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celebration and 1I'd like to thanks the organizers and other
speakers for thier efforts. It is with some reluctance that |
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speak. | only agreed because | wished to give Wells the
recognition he so richly deserves.
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The Backstory

| am writing a book for Cambridge Press entitled Phase
Transitions in the Theory of Lattice Gases. It is in many
ways the suceeesor to my 1993 book The Statistical
Mechanics of Lattice Gases, Vol. |, from Princeton
University Press. That earlier book was mainly framework
and largely left out all the most fun and beautiful elements
of the theory:Correlation Inequalities, Lee-Yang, Peierls’
Argument, Kosterlitz-Thousless transitions and Infrared
Bounds which are the subjects of the new book. But since |
decided to use a different publisher, this is certainly NOT
volume 2 of the earlier work.

The framework for much of the subject is to fix a finite set
A C 7", and an apriori EVEN probability measure, dj, on
R, certainly with all moments finite and typically of
compact support.
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(Nuo = [ 1) [] dutor)
JEA
and one fixes a ferromagnetic Hamiltonian
—H = Z J(A)o? = H of
ACA jEA
or more general over mutliindices, i.e. assignments of an
integer, n; > 0 with then o4 = [Tica 0;.” (and a finite sum
or else ¢! condition). One then considers, the Gibbs state

<f>u,A = Z_1<f€_H>,u,O§ Z = <€_H>,u,0
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(aka spin 1/2 Ising model) where du is a measure supported
on £1 each point with weight 1/2; more generally, I'll refer
to by with weights 1/2 at £7" (b is for Bernouilli). While a
lot of the literature is specific to the spin 1/2 Ising model,
there is considerable, mathematically interesting, literature
on more general (even) apriori measures.

As | began to write about correlation inequalities, |
wondered about a natural question. Say that an apriori
measure, v, on R Ising dominates another measure p if and
only if for all J(A) > 0 and all B, one has that

<UB>M,A < <UB>1/,A
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For most even minor aspects of the subject of correlation
inequalities there are several papers, sometimes as many as
a dozen. So | was surprised that | was unable to find a single
published paper on the subject of what | just called Ising
domination! Of course, it was unclear how to search for the
subject in Google. Eventually, | did find one paper of van
Beijeren and Sylvester that I'll dicuss below although in one
respect it is unsatisfactory. And | did find an appendix of a
paper on another subject but that gets ahead of my story.
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One of the pleasant things about writing a book on a
subject that | once knew more about is that | get to
Introduction rediscover things I've forgotten. With the question of Ising
domination in the back of my mind, | found an interesting
footnote in a 1980 paper of Aizenman and er, B. Simon
entitled A comparison of plane rotor and Ising models. The
footnote said

then by results of Wells (D. Wells, Some moment
inequalities for general spin Ising ferromagnets, Indiana

Univ. preprint) (s;sk)p1 < 2(0](1)0,(5))572.

The left hand side is an Ising expectation and the right with
the apriori measure of the 2D rotor with only couplings of
the 1 components. So this was part of what seems to be an
Ising domination result (the 2 indicates the Ising measure

should really be b, 5).
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So | set about finding this preprint. Google didn’t help
directly but did point me to a 1984 paper of Chuck Newman
Introduction that mentioned Wells' Indiana University PhD. thesis. So |
wrote to Michael asking if he knew anything about our
footnote and cced Chuck (who had been a grad student
with me at Princeton) because | conjectured Wells had been
his student. Chuck replied and said he remembered that
Wells had been Slim Sherman’s student. Sherman, the S of
GKS and GHS was delightful character, long dead. So |
wrote to Kevin Pilgrim, the chair at Indiana, who located a
copy of Wells thesis for me on Proquest. So far though, no
luck on the preprint nor on locating Wells through Indiana
University alumni records! While the thesis did not have
anything directly about the above inequality, it did have a
general framework on what | called the Ising domination
problem, lovely material that should have been published.
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The Rest of the Talk

Our main goal is to describe Wells' framework and what |
regard as as his most significant theorem. Since he extended
Introduction a framework of Ginibre, | begin by reminding (telling) you of
that. Then the notion | call Wells' domination followed by
his big theorem. Then examples including what may be my
sole (I say may because it is possible that it is in the
mystery preprint of Wells). Next, I'll discuss an alternate
order due to van Beijeren and Sylvester which has one big
flaw and then a summary of open questions. Finally, if there
is time, I'll sketch the proof of the big theorem.
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In a remarkable 1970 paper, Jean Ginibre (who alas passed
away in March of 2020 at age 82) not only found a really
simple proof of GKS inequalities but showed somewhat
Ginibre surprisingly that they held for all apriori measures. If you are
new to Ising models and have time for only one result, this
one might be what you should know.

A Ginibre system is a triple (X, ui, F) of a compact
Hausdorff space, X, a probability measure, u, on X (with
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functions F C C(X) that obeys:
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for all 2™ choices of the pIus_and minus sign.
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When it is clear which measure is intended, we will drop the
p from (-),,. We have restricted to compact Hausdorff
spaces and so bounded functions for simplicity. But since all
the arguments are essentially algebraic, all results extend to
the case where X is only locally compact so long as all

f € Fobey [|f(z)|™du(z) < oo for all m since that
condition assures that all integrals are convergent.

Note that
(G2) = 2(f), = /X F(2) + F(y) du(x)du(y) > 0
/ (@) - W) (9(@) — 9)) du(z)du(y)
XxX

=2[(f9)u = (Nulg)ul = 0
We will see shortly that (G2) = (G1)
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What makes the notion so powerful is that there are three
theorems for getting new Ginibre systems from old ones.

Given a family of functions, 7 C C(X), we define the
Ginibre cone, C(F), as the set of linear combinations with
non-negative coefficients of products of functions from F.
Ginibre Theorem 1 /If a triple (X, u, F) obeys (G2), so
does (X, u,C(F)).

It is trivial that (G2) holds for sums and positive multiples
of functions for which it holds, so it suffices to prove it
holds for products. By induction, we need only handle
products of two functions. We note that

faxfg=5(f+)g£g)+35(f~F)gFg)
which allows us to prove (G2) for a single product when we
have it for individual functions (and shows (G2)=-(G1)).
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Extending Ginibre Systems

The following is trivial
Ginibre Theorem 2 Let {(Xj,pj,]-"j>}?:1 be a family of
Ginibre systems. Then (x7_, X;, ®}_yu;, Us_  F;) is also a
Ginibre system

And to add interactions, we use

Ginibre Theorem 3 Let (X, u, F) be Ginibre system. Let
—H € F and define a new measure, jiy by

Py =
i (e=M),
Then (X, pm, F) is a Ginibre system.
The proof is easy. The normalization is irrelevant and we

expand the exponential exp(—H (x) — H(y)).
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Ginibre Theorem 4 Let X be R or a compact subset of
the form [— A, A] and let du be a probability measure which
is invariant under x — —x and so that (only non-trivial in
case X is not compact) [ z*" du(x) < oo for all n. Let F
contain the single function, f(x) = x. Then (X,u,F) is a
Ginibre system.

Ginibre

The proof is easy! (G2) says that for all non-negative
integers, k and m, one has that

/ (z +y)¥ (@ — y)™ du(x)duly) > 0
XxX

Interchanging x and y implies the integral is zero if m is odd
and z — —x symmetry implies the integral is zero if m + k
is odd. Thus the only possible non-zero integrals are when
m and k are even in which case the integrand is positive!
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A little thought shows that for Hamiltonians of the form
—-H = Z J(A)o? ot = H of
Ginibre ACA JjEA

with ANY (!} even apriori measure, one has positive
expectations and positive correlations of the o.
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without mentioning two other examples he gives of Ginibre
systems that are not relevant to Wells although one will

Ginibre
appear later.

The first is to note that he proves that if dyu is a product of
rotation invariant measures on circles, the set of functions
cos(3_7_, m;j0;) is a Ginibre system. This and some
extensions are essentially half the correlation inequalities for
plane rotors.
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The second is related to an 1882 paper of Chebyshev
(which | don't think Ginibre knew about when he wrote this
paper) which contained what is probably the earliest
correlation inequality: Chebyshev proved that if f, g are two
monotone functions on [0, 1], then

Ginibre

[ s [ sas [ o as

Ginibre proved that for any (not necessarily even) positive
probability measure on R, the set F of all positive
monotone functions is a Ginibre family. The proof is again
very easy. This is a sort of poor man's FKG inequalities.
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There is a simple extension of Ginibre's method in Wells'
thesis that allows comparison of measures. Given two
probability measures, i and v on a locally compact space,
X, we say that u Wells dominates v, written u>v or v<p
with respect to a class of continuous functions F (with all
moments of all f € F finite with respect to both measures;
not needed if X is compact) if for all » and all

fi, f2,- .., fn and all 2™ choices of +, we have that

Wells’ Framework
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Basic Definition

We will be most interested in case X =R, i and v are
both even measures with all moments finite and F has the
single function f(x) = x in which case the condition takes
the form

[ [+t dnteivty) = 0
for all non-negative integers, n and m in which case we use
the symbol < without being explicit about F. Since the
measures are even, one need only check this when n + m is
even. It is trivial if both are even, so we only need worry
about the case that both are odd. Since the measures are
different, we don’t have the exchange symmetry that makes
the integral vanish if both are odd but symmetry under
y — —y implies invariance under interchange of m and n,
so we need only check for m > n. We'll see examples later.
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Extending the Ginibre machine is effortless. It is easy to
prove that

Theorem (a) If < v for a set of functions F, the same is
true for the Ginibre cone C(F).

(b) If for j =1,...,n, uj <v; for probability measures on
spaces X; with respect to sets of functions F; on X, then
for the measures on [[;_, X; and the set of functions

U Fj, one has that ®7_, p; < ®%_v;

(c) If w<v for probability measures on a space X with
respect to a set of functions F on X, if —H € F and if
g, vy are Gibbs measures, then py <vy for F.

(d) If < v with respect to a set of functions F, then for
every f € F, we have that

[ 1@t < [ 5@ vt
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Wells Domination implies Ising

Domination

This immediately implies that

Corollary If for j =1,...,n, u; <Qv; for probability
measures on spaces X; with respect to sets of functions F;
on X, then if —H € C(U” 1\ Fj) and if g, vy are formed
from the underlying product measures ®Y_y pij and ®7_

then for all F' € C(U7_, F;), one has that

[ f(x)dpu(z) < [ f Ydvyg (). In particular, if each

X; =R, (so /mpl/c1t/y F is the single function o ;) and if H
has the general Ising form, then for all A c 2111} one has
that

Wells’ Framework
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Of course, < is a binary relation and it is tempting to think
of it as a partial order on measures on R with all moments
finite. Indeed, it is certainly reflexive. It is almost
antisymmetric. It is easy to see that y<v and v < p if and
only if x and v have the same moments. Thus it is
antisymmetric among the measures of compact support or
among measures obeying feAx2 du(z) < oo for some

A > 0 but not among all measures with finite moments
because of the possibilities of measures non-unique for the
moment problem. But | do not know the following

Wells’ Framework

Question 1 Is Wells relation transitive among all even
measures on R? How about among all measures on a
general topological space if F is rich enough?

Since Ising domination is trivially transitive, for applications,
this lack isn't so important.
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there are two strictly positive numbers T_ (1) and T4 () so
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S < T_. Moreover

Ty =sup{s | s € supp(p)}
and

S<T. <= VneN/($2 — S)™ du(z) > 0
R
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What is 7

The proof is not hard but | will defer it and include it if
there is time. In any event, the slides are posted on my
papers website. Anyone who wants to work on the open
questions, especially the two | say especially interest me,
should contact me and I'll send you the current version of
the writeup from my forthcoming book.

The Big Theorem

One consequence of the theorem is

T < ( /R z? du(m)>1/2

It is an interesting question when one has equality. Before
leaving this theorem, | should mention | happened to look
at a 1981 paper of Bricmont, Lebowitz and Pfister that
includes in an appendix a proof (with attribution to Wells)
of Wells result about the existence of T > 0.
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If A <1/2, then (1 —X)/A > 1 and the maximum on the
right side of the last formula occurs for m = 0 while, if

A >1/2, then (1 —X)/A <1 and we get the maximum as
m — 0o. Thus, we find that

- VA, ifa<d
Examples =
- JEofazd
So we see there are cases where T = (x2)'/2 and other

cases where the inequality is strict. Note also that at
A =1/2, the integral ((2? — T?)?™F1), vanishes for all n, a
sign that the distribution of 22 — T2 is symmetric about 0.
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| have used Mathematica to compute ((2? — ag)
where ag = ([ #* dfis(z)) for S =3/2,2,5/2 and

m =1,2,..,5 and found them all positive which leads to a
natural conjecture which | state as an open question
Question 2 Prove for spin S > 3/2 that T? = ag.

As S — 00, ag is decreasing to the value 1/3, so I'd be
happy to at least prove the weaker
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The only result | know on Ising domination lower bounds on
spin S by by for general S is Griffiths (by clever choice of
analog spin 1/2 systems) has 72 = 1/4 so | am especially
interested in these two questions.

While on this subject

Question 4 Prove for spin S that fig Ising dominates
As+1/2-
It could even happen that there is Wells domination. It

would even be interesting to know that fig Ising dominates
normalized Lebesgue measure on [—1, 1].
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=1 j =1, we clearly have that
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Totally Anisotropic D-vector model

After some experimentation with Mathematica, | have
proven that

Theorem T_(up) is given by the second moment, i.e.
T (up)? =1/D

The result for D = 2 is especially easy because

SN (2% — 1/2)?™+1) p_y = 0 since it is equivalent to

(227 = 1)*"*Y) pop = ((af — 23)*™ ) rotor = 0 by

1 <> x9. | note that this result for D = 2 is precisely the
result that Aizenman and | say is in Wells mystery preprint.
He may have the general D result there but since D = 2 is
much easier, maybe not.
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van Beijeren-Sylvester order

We then write p < v say that v van Be{eren—Sy/vester
dominates ;1. The first says that & ” x ) is monotone

decreasing as x increases (when we can take the ratio, i.e.
so long as ©([y, 00)) # 0). And these in turn imply even
more than Ising domination of u by v - it is true for
Hamiltonians built by more than products of o - products of
any elements of M.

van Beijeren and
Sylvester

While this notion is useful, it has one nearly fatal flaw (that
comes from the strength of the conclusion - all of M rather
than just linear functions) one has that

br < p for some T > 0 = u(([0,7)) =0
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To summarize

Question 1 Is Wells relation transitive among all even
measures on R? How about among all measures on a
general topological space if F is rich enough?

Question 2 Prove for spin S > 3/2 that T? = ag.
Question 3 Prove for spin S that 72 > 1/3.
Question 4 Prove for spin S that fig Ising dominates
Open Questions /15—&-1/2-
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The Proof: T,

If S > sup{s | s € supp(p)}, then, for the integrand to be
positive, we need that
S+y)"(S—y)™+(S+y)"(S—y)" >0forally >0in
supp(u). If u({0}) > 0, there is an additional term of
S™T ™ ({0}) in the right hand side, but that is also
positive, so for such S, we have that p<bg.

On the other hand, if ;1 <bg, we have that

[x* du(x) < S?V, so, taking 2N'th roots and then

N — o0, we see that S > sup{s | s € supp(u)} which
proves the formula for T7.
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The Proof: Preliminary Lemma

Lemma Let i be a positive measure on an interval I C R
(ether open or closed at each endpoint). Let f,g € L?(du)
and suppose that ¢ is monotone increasing on I and there is
c €I sothat f(z) <0 (resp f(x) > 0) if 2 < c (resp

x > c). Then

[ t@g@ dnto) = gte) [ #(a) dutz)

Rt Proof The function f(x)[g(z) — g(c)] is positive so its
integral is positive which is the claim.
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The Proof: Reduction of Lower Bound to

m=mn

Taking m = m in the basic intergal, we see that

bs a4 = Y odd / (2% — §2)" du(z) > 0
R

Now look at the basic integral when v = bg and m > n
with both odd. Since

(x+9)" (zF9)™ = (22 — S?)"(x F S)™ ™ we see that
the integral in question is

Proof of Big Thm % /(I2 - 52)n [(55 +8)"" (= S)m_n] du(z)

= [ =8 [+ 8y - 5] dila)
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Qar(y) = (y+ S)%* + (y — S)?* only has even degree terms
with only positive coefficients so the function in [-] in the
last equation is monotone on I = [0, 00). Applying the
lemma with ¢ = S, we see that
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By the binomial theorem, the polynomial
Qar(y) = (y+ S)%* + (y — S)?* only has even degree terms
with only positive coefficients so the function in [-] in the
last equation is monotone on I = [0, 00). Applying the
lemma with ¢ = S, we see that

R

/ / (4" (x—y) " dp(x)dv(y) > (25)™" / (42 —82)" dp(a
RJR
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Thus, we have shown that

bs A <= Vi od / (a? — S2)" dpu(z) > 0
R
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/(xz—bZ)%Hdu(az) > —(b2)2k+1+2(a2—b2)2k+1u([a, OO))

= 2(a? — b2)2k+1 l2u([a, 0)) — <a2b_2 b2>2k+1] >0

by the choice of b. Thus T_ > b > 0.
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