a Hilbert space that is a direct sum
H = H1 ⊕H2 so that any N ∈ L(H) can be written

N =

(
X Z
Z∗ Y

)
where, for example, X ∈ L(H1). Given such an N with Y
invertible, we define the Schur complement of Y as
S = X − ZY −1Z∗. Let

L =

(
1 0

−Y −1Z∗ 1

)
so L−1 =

(
1 0

Y −1Z∗ 1

)
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Schur Complements

A simple calculation shows that

L∗NL =

(
S 0
0 Y

)
(4.1)

so

N−1 = L

(
S−1 0

0 Y −1

)
L∗

=

(
S−1 −S−1ZY −1

−Y −1Z∗S−1 Y −1 + Y −1Z∗S−1ZY −1

)
which proves Banachiewicz’ formula (N−1)11 = S−1
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Formulae for G and M

For a tree, we fix j ∈ T

and can write
`2(T ) = C⊕ `2(∪α=(jk)T αk ) corresponding to singling out
the site j. Then (N−1)11 is a number, X is bj ,
Y = ⊕α=(jk)H(T αk ) and Z is the various aα. The result is

Gj(z) =
1

−z + bj −
∑

α=(jk) a
2
αm

α
k (z)

Similarly, if β = (rj) is an edge in T , we have that

mβ
j (z) =

1

−z + bj −
∑

α=(jk); k 6=r a
2
αm

α
k (z)

Note that if e is the number of edges in the underlying
graph, G, then there are 2e m–functions.
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If you compare the two equations for G and m, they differ in
a single term,

so if β = (rj) is an edge in T , we have that

Gj(z) =
1[

mβ
j (z)

]−1
− a2

βm
β
r (z)

an analog of a well known formula from the 1D case.
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Free Jacobi Matrices

Example 1 (Free Jacobi Matrix on a Homogenous Tree).

We take a degree d regular tree with all a = 1 and all
b = 0. Extensively studied.
The equation for m, which is independent of vertex and
edge, is

m =
1

−z − (d− 1)m
⇒ m =

−z +
√
z2 − 4(d− 1)

2(d− 1)

We take the plus sign on the square root to go to zero at
∞. Thus spec(H) = [−2

√
d− 1, 2

√
d− 1]. The formula

for G, which is independent of vertex, is (q ≡ d− 1)

G(z) =
−(d− 2)z + d

√
z2 − 4q

2(d2 − z2)
⇒ dk

dE
=

d
√

4q − E2

2π(d2 − E2)

the famed Kesten–McKay distribution, which arose first in
random graph models.
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A Period 2 Example

Example 2 (Degree 3 homogenous tree; period 2 potential)
Consider a graph with two vertices and three edges between
them.

All the a = 1 and the two b’s are b and −b.
There are two m-functions, m±. A direct calculation gets
equations they each obey which are quadratic in the m and
quartic in z and one finds that

m±(z) = −
(z2 − b2)−

√
(z2 − b2)2 − 8(z2 − b2)

4(z ∓ b)

If P (z) is the polynomial in the square root, one find that
P vanishes at z = ±b, z = ±

√
b2 + 8 so

spec(H) =
[
−
√
b2 + 8,−b

]
∪
[
b,
√
b2 + 8

]
If b 6= 0, there is a single gap which is always open.
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A Period 1 Example

Example 3 (Even degree with isospectral examples with
different DOS) Let G have a single vertex with b = 0 and
two self loops with “a” values a and c.

This has period one,
so by Sunada’s theorem the spectrum is an interval
[−A,A]. This first of all shows that Borg’s theorem, if true,
must state period 1 and not constant a and b.

If c = 0, the problem breaks into disjoint 1D chains. So as c
varies from 0 to a, the DOS goes from d = 2 Kesten
McKay (i.e. 1D free) to d = 4 Kesten McKay. By adjusting,
a in a c dependent way, one can get degree 4 examples with
spectrum [−2, 2] and different DOS. So the lovely property
in 1D that the spectrum determines the DOS does not
extend to trees!!!
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A Degree 3 Example

Example 4 (Degree 3 possible counterexample)

After
thinking about Example 3, we decided to consider the case
where G has two vertices with b = 0 and three lines joining
them, 2 with value c and one with value a. We saw with
four lines and two a’s there is no gap so we wanted to
understand whether that might be true here. When c = 0,
the tree degenerates into infinitely many two point sets so
spectrum {−a, a}. It follows that there is a gap when c < a
and so probably whenever a 6= c. In any event, the strong
form of Borg might hold for odd degree!
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Aomoto’s Example

Example 5 (Non-regular graph with point spectrum) Pick
p 6= q. Consider a finite graph with p red vertices and q
green vertices.

Draw pq edges one between each red and
each green vertex. Take all a = 1 and all b = 0.
Aomoto proves that if Gr is the common Green’s function
for the red vertices and Gg for the green vertices, then one
has that

q−1Gr(z)− p−1Gg(z) =

(
1

q
− 1

p

)
1

z

so there is an eigenvalue at z = 0! Notice that since p 6= q,
the red and green vertices have different degrees and the
corresponding tree is not regular. Rather than rely on this
argument of Aomoto, we can write eigenvectors explicitly.
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Aomoto’s Bound State Theorem

Between 1988 and 1991, Kazuhiko Aomoto published three
papers on Jacobi matrices on trees.

They are not easy to
read in part because some of the proofs are complicated.
The 1991 paper has what appears above as Example 5 so
the following result, also from that paper is especially
interesting

Theorem (Aomoto, 1991) A periodic Jacobi matrix on a
regular tree (i.e. with constant degree) has no point
spectrum.

While, with some effort, we have understood his proof, it
remains mysterious why it works so we have

Problem 1 Find a simpler proof of the above bound state
theorem of Aomoto.
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Aomoto’s Hidden Theorem

In his bound state paper, Aomoto states some results on
regularity of Green’s functions which he needs to prove that
theorem.

He doesn’t prove or give a reference although it
can be derived from results in one of his earlier papers.
While he doesn’t mention singular continuous spectrum in
any of his papers (!), one consequence of his results on
regularity of Green’s functions is

Theorem (Implicit in Aomoto; explicit in ABS) Periodic
Jacobi matrices on arbitrary trees have no singular
continuous spectrum.

I want to explain our more explicit form of Green’s function
regularity.
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A Theorem on Algebraic Varieties

Fix ` ∈ N. Fix ` polynomials of `+ 1 variables
Pj(z,w),w ∈ C`; j = 1, . . . , `.

Consider the projective
variety V0 in PC(`+ 1) defined by Pj = 0 and its projection
π onto the z variable. We suppose there is a point
(z0,w0) ∈ C`+1 at which the function

D(z,w) = det

(
∂Pj
∂wk

)
is non-zero and with (z0,w0) ∈ V0. In that case, we let V
be the irreducible component of (z0,w0) in V0

Theorem Under the above setup
(1) There is a finite set F1 ∈ V so that V \ F1 is a one
dimensional Riemann surface.
(2) There is a finite set F2 ∈ V \ F1 so that D is
non–vanishing on V \ F ; F ≡ F1 ∪ F2.
(3) The map π is finite on V \ F ; indeed (Bezout)
#π−1(z) ≤

∏`
j=1 degPj .
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A Theorem on Algebraic Varieties

This is a “standard” result in Complex Algebraic Geometry.

For example, one can prove it by pulling together a lot of
results from Shafarevich, Basic algebraic geometry. 1.
Varieties in projective space. The non–vanishing
determinant condition is needed to be sure the Pj don’t
have some kind of algebraic relationship which would lead
to fewer effective equations and a higher dimensional
variety. The determinant condition and the implicit function
theorem imply that for some small neighborhood, U , of
(z0,w0), we have that π is a bijection of V ∪ U and π[U ].
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Application to Periodic m–functions

The equations on the ` = 2e m–functions can be written as
` quadratic equations.

Writing the equations for u = 1/z
shows that at the point (u,m) = (0,0) one has the
derivative condition, so in terms of z, for z large, there is a
unique solution with m small and the derivative condition
holds there. Applying the above theorem on varieties, one
finds:
Theorem Fix a periodic Jacobi operator on a tree. There is
a finite subset, F , of C so that all the m–functions and all
the G functions can be meromorphically continued along
any curve in C \ F and so that the number of poles of each
is finite. The number of branches of these functions is at
most 2`. The functions all have algebraic branch points on
the set F .
Corollary Periodic Jacobi matrices on trees have no
singular continuous spectrum.
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Green’s Functions

Those are the only general results we know but we have lots
of Conjectures and Open Questions.

We sometimes make
two conjectures where one implies the other in case the
weaker conjecture is true but the stronger isn’t! We start
with ones about the m– and G– functions we’ve just studied

Conjecture 1. All the branch points and all the poles of
the m– and G– functions are on the real axis.

Conjecture 2. All the branch points of the m– and G–
functions are at the edges of the gaps.

Conjecture 3. All the branch points of the m– and G–
functions are square root and define Riemann surfaces.

Conjecture 4. The m– and G– functions are two sheeted
Example 2 is two sheeted but we haven’t much evidence for
this.
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Borg’s Theorem

If Borg Theorem extends to periodic trees, there are several
different versions.

Since we are optimists, we make these as
conjectures, perhaps the most interesting of our conjectures.
Conjecture 5. Let T be a regular tree of odd degree. If
H(T ) is a periodic Jacobi matrix with no gaps in its
spectrum, then b is constant and a is constant.
Conjecture 6. Let T be a regular tree of even degree. If
H(T ) is a periodic Jacobi matrix with no gaps in its
spectrum, then the period is 1.
That means, G has a single b and deg(T )/2 self loops.
Conjecture 7. Let T be a tree which is not regular. If
H(T ) is a periodic Jacobi matrix, then it must have gaps in
its spectrum.
Actually, these are a single conjecture that no gaps implies
period 1! But we wish to emphasize the different forms and
the proofs may be different.
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Conjecture 5. Let T be a regular tree of odd degree. If
H(T ) is a periodic Jacobi matrix with no gaps in its
spectrum, then b is constant and a is constant.

Conjecture 6. Let T be a regular tree of even degree. If
H(T ) is a periodic Jacobi matrix with no gaps in its
spectrum, then the period is 1.
That means, G has a single b and deg(T )/2 self loops.
Conjecture 7. Let T be a tree which is not regular. If
H(T ) is a periodic Jacobi matrix, then it must have gaps in
its spectrum.
Actually, these are a single conjecture that no gaps implies
period 1! But we wish to emphasize the different forms and
the proofs may be different.
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Hochstadt’s Theorem

Conjecture 8 Let H be a period p Jacobi matrix on a
regular tree of even degree.

Suppose that the IDS in every
gap of H is j/q where q is a proper divisor of p. Then H
has period q.

Problem 2 Find an improved definition of period so that
the free Jacobi matrix on the degree 3 regular tree has
period 1.

Problem 3 Prove a Hochstadt type theorem for general
periodic trees with this improved definition of period.
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Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures!

Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters. It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges. We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands. It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures! Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters.

It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges. We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands. It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures! Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters. It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges.

We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands. It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures! Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters. It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges. We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands.

It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures! Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters. It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges. We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands. It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures! Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters. It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges. We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands. It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Nothing shows how little we know about periodic Jacobi
matrices on trees than the next set of conjectures! Let G be
a finite graph. Let P(G) be the set of allowed Jacobi
parameters. It is an open orthant of Rp+e since p+ e is the
number of vertices plus the number of edges. We say a
period p Jacobi matrix has all gaps open if the spectrum
has p bands. It is easy to see the set of Jacobi parameters
for which all gaps are open is an open set in Rp+e.

Conjecture 9. The set of parameters with all gaps open is
a dense open set in the set of allowed parameters.

We at least know the set is non-empty, for if all b are
different and

∑
a < mini 6=j |bi− bj |, then all gaps are open.



The 1D Case

Definition of
Periodic JM on
Trees

Gap Labelling

Equations for M
and G

Examples

Aomoto Results

Many
Conjectures and
Questions

Final Remarks

Generic Gap Theorems

Conjecture 10 The set of parameters where all gaps are
not open is a variety of codimension 2.

The problem is we have no way of describing gap edges
analogous to periodic and anti–periodic eigenvalues.

Problem 4 Find an effective description of gap edges.
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Dimension of Allowed DOS

We’ve seen by example that unlike the 1D case, two
different periodic Jacobi matrices with the same tree and
same period can have different DOS.

Problem 5 Classify the possible DOS allowed for a given
tree, period and set.
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IsoDOS sets

The analog of having the same spectrum is the fine
property of having the same DOS

Problem 6 Is the IsoDOS set a manifold? Is it perhaps a
torus?

Problem 7 Is there an natural flow on the IsoDOS set?
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Nonphysical Sheet Poles

In the 1D case, one argues that Gj has a zero in each gap.

Those zeros are associated to poles of either m+ or m−
and, then, the m− poles to second sheet poles of m+.

Problem 8 Explore what connection there is between
non-physical sheet poles of an mβ

j and physical sheet poles
of the other rooted trees. Resolve the notion that there are
d rooted trees and, we suspect, only two branches.
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Relevant Representations

An enormous amount of information in the 1D case comes
from looking at the irreducible representations of the group
of symmetries of the problem (i.e. of Z).

Problem 10 Which irreps of Fm contribute to the direct
integral decomposition of its action on `2(T ). It is possible
this is in the literature somewhere but in a part of it that we
haven’t thought to look at!
I emphasize the following which I didn’t mention earlier. In
the free case of degree d (Example 1), the top of the
spectrum of 2

√
d− 1 but there is a periodic eigenfunction

(namely u ≡ 1) with eigenvalue d. d > 2
√
d− 1 once

d > 2! This is because the periodic irrep is not in the direct
integral decomposition once d > 2.

Problem 11 Determine if the direct integral decomposition
is of any use in spectral analysis. In particular, do gap edges
have to do with particular irreps?
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Aaargh!!!!

The last question shows how little we understand about
these problems.

While my personal favorite simple question
is whether the strong Borg holds for degree three trees, it
may be that what will lead to a breakthrough is
understanding some effective description of gap edges or
even when a gap is open.
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And Now a Word from Our Sponsor

SIMON/1
AMS on the Web  
www.ams.org

816 pages on 50lb stock  •  Backspace: 2 5/16''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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For additional information
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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And Now a Word from Our Sponsor

SIMON/2.2
AMS on the Web  
www.ams.org

344 pages on 50lb stock  •  Backspace: 1 3/8''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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784 pages on 50lb stock  •  Backspace: 2 1/4''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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