The Work of Daniel Wells,
Forty Years Late

Barry Simon
IBM Professor of Mathematics and Theoretical Physics, Emeritus
California Institute of Technology
Pasadena, CA, U.S.A.
Introduction

It is a great pleasure to be able to take part in this celebration
It is a great pleasure to be able to take part in this celebration and I’d like to thank the organizers and other speakers for their efforts.
Introduction

It is a great pleasure to be able to take part in this celebration and I’d like to thanks the organizers and other speakers for thier efforts. It is with some reluctance that I agreed to speak since it is unusual for an honoree to also speak.
It is a great pleasure to be able to take part in this celebration and I’d like to thank the organizers and other speakers for their efforts. It is with some reluctance that I agreed to speak since it is unusual for an honoree to also speak. I only agreed because I wished to give Wells the recognition he so richly deserves.
I am writing a book for Cambridge Press entitled *Phase Transitions in the Theory of Lattice Gases*. It is in many ways the successor to my 1993 book *The Statistical Mechanics of Lattice Gases*, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:
I am writing a book for Cambridge Press entitled *Phase Transitions in the Theory of Lattice Gases*. It is in many ways the successor to my 1993 book *The Statistical Mechanics of Lattice Gases*, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory: Correlation Inequalities, Lee-Yang, Peierls’ Argument, Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book. But since I decided to use a different publisher, this is certainly NOT volume 2 of the earlier work.
I am writing a book for Cambridge Press entitled *Phase Transitions in the Theory of Lattice Gases*. It is in many ways the successor to my 1993 book *The Statistical Mechanics of Lattice Gases*, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory: Correlation Inequalities, Lee-Yang, Peierls’ Argument, Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book. But since I decided to use a different publisher, this is certainly NOT volume 2 of the earlier work.

The framework for much of the subject is to fix a finite set $\Lambda \subset \mathbb{Z}^\nu$,

$$\text{The framework for much of the subject is to fix a finite set } \Lambda \subset \mathbb{Z}^\nu,$$
The Backstory

I am writing a book for Cambridge Press entitled *Phase Transitions in the Theory of Lattice Gases*. It is in many ways the successor to my 1993 book *The Statistical Mechanics of Lattice Gases*, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory: Correlation Inequalities, Lee-Yang, Peierls’ Argument, Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book. But since I decided to use a different publisher, this is certainly NOT volume 2 of the earlier work.

The framework for much of the subject is to fix a finite set $\Lambda \subset \mathbb{Z}^\nu$, and an apriori EVEN probability measure, $d\mu$, on \mathbb{R}, certainly with all moments finite and typically of compact support.
One considers the configurations in Λ, i.e. points σ in \mathbb{R}^Λ, indicated by $\{\sigma_j\}_{j \in \Lambda}$.
One considers the configurations in Λ, i.e. points σ in \mathbb{R}^Λ, indicated by $\{\sigma_j\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$\langle f \rangle_{\mu,0} = \int f(\sigma) \prod_{j \in \Lambda} d\mu(\sigma_j)$$
The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^Λ, indicated by $\{\sigma_j\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$\langle f \rangle_{\mu,0} = \int f(\sigma) \prod_{j \in \Lambda} d\mu(\sigma_j)$$

and one fixes a ferromagnetic Hamiltonian

$$-H = \sum_{A \subseteq \Lambda} J(A) \sigma^A$$
The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^Λ, indicated by $\{\sigma_j\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$\langle f \rangle_{\mu,0} = \int f(\sigma) \prod_{j \in \Lambda} d\mu(\sigma_j)$$

and one fixes a ferromagnetic Hamiltonian

$$-H = \sum_{A \subset \Lambda} J(A)\sigma^A \quad \sigma^A = \prod_{j \in A} \sigma_j$$
The Backstory

One considers the configurations in \(\Lambda \), i.e. points \(\sigma \) in \(\mathbb{R}^\Lambda \), indicated by \(\{ \sigma_j \}_{j \in \Lambda} \) and uncoupled measure with expectation

\[
\langle f \rangle_{\mu,0} = \int f(\sigma) \prod_{j \in \Lambda} d\mu(\sigma_j)
\]

and one fixes a ferromagnetic Hamiltonian

\[
-H = \sum_{A \subset \Lambda} J(A)\sigma^A \quad \sigma^A = \prod_{j \in A} \sigma_j
\]

or more general over mutliindices, i.e. assignments of an integer, \(n_j \geq 0 \) with then \(\sigma^A = \prod_{j \in A} \sigma_j^{n_j} \) (and a finite sum or else \(\ell^1 \) condition).
The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^Λ, indicated by $\{\sigma_j\}_{j\in\Lambda}$ and uncoupled measure with expectation

$$\langle f \rangle_{\mu,0} = \int f(\sigma) \prod_{j \in \Lambda} d\mu(\sigma_j)$$

and one fixes a ferromagnetic Hamiltonian

$$-H = \sum_{A \subset \Lambda} J(A)\sigma^A \quad \sigma^A = \prod_{j \in A} \sigma_j$$

or more general over multiindices, i.e. assignments of an integer, $n_j \geq 0$ with then $\sigma^A = \prod_{j \in A} \sigma_j^{n_j}$ (and a finite sum or else ℓ^1 condition). One then considers, the Gibbs state

$$\langle f \rangle_{\mu,\Lambda} = Z^{-1} \langle fe^{-H} \rangle_{\mu,0}; \quad Z = \langle e^{-H} \rangle_{\mu,0}$$
The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations.
The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model
The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin $1/2$ Ising model) where $d\mu$ is a measure supported on ± 1 each point with weight $1/2$;
The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin 1/2 Ising model) where $d\mu$ is a measure supported on ± 1 each point with weight 1/2; more generally, I’ll refer to b_T with weights 1/2 at $\pm T$ (b is for Bernoulli).
One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin 1/2 Ising model) where $d\mu$ is a measure supported on ± 1 each point with weight 1/2; more generally, I’ll refer to b_T with weights 1/2 at $\pm T$ (b is for Bernouilli). While a lot of the literature is specific to the spin 1/2 Ising model, there is considerable, mathematically interesting, literature on more general (even) apriori measures.
One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin 1/2 Ising model) where $d\mu$ is a measure supported on ± 1 each point with weight 1/2; more generally, I’ll refer to b_T with weights 1/2 at $\pm T$ (b is for Bernouilli). While a lot of the literature is specific to the spin 1/2 Ising model, there is considerable, mathematically interesting, literature on more general (even) apriori measures.

As I began to write about correlation inequalities, I wondered about a natural question. Say that an apriori measure, ν, on \mathbb{R} ising dominates another measure μ if and only if for all $J(A) \geq 0$ and all B, one has that
The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin 1/2 Ising model) where $d\mu$ is a measure supported on \(\pm 1\) each point with weight 1/2; more generally, I’ll refer to b_T with weights 1/2 at $\pm T$ (b is for Bernouilli). While a lot of the literature is specific to the spin 1/2 Ising model, there is considerable, mathematically interesting, literature on more general (even) apriori measures.

As I began to write about correlation inequalities, I wondered about a natural question. Say that an apriori measure, ν, on \mathbb{R} Ising dominates another measure μ if and only if for all $J(A) \geq 0$ and all B, one has that

$$\langle \sigma^B \rangle_{\mu,\Lambda} \leq \langle \sigma^B \rangle_{\nu,\Lambda}$$
In particular for general μ compact support, does one has μ Ising dominates b_{T_-} and is Ising dominated by b_{T_+} for suitable $0 < T_- < T_+ < \infty$.
In particular for general μ compact support, does one has μ Ising dominates b_{T_-} and is Ising dominated by b_{T_+} for suitable $0 < T_- < T_+ < \infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures.
The Backstory

In particular for general μ compact support, does one have μ Ising dominates b_{T_-} and is Ising dominated by b_{T_+} for suitable $0 < T_- < T_+ < \infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures.

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen.
In particular for general μ compact support, does one has μ Ising dominates b_{T-} and is Ising dominated by b_{T+} for suitable $0 < T_- < T_+ < \infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures.

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen. So I was surprised that I was unable to find a single published paper on the subject of what I just called Ising domination!
The Backstory

In particular for general μ compact support, does one has μ Ising dominates b_{T_-} and is Ising dominated by b_{T_+} for suitable $0 < T_- < T_+ < \infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures.

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen. So I was surprised that I was unable to find a single published paper on the subject of what I just called Ising domination! Of course, it was unclear how to search for the subject in Google.
In particular for general μ compact support, does one has μ Ising dominates b_{T-} and is Ising dominated by b_{T+} for suitable $0 < T_- < T_+ < \infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures.

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen. So I was surprised that I was unable to find a single published paper on the subject of what I just called Ising domination! Of course, it was unclear how to search for the subject in Google. Eventually, I did find one paper of van Beijeren and Sylvester that I’ll dicuss below although in one respect it is unsatisfactory. And I did find an appendix of a paper on another subject but that gets ahead of my story.
One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I’ve forgotten.
One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I’ve forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and
One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I’ve forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled *A comparison of plane rotor and Ising models*. The footnote said
One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I’ve forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and B. Simon entitled *A comparison of plane rotor and Ising models*. The footnote said then by results of Wells (D. Wells, *Some moment inequalities for general spin Ising ferromagnets*, Indiana Univ. preprint) $\langle s_j s_k \rangle_{\beta,1} \leq 2 \langle \sigma_j^{(1)} \sigma_k^{(2)} \rangle_{\beta,2}$.
The Backstory

One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I’ve forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled *A comparison of plane rotor and Ising models*. The footnote said:

then by results of Wells (D. Wells, *Some moment inequalities for general spin Ising ferromagnets*, Indiana Univ. preprint) $\langle s_j s_k \rangle_{\beta,1} \leq 2 \langle \sigma_j^{(1)} \sigma_k^{(2)} \rangle_{\beta,2}$. The left hand side is an Ising expectation and the right with the apriori measure of the $2D$ rotor with only couplings of the 1 components.
One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I’ve forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled *A comparison of plane rotor and Ising models*. The footnote said

then by results of Wells (D. Wells, *Some moment inequalities for general spin Ising ferromagnets*, Indiana Univ. preprint) \(\langle s_j s_k \rangle_{\beta,1} \leq 2 \langle \sigma^{(1)}_j \sigma^{(2)}_k \rangle_{\beta,2} \).

The left hand side is an Ising expectation and the right with the apriori measure of the \(2D\) rotor with only couplings of the 1 components. So this was part of what seems to be an Ising domination result (the 2 indicates the Ising measure should really be \(b_{1/\sqrt{2}} \)).
So I set about finding this preprint.
The Search for Wells

So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis.
So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student.
The Search for Wells

So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman’s student.
So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman’s student. Sherman, the S of GKS and GHS was delightful character, long dead.
The Search for Wells

So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman’s student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest.
The Search for Wells

So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cc'd Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman’s student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest. So far though, no luck on the preprint nor on locating Wells through Indiana University alumni records!
The Search for Wells

So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman’s student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest. So far though, no luck on the preprint nor on locating Wells through Indiana University alumni records! While the thesis did not have anything directly about the above inequality, it did have a general framework on what I called the Ising domination problem,
So I set about finding this preprint. Google didn’t help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman’s student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest. So far though, no luck on the preprint nor on locating Wells through Indiana University alumni records! While the thesis did not have anything directly about the above inequality, it did have a general framework on what I called the Ising domination problem, lovely material that should have been published.
The Rest of the Talk

Our main goal is to describe Wells’ framework and what I regard as as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that.
Our main goal is to describe Wells’ framework and what I regard as as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells’ domination followed by his big theorem.
Our main goal is to describe Wells’ framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells’ domination followed by his big theorem. Then examples including what may be my sole
Our main goal is to describe Wells’ framework and what I regard as as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells’ domination followed by his big theorem. Then examples including what may be my sole (I say may because it is possible that it is in the mystery preprint of Wells).
Our main goal is to describe Wells’ framework and what I regard as as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells’ domination followed by his big theorem. Then examples including what may be my sole (I say may because it is possible that it is in the mystery preprint of Wells). Next, I’ll discuss an alternate order due to van Beijeren and Sylvester which has one big flaw
Our main goal is to describe Wells’ framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells’ domination followed by his big theorem. Then examples including what may be my sole (I say may because it is possible that it is in the mystery preprint of Wells). Next, I’ll discuss an alternate order due to van Beijeren and Sylvester which has one big flaw and then a summary of open questions.
Our main goal is to describe Wells’ framework and what I regard as as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells’ domination followed by his big theorem. Then examples including what may be my sole (I say may because it is possible that it is in the mystery preprint of Wells). Next, I’ll discuss an alternate order due to van Beijeren and Sylvester which has one big flaw and then a summary of open questions. Finally, if there is time, I’ll sketch the proof of the big theorem.
In a remarkable 1970 paper, Jean Ginibre
In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures.
Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.
Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.

A \textit{Ginibre system} is a triple \(\langle X, \mu, \mathcal{F} \rangle \) of a compact Hausdorff space, \(X \), a probability measure, \(\mu \), on \(X \) (with expectations \(\langle \cdot \rangle_\mu \)) and a class of continuous real valued functions \(\mathcal{F} \subset C(X) \) that obeys:
In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.

A *Ginibre system* is a triple \(\langle X, \mu, \mathcal{F} \rangle \) of a compact Hausdorff space, \(X \), a probability measure, \(\mu \), on \(X \) (with expectations \(\langle \cdot \rangle_\mu \)) and a class of continuous real valued functions \(\mathcal{F} \subset C(X) \) that obeys:

\[
\begin{align*}
(G1) & \quad \forall f_1, \ldots, f_n \in \mathcal{F} \int_X f_1(x) \ldots f_n(x) \, d\mu(x) \geq 0 \\
(G2) & \quad \forall f_1, \ldots, f_n \in \mathcal{F} \int_{X \times X} \prod_{j=1}^n (f_j(x) \pm f_j(y)) \, d\mu(x)d\mu(y) \geq 0
\end{align*}
\]
In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.

A Ginibre system is a triple \(\langle X, \mu, \mathcal{F} \rangle \) of a compact Hausdorff space, \(X \), a probability measure, \(\mu \), on \(X \) (with expectations \(\langle \cdot \rangle_\mu \)) and a class of continuous real valued functions \(\mathcal{F} \subset C(X) \) that obeys:

\[
\begin{align*}
(G1) \quad \forall f_1, \ldots, f_n \in \mathcal{F} \quad \int_X f_1(x) \cdots f_n(x) \, d\mu(x) & \geq 0 \\
(G2) \quad \forall f_1, \ldots, f_n \in \mathcal{F} \quad \int_{X \times X} \prod_{j=1}^n (f_j(x) \pm f_j(y)) \, d\mu(x)d\mu(y) & \geq 0
\end{align*}
\]

for all \(2^n \) choices of the plus and minus sign.
When it is clear which measure is intended, we will drop the μ from $\langle \cdot \rangle_\mu$.
When it is clear which measure is intended, we will drop the μ from $\langle \cdot \rangle_{\mu}$. We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where X is only locally compact so long as all $f \in F$ obey $\int |f(x)|^m d\mu(x) < \infty$ for all m since that condition assures that all integrals are convergent.
Ginibre Systems

When it is clear which measure is intended, we will drop the μ from $\langle \cdot \rangle_\mu$. We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where X is only locally compact so long as all $f \in \mathcal{F}$ obey $\int |f(x)|^m d\mu(x) < \infty$ for all m since that condition assures that all integrals are convergent.

Note that

\[(G2) \Rightarrow 2\langle f \rangle_\mu = \int_X f(x) + f(y) \, d\mu(x) \, d\mu(y) \geq 0 \]

\[\int_{X \times X} (f(x) - f(y))(g(x) - g(y)) \, d\mu(x) \, d\mu(y)\]

\[= 2 [\langle fg \rangle_\mu - \langle f \rangle_\mu \langle g \rangle_\mu] \geq 0\]
When it is clear which measure is intended, we will drop the \(\mu \) from \(\langle \cdot \rangle_\mu \). We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where \(X \) is only locally compact so long as all \(f \in \mathcal{F} \) obey \(\int |f(x)|^m \, d\mu(x) < \infty \) for all \(m \) since that condition assures that all integrals are convergent.

Note that

\[
(G2) \Rightarrow 2 \langle f \rangle_\mu = \int_X f(x) + f(y) \, d\mu(x) \, d\mu(y) \geq 0
\]

\[
\int_{X \times X} (f(x) - f(y))(g(x) - g(y)) \, d\mu(x) \, d\mu(y)
= 2 \left[\langle fg \rangle_\mu - \langle f \rangle_\mu \langle g \rangle_\mu \right] \geq 0
\]

We will see shortly that \((G2) \Rightarrow (G1) \)
Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.
Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Given a family of functions, \(\mathcal{F} \subset C(X) \), we define the \textit{Ginibre cone}, \(\mathcal{C}(\mathcal{F}) \), as the set of linear combinations with non-negative coefficients of products of functions from \(\mathcal{F} \).
Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Given a family of functions, \(\mathcal{F} \subset C(X) \), we define the Ginibre cone, \(\mathcal{C}(\mathcal{F}) \), as the set of linear combinations with non-negative coefficients of products of functions from \(\mathcal{F} \).

Ginibre Theorem 1 If a triple \(\langle X, \mu, \mathcal{F} \rangle \) obeys \((G2)\), so does \(\langle X, \mu, \mathcal{C}(\mathcal{F}) \rangle \).
Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Given a family of functions, \(\mathcal{F} \subset C(X) \), we define the Ginibre cone, \(\mathcal{C}(\mathcal{F}) \), as the set of linear combinations with non-negative coefficients of products of functions from \(\mathcal{F} \).

Ginibre Theorem 1 If a triple \(\langle X, \mu, \mathcal{F} \rangle \) obeys \((G2) \), so does \(\langle X, \mu, \mathcal{C}(\mathcal{F}) \rangle \).

It is trivial that \((G2)\) holds for sums and positive multiples of functions for which it holds,
What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones. Given a family of functions, $\mathcal{F} \subset C(X)$, we define the *Ginibre cone*, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}.

Ginibre Theorem 1 If a triple $\langle X, \mu, \mathcal{F} \rangle$ obeys $(G2)$, so does $\langle X, \mu, \mathcal{C}(\mathcal{F}) \rangle$.

It is trivial that $(G2)$ holds for sums and positive multiples of functions for which it holds, so it suffices to prove it holds for products. By induction, we need only handle products of two functions. We note that

$$f g \pm f' g' = \frac{1}{2}(f + f')(g \pm g') + \frac{1}{2}(f - f')(g \mp g')$$
What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Given a family of functions, $\mathcal{F} \subset C(X)$, we define the Ginibre cone, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}.

Ginibre Theorem 1 If a triple $\langle X, \mu, \mathcal{F} \rangle$ obeys $(G2)$, so does $\langle X, \mu, \mathcal{C}(\mathcal{F}) \rangle$.

It is trivial that $(G2)$ holds for sums and positive multiples of functions for which it holds, so it suffices to prove it holds for products. By induction, we need only handle products of two functions. We note that

$$fg \pm f'g' = \frac{1}{2}(f + f')(g \pm g') + \frac{1}{2}(f - f')(g \mp g')$$

which allows us to prove $(G2)$ for a single product when we have it for individual functions (and shows $(G2) \Rightarrow (G1)$).
The following is trivial

Ginibre Theorem 2 Let \(\{ \langle X_j, \mu_j, \mathcal{F}_j \rangle \}_{j=1}^n \) be a family of Ginibre systems. Then \(\langle \times_{j=1}^n X_j, \otimes_{j=1}^n \mu_j, \cup_{j=1}^n \mathcal{F}_j \rangle \) is also a Ginibre system.
Extending Ginibre Systems

The following is trivial

Ginibre Theorem 2 Let \(\{\langle X_j, \mu_j, \mathcal{F}_j \rangle\}_{j=1}^n \) be a family of Ginibre systems. Then \(\langle \times_{j=1}^n X_j, \otimes_{j=1}^n \mu_j, \cup_{j=1}^n \mathcal{F}_j \rangle \) is also a Ginibre system.

And to add interactions, we use
Extending Ginibre Systems

The following is trivial

Ginibre Theorem 2 Let $\{\langle X_j, \mu_j, \mathcal{F}_j \rangle\}_{j=1}^n$ be a family of Ginibre systems. Then $\langle \times_{j=1}^n X_j, \otimes_{j=1}^n \mu_j, \cup_{j=1}^n \mathcal{F}_j \rangle$ is also a Ginibre system.

And to add interactions, we use

Ginibre Theorem 3 Let $\langle X, \mu, \mathcal{F} \rangle$ be Ginibre system. Let $-H \in \mathcal{F}$ and define a new measure, μ_H by

$$\langle f \rangle_{\mu_H} = \frac{\langle fe^{-H} \rangle_{\mu}}{\langle e^{-H} \rangle_\mu}$$

Then $\langle X, \mu_H, \mathcal{F} \rangle$ is a Ginibre system.
The following is trivial

Ginibre Theorem 2 Let \(\{\langle X_j, \mu_j, F_j \rangle\}_{j=1}^n \) be a family of Ginibre systems. Then \(\langle \times_{j=1}^n X_j, \otimes_{j=1}^n \mu_j, \cup_{j=1}^n F_j \rangle \) is also a Ginibre system.

And to add interactions, we use

Ginibre Theorem 3 Let \(\langle X, \mu, F \rangle \) be Ginibre system. Let \(-H \in F \) and define a new measure, \(\mu_H \) by

\[
\langle f \rangle_{\mu_H} = \frac{\langle fe^{-H} \rangle_{\mu}}{\langle e^{-H} \rangle_{\mu}}
\]

Then \(\langle X, \mu_H, F \rangle \) is a Ginibre system.

The proof is easy.
Extending Ginibre Systems

The following is trivial

Ginibre Theorem 2 Let \(\{ \langle X_j, \mu_j, F_j \rangle \}_{j=1}^n \) be a family of Ginibre systems. Then \(\langle \times_{j=1}^n X_j, \otimes_{j=1}^n \mu_j, \cup_{j=1}^n F_j \rangle \) is also a Ginibre system.

And to add interactions, we use

Ginibre Theorem 3 Let \(\langle X, \mu, F \rangle \) be Ginibre system. Let \(-H \in F \) and define a new measure, \(\mu_H \) by

\[
\langle f \rangle_{\mu_H} = \frac{\langle fe^{-H} \rangle_\mu}{\langle e^{-H} \rangle_\mu}
\]

Then \(\langle X, \mu_H, F \rangle \) is a Ginibre system.

The proof is easy. The normalization is irrelevant and we expand the exponential \(\exp(-H(x) - H(y)) \).
Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d\mu$ be a probability measure which is invariant under $x \mapsto -x$ and so that (only non-trivial in case X is not compact) $\int x^{2n} d\mu(x) < \infty$ for all n. Let \mathcal{F} contain the single function, $f(x) = x$. Then $\langle X, \mu, \mathcal{F} \rangle$ is a Ginibre system.
Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d\mu$ be a probability measure which is invariant under $x \mapsto -x$ and so that (only non-trivial in case X is not compact) $\int x^{2n} \, d\mu(x) < \infty$ for all n. Let \mathcal{F} contain the single function, $f(x) = x$. Then $\langle X, \mu, \mathcal{F} \rangle$ is a Ginibre system.

The proof is easy! $(G2)$ says that for all non-negative integers, k and m, one has that

$$\int_{X \times X} (x + y)^k (x - y)^m \, d\mu(x) d\mu(y) \geq 0$$
Ginibre System

Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d\mu$ be a probability measure which is invariant under $x \mapsto -x$ and so that (only non-trivial in case X is not compact) $\int x^{2n} d\mu(x) < \infty$ for all n. Let \mathcal{F} contain the single function, $f(x) = x$. Then $\langle X, \mu, \mathcal{F} \rangle$ is a Ginibre system.

The proof is easy! $(G2)$ says that for all non-negative integers, k and m, one has that

$$\int_{X \times X} (x + y)^k (x - y)^m \, d\mu(x) d\mu(y) \geq 0$$

Interchanging x and y implies the integral is zero if m is odd.
Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d\mu$ be a probability measure which is invariant under $x \mapsto -x$ and so that (only non-trivial in case X is not compact) $\int x^{2n} d\mu(x) < \infty$ for all n. Let \mathcal{F} contain the single function, $f(x) = x$. Then $\langle X, \mu, \mathcal{F} \rangle$ is a Ginibre system.

The proof is easy! ($G2$) says that for all non-negative integers, k and m, one has that

$$\int_{X \times X} (x + y)^k (x - y)^m d\mu(x) d\mu(y) \geq 0$$

Interchanging x and y implies the integral is zero if m is odd and $x \mapsto -x$ symmetry implies the integral is zero if $m + k$ is odd.
Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d\mu$ be a probability measure which is invariant under $x \mapsto -x$ and so that (only non-trivial in case X is not compact) $\int x^{2n} d\mu(x) < \infty$ for all n. Let \mathcal{F} contain the single function, $f(x) = x$. Then $\langle X, \mu, \mathcal{F} \rangle$ is a Ginibre system.

The proof is easy! ($G2$) says that for all non-negative integers, k and m, one has that

$$\int_{X \times X} (x + y)^k (x - y)^m d\mu(x) d\mu(y) \geq 0$$

Interchanging x and y implies the integral is zero if m is odd and $x \mapsto -x$ symmetry implies the integral is zero if $m + k$ is odd. Thus the only possible non-zero integrals are when m and k are even in which case the integrand is positive!
A little thought shows that for Hamiltonians of the form

\[-H = \sum_{A \subseteq \Lambda} J(A)\sigma^A\]

with ANY (!!!) even apriori measure, one has positive expectations and positive correlations of the \(\sigma^A \).
A little thought shows that for Hamiltonians of the form

\[-H = \sum_{A \subseteq \Lambda} J(A) \sigma^A \quad \sigma^A = \prod_{j \in A} \sigma_j \]

with ANY (!!!) even apriori measure, one has positive expectations and positive correlations of the \(\sigma^A \).
I’d be remiss if I left the subject Ginibre’s wonderful paper without mentioning two other examples he gives of Ginibre systems that are not relevant to Wells although one will appear later.
I’d be remiss if I left the subject Ginibre’s wonderful paper without mentioning two other examples he gives of Ginibre systems that are not relevant to Wells although one will appear later.

The first is to note that he proves that if \(d\mu \) is a product of rotation invariant measures on circles, the set of functions

\[
\cos\left(\sum_{j=1}^{n} m_j \theta_j\right)
\]

is a Ginibre system.
I’d be remiss if I left the subject Ginibre’s wonderful paper without mentioning two other examples he gives of Ginibre systems that are not relevant to Wells although one will appear later.

The first is to note that he proves that if $d\mu$ is a product of rotation invariant measures on circles, the set of functions $\cos(\sum_{j=1}^{n} m_j \theta_j)$ is a Ginibre system. This and some extensions are essentially half the correlation inequalities for plane rotors.
The second is related to an 1882 paper of Chebyshev (which I don’t think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality:
The second is related to an 1882 paper of Chebyshev (which I don’t think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0, 1]$, then
The second is related to an 1882 paper of Chebyshev (which I don’t think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0, 1]$, then

$$
\int_0^1 f(x)g(x) \, dx \geq \int_0^1 f(x) \, dx \int_0^1 g(x) \, dx
$$
The second is related to an 1882 paper of Chebyshev (which I don’t think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0, 1]$, then

$$\int_0^1 f(x)g(x) \, dx \geq \int_0^1 f(x) \, dx \int_0^1 g(x) \, dx$$

Ginibre proved that for any (not necessarily even) positive probability measure on \mathbb{R}, the set \mathcal{F} of all positive monotone functions is a Ginibre family.
The second is related to an 1882 paper of Chebyshev (which I don’t think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0, 1]$, then

\[
\int_0^1 f(x)g(x) \, dx \geq \int_0^1 f(x) \, dx \int_0^1 g(x) \, dx
\]

Ginibre proved that for any (not necessarily even) positive probability measure on \mathbb{R}, the set \mathcal{F} of all positive monotone functions is a Ginibre family. The proof is again very easy.
The second is related to an 1882 paper of Chebyshev (which I don’t think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0, 1]$, then

$$\int_0^1 f(x)g(x) \, dx \geq \int_0^1 f(x) \, dx \int_0^1 g(x) \, dx$$

Ginibre proved that for any (not necessarily even) positive probability measure on \mathbb{R}, the set \mathcal{F} of all positive monotone functions is a Ginibre family. The proof is again very easy. This is a sort of poor man’s FKG inequalities.
There is a simple extension of Ginibre’s method in Wells’ thesis that allows comparison of measures.
There is a simple extension of Ginibre’s method in Wells’ thesis that allows comparison of measures. Given two probability measures, μ and ν on a locally compact space, X, we say that μ *Wells dominates* ν, written $\mu \triangleright \nu$ or $\nu \triangleleft \mu$ with respect to a class of continuous functions F (with all moments of all $f \in F$ finite with respect to both measures; not needed if X is compact)
There is a simple extension of Ginibre’s method in Wells’ thesis that allows comparison of measures. Given two probability measures, \(\mu \) and \(\nu \) on a locally compact space, \(X \), we say that \(\mu \) **Wells dominates** \(\nu \), written \(\mu \triangleright \nu \) or \(\nu \triangleleft \mu \) with respect to a class of continuous functions \(\mathcal{F} \) (with all moments of all \(f \in \mathcal{F} \) finite with respect to both measures; not needed if \(X \) is compact) if for all \(n \) and all \(f_1, f_2, \ldots, f_n \) and all \(2^n \) choices of \(\pm \), we have that

\[
\int \int (f_1(x) \pm f_1(y)) \cdots (f_n(x) \pm f_n(y)) d\mu(x) d\nu(y) \geq 0
\]
Basic Definition

We will be most interested in case $X = \mathbb{R}$, μ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x) = x$ in which case the condition takes the form

$$\int_{\mathbb{R}} \int_{\mathbb{R}} (x + y)^n (x - y)^m \, d\mu(x) \, d\nu(y) \geq 0$$

for all non-negative integers, n and m in which case we use the symbol \ll without being explicit about \mathcal{F}. Since the measures are even, one need only check this when $n + m$ is even. It is trivial if both are even, so we only need worry about the case that both are odd. Since the measures are different, we don’t have the exchange symmetry that makes the integral vanish if both are odd but symmetry under $y \mapsto -y$ implies invariance under interchange of m and n, so we need only check for $m \geq n$. We’ll see examples later.
Basic Definition

We will be most interested in case $X = \mathbb{R}$, μ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x) = x$ in which case the condition takes the form

$$\int \int_{\mathbb{R} \times \mathbb{R}} (x + y)^n (x - y)^m d\mu(x) d\nu(y) \geq 0$$

for all non-negative integers, n and m in which case we use the symbol \blacktriangleleft without being explicit about \mathcal{F}.
Basic Definition

We will be most interested in case $X = \mathbb{R}$, μ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x) = x$ in which case the condition takes the form

$$\int_{\mathbb{R}} \int_{\mathbb{R}} (x + y)^n (x - y)^m d\mu(x) d\nu(y) \geq 0$$

for all non-negative integers, n and m in which case we use the symbol \triangleright without being explicit about \mathcal{F}. Since the measures are even, one need only check this when $n + m$ is even. It is trivial if both are even, so we only need worry about the case that both are odd.
Basic Definition

We will be most interested in case $X = \mathbb{R}$, μ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x) = x$ in which case the condition takes the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} (x + y)^n(x - y)^m d\mu(x)d\nu(y) \geq 0
$$

for all non-negative integers, n and m in which case we use the symbol \triangleleft without being explicit about \mathcal{F}. Since the measures are even, one need only check this when $n + m$ is even. It is trivial if both are even, so we only need worry about the case that both are odd. Since the measures are different, we don’t have the exchange symmetry that makes the integral vanish if both are odd but symmetry under $y \mapsto -y$ implies invariance under interchange of m and n, so we need only check for $m \geq n$. We’ll see examples later.
Extending the Ginibre machine is effortless. It is easy to prove that
Extending the Ginibre machine is effortless. It is easy to prove that

Theorem (a) If $\mu \prec \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $C(\mathcal{F})$.
Extending Ginibre’s machine

Extending the Ginibre machine is effortless. It is easy to prove that

Theorem (a) If $\mu \triangleleft \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $C(\mathcal{F})$.

(b) If for $j = 1, \ldots, n$, $\mu_j \triangleleft \nu_j$ for probability measures on spaces X_j with respect to sets of functions \mathcal{F}_j on X_j, then for the measures on $\prod_{j=1}^n X_j$ and the set of functions $\bigcup_{j=1}^n \mathcal{F}_j$, one has that $\otimes_{j=1}^n \mu_j \triangleleft \otimes_{j=1}^n \nu_j$.
Extending Ginibre’s machine

Extending the Ginibre machine is effortless. It is easy to prove that

Theorem (a) If $\mu \triangleleft \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $C(\mathcal{F})$.

(b) If for $j = 1, \ldots, n$, $\mu_j \triangleleft \nu_j$ for probability measures on spaces X_j with respect to sets of functions \mathcal{F}_j on X_j, then for the measures on $\prod_{j=1}^n X_j$ and the set of functions $\bigcup_{j=1}^n \mathcal{F}_j$, one has that $\otimes_{j=1}^n \mu_j \triangleleft \otimes_{j=1}^n \nu_j$.

(c) If $\mu \triangleleft \nu$ for probability measures on a space X with respect to a set of functions \mathcal{F} on X, if $-H \in \mathcal{F}$ and if μ_H, ν_H are Gibbs measures, then $\mu_H \triangleleft \nu_H$ for \mathcal{F}.
Extending the Ginibre machine is effortless. It is easy to prove that

Theorem (a) If $\mu \prec \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $C(\mathcal{F})$.

(b) If for $j = 1, \ldots, n$, $\mu_j \prec \nu_j$ for probability measures on spaces X_j with respect to sets of functions \mathcal{F}_j on X_j, then for the measures on $\prod_{j=1}^n X_j$ and the set of functions $\bigcup_{j=1}^n \mathcal{F}_j$, one has that $\otimes_{j=1}^n \mu_j \prec \otimes_{j=1}^n \nu_j$.

(c) If $\mu \prec \nu$ for probability measures on a space X with respect to a set of functions \mathcal{F} on X, if $-H \in \mathcal{F}$ and if μ_H, ν_H are Gibbs measures, then $\mu_H \prec \nu_H$ for \mathcal{F}.

(d) If $\mu \prec \nu$ with respect to a set of functions \mathcal{F}, then for every $f \in \mathcal{F}$, we have that

$$\int f(x) \, d\mu(x) \leq \int f(x) \, d\nu(x)$$
Wells Domination implies Ising Domination

This immediately implies that
Wells Domination implies Ising Domination

This immediately implies that

Corollary If for \(j = 1, \ldots, n \), \(\mu_j \prec \nu_j \) for probability measures on spaces \(X_j \) with respect to sets of functions \(F_j \) on \(X_j \),
Wells Domination implies Ising Domination

This immediately implies that

Corollary If for $j = 1, \ldots, n$, $\mu_j \prec \nu_j$ for probability measures on spaces X_j with respect to sets of functions \mathcal{F}_j on X_j, then if $-H \in \mathcal{C}(\bigcup_{j=1}^{n} \mathcal{F}_j)$ and if μ_H, ν_H are formed from the underlying product measures $\otimes_{j=1}^{n} \mu_j$ and $\otimes_{j=1}^{n} \nu_j$, then for all $F \in \mathcal{C}(\bigcup_{j=1}^{n} \mathcal{F}_j)$,
Wells Domination implies Ising Domination

This immediately implies that

Corollary If for $j = 1, \ldots, n$, $\mu_j \prec \nu_j$ for probability measures on spaces X_j with respect to sets of functions \mathcal{F}_j on X_j, then if $-H \in \mathcal{C}(\bigcup_{j=1}^{n} \mathcal{F}_j)$ and if μ_H, ν_H are formed from the underlying product measures $\otimes_{j=1}^{n} \mu_j$ and $\otimes_{j=1}^{n} \nu_j$, then for all $F \in \mathcal{C}(\bigcup_{j=1}^{n} \mathcal{F}_j)$, one has that

$$\int f(x) \, d\mu_H(x) \leq \int f(x) \, d\nu_H(x).$$
Wells Domination implies Ising Domination

This immediately implies that

Corollary If for \(j = 1, \ldots, n \), \(\mu_j \prec \nu_j \) for probability measures on spaces \(X_j \) with respect to sets of functions \(\mathcal{F}_j \) on \(X_j \), then if \(-H \in C(\bigcup_{j=1}^{n} \mathcal{F}_j) \) and if \(\mu_H, \nu_H \) are formed from the underlying product measures \(\otimes_{j=1}^{n} \mu_j \) and \(\otimes_{j=1}^{n} \nu_j \), then for all \(F \in C(\bigcup_{j=1}^{n} \mathcal{F}_j) \), one has that

\[
\int f(x) \, d\mu_H(x) \leq \int f(x) \, d\nu_H(x).
\]

In particular, if each \(X_j = \mathbb{R} \), (so implicitly \(F_j \) is the single function \(\sigma_j \)) and if \(H \) has the general Ising form, then for all \(A \subset 2^{\{1, \ldots, n\}} \) one has that

\[
\langle \sigma^A \rangle_{\mu_H} \leq \langle \sigma^A \rangle_{\nu_H}
\]
Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite.
Almost a Partial Order

Of course, \(\triangleleft \) is a binary relation and it is tempting to think of it as a partial order on measures on \(\mathbb{R} \) with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric.
Almost a Partial Order

Of course, \triangleright is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleright \nu$ and $\nu \triangleright \mu$ if and only if μ and ν have the same moments.
Of course, \lt is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \lt \nu$ and $\nu \lt \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{Ax^2} \, d\mu(x) < \infty$ for some $A > 0$.
Almost a Partial Order

Of course, \prec is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \prec \nu$ and $\nu \prec \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{Ax^2} \, d\mu(x) < \infty$ for some $A > 0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem.
Almost a Partial Order

Of course, \prec is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \prec \nu$ and $\nu \prec \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{Ax^2} \, d\mu(x) < \infty$ for some $A > 0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following
Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{Ax^2} \, d\mu(x) < \infty$ for some $A > 0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following

Question 1 Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if \mathcal{F} is rich enough?
Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{Ax^2} \, d\mu(x) < \infty$ for some $A > 0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following

Question 1 Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if \mathcal{F} is rich enough?

Since Ising domination is trivially transitive,
Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{Ax^2} \, d\mu(x) < \infty$ for some $A > 0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following

Question 1 Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if \mathcal{F} is rich enough?

Since Ising domination is trivially transitive, for applications, this lack isn’t so important.
We say an even probability measure is non-trivial if and only if it is not a unit mass at 0.
We say an even probability measure is non-trivial if and only if it is not a unit mass at 0. The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernouilli measure.
Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0. The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernouilli measure.

Big Theorem Let $d\mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0.
Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0. The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernouilli measure.

Big Theorem Let \(d\mu \) be an even probability measure on \(\mathbb{R} \) with compact support that is not a point mass at 0. Then there are two strictly positive numbers \(T_-(\mu) \) and \(T_+(\mu) \) so that \(\mu \prec b_S \) if and only if \(S \geq T_+ \) and \(b_S \prec \mu \) if and only if \(S \leq T_- \). Moreover
We say an even probability measure is non-trivial if and only if it is not a unit mass at 0. The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernoulli measure.

Big Theorem Let $d\mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0. Then there are two strictly positive numbers $T_-(\mu)$ and $T_+(\mu)$ so that $\mu \prec b_S$ if and only if $S \geq T_+$ and $b_S \prec \mu$ if and only if $S \leq T_-$. Moreover

$$T_+ = \sup\{s \mid s \in \text{supp}(\mu)\}$$
Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0. The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernouilli measure.

Big Theorem Let \(d\mu \) be an even probability measure on \(\mathbb{R} \) with compact support that is not a point mass at 0. Then there are two strictly positive numbers \(T_-(\mu) \) and \(T_+(\mu) \) so that \(\mu \prec b_S \) if and only if \(S \geq T_+ \) and \(b_S \prec \mu \) if and only if \(S \leq T_- \). Moreover

\[
T_+ = \sup\{s \mid s \in \text{supp}(\mu)\}
\]

and

\[
S \leq T_- \iff \forall n \in \mathbb{N} \int_{\mathbb{R}} (x^2 - S^2)^n d\mu(x) \geq 0
\]
What is T?

The proof is not hard but I will defer it and include it if there is time.
What is T_-

The proof is not hard but I will defer it and include it if there is time. In any event, the slides are posted on my papers website.
What is T?

The proof is not hard but I will defer it and include it if there is time. In any event, the slides are posted on my papers website. Anyone who wants to work on the open questions, especially the two I say especially interest me, should contact me and I’ll send you the current version of the writeup from my forthcoming book.
What is T_-

The proof is not hard but I will defer it and include it if there is time. In any event, the slides are posted on my papers website. Anyone who wants to work on the open questions, especially the two I say especially interest me, should contact me and I’ll send you the current version of the writeup from my forthcoming book.

One consequence of the theorem is

$$T_- \leq \left(\int_{\mathbb{R}} x^2 \, d\mu(x) \right)^{1/2}$$

It is an interesting question when one has equality.
What is T_-

The proof is not hard but I will defer it and include it if there is time. In any event, the slides are posted on my papers website. Anyone who wants to work on the open questions, especially the two I say especially interest me, should contact me and I’ll send you the current version of the writeup from my forthcoming book.

One consequence of the theorem is

$$T_- \leq \left(\int_{\mathbb{R}} x^2 \, d\mu(x) \right)^{1/2}$$

It is an interesting question when one has equality. Before leaving this theorem, I should mention I happened to look at a 1981 paper of Bricmont, Lebowitz and Pfister that includes in an appendix a proof (with attribution to Wells) of Wells result about the existence of $T_- > 0$.
Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$d\mu_\lambda = \frac{\lambda}{2} (\delta_1 + \delta_{-1}) + (1 - \lambda)\delta_0$$
Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$d\mu_{\lambda} = \frac{\lambda}{2} (\delta_1 + \delta_{-1}) + (1 - \lambda)\delta_0$$

For $\lambda = 2/3$, which is equal weights this called (normalized) spin 1. Then
Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$d\mu_\lambda = \frac{\lambda}{2} (\delta_1 + \delta_{-1}) + (1 - \lambda)\delta_0$$

For $\lambda = 2/3$, which is equal weights this called (normalized) spin 1. Then

$$\langle (x^2 - T^2)^{2m+1} \rangle_\lambda = (1 - T^2)^{2m+1} \lambda - (1 - \lambda)T^{2(2m+1)}$$
Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$d\mu_\lambda = \frac{\lambda}{2} (\delta_1 + \delta_{-1}) + (1 - \lambda)\delta_0$$

For $\lambda = 2/3$, which is equal weights this called (normalized) spin 1. Then

$$\langle (x^2 - T^2)^{2m+1}\rangle_\lambda = (1 - T^2)^{2m+1}\lambda - (1 - \lambda)T^2(2m+1)$$

$$\geq 0 \iff \left[\frac{1 - T^2}{T^2}\right]^{2m+1} \geq \frac{1 - \lambda}{\lambda}$$
Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$d\mu_\lambda = \frac{\lambda}{2} (\delta_1 + \delta_{-1}) + (1 - \lambda)\delta_0$$

For $\lambda = 2/3$, which is equal weights this called (normalized) spin 1. Then

$$\langle (x^2 - T^2)^{2m+1} \rangle_\lambda = (1 - T^2)^{2m+1} \lambda - (1 - \lambda)T^{2(2m+1)}$$

$$\geq 0 \iff \left[\frac{1 - T^2}{T^2} \right]^{2m+1} \geq \frac{1 - \lambda}{\lambda}$$

$$\iff \frac{1 - T^2}{T^2} \geq \left(\frac{1 - \lambda}{\lambda} \right)^{1/2m+1}$$
If $\lambda \leq 1/2$, then $(1 - \lambda)/\lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m = 0$.

Note also that at $\lambda = 1/2$, the integral $\langle (x^2 - T^2 - m + 1)^2 \rangle_\lambda$ vanishes for all n, a sign that the distribution of $x^2 - T^2$ is symmetric about 0.
If $\lambda \leq 1/2$, then $(1 - \lambda)/\lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m = 0$ while, if $\lambda \geq 1/2$, then $(1 - \lambda)/\lambda \leq 1$ and we get the maximum as $m \to \infty$.

If $\lambda \leq 1/2$, then $(1 - \lambda)/\lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m = 0$ while, if $\lambda \geq 1/2$, then $(1 - \lambda)/\lambda \leq 1$ and we get the maximum as $m \to \infty$. Thus, we find that

$$T_-(\lambda) = \begin{cases} \sqrt{\lambda}, & \text{if } \lambda \leq \frac{1}{2} \\ \sqrt{\frac{1}{2}}, & \text{if } \lambda \geq \frac{1}{2} \end{cases}$$
Three Spin Values

If $\lambda \leq 1/2$, then $(1 - \lambda)/\lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m = 0$ while, if $\lambda \geq 1/2$, then $(1 - \lambda)/\lambda \leq 1$ and we get the maximum as $m \to \infty$. Thus, we find that

$$T_-(\lambda) = \begin{cases} \sqrt{\lambda}, & \text{if } \lambda \leq \frac{1}{2} \\ \sqrt{\frac{1}{2}}, & \text{if } \lambda \geq \frac{1}{2} \end{cases}$$

So we see there are cases where $T_- = \langle x^2 \rangle^{1/2}$ and other cases where the inequality is strict.
Three Spin Values

If $\lambda \leq 1/2$, then $(1 - \lambda)/\lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m = 0$ while, if $\lambda \geq 1/2$, then $(1 - \lambda)/\lambda \leq 1$ and we get the maximum as $m \to \infty$. Thus, we find that

$$T_-(\lambda) = \begin{cases} \sqrt{\lambda}, & \text{if } \lambda \leq \frac{1}{2} \\ \sqrt{\frac{1}{2}}, & \text{if } \lambda \geq \frac{1}{2} \end{cases}$$

So we see there are cases where $T_- = \langle x^2 \rangle^{1/2}$ and other cases where the inequality is strict. Note also that at $\lambda = 1/2$, the integral $\langle (x^2 - T_-^2)^{2m+1} \rangle_\lambda$ vanishes for all n, a sign that the distribution of $x^2 - T_-^2$ is symmetric about 0.
Spin S

For each value of $S = 1/2, 1, 3/2, \ldots$, consider the measure $d\tilde{\mu}_S$ which takes $2S + 1$ values equally spaced between -1 and 1, each with weight $1/(2S + 1)$.
Spin S

For each value of $S = 1/2, 1, 3/2, \ldots$, consider the measure $d\tilde{\mu}_S$ which takes $2S + 1$ values equally spaced between -1 and 1, each with weight $1/(2S + 1)$. We have just seen that for $S = 1$ ($\lambda = 2/3$ in the above example), one has that $T_- = \sqrt{\frac{1}{2}} < \sqrt{\frac{2}{3}} = \left(\int_{\mathbb{R}} x^2 d\tilde{\mu}_{S=1}(x)\right)^{1/2}$.
Spin S

For each value of $S = 1/2, 1, 3/2, \ldots$, consider the measure $d\tilde{\mu}_S$ which takes $2S + 1$ values equally spaced between -1 and 1, each with weight $1/(2S + 1)$. We have just seen that for $S = 1$ ($\lambda = 2/3$ in the above example), one has that $T_\geq = \sqrt{\frac{1}{2}} < \sqrt{\frac{2}{3}} = \left(\int_{\mathbb{R}} x^2 \, d\tilde{\mu}_{S=1}(x)\right)^{1/2}$

I have used Mathematica to compute $\langle (x^2 - a_S)^{2n+1} \rangle_S$ where $a_S = \left(\int_{\mathbb{R}} x^2 \, d\tilde{\mu}_S(x)\right)$ for $S = 3/2, 2, 5/2$ and $m = 1, 2, \ldots, 5$ and found them all positive which leads to a natural conjecture which I state as an open question.
Spin S

For each value of $S = 1/2, 1, 3/2, \ldots$, consider the measure $d\tilde{\mu}_S$ which takes $2S + 1$ values equally spaced between -1 and 1, each with weight $1/(2S + 1)$. We have just seen that for $S = 1$ ($\lambda = 2/3$ in the above example), one has that $T_- = \sqrt{\frac{1}{2}} < \sqrt{\frac{2}{3}} = \left(\int_{\mathbb{R}} x^2 \, d\tilde{\mu}_{S=1}(x)\right)^{1/2}$.

I have used Mathematica to compute $\langle (x^2 - a_S)^{2n+1}\rangle_S$ where $a_S = \left(\int_{\mathbb{R}} x^2 \, d\tilde{\mu}_S(x)\right)$ for $S = 3/2, 2, 5/2$ and $m = 1, 2, \ldots, 5$ and found them all positive which leads to a natural conjecture which I state as an open question.

Question 2 Prove for spin $S \geq 3/2$ that $T_-^2 = a_S$.

Spin S

For each value of $S = 1/2, 1, 3/2, \ldots$, consider the measure $d\tilde{\mu}_S$ which takes $2S + 1$ values equally spaced between -1 and 1, each with weight $1/(2S + 1)$. We have just seen that for $S = 1$ ($\lambda = 2/3$ in the above example), one has that $T_- = \sqrt{\frac{1}{2}} < \sqrt{\frac{2}{3}} = (\int_{\mathbb{R}} x^2 \, d\tilde{\mu}_{S=1}(x))^{1/2}$.

I have used Mathematica to compute $\langle (x^2 - a_S)^{2n+1} \rangle_S$ where $a_S = (\int_{\mathbb{R}} x^2 \, d\tilde{\mu}_S(x))$ for $S = 3/2, 2, 5/2$ and $m = 1, 2, \ldots, 5$ and found them all positive which leads to a natural conjecture which I state as an open question.

Question 2 Prove for spin $S \geq 3/2$ that $T_-^2 = a_S$.

As $S \to \infty$, a_S is decreasing to the value $1/3$, so I’d be happy to at least prove the weaker
Spin S

For each value of $S = 1/2, 1, 3/2, \ldots$, consider the measure $d\tilde{\mu}_S$ which takes $2S + 1$ values equally spaced between -1 and 1, each with weight $1/(2S + 1)$. We have just seen that for $S = 1$ ($\lambda = 2/3$ in the above example), one has that $T_\frac{1}{2} \leq \sqrt{\frac{1}{2}} < \sqrt{\frac{2}{3}} = \left(\int_\mathbb{R} x^2 \, d\tilde{\mu}_{S=1}(x)\right)^{1/2}$.

I have used Mathematica to compute $\langle (x^2 - a_S)^{2n+1} \rangle_S$ where $a_S = \left(\int_\mathbb{R} x^2 \, d\tilde{\mu}_S(x)\right)$ for $S = 3/2, 2, 5/2$ and $m = 1, 2, \ldots, 5$ and found them all positive which leads to a natural conjecture which I state as an open question.

Question 2 Prove for spin $S \geq 3/2$ that $T_\frac{2}{2}^2 = a_S$.

As $S \to \infty$, a_S is decreasing to the value $1/3$, so I’d be happy to at least prove the weaker

Question 3 Prove for spin S that $T_\frac{2}{2}^2 \geq 1/3$.
Spin

The only result I know on Ising domination lower bounds on spin S' by b_T for general S is Griffiths (by clever choice of analog spin 1/2 systems) has $T^2 = 1/4$ so I am especially interested in these two questions.
Spin

The only result I know on Ising domination lower bounds on spin S by b_T for general S is Griffiths (by clever choice of analog spin $1/2$ systems) has $T^2 = 1/4$ so I am especially interested in these two questions.

While on this subject
Spin

The only result I know on Ising domination lower bounds on spin S by b_T for general S is Griffiths (by clever choice of analog spin 1/2 systems) has $T^2 = 1/4$ so I am especially interested in these two questions.

While on this subject

Question 4 Prove for spin S that $\tilde{\mu}_S$ Ising dominates $\tilde{\mu}_{S+1/2}$.
Spin

The only result I know on Ising domination lower bounds on spin S by b_T for general S is Griffiths (by clever choice of analog spin $1/2$ systems) has $T^2 = 1/4$ so I am especially interested in these two questions.

While on this subject

Question 4 Prove for spin S that $\tilde{\mu}_S$ Ising dominates $\tilde{\mu}_{S+1/2}$.

It could even happen that there is Wells domination. It would even be interesting to know that $\tilde{\mu}_S$ Ising dominates normalized Lebesgue measure on $[-1, 1]$.
Most of this talk is about work of Ginibre, Wells (and van Beijeren-Sylvester). I turn next to what may be my only new result on this subject.
Most of this talk is about work of Ginibre, Wells (and van Beijeren-Sylvester). I turn next to what may be my only new result on this subject. It involves the interesting measure

$$d\mu_D(x) = \left[\frac{\Gamma\left(\frac{D}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{D-1}{2}\right)} \right] (1 - x^2)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) dx$$

This is the distribution of x_1 is one looks at a D-component unit vector distributed with the rotation invariant measure on S^{D-1}.

Since with respect to this measure all x_j have the same distribution and $\sum_{j=1}^D x_j^2 = 1$, we clearly have that

$$\langle x_2^2 \rangle_D = \frac{1}{D}$$
Most of this talk is about work of Ginibre, Wells (and van Beijeren-Sylvester). I turn next to what may be my only new result on this subject. It involves the interesting measure

$$d\mu_D(x) = \left[\frac{\Gamma \left(\frac{D}{2} \right)}{\sqrt{\pi} \Gamma \left(\frac{D-1}{2} \right)} \right] (1 - x^2)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) dx$$

This is the distribution of x_1 is one looks at a D-component unit vector distributed with the rotation invariant measure on S^{D-1}.
Most of this talk is about work of Ginibre, Wells (and van Beijeren-Sylvester). I turn next to what may be my only new result on this subject. It involves the interesting measure

$$d\mu_D(x) = \left[\frac{\Gamma \left(\frac{D}{2} \right)}{\sqrt{\pi} \Gamma \left(\frac{D-1}{2} \right)} \right] (1 - x^2)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) dx$$

This is the distribution of x_1 is one looks at a D-component unit vector distributed with the rotation invariant measure on \mathbb{S}^{D-1}. Since with respect to this measure all x_j have the same distribution and $\sum_{j=1}^{D} x_j^2 = 1$, we clearly have that
Most of this talk is about work of Ginibre, Wells (and van Beijeren-Sylvester). I turn next to what may be my only new result on this subject. It involves the interesting measure

\[d\mu_D(x) = \left[\frac{\Gamma \left(\frac{D}{2} \right)}{\sqrt{\pi} \Gamma \left(\frac{D-1}{2} \right)} \right] (1 - x^2)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) dx \]

This is the distribution of \(x_1 \) as one looks at a \(D \)-component unit vector distributed with the rotation invariant measure on \(S^{D-1} \). Since with respect to this measure all \(x_j \) have the same distribution and \(\sum_{j=1}^{D} x_j^2 = 1 \), we clearly have that

\[\langle x^2 \rangle_D = 1/D \]
After some experimentation with Mathematica, I have proven that
After some experimentation with Mathematica, I have proven that

Theorem $T_-(\mu_D)$ is given by the second moment,
Totally Anisotropic D-vector model

After some experimentation with Mathematica, I have proven that

Theorem $T_-(\mu_D)$ is given by the second moment, i.e.

$$T_-(\mu_D)^2 = 1/D$$
After some experimentation with Mathematica, I have proven that

Theorem \(T_-(\mu_D) \) is given by the second moment, i.e.
\[
T_-(\mu_D)^2 = \frac{1}{D}
\]

The result for \(D = 2 \) is especially easy because
\[
\langle (x^2 - 1/2)^{2m+1} \rangle_{D=2} = 0
\]
After some experimentation with Mathematica, I have proven that

Theorem $T_-(\mu_D)$ is given by the second moment, i.e.

$$T_-(\mu_D)^2 = \frac{1}{D}$$

The result for $D = 2$ is especially easy because

$$\langle (x^2 - 1/2)^{2m+1} \rangle_{D=2} = 0 \text{ since it is equivalent to } \langle (2x^2 - 1)^{2m+1} \rangle_{D=2} = \langle (x_1^2 - x_2^2)^{2m+1} \rangle_{\text{rotor}} = 0 \text{ by } x_1 \leftrightarrow x_2.$$
After some experimentation with Mathematica, I have proven that

Theorem \(T_-(\mu_D) \) is given by the second moment, i.e.

\[
T_-(\mu_D)^2 = \frac{1}{D}
\]

The result for \(D = 2 \) is especially easy because

\[
\langle (x^2 - 1/2)^{2m+1} \rangle_{D=2} = 0 \text{ since it is equivalent to }
\langle (2x^2 - 1)^{2m+1} \rangle_{D=2} = \langle (x_1^2 - x_2^2)^{2m+1} \rangle_{\text{rotor}} = 0 \text{ by } x_1 \leftrightarrow x_2.
\]

I note that this result for \(D = 2 \) is precisely the result that Aizenman and I say is in Wells mystery preprint. He may have the general \(D \) result there but since \(D = 2 \) is much easier, maybe not.
van Beijeren-Sylvester order

There is another approach to Ising domination due to van Beijeren and Sylvester (1978).
There is another approach to Ising domination due to van Beijeren and Sylvester (1978). It depends on classes of monotone functions. We let \mathcal{M}_+ be the positive monotone functions on $[0, \infty)$, and \mathcal{M} the functions on \mathbb{R} which are even or odd and positive and monotone on $[0, \infty)$.
van Beijeren-Sylvester order

There is another approach to Ising domination due to van Beijeren and Sylvester (1978). It depends on classes of monotone functions. We let \mathcal{M}_+ be the positive monotone functions on $[0, \infty)$, and \mathcal{M} the functions on \mathbb{R} which are even or odd and positive and monotone on $[0, \infty)$. Given an even probability measure, μ on \mathbb{R}, one defines a probability measure $\hat{\mu}$ on $[0, \infty)$ by

$$\hat{\nu} = 2\nu \upharpoonright (0, \infty) + \nu(\{0\})\delta_0$$
There is another approach to Ising domination due to van Beijeren and Sylvester (1978). It depends on classes of monotone functions. We let \mathcal{M}_+ be the positive monotone functions on $[0, \infty)$, and \mathcal{M} the functions on \mathbb{R} which are even or odd and positive and monotone on $[0, \infty)$. Given an even probability measure, μ on \mathbb{R}, one defines a probability measure $\hat{\mu}$ on $[0, \infty)$ by

$$\hat{\nu} = 2\nu \upharpoonright (0, \infty) + \nu(\{0\})\delta_0$$

They proved that the following are equivalent for two even provability measures on \mathbb{R}
van Beijeren-Sylvester order

There is another approach to Ising domination due to van Beijeren and Sylvester (1978). It depends on classes of monotone functions. We let \mathcal{M}_+ be the positive monotone functions on $[0, \infty)$, and \mathcal{M} the functions on \mathbb{R} which are even or odd and positive and monotone on $[0, \infty)$. Given an even probability measure, μ on \mathbb{R}, one defines a probability measure $\hat{\mu}$ on $[0, \infty)$ by

$$\hat{\nu} = 2\nu \upharpoonright (0, \infty) + \nu(\{0\})\delta_0$$

They proved that the following are equivalent for two even provability measures on \mathbb{R}

$$0 \leq x \leq y \Rightarrow \hat{\nu}([x, \infty))\hat{\mu}([y, \infty)) \leq \hat{\mu}([x, \infty))\hat{\nu}([y, \infty))$$
van Beijeren-Sylvester order

There is another approach to Ising domination due to van Beijeren and Sylvester (1978). It depends on classes of monotone functions. We let \mathcal{M}_+ be the positive monotone functions on $[0, \infty)$, and \mathcal{M} the functions on \mathbb{R} which are even or odd and positive and monotone on $[0, \infty)$. Given an even probability measure, μ on \mathbb{R}, one defines a probability measure $\hat{\mu}$ on $[0, \infty)$ by

$$\hat{\nu} = 2\nu \upharpoonright (0, \infty) + \nu(\{0\})\delta_0$$

They proved that the following are equivalent for two even provability measures on \mathbb{R}

$$0 \leq x \leq y \Rightarrow \hat{\nu}([x, \infty))\hat{\mu}([y, \infty)) \leq \hat{\mu}([x, \infty))\hat{\nu}([y, \infty))$$

$$\forall f \in \mathcal{M}_+ \frac{\int fg \, d\hat{\mu}}{\int g \, d\hat{\mu}} \leq \frac{\int fg \, d\hat{\nu}}{\int g \, d\hat{\nu}}$$
We then write $\mu \prec \nu$ say that ν van Beijeren-Sylvester dominates μ.
van Beijeren-Sylvester order

We then write $\mu \prec \nu$ say that ν van Beijeren-Sylvester dominates μ. The first says that $\frac{\hat{\mu}([x,\infty))}{\hat{\nu}([x,\infty))}$ is monotone decreasing as x increases (when we can take the ratio, i.e. so long as $\hat{\nu}([y,\infty)) \neq 0$).
We then write $\mu \prec \nu$ say that ν van Beijeren-Sylvester dominates μ. The first says that $\frac{\hat{\mu}([x,\infty))}{\hat{\nu}([x,\infty))}$ is monotone decreasing as x increases (when we can take the ratio, i.e. so long as $\hat{\nu}([y,\infty)) \neq 0$). And these in turn imply even more than Ising domination of μ by ν - it is true for Hamiltonians built by more than products of σ.
van Beijeren-Sylvester order

We then write $\mu \prec \nu$ say that ν van Beijeren-Sylvester dominates μ. The first says that $\frac{\hat{\mu}([x,\infty))}{\hat{\nu}([x,\infty))}$ is monotone decreasing as x increases (when we can take the ratio, i.e. so long as $\hat{\nu}([y,\infty)) \neq 0$). And these in turn imply even more than Ising domination of μ by ν - it is true for Hamiltonians built by more than products of σ - products of any elements of \mathcal{M}.
van Beijeren-Sylvester order

We then write $\mu \prec \nu$ say that ν van Beijeren-Sylvester dominates μ. The first says that $\frac{\hat{\mu}(\lfloor x, \infty \rfloor)}{\hat{\nu}(\lfloor x, \infty \rfloor)}$ is monotone decreasing as x increases (when we can take the ratio, i.e. so long as $\hat{\nu}(\lfloor y, \infty \rfloor) \neq 0$). And these in turn imply even more than Ising domination of μ by ν - it is true for Hamiltonians built by more than products of σ - products of any elements of \mathcal{M}.

While this notion is useful, it has one nearly fatal flaw
We then write $\mu \prec \nu$ say that ν \textit{van Beijeren-Sylvester dominates} μ. The first says that $\frac{\hat{\mu}([x,\infty))}{\hat{\nu}([x,\infty))}$ is monotone decreasing as x increases (when we can take the ratio, i.e. so long as $\hat{\nu}([y,\infty)) \neq 0$). And these in turn imply even more than Ising domination of μ by ν - it is true for Hamiltonians built by more than products of σ - products of any elements of \mathcal{M}.

While this notion is useful, it has one nearly fatal flaw (that comes from the strength of the conclusion - all of \mathcal{M} rather than just linear functions)
van Beijeren-Sylvester order

We then write $\mu < \nu$ say that ν van Beijeren-Sylvester dominates μ. The first says that $\frac{\hat{\mu}([x, \infty))}{\hat{\nu}([x, \infty))}$ is monotone decreasing as x increases (when we can take the ratio, i.e. so long as $\hat{\nu}([y, \infty)) \neq 0$). And these in turn imply even more than Ising domination of μ by ν - it is true for Hamiltonians built by more than products of σ - products of any elements of \mathcal{M}.

While this notion is useful, it has one nearly fatal flaw (that comes from the strength of the conclusion - all of \mathcal{M} rather than just linear functions) one has that

$$b_T < \mu \text{ for some } T > 0 \Rightarrow \mu([[0, T)]) = 0$$
The Open Questions

To summarize

- Question 1: Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if F is rich enough?
- Question 2: Prove for spin $S \geq \frac{3}{2}$ that $T^2 - a^S = \alpha$.
- Question 3: Prove for spin S that $T^2 - a^S \geq \frac{1}{3}$.
- Question 4: Prove for spin S that $\tilde{\mu}^S_{\text{Ising}}$ dominates $\tilde{\mu}^S_{\text{Ising} + \frac{1}{2}}$.

Open Questions
The Open Questions

To summarize

Question 1 Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if \mathcal{F} is rich enough?
To summarize

Question 1 Is Wells relation transitive among all even measures on \(\mathbb{R} \)? How about among all measures on a general topological space if \(\mathcal{F} \) is rich enough?

Question 2 Prove for spin \(S \geq 3/2 \) that \(T^2 = a_S \).
The Open Questions

To summarize

Question 1 Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if \mathcal{F} is rich enough?

Question 2 Prove for spin $S \geq 3/2$ that $T^2 = a_S$.

Question 3 Prove for spin S that $T^2 \geq 1/3$.
The Open Questions

To summarize

Question 1 Is Wells relation transitive among all even measures on \mathbb{R}? How about among all measures on a general topological space if \mathcal{F} is rich enough?

Question 2 Prove for spin $S \geq 3/2$ that $T^2_\omega = a_S$.

Question 3 Prove for spin S that $T^2_\omega \geq 1/3$.

Question 4 Prove for spin S that $\tilde{\mu}_S$ Ising dominates $\tilde{\mu}_{S+1/2}$.
Recall the big theorem

\textbf{The Statement}

\textbf{Recall the big theorem}
Recall the big theorem

Big Theorem Let $d\mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0.
The Statement

Recall the big theorem

Big Theorem Let $d\mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0. Then there are two strictly positive numbers $T_-(\mu)$ and $T_+(\mu)$ so that $\mu \prec b_S$ if and only if $S \geq T_+$ and $b_S \prec \mu$ if and only if $S \leq T_-$. Moreover
Recall the big theorem

Big Theorem Let $d\mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0. Then there are two strictly positive numbers $T_-(\mu)$ and $T_+(\mu)$ so that $\mu \prec b_S$ if and only if $S \geq T_+$ and $b_S \prec \mu$ if and only if $S \leq T_-$. Moreover

$$T_+ = \sup\{s \mid s \in \text{supp}(\mu)\}$$
The Statement

Recall the big theorem

Big Theorem Let $d\mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0. Then there are two strictly positive numbers $T_-(\mu)$ and $T_+(\mu)$ so that $\mu \prec b_S$ if and only if $S \geq T_+$ and $b_S \prec \mu$ if and only if $S \leq T_-$. Moreover

$$T_+ = \sup\{s \mid s \in \text{supp}(\mu)\}$$

and

$$S \leq T_- \iff \forall n \in \mathbb{N} \int_{\mathbb{R}} (x^2 - S^2)^n d\mu(x) \geq 0$$
If \(S \geq \sup \{ s \mid s \in \text{supp}(\mu) \} \), then, for the integrand to be positive, we need that
\[
(S + y)^n(S - y)^m + (S + y)^m(S - y)^n \geq 0
\]
for all \(y \geq 0 \) in \(\text{supp}(\mu) \).
The Proof: T_+

If $S \geq \sup\{s \mid s \in \text{supp}(\mu)\}$, then, for the integrand to be positive, we need that

$$(S + y)^n(S - y)^m + (S + y)^m(S - y)^n \geq 0$$

for all $y \geq 0$ in $\text{supp}(\mu)$. If $\mu(\{0\}) > 0$, there is an additional term of $S^{n+m}\mu(\{0\})$ in the right hand side, but that is also positive,
The Proof: T_+

If $S \geq \sup\{s \mid s \in \text{supp}(\mu)\}$, then, for the integrand to be positive, we need that

\[(S + y)^n(S - y)^m + (S + y)^m(S - y)^n \geq 0\]

for all $y \geq 0$ in $\text{supp}(\mu)$. If $\mu(\{0\}) > 0$, there is an additional term of $S^{n+m}\mu(\{0\})$ in the right hand side, but that is also positive, so for such S, we have that $\mu \prec b_S$.
The Proof: T_+

If $S \geq \sup\{s \mid s \in \text{supp}(\mu)\}$, then, for the integrand to be positive, we need that

$$(S + y)^n(S - y)^m + (S + y)^m(S - y)^n \geq 0$$

for all $y \geq 0$ in $\text{supp}(\mu)$. If $\mu(\{0\}) > 0$, there is an additional term of $S^{n+m}\mu(\{0\})$ in the right hand side, but that is also positive, so for such S, we have that $\mu \prec b_S$.

On the other hand, if $\mu \prec b_S$, we have that

$$\int x^{2n} \, d\mu(x) \leq S^{2N}$$

so, taking $2N$th roots and then $N \to \infty$, we see that $S \geq \sup\{s \mid s \in \text{supp}(\mu)\}$ which proves the formula for T_+.
Lemma Let μ be a positive measure on an interval $I \subset \mathbb{R}$ (either open or closed at each endpoint). Let $f, g \in L^2(d\mu)$ and suppose that g is monotone increasing on I and there is $c \in I$ so that $f(x) \leq 0$ (resp $f(x) \geq 0$) if $x \leq c$ (resp $x \geq c$). Then
The Proof: Preliminary Lemma

Lemma Let μ be a positive measure on an interval $I \subset \mathbb{R}$ (either open or closed at each endpoint). Let $f, g \in L^2(d\mu)$ and suppose that g is monotone increasing on I and there is $c \in I$ so that $f(x) \leq 0$ (resp $f(x) \geq 0$) if $x \leq c$ (resp $x \geq c$). Then

\[
\int f(x)g(x) \, d\mu(x) \geq g(c) \int f(x) \, d\mu(x)
\]
The Proof: Preliminary Lemma

Lemma Let μ be a positive measure on an interval $I \subset \mathbb{R}$ (either open or closed at each endpoint). Let $f, g \in L^2(d\mu)$ and suppose that g is monotone increasing on I and there is $c \in I$ so that $f(x) \leq 0$ (resp $f(x) \geq 0$) if $x \leq c$ (resp $x \geq c$). Then

$$\int f(x)g(x) \, d\mu(x) \geq g(c) \int f(x) \, d\mu(x)$$

Proof The function $f(x)[g(x) - g(c)]$ is positive so its integral is positive which is the claim.
The Proof: Reduction of Lower Bound to

\[m = n \]

Taking \(n = m \) in the basic integral, we see that
The Proof: Reduction of Lower Bound to $m = n$

Taking $n = m$ in the basic integral, we see that

$$b_S < \mu \Rightarrow \forall n \text{ odd } \int_{\mathbb{R}} (x^2 - S^2)^n \, d\mu(x) \geq 0$$
The Proof: Reduction of Lower Bound to $m = n$

Taking $n = m$ in the basic integral, we see that

$$b_S < \mu \Rightarrow \forall n \text{ odd } \int_{\mathbb{R}} (x^2 - S^2)^n d\mu(x) \geq 0$$

Now look at the basic integral when $\nu = b_S$ and $m > n$ with both odd.
The Proof: Reduction of Lower Bound to $m = n$

Taking $n = m$ in the basic intergal, we see that

$$b_S < \mu \Rightarrow \forall \text{odd } n \int_{\mathbb{R}} (x^2 - S^2)^n d\mu(x) \geq 0$$

Now look at the basic integral when $\nu = b_S$ and $m > n$ with both odd. Since

$$(x \pm S)^n (x \mp S)^m = (x^2 - S^2)^n (x \mp S)^{m-n}$$
The Proof: Reduction of Lower Bound to $m = n$

Taking $n = m$ in the basic integral, we see that

$$b_S < \mu \Rightarrow \forall n \text{ odd } \int_{\mathbb{R}} (x^2 - S^2)^n \, d\mu(x) \geq 0$$

Now look at the basic integral when $\nu = b_S$ and $m > n$ with both odd. Since

$$(x \pm S)^n (x \mp S)^m = (x^2 - S^2)^n (x \mp S)^{m-n}$$

we see that the integral in question is

$$\frac{1}{2} \int (x^2 - S^2)^n \left[(x + S)^{m-n} + (x - S)^{m-n} \right] \, d\mu(x)$$

$$= \int (x^2 - S^2)^n \left[(x + S)^{m-n} + (x - S)^{m-n} \right] \, d\tilde{\mu}(x)$$
By the binomial theorem, the polynomial
\[Q_{2k}(y) = (y + S)^{2k} + (y - S)^{2k} \]
only has even degree terms with only positive coefficients so the function in \([\cdot]\) in the last equation is monotone on \(I = [0, \infty)\). Applying the lemma with \(c = S\), we see that
By the binomial theorem, the polynomial
\[Q_{2k}(y) = (y + S)^{2k} + (y - S)^{2k} \]
only has even degree terms with only positive coefficients so the function in \([\cdot]\) in the last equation is monotone on \(I = [0, \infty)\). Applying the lemma with \(c = S\), we see that

\[
\int_{\mathbb{R}} \int_{\mathbb{R}} (x+y)^n(x-y)^m \, d\mu(x) \, d\nu(y) \geq (2S)^{m-n} \int_{\mathbb{R}} (x^2 - S^2)^n \, d\mu(x)
\]
The Proof: Reduction of Lower Bound to $m = n$

By the binomial theorem, the polynomial $Q_{2k}(y) = (y + S)^{2k} + (y - S)^{2k}$ only has even degree terms with only positive coefficients so the function in $[\cdot]$ in the last equation is monotone on $I = [0, \infty)$. Applying the lemma with $c = S$, we see that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} (x+y)^n(x-y)^m d\mu(x)d\nu(y) \geq (2S)^{m-n} \int_{\mathbb{R}} (x^2 - S^2)^n d\mu(x)$$

Thus, we have shown that

$$b_S \prec \mu \iff \forall n \text{ odd } \int_{\mathbb{R}} (x^2 - S^2)^n d\mu(x) \geq 0$$
The Proof: $T_+ > 0$

First, pick $a > 0$ so that $\mu([a, \infty)) > 0$.
First, pick $a > 0$ so that $\mu([a, \infty)) > 0$. Pick $0 < b < a$ so small that

$$\frac{b^2}{a^2 - b^2} \leq \min (1, 2\mu([a, \infty)))$$
The Proof: $T_- > 0$

First, pick $a > 0$ so that $\mu([a, \infty)) > 0$. Pick $0 < b < a$ so small that

$$\frac{b^2}{a^2 - b^2} \leq \min(1, 2\mu([a, \infty)))$$

possible since the left side goes to zero as $b \downarrow 0$.
The Proof: $T_- > 0$

First, pick $a > 0$ so that $\mu([a, \infty)) > 0$. Pick $0 < b < a$ so small that

$$\frac{b^2}{a^2 - b^2} \leq \min(1, 2\mu([a, \infty)))$$

possible since the left side goes to zero as $b \downarrow 0$. Since the integrand is positive on $[b, a]$, we have that for all $k \in \mathbb{N}$

$$\int (x^2 - b^2)^{2k+1} d\mu(x) \geq -(b^2)^{2k+1} + 2(a^2 - b^2)^{2k+1} \mu([a, \infty))$$
The Proof: $T_- > 0$

First, pick $a > 0$ so that $\mu([a, \infty)) > 0$. Pick $0 < b < a$ so small that

$$\frac{b^2}{a^2 - b^2} \leq \min(1, 2\mu([a, \infty)))$$

possible since the left side goes to zero as $b \downarrow 0$. Since the integrand is positive on $[b, a]$, we have that for all $k \in \mathbb{N}$

$$\int (x^2 - b^2)^{2k+1} \, d\mu(x) \geq -(b^2)^{2k+1} + 2(a^2 - b^2)^{2k+1} \mu([a, \infty))$$

$$= 2(a^2 - b^2)^{2k+1} \left[2\mu([a, \infty)) - \left(\frac{b^2}{a^2 - b^2} \right)^{2k+1} \right] \geq 0$$

by the choice of b.
The Proof: $T_\geq 0$

First, pick $a > 0$ so that $\mu([a, \infty)) > 0$. Pick $0 < b < a$ so small that

$$\frac{b^2}{a^2 - b^2} \leq \min (1, 2\mu([a, \infty)))$$

possible since the left side goes to zero as $b \downarrow 0$. Since the integrand is positive on $[b, a]$, we have that for all $k \in \mathbb{N}$

$$\int (x^2 - b^2)^{2k+1} d\mu(x) \geq -(b^2)^{2k+1} + 2(a^2 - b^2)^{2k+1} \mu([a, \infty))$$

$$= 2(a^2 - b^2)^{2k+1} \left[2\mu([a, \infty)) - \left(\frac{b^2}{a^2 - b^2} \right)^{2k+1} \right] \geq 0$$

by the choice of b. Thus $T_\geq b > 0$.
And Now a Word from Our Sponsor
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and L^p spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy’s view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic germs, and Jacob, as well as Weierstrass, elliptic functions.

\[
f(z_0) = \frac{1}{2\pi i} \int_{|z|=1} \frac{f(z)}{z - z_0} \, dz
\]
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric), the Ahlfors-Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness theorem, topics in analytic number theory (including Jacobi’s two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuchsian differential equations, asymptotic methods (including Euler’s method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuchsian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing pointwise limits (going beyond the usual focus on the Hardy-Littlewood maximal function by including ergodic theorems and martingale convergence), harmonic functions and potential theory, frames and wavelets, H^p spaces (including bounded mean oscillation (BMO)) and, in the final chapter, lots of inequalities, including Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of unbounded self-adjoint operators. There is also an introduction to the theory of orthogonal polynomials and a long chapter on Banach algebras, including the commutative and non-commutative Gel'fand-Naimark theorems and Fourier analysis on general locally compact abelian groups.

For additional information and updates on this book, visit www.ams.org/bookpages/simon

Google simon comprehensive course preview
And tada, the latest book