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Abstract. We consider the asymptotics of zeros of OPRL and
POPUC as n → ∞, focusing on the structure on a scale in x of
order 1/n. We discuss three recent results (on Poisson behavior
in the random case, clock on the a.c. case, and β-distribution in
between) and open questions and speculations.

1. Introduction

In this paper, we will discuss zeros of orthogonal polynomials. This
subject goes back to Gauss’ discovery that the best discrete approx-
imations of Riemann integrals involve zeros of Legendre polynomials,
and has spawned a huge literature not only among workers on OPs but
within the general theoretical and mathematical physics communities
who study “eigenvalue statistics.” In particular, much of the work on
random matrices is connected to this subject.

The general theory has two levels, both going back to a 1940 paper
of Erdös–Turán [10]. The bulk behavior concerns what fraction of
the n zeros of Pn lie in a given subset, S, of R. The fine structure
uses a microscope to look on a scale of size O( 1

n
) where, as n → ∞,

there are typically finitely many zeros. The two most heavily studied
regimes are where the zeros are Poisson distributed, i.e., no correlation
between nearby zeros, and where there is rigid equal spacing between
neighboring zeros.

Over the past few years, I have written a series of papers on this
subject [38, 39, 40, 21, 2], including one review [42], but it is time for
another review of recent progress and open questions.
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2 B. SIMON

We begin by setting notation and terminology. In much of this paper,
we study orthogonal polynomials on the real line (OPRL). We start
with a measure, dµ, on R of the form

dµ(x) = w(x) dx + dµs(x) (1.1)

where dµs is Lebesgue singular. We will only consider cases where dµ
is compactly supported. See [46] for background on OPRL.

Given µ, Pn(x) are the monic orthogonal polynomials and pn(x) the
orthonormal polynomials. Pn(x) has n simple zeros, all on R, indeed
on the convex hull of supp(dµ). We will be interested in zeros near a

fixed x0 ∈ R, which we label x
(n)
j (x0), with

. . . x
(n)
−k(x0) < · · · < x

(n)
−1 (x0) < x0 ≤ x

(n)
0 (x0) < x

(n)
1 (x0) . . . (1.2)

µ determines, and in turn is determined by, a set of Jacobi parameters,
{an, bn}∞n=1, given by the recursion relations for the Pn:

xPn(x) = Pn+1(x) + bn+1Pn(x) + a2
nPn−1(x) (1.3)

Here an > 0, bn ∈ R, and there is a one-one correspondence between
uniformly bounded Jacobi parameters and nontrivial probability mea-
sures of compact support.

We will also consider orthogonal polynomials on the unit circle
(OPUC) and paraorthogonal polynomials (POPUC). See [36, 37] for
a discussion of OPUC and [4, 43, 53] for POPUC.

The OPUC are determined by µ with monic polynomials, Φn(z), and
orthonormal, ϕn(z). The recursion relations now have the Szegő form

Φn+1(z) = zΦn(z) − ᾱnΦ∗
n(z) (1.4)

where
Φ∗

n(z) = zn Φn(1/z̄) (1.5)

The αn ∈ D are called Verblunsky coefficients and there is a one-
one correspondence between {αn}∞n=0 ∈ D∞ and nontrivial probability
measures on ∂D.

The POPUC are defined by {αj}n−2
j=0 ∈ Dn−1 and αn−1 ∈ ∂D by (1.4).

The new element is αn−1 ∈ ∂D, not in D. OPUC have all their zeros
in D. POPUC have their zeros in ∂D and are simple, and so similar to
OPRL.

The bulk behavior of the zeros is described by defining a probability
measure, dνn, which assigns a weight 1/n to each zero of Pn in the
OPRL case or, in the POPUC case, Φn. In the OPUC case, zeros can
have multiplicity k > 1 and dνn gives such zeros a weight k/n. We
say that the density of zeros (or density of states) exists if dνn has a
weak limit, dν. It often happens that dν is the equilibrium measure for
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supp(dµ) (see [47, 41]) and even more generally that for some L1(R, dx)
function,

dν(x) = ρ(x) dx (1.6)

When one turns to fine structure, two regimes have received the most
attention—indeed, until very recently, all the attention. One is the
regime of truly random recursion parameters where the distribution
of zeros, after scaling distances by n about a point x0, is a Poisson
process. The key early papers are by Molchanov [32] and Minami [31].

The other extreme is the nice a.c. spectrum region where it is often
known that one has clock behavior

x
(n)
j+1(x0) − x

(n)
j (x0) ∼

1

nρ(x0)
(1.7)

Here the key works are Erdös–Turán [10], Freud [12], and Deift et al.
[9], and this is the main area I studied in [38, 39, 40, 21]. Freud realized
a connection of zeros and the asymptotics of the CD kernel slightly off
diagonal, so we recall the definition and some properties of the kernel.
The Christoffel–Darboux kernel is defined for x, y ∈ R by

Kn(x, y) =

n
∑

j=0

pj(x)pj(y) (1.8)

The connection to zeros depends on the CD formula

Kn(x, y) =
an+1(pn+1(x)pn(y) − pn+1(y)pn(x))

x − y
(1.9)

For a review of the CD kernel, see [44].
One aspect of CD kernel asymptotics is “classical.” It involves the

notion that the diagonal asymptotics is often given by

1

n
Kn(x, x) ∼ ρ(x)

w(x)
(1.10)

a notion associated to work of Freud and Nevai, discussed by Nevai in
[33]. This Freud–Nevai vision was realized especially in Máté–Nevai–
Totik [30] and Totik [49].

A revolution in establishing off-diagonal asymptotics came from two
remarkable papers of Lubinsky [27, 25], part of a series that also in-
cludes [22, 23, 24, 26] and several other papers. In particular, his second
approach in [25] will play a major role below.

Before leaving the subject of CD kernels, we want to recall the second
kind polynomials, qn(x), defined as follows. Let p̃n(x) be the OPRL
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associated to once-stripped Jacobi parameters, that is, to {ãn, b̃n}∞n=1

where

ãn = an+1 b̃n = bn+1 (1.11)

Then

qn(x) = a−1
1 p̃n(x) (1.12)

We will need the associated CD kernel

K(q)
n (x, y) =

n
∑

j=0

qj(x)qj(y) (1.13)

Section 2 describes “older” results, including Lubinsky’s first ap-
proach [27] to the off-diagonal CD kernel. In particular, it describes in
some detail Poisson and clock behavior. Section 3 discusses three re-
cent significant results on the Poisson, intermediate, and clock regimes.
Section 4 discusses open questions.

It is pleasure to thank Paco Marcellán and Andrei Martinez-
Finkelstein for the invitation to speak at the IWOPA’08 conference and
Bill López for the excuse he gave us for the conference (and for his many
signal contributions). I would like to thank Jonathan Breuer, Rowan
Killip, Nikolai Makarov, Andrei Martinez-Finkelshtein, Eric Ryckman,
Mihai Stoiciu, and Vilmos Totik for useful discussions.

2. The Past Is Prologue

Here we will recall some results that describe the two main types
of reasonably well-understood fine structure. We begin with Stoiciu’s
results [48] on Poisson behavior for random POPUC (recalling that
Molchanov [32] and Minami [31] were the pioneers in Poisson behavior
for OPs):

Theorem 2.1 (Stoiciu [48]). Fix R < 1. Let

Ω =

[ ∞

×
n=0

{z ∈ C | |z| ≤ R}
]

× ∂D

and let dη be the measure on Ω describing independent, identically dis-

tributed random variables, uniformly distributed on {z | |z| ≤ R} with

ω∞ independent and uniformly distributed on ∂D. For ω ∈ Ω, let

Φn(z; ω) be the POPUC with αj = ωj, j = 0, . . . , n − 2; αn−1 = ω∞.
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Then for any z0 = eiθ0 ∈ ∂D and any a1 < b1 < · · · < ak < bk fixed,

lim
n→∞

Prob

{

Φn(z; ω) has exactly mj zeros in θ ∈
[

θ0 +
2πaj

n
, θ0 +

2πbj

n

]

,

j = 1, . . . , k

}

=
k

∏

j=1

[

(bj − aj)
mj

mj!
e−(bj−aj)

]

(2.1)

Remarks. 1. What is critical is rotation invariance of the individual
distribution, not the exact form.

2. For related results on the zeros of the OPUC in this case, see
Davies–Simon [8].

Two things are critical in this proof:
(a) Exponential localization of the eigenstates, which implies asymp-

totic independence of zeros produced by subboxes.
(b) An estimate that assures the probability of two zeros in an interval

of size 2πε/n is o(ε).

The best results on clock spacing for OPRL with spectrum [−2, 2] is

Theorem 2.2 (Lubinsky [27, 22]). Let dµ be a measure supported on

[−2, 2] which is regular. Let [a, b] be an interval in [−2, 2] so that on

[a, b],

dµ(x) = w(x) dx (2.2)

with w continuous and strictly positive. Define x
(n)
j (x0) by (1.2). Then

for any x0 ∈ (a, b),

n(x
(n)
j+1(x0) − x

(n)
j (x0)) →

1

ρ(x0)
(2.3)

where ρ(x0) is given by (1.6).

Remarks. 1. Regularity here means (a1 . . . an)1/n → 1; see [47, 41].

2. (2.3) is called clock behavior.

3. It is known [11, 27, 45, 51] that the three conditions: w(x) con-
tinuous and nonvanishing and dµs = 0, can be replaced by the three
conditions of local Szegő condition, x0 being a Lebesgue point for w,
and limk→∞ kµs(x0 − 1

k
, x0 + 1

k
) = 0. Also, supp(dµ) = [−2, 2] can be

replaced by an essential support requirement.

Lubinsky’s approach is related to proving universality. Let Kn be
the CD kernel given by (1.8). Universality at x0 says (uniformly in
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|a| < A, |b| < A for each A < ∞)

lim
n→∞

Kn(x0 + a
n

, x0 + b
n
)

Kn(x0, x0)
=

sin(πρ(x0)(b − a))

πρ(x0)(b − a)
(2.4)

Since sin(π(c−d)) = 0 ⇔ c−d ∈ Z and the CD formula, (1.9), says that
if pn(x1) = 0, then pn(x2) = 0 for x2 6= x1 if and only if Kn(x1, x2) = 0,
(2.4) should be connected to clock spacing. Indeed,

Theorem 2.3 (Freud–Levin Theorem). Universality, (2.4), at x0 im-

plies clock spacing, (2.3).

Remarks. 1. This result is implicit in Freud [12] who proved univer-
sality for sufficiently nice measures on [−2, 2]. It was rediscovered by
Levin and reported in Levin–Lubinsky [22].

2. Under some additional growth assumptions on Kn, clock spacing
implies universality; see, for example, [23].

The same argument relates two weaker sets of notions. The striking
thing about clock behavior is equal spacing, which is independent of
the spacing multiplied by n having a limit. We say quasi-clock behavior

holds at x0 if for any fixed j ∈ Z as n → ∞,

x
(n)
j+1(x0) − x

(n)
j (x0)

x
(n)
1 (x0) − x

(n)
0 (x0)

→ 1 (2.5)

Define

ρn(x0) =
1

n
w(x0)Kn(x0, x0) (2.6)

We say weak universality holds if

Kn(x0 + a
nρn

, x0 + b
nρn

)

Kn(x0, x0)
→ sin(π(b − a))

π(b − a)
(2.7)

Theorem 2.4 (Weak Freud–Levin). Weak universality at x0 implies

quasi-clock behavior at x0.

If

ρn(x0) → ρ(x0) (2.8)

then weak universality implies universality. This links up fine structure
to the Freud–Nevai vision discussed in Section 1.

Lubinsky proved Theorem 2.2 by using a model measure for which
universality holds, and then used a clever comparison argument. He
used Legendre polynomials as his model, but the calculations are more
explicit and easier for Chebyshev polynomials of either the first or
second kind.
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Lubinsky’s result was extended to general compact subsets, e, of R

by Findley [11], Simon [45], and Totik [51]. Findley and Totik use the
method of polynomial mappings and approximation [49, 50]. Simon
uses approximation and Jost functions for the isospectral torus as a
model.

One important aspect of the second approach of Lubinsky [25], dis-
cussed in the next section, is that it goes beyond the need for a model
to compare to.

3. The Present: Three Breakthroughs

We want to focus on three recent major results that deal with three
different regimes of zeros:
(1) The result of Combes, Germinet, and Klein [7] on Poisson statistics

for multidimensional Schrödinger operators.
(2) The results of Killip and Stoiciu [15] on decaying random models.
(3) The new approach of Lubinsky [25] and the associated work of

Avila, Last, and Simon [2] on clock spacing.

We will say very little about (1) since it is peripheral to our concerns
here and a lot about (3) since it was the content of my talk at the
conference for which this is the proceedings.

The bulk of this review concerns OPs which arise from one-
dimensional difference equations. Combes–Germinet–Klein [7] study
the continuum differential Schrödinger operator, −∆ + V , in higher
dimension. While the initial results on Poisson statistics [32] were on
continuum models, they were definitely one-dimensional. Minami [31]
could handle arbitrary dimensions, but his models were discrete. In
part, he had one key result (the Minami lemma) that seemed to be re-
stricted to rank one perturbations. Extending and understanding this
(done by Bellissard–Hislop–Stolz [3], Combes–Germinet–Klein [6], and
Graf–Vaghi [13]) was a first step—but even with it, the full argument
in [7] is a subtle piece of work that settles a problem that has been
open for more than fifteen years.

Killip–Stoiciu [15] discuss POPUC with random decaying Verblun-
sky coefficients. They require rotation invariance, so to simplify expo-
sition, we will suppose the distributions are over suitable disks. Thus,
we suppose An(ω) are iidrv with individual distribution uniform over
the disk of radius 1

2
. c0, c1, . . . will be a sequence with 0 < cj ≤ 1 and

we take

αn(ω) = cnAn(ω) (3.1)

For background, we recall the following from [37]:
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Theorem 3.1. Let αn obey (3.1) where cn < 1 and for some N0 and

n > N0, 0 < γ < 1,
cn = kn−γ

Then, with dµω the measure with Verblunsky coefficients αn(ω),
(i) If γ > 1

2
for a.e. ω, dµω is purely absolutely continuous with

support ∂D and for Lebesgue a.e. θ, bounded transfer matrix at

z = eiθ.

(ii) If γ < 1
2
, for a.e. ω, dµω is pure point with eigenvalues dense in

∂D and eigenvectors decaying as fast as exp(−dn1−2γ).
(iii) For γ = 1

2
, if k2 > 8, for a.e. ω, dµω is dense pure point with

polynomially decaying eigenfunctions. If k2 ≤ 8, dµω is purely

singular continuous with constant Hausdorff dimension 1 − 1
8
k2.

Remarks. 1. 〈|An(ω)|2〉 = 1
8
, so the Γ of (12.7.11) of [37] for γ = 1

2
is

Γ = k√
8
.

2. Constant Hausdorff dimension, d, means µω(A) = 0 for any set of
dimension smaller than d, and µω is supported on a set of dimension
d.

Killip–Stoiciu have results on the zeros that have a similar three-part
breakdown. For POPUC, we need a phase, αn−1 ∈ ∂D, which we take
random, uniform on ∂D, and independent of αj(ω):

Theorem 3.2 (Killip–Stoiciu [15]). Under the hypotheses of Theo-

rem 3.1,

(i) For γ > 1
2
, for a.e. ω and z0, the zeros of the POPUC have clock

spacing with density 2π/n in the sense that if z0 = eiθ0 and θ
(n)
j (θ0)

are defined by · · · < θ
(n)
−1 < θ0 ≤ θ

(n)
n < θ

(n)
−2 < . . . , so eiθ

(n)
j (θ0) are

all the zeros of Φ(αn)(z) near z0, then

n(θ
(n)
j+1 − θ

(n)
j ) → 2π (3.2)

as n → ∞.

(ii) For γ < 1
2
, the zeros of the POPUC are locally Poisson distributed

in the sense of Theorem 2.1.

(iii) If γ = 1
2
, the zeros asymptotically have a CβE distribution where

β =
16

k2
(3.3)

By a finite CβE (for circular beta ensemble) distribution, we mean
the measure on (∂D)n given by the density for (eiθ1 , . . . , eiθn)

N−1
β,n

∏

j<k

|θj − θk|β (3.4)
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where Nβ,n is a normalization constant. The values β = 1, 2, 4 corre-
spond to orthogonal, unitary, and symplectic ensembles, and the prop-
erties of the limit (with 1/n scaling) are understood in that there are
explicit formulae for n-point functions. For other β, the understand-
ing is much less complete. (iii) means the probabilities of zeros of the
POPUC and the points of CβE are asymptotically equal. The most
difficult part, namely (iii), relies on earlier work of Killip–Nenciu [14]
who identified the distribution of Verblunsky coefficients for CβE and
a subtle convergence argument.

Finally, we turn to describing the work of Lubinsky [25] and Avila–
Last–Simon [2]. Here is a general result in ALS:

Theorem 3.3 ([2]). Let dµ be a measure on R with compact support.

Let Σ0 be a set of positive Lebesgue measure so that

(i) For a.e. x0 ∈ Σ0, w(x0) > 0.
(ii) For a.e. x0 ∈ Σ0,

1

n + 1
Kn(x0, x0) →

ρ∞(x0)

w(x0)
> 0 (3.5)

(iii) For a.e. x0 ∈ Σ with K
(q)
n given by (1.13),

sup
n

1

n + 1
K(q)

n (x0, x0) < ∞ (3.6)

Then for a.e. x0 ∈ Σ, universality (and so, quasi-clock behavior) holds

at x0.

Remark. ρ∞ is not assumed to be the density of a density of zeros.
Rather, it is defined by (3.5), that is, condition (ii) is a statement that
the limit exists (and is finite and nonzero).

Furthermore, [2] shows the hypotheses hold in the ergodic case. Let
(Ω, dη(ω)) be a probability measure space where Ω is a compact metric.
Let T : Ω → Ω be continuous and invertible and ergodic for dη. Let
A, B be continuous functions on Ω where A has values in (0,∞) and
B in R. To each ω ∈ Ω, we define a Jacobi matrix with parameters

an(ω) = A(T n−1ω) bn(ω) = B(T n−1ω) (3.7)

A canonical example is the almost Mathieu equation where λ ∈
(0,∞) and α ∈ R\Q are fixed, Ω = ∂D, dη = dθ/2π, T (eiθ) = ei(θ+πα),
A(eiθ) ≡ 1, B(eiθ) = 2λ cos(θ) (so bn(eiθ0) = 2λ cos(παn + θ0)). This
model is known to have purely a.c. spectrum if 0 < λ < 1.
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Theorem 3.4 ([2]). For any ergodic Jacobi matrix with |Σac| > 0, for

a.e. ω ∈ Ω and a.e. x0 ∈ Σac,

lim
n→∞

w(x0)
1

n + 1
Kn(x0, x0) = ρ∞(x0) (3.8)

where ρ∞(x0) is the density of the a.c. part of the density of zeros.

Remarks. 1. Ergodicity implies the density of zeros exists. It is a result
of Kotani [18] (see Simon [35] for the discrete case) that

Σac = {x | γ(x) = 0} (3.9)

where γ is the Lyapunov exponent, and of Kotani [19] that on this set,
the a.c. part of the density of zeros, ρ∞(x), is exactly the average of
weights, w.

3. For regular measures with local Szegő conditions on the weight
(false when Σac is a Cantor set), results like (3.8) are known due to
Máté–Nevai–Totik [30] and Totik [49].

Here we want to emphasize the ideas of Lubinsky [25] that get the
kernel sin(πx)/πx. The following is essentially implicit in his paper:

Theorem 3.5. Let f(z) be an entire function obeying

(i)
∫ ∞
−∞|f(x)|2 dx ≤ 1.

(ii) f(0) = 1; |f(x)| ≤ 1 on R.

(iii) For constants C and A, |f(z)| ≤ CeA|z| for all z ∈ C.

(iv) f is real on R; all zeros of f lie on R.

(v) If . . . x−n < · · · < x−1 < 0 < x1 < · · · < xn < . . . are all the zeros

of f , then

|xj | ≥ |j| − 1 (3.10)

Then

f(z) =
sin πz

πz
(3.11)

Remarks. 1. Lubinsky uses stronger hypotheses. In this form, it ap-
pears in [2]. [2] can replace (iii) by a weaker hypothesis if (3.10) is
replaced by |xj − xk| ≥ |j − k| − 1.

The ALS proof of this result proceeds by using (iii) to get a
Hadamard factorization

f(z) = eαz
∏

j∈Z

j 6=0

(

1 − z

xj

)

ez/xj (3.12)

with α real. Thus,

|f(iy)|2 ≤
∏

j 6=0

(

1 +
y2

x2
j

)

(3.13)
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which, by (v) and the Euler formula for sinh(x) = x
∏∞

n=1(1+ x2

n2 ), leads
to

|f(iy)| ≤ Cεe
(π+ε)|y| (3.14)

Phragmén–Lindelöf, (3.14), and f bounded on R yields

|f(x + iy)| ≤ Cεe
(π+ε)|y|

Thus, by the Paley–Wiener theorem, f̂(k), the Fourier transform of
f , is supported in [−π, π]. (i), (ii), and the Schwarz inequality imply

that f̂(k) is (2π)−1/2 times the characteristic function of [−π, π]. The
Fourier transform of this characteristic function is sin(πz)/πz.

3. Lubinsky appeals to various results on the sin(z)/z kernel, but
the proofs of these results depend on Paley–Wiener as above.

Lubinsky [25] used this result to prove

Theorem 3.6 ([25]). Suppose dµ has a weight, w, and an interval, I,
so that

(i)

inf
x∈I

w(x) > 0 (3.15)

(ii) For x0 ∈ I int, we have that x0 is a Lebesgue point of dµ in that

limδ↓0(2δ)
−1

∫

|w(x)−w(x0)| dx = 0 and limδ↓0(2δ)
−1µs(x0−δ, x0+

δ) = 0.
(iii) For a real,

Km(x0 + a
n
, x0 + a

n
)

Kn(x0, x0)
→ 1 (3.16)

uniformly in |a| ≤ A for any A > 0.
Then weak universality (and so, quasi-clock behavior) holds at x0.

Remark. (3.16) is called the Lubinsky wiggle condition.

Lubinsky gets his result by fixing a ∈ R and considering limit points,
f(z), of

Kn(x0 + a
nρn

, x0 + a+z
nρn

)

Kn(x0, x0)
(3.17)

By Montel’s theorem and the a priori bound,

lim sup
n→∞

1

n

∣

∣

∣

∣

Kn

(

x0 +
w

n
, x0 +

z

n

)
∣

∣

∣

∣

≤ CeA(|z|+|w|) (3.18)

(which follows from the Schwarz inequality and the case w = z which
one gets from (3.15) and the Christoffel variational principle [44]) limit
points exist, and if all limit points are sin(πx)/πz, then the limit exists.
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Condition (i) of Theorem 3.5 follows from use of
∫

Kn(x, y)Kn(y, x) dµ(y) = Kn(x, x) (3.19)

and the use of Lebesgue points (and ρn scaling). Condition (ii) follows
from the Lubinsky wiggle condition (3.16). Condition (iii) follows from
(3.18). Condition (iv) follows from properties of the CD kernel [44].
Condition (v) follows from a clever argument of Lubinsky using the
Markov–Stieltjes inequalities [44] and the wiggle condition.

In his paper, Lubinsky could only prove the wiggle condition in sit-
uations where Totik’s methods [49, 50] hold and where Totik already
used Lubinsky’s first method ([51]). But Lubinsky expressed his belief
(vindicated by [2]) that the wiggle condition could be proven in other
cases.

In proving Theorem 3.3, [2] cannot use (3.15) and a comparison ar-
gument to get (3.18) since (3.15) is not assumed. Instead, they use a
general perturbation bound that gets exponential bounds from bound-
edness of the Cesàro averaged transfer matrix 1

n+1

∑n
j=0‖Tj(x0)‖2 (The-

orem 3 of [2]). They get the wiggle condition from the assumed exis-
tence (3.5), a use of Egoroff’s theorem, and an equicontinuity result for
Kn(x0 + a

n
, x0 + a

n
) that follows from (3.18).

To get Theorem 3.4, [2] prove the a.e. existence of the limit in
(3.8) by a use of the ergodic theorem (which is subtle since w(x0)
is ω-dependent) and separate arguments that prove the limit is ω-
independent, and then that it is ρ∞(x0).

4. The Future: Open Questions and Speculations

This section has two parts. First, we discuss questions left open in
each of the three limit regions we partially understand: Poisson, clock,
and β-distributed. Then we speculate about other singular continuous
situations.

Poisson Questions. With regard to Poisson behavior, one especially
interesting question is the following:

Question 4.1. Is it true in the Anderson case (OPRL, with
an ≡ 1 and bn independent, identically distributed random vari-
ables (iidrv) with nice density) that asymptotically as n → ∞,
for any x0 6= x1, {number of zeros of pn(x) in [x0 + a

n
, x0 + b

n
]} and

{number of zeros of pn(x0) in [x1 + c
n
, x1 + d

n
]} are independent? Here

a < b and c < d. If x0 = x1 and a < b < c < d, this independence is
part of what is known as Poisson behavior. Intuitively, independence
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of nearby O( 1
n
) boxes would seem less likely than distant boxes, and

one expects the answer to this question is yes. But it is open.

Question 4.2. Prove the analog of the Killip–Stoiciu Poisson result
for OPRL. That is, if an ≡ 1 and bn = cnAn(ω) where An are iid, say
uniformly distributed on [−1, 1], and cn = kn−γ for γ < 1

2
, then zeros

are locally Poisson distributed. We do not expect this to be hard.

Question 4.3. What is the fine structure of the eigenvalues of the
Anderson model near the edges of the spectrum? This is not here
because we necessarily expect the answer to have anything to do with
Poisson, but because this subsection is really on situations where one
has eigenfunctions decaying at least as fast as exp(−nα) for some α > 0.
This question is asking for refinements of Lifschitz tails (see [16] for
a discussion of Lifschitz tails). The basic questions are how big an
interval at the top of the spectrum do you need to get O(1) for the
expected number of zeros, and what are their statistics.

Question 4.4. Poisson behavior is a statement about probabilities.
Since probabilities on O( 1

n
) are not constant, on that scale there is not

almost sure behavior, but there may be almost sure behavior on larger
scales. For example, one might expect almost surely on a (1/

√
n) scale

that the fraction of neighboring pairs of eigenvalues with separations
in [0, c

n
] is given by the expected number in the Poisson process. What

can be said about such almost sure behavior?

Clock Questions. The most interesting open question is a conjecture of
[2].

Question 4.5. Prove the following conjecture of Avila, Last, and Si-
mon [2]: Consider a probability measure of compact support given
by (1.1). For Lebesgue a.e. x in {x | w(x) > 0}, one has quasi-
clock behavior. [41] has an example where supp(dµ) = [−2, 2],
{x | w(x) > 0} = [−2, 0], dµ has dense mass points in [0, 2], and
the density of zeros does not exist. Indeed, both the equilibrium mea-
sures for [−2, 0] and [−2, 2] are limit points of the density of zeros.
Thus, clock behavior does not hold (and ρn(x) does not have a limit).
But weak universality can hold—and I believe it does. I suspect that
any proof for this special case will allow a treatment of the general
conjecture.

Question 4.6. What can be said about edge behavior in the a.c. er-
godic case? Consider first the deterministic case in a single interval.
Suppose a, b ∈ supp(dµ) but (a, b) is disjoint from this support. One
cannot have clock behavior at a since (a, b) has at most one eigenvalue.
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For the edge of measures on [−1, 1] with Jacobi weight asymptotics at
an edge, Lubinsky [24, 26] has proven Bessel kernel behavior rather
than sin kernel. It is reasonable to guess that unlike bulk behavior
which is universal across the a.c. ergodic case, edge behavior is not. In
particular, for the almost Mathieu equation at 0 < |λ| < 1, I would
guess that if α has good Diophantine properties, the edge behavior
is the same as for Chebyshev of the first kind (i.e., the whole-line
free Jacobi matrix). But if α is a Liouville number, the behavior is
different—most likely different on different scales.

Question 4.7. Prove the OPRL analog of the Killip–Stoiciu [15] result
in the a.c. region, namely if an ≡ 1, bn = cnAn(w), where An are as
in Question 4.2, with cn = kn−γ and 1 ≥ γ > 1

2
, then one has clock

behavior for a.e. ω. Given prior work on this case ([17]), this should
be straightforward. The result for γ > 1 follows from [21].

β-distribution Questions. With regard to β-distributions, we pose the
analog of Questions 4.2 and 4.7, namely

Question 4.8. Determine the asymptotic local zero distribution of
OPRL with an ≡ 1, bn = cnAn(w), and cn = kn−1/2. Now the rate of
polynomial decay of eigenfunctions and local Hausdorff dimension [17]
is a function of both k and x. Presumably that is true of the β in the
β-distribution. We have no good tools for identifying β-distributions
directly ([15] use the known Verblunsky coefficients of Haar measure),
so this seems difficult.

Speculations on Singular Spectrum. Singular spectrum is like Tol-
stoy’s remark on dysfunctional families—singular spectrum is unusual
in many ways, but that’s precisely the point—each is unusual in its
own manner. The one example we understand, that of [15], has power
decaying eigenfunctions and spectrum (i.e., closed support of the mea-
sure) which is an interval. But there are also examples where the
support is a closed set of measure zero. Here are two examples:

Question 4.9. Let dµ be the classical Cantor measure on the mid-
dle third sets. What can be said about the an’s and about the local
structure of the zeros?

Question 4.10. Consider the almost Mathieu equation at the critical
coupling, λ = 1. It is known (see Last [20]) that for irrational frequen-
cies, the spectrum is singular continuous and of measure zero. What
can be said about the global and the local structure of the zeros?
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Let us expand on these two examples. It is known (see, e.g., Makarov
[28, 29]) that the potential theory equilibrium measure for the classical
Cantor set lives on a set of Hausdorff dimension strictly smaller than
the dimension of the Cantor set itself. Totik (private communication)
has informed me that his methods with Stahl [47] allow one to prove
that this equilibrium measure is the density of zeros measure for this
case.

Here is a bold, probably foolhardy, speculation: Perhaps in this case,
these zeros are, a.e. with respect to the equilibrium measure, quasi-
clock distributed. The spacing though, rather than O( 1

n
), is O( 1

n1/d )
where d is the dimension of the support of the equilibrium measure.

For this case, because of reflection symmetry about x = 1
2
, we have

bn ≡ 1
2
. Motivated by the finite gap case (see [52, 1, 34, 5]), I would

conjecture that the an’s are almost periodic with frequency module
determined by the harmonic measures of the subsets of the Cantor set
between two gaps.

Motivated by these aspects of the density of zeros for the Cantor
measure:

Question 4.11. Does the density of zeros for the critical almost Math-
ieu model live on a set of smaller local Hausdorff dimension than the
spectrum?

As discussed in [41], for noncritical coupling, the density of zeros is
the equilibrium measure for the spectrum and that likely persists at
critical coupling.

It seems to be at least possible that the zeros for the critical almost
Mathieu model are quasi-clock spaced but with O(n−α) (α > 1) spacing
in the bulk.
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