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Abstract. A recently established general trace formula for one-dimensional Schrödinger op-

erators is systematically studied in the context of short-range potentials, potentials which
approach different spatial asymptotes sufficiently fast, and appropriate impurity (defect) in-

teractions in one-dimensional solids. We prove the absolute summability of the trace formula

and establish its connections with scattering quantities, such as reflection coefficients, in each

case.

§1. Introduction
This paper is the third in a series on a general trace formula and its ramifications in

(inverse) spectral theory for one-dimensional Schrödinger operators started in [16] and
continued in [19]. The main theme in [16] concentrates around a general trace formula for
self-adjoint Schrödinger operators H in L2(R ) of the type

H = − d2

dx2
+ V, (1.1)

where we assume that the real-valued potential V (x) is continuous and bounded from
below. In order to gain some information on V (y), we shall compare H with the associated
self-ajoint Dirichlet operator HDy obtained from H by imposing an additional Dirichlet
boundary condition lim

ε↓0
ψ(y ± ε) = 0 at the point y ∈ R . Since the resolvent difference

[(HDy − z)−1 − (H − z)−1] is rank one (cf. (2.37)), Krein’s spectral shift function ξ(λ, y)
[25], [33] for the pair (HDy ,H) exists for all y ∈ R and a.e. λ ∈ R (with respect to Lebesgue
measure) and one obtains for all y ∈ R

Tr[f(HDy ) − f(H)] =
∫
R

dλf ′(λ)ξ(λ, y), (1.2)
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0 ≤ ξ(λ, y) ≤ 1 a.e. λ ∈ R , (1.3)

ξ(λ, y) = 0, λ < inf σ(H) (1.4)

for any f ∈ C2(R ) with (1 + λ2)f(j) ∈ L2((0,∞)), j = 1, 2 and f(λ) = (λ − z)−1,
z ∈ C\[inf σ(H),∞). (Here σ(·) denotes the spectrum.) A closer look at the rank-one
resolvent difference of HDy and H reveals the additional result that for each y ∈ R and
a.e. λ ∈ R ,

ξ(λ, y) = lim
ε↓0

π−1Im{ln[G(λ + iε, y, y)]}, (1.5)

where G(z, x, x′) denotes the Green’s function of H (i.e., the integral kernel of (H −
z)−1). The main results proven in [16], [19] then revolve around the following general
trace formula.

Theorem 1.1. [16,19] Let V be a measurable function on R satisfying

(i) sup
n∈N

n+1∫
n

dx|V−(x)| < ∞,

(ii)
n+1∫
n

dx|V+(x)| < ∞ for all n ∈ N ,

where V±(x) = [|V (x)| ± V (x)]/2 and suppose Eo ≤ inf σ(H). If x is a point of Lebesgue
continuity for V , then

V (x) = Eo + lim
ε↓0

∞∫
Eo

dλe−ελ[1 − 2ξ(λ, x)]. (1.6)

The proof of (1.6) combines (1.2) for f(λ) = e−ελ, ε > 0 with path integral arguments
to control the trace of the heat kernel difference as ε ↓ 0.

In the particularly simple case V (x) ≡ 0, G(λ, x, x) = i/λ1/2, Im(λ1/2) ≥ 0 for λ ≥ 0

and hence ξ(λ, x) =
{

1/2, λ > 0
0, λ < 0

. Further explicit examples can be found in Remark 2.5

in the context of reflectionless (N -soliton) potentials and in (4.18)–(4.20) in connection
with periodic potentials. In fact, historically, after the pioneering work by Gel’fand and
Levitan [12] on regularized traces for Schrödinger operators on a compact interval, the trace
formula (4.19) for periodic (and certain classes of almost periodic) potentials was one of
the two previously systematically studied trace formulae of the type (1.6) for Schrödinger
operators on the whole real line (see, e.g., [8], [11], [22], [30], [34] and more recently [5],
[24], [27], [28]). The other case studied in detail by Deift and Trubowitz [7] in 1979 was
concerned with short-range potentials V (x) decaying sufficiently fast as |x| → ∞ under
the assumption that H = − d2

dx2 + V has no eigenvalues. They proved that

V (x) =
2i
π

∞∫
−∞

dk k ln
[
1 + R(k)

f+(k, x)
f−(k, x)

]
(1.7)
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(where f±(k, x) are the Jost functions at energy E = k2 and R(k) is a reflection coefficient)
which is an analog of (1.6). In the special case of positive C∞-potentials of compact
support, a trace formula of the type

V (x) =

∞∫
0

dλ[1 − 2ξ(λ, x)], x ∈ R (1.8)

has recently been established by Venakides [35]. However, the equivalence of (1.7) and
(1.8) was not established in [35]. Moreover, ξ(λ, x) was not identified as Krein’s spectral
shift function for the pair (HDx ,H) and also the connection (1.5) between ξ(λ, x) and the
Green’s function of H was not made.

The analog of the trace formula (1.6) and the associated formalism for second-order
finite-difference (Jacobi) operators, a summability result for operators H with purely dis-
crete spectrum along with a powerful new characterization of the absolutely continuous
spectrum σac(H) of H as

σac(H) = {λ ∈ R | 0 < ξ(λ, x) < 1} ess
(1.9)

for each fixed x ∈ R and some of its applications to the almost Mathieu equation or
Harper’s model (here —ess denotes the essential closure) are presented in the first paper
[16] of our series.

The case of general self-adjoint boundary conditions of the type ψ′(x) + βψ(x) = 0,
β ∈ R ∪ {∞} together with trace formulas for all higher-order KdV invariants (expressed
as differential polynomials in V ) are studied in detail in the second paper [19] of our series.

In the present third paper of our series, we shall give a systematic study of short-range
perturbations in which the regularization (Abelian limit) ε ↓ 0 in (1.6) can be removed and
prove the absolute summability of the trace formula (1.6). Specifically, we shall study the
following three situations:

(i) Sufficiently short-range potentials with certain regularity properties (typically, V ∈
H2,1(R ), see (2.1)) in §2.

(ii) Potentials which tend to different asymptotes as x → ±∞ sufficiently fast in §3.
(iii) Impurity (defect) scattering in connection with potentials of the type V = V o+W ,

where V o(x + a) = V o(x) for some a > 0 represents the periodic background and
the short-range perturbation W models impurities (defects) in a one-dimensional
crystal, are treated in §4.

In each of these three situations, we establish the connection between ξ(λ, x) and ap-
propriate scattering quantities, such as reflection coefficients and Jost functions, and prove
the absolute summability of the trace formula (1.6),

∞∫
R

dλ|1 − 2ξ(λ, x)| < ∞, R ∈ R (1.10)

removing the Abelian limit ε ↓ 0 in (1.6).
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It should be pointed out at this occasion that the Abelian limit ε ↓ 0 in (1.6) cannot
be removed in general if V (x) → ∞ as x → ∞ or x → −∞ irrespective of the regularity
properties of V (x). This is particularly plain in the case where V (x) → ∞ as x → ±∞
since then for each x ∈ R , |1 − 2ξ(λ, x)| = 1 for a.e. λ ∈ R . But even if V (x) tends to a
constant sufficiently fast as x → −∞ and V (x) -→

x→∞∞, explicit examples (such as, e.g.,

V (x) = ex) in [26] show that [1 − 2ξ(., x)] /∈ L1((R,∞); dλ), R, x ∈ R . In these situations,
the Abelian limit ε ↓ 0 in (1.6) represents a genuine summability method.

The fourth paper [17] in our series is devoted to various multidimensional trace formulas
in terms of heat kernel asymptotics. A brief announcement of our results appeared in [18],
expository accounts of this circle of ideas can be found in [14], [33]. Papers exploring
several new solutions of inverse spectral problems are in preparation.

§2. Short-range Potentials
In this section we illustrate the trace formula (1.6) in the particular case of short-range

potentials satisfying
V ∈ H2,1(R ), V real-valued. (2.1)

Here Hm,p(R ), m, p ∈ N denotes the usual Sobolev space whose elements have up to m
distributional derivatives in Lp(R ). The regularity condition on V in (2.1) is essential in
connection with our main result in Theorem 2.3, the removal of a regularization procedure
(Abelian limit) in our trace formula (1.6) (cf. (2.39)–(2.41)).

The associated self-adjoint Schrödinger operator H in L2(R ) is then defined by

H = − d2

dx2
+ V, D(H) = H2,2(R ) (2.2)

and the spectrum σ(H) of H is of the type

σ(H) = σd(H) ∪ [0,∞), σess(H) = [0,∞). (2.3)

Here σess(H) is the essential spectrum of H and the discrete spectrum σd(H) of H is a
bounded subset of (−∞, 0) which may be empty, finite, or countably infinite. We denote
the latter by

σd(H) = {ej}j∈J , ej < ej+1 , (2.4)

where

J =




∅
{0, 1, 2, . . . , N}
N 0 = N ∪ {0}

(2.5)

is an appropriate index set. For later purposes we will also need the notation

J+ =




∅
{1, 2, . . . , N,N + 1} , eN+1 = 0
N

(2.6)
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depending on whether J is empty, finite, or infinite. We also remark that each eigenvalue
of H is simple, H has no eigenvalues embedded into (0,∞), and the spectrum of H in
(0,∞) is purely absolutely continuous and of uniform multiplicity two under hypothesis
(2.1). It should perhaps be noted that the weak falloff condition on V (x) as |x| → ∞ in
(2.1), in principle, admits situations where zero is a (necessarily simple) eigenvalue of H
though these cases can easily be excluded by adding the assumption V ∈ L1(R ; (1+ |x|)dx)
in (2.1). For details in connection with these spectral properties of H, see, for example,
[4], [6], [7], [13], and the references therein.

In addition to H we also need to introduce the closely associated self-adjoint Dirichlet
operator HDy in L2(R ) defined by

HDy = − d2

dx2
+ V, D(HDy ) =

{
g ∈ H1,2(R ) ∩H2,2(R\{y}) | g(y) = 0

}
, y ∈ R . (2.7)

The spectrum of HDy is then given by

σ(HDy ) = σd(HDy ) ∪ [0,∞), σess(HDy ) = [0,∞), (2.8)

where
σd(HDy ) = {µj(y)}j∈J+ ∩ (e0, 0),

e0 < µ1(y) ≤ e1, ej−1 ≤ µj(y) ≤ ej , j ∈ J+\{1}. (2.9)

(In the special case where J+ = {1, 2, . . . , N + 1} is finite and µN+1(y) = eN+1 = 0, our
notation in (2.9) indicates that µN+1(y) = 0 is not a discrete Dirichlet eigenvalue though
it may be a (non-isolated) eigenvalue of HDy due to our weak falloff conditions on V as
|x| → ∞.) In particular,

HDy ≥ H. (2.10)

Since the resolvent of HDy is a rank-one perturbation of that of H (see (2.37)) and

HDy = HD−,y ⊕HD+,y, (2.11)

where HD±,y denote the corresponding half-line Dirichlet operators in L2((y,±∞)), the
spectrum of HDy in (0,∞) is purely absolutely continuous and of uniform multiplicity two.
The discrete spectrum σd(HDy ) however, in contrast to that of H, is not necessarily simple.
More precisely, µj(y) is a simple eigenvalue of HDy if and only if ej−1 < µj(y) < ej . In this
case, µj(y) is a (simple) eigenvalue of either HD−,y or HD+,y, but not of both. Whenever
µj(y) ∈ {ej−1, ej} (possibly excluding the case µN+1(y) = 0 as explained after (2.9)), the
multiplicity of µj(y) is two and µj(y) is a (simple) eigenvalue of both HD−,y and HD+,y.

As a final preparation for the main results of this section, we briefly recall a few basic
formulas in connection with scattering theory for the pair (H,Ho), where Ho = − d2

dx2 ,
D(Ho) = H2,2(R ). Details can be found, for example, in [2]–[4], [7], [13], [28], Ch. 6, [29],
Sect. 3.5, and the references therein. The Jost solutions f±(z, x) of H are defined by

f±(z, x) = e±iz
1/2x −

±∞∫
x

dx′z−1/2 sin[z1/2(x− x′)]V (x′)f±(z, x′),

z ∈ C\{0}, Im(z1/2) ≥ 0, x ∈ R

(2.12)
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such that
Hf±(z, x) = zf±(z, x), z ∈ C\{0} (2.13)

in the distributional sense. The unitary scattering matrix S(λ), λ > 0 in C 2 associated with
the pair (H,Ho) then explicitly reads in terms of transmission and reflection coefficients
from left and right incidence

S(λ) =
(

T (λ) Rr(λ)
R�(λ) T (λ)

)
, λ > 0, (2.14)

where

T (λ) =
2iλ1/2

W (f−(λ), f+(λ))
=


1 − 1

2iλ1/2

∫
R

dxV (x)e±iλ
1/2xf∓(λ, x)




−1

, (2.15)

R�(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

=
T (λ)

2iλ1/2

∫
R

dxV (x)eiλ
1/2xf+(λ, x), (2.16)

Rr(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

=
T (λ)

2iλ1/2

∫
R

dxV (x)e−iλ
1/2xf−(λ, x), (2.17)

where
f±(λ, x) = lim

ε↓0
f±(λ + iε, x), λ > 0 (2.18)

and W (f, g)(x) = f(x)g′(x) − f ′(x)g(x) denotes the Wronskian of f and g. In addition,
we recall that

T (λ)f±(λ, x) = R
�
r(λ)f∓(λ, x) + f∓(λ, x), λ > 0 (2.19)

and that the Green’s function of H (the integral kernel of (H − z)−1) is given by

G(z, x, x′) =
f+(z, x)f−(z, x′)
W (f+(z), f−(z))

, x′ ≤ x, z ∈ C\{0}, Im(z1/2) ≥ 0. (2.20)

Specializing to x = x′, G(z, x, x) is well known to be a Herglotz function in z ∈ C+ =
{z ∈ C | Im(z) > 0} for all x ∈ R , that is, G(z, x, x) is analytic in C+ and

Im[G(z, x, x)] > 0, G(z, x, x) = G(z̄, x, x), z ∈ C+, x ∈ R . (2.21)

As a consequence (see, e.g., [1] or, for a different approach, [16], [33]) G(z, x, x) admits the
exponential representation

G(z, x, x) = exp


c +

∫
R

[
1

λ− z
− λ

1 + λ2

]
ξ(λ, x)dλ


 , z ∈ C+, x ∈ R , (2.22)
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where
c ∈ R , 0 ≤ ξ(λ, x) ≤ 1 for a.e. λ ∈ R . (2.23)

Fatou’s lemma then implies that

ξ(λ, x) = lim
ε↓0

π−1Im{ln[G(λ + iε, x, x)]} (2.24)

exists for all x ∈ R and a.e. λ ∈ R . The normalization

ξ(λ, x) = 0, λ < Eo = inf σ(H) (2.25)

is then consistent with (2.23), (2.10) and the fact that

G(λ + i0, x, x) > 0, λ < Eo. (2.26)

As pointed out in Theorem 1.1 of the introduction, the general trace formula for V ∈ C(R ),
V bounded from below, proven in [16] then reads

V (x) = Eo + lim
ε↓0

∞∫
Eo

dλe−ελ[1 − 2ξ(λ, x)], x ∈ R . (2.27)

Before we discuss how to remove the Abelian limit in (2.27) in the present short-range
case, it should be pointed out that ξ(λ, x) is Krein’s spectral shift function [25] for the
pair (HDx ,H). In particular, for λ ∈ σac(H)o (Ao denotes the interior of a subset A ⊂ R ),
ξ(λ, x) is essentially the scattering phase shift for the pair (HDx ,H) since one verifies that

det
[
S(λ,HDx ,H)

]
=

G(λ + i0, x, x)
G(λ + i0, x, x)

= e−2πiξ(λ,x), λ ∈ σac(H)o, (2.28)

where S(λ,HDx ,H) denotes the unitary scattering matrix in C 2 for the pair (HDx ,H).
We start our analysis with the following lemma.

Lemma 2.1. Suppose V ∈ H2,1(R ) is real-valued. Then for all x ∈ R ,

ξ(λ, x) = 0, λ < Eo = inf σ(H), (2.29)

ξ(λ, x) =
1
2

+ π−1Im
{

ln
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]}

, λ > 0. (2.30)

In particular, ξ(λ, x) is continuous for λ > 0. Moreover,

|1 − 2ξ(λ, x)| ≤ |Rr(�)(λ)|, λ > 0 (2.31)

and
[1 − 2ξ(λ, x)] =

λ→∞
o(λ−3/2) (2.32)
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uniformly with respect to x ∈ R . In addition,

ξ(λ, x) =
{

0, if λ < e0 or if µj(x) < λ < ej

1, if ej−1 < λ
if µj(x) ∈ (ej−1 , ej),

(2.33)

ξ(λ, x) =
{

0, if ej−1 < λ < ej and µj(x) = ej

1, if ej−1 < λ < ej and µj(x) = ej−1

(2.34)

whenever σd(H) �= ∅.
Proof. Equation (2.30) follows from (2.24) and

G(λ + i0, x, x) = − T (λ)
2iλ1/2

f+(λ, x)f−(λ, x)

= (i/2λ1/2)|f±(λ, x)|2
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]
, λ > 0

(2.35)

which in turn is implied by (2.15), (2.18)–(2.20). Continuity of ξ(λ, x) for λ > 0 follows
from the fact that G(λ + i0, x, x) is continuous and zero-free for λ ∈ (0,∞). Inequality
(2.31) follows from (2.30) and an elementary geometrical argument. (In fact, | arg(1 +
Reiϕ)| ≤ arcsin(|R|) ≤ π/2 for |R| ≤ 1, ϕ ∈ R and sin(x) ≥ 2x/π for 0 ≤ x ≤ π/2 imply
| arg(1 + Reiϕ)| ≤ π|R|/2.) Relation (2.32) is then implied by (2.31) and

Rr(�)(λ) =
λ→∞

o(λ−3/2) (2.36)

which is a consequence of (2.15)–(2.17) and two integrations by parts applying the
Riemann-Lebesgue lemma. Relation (2.33) directly follows from (2.24) and the fact that
G(z, x, x) is real-valued for z < 0 with zeros precisely at the Dirichlet eigenvalues µj(x) of
HDx since

(HDx − z)−1 = (H − z)−1 −G(z, x, x)−1(G(z, x, .), .)G(z, ., x), z ∈ C\{σ(HDx ) ∪ σ(H)}.
(2.37)

Here (., .) denotes the scalar product in L2(R ). Relation (2.34) then follows from (2.33)
by a continuity argument.

Remark 2.2. (i) Inequality (2.31) holds for any real-valued potential satisfying V ∈ L1(R )
and hence

[1 − 2ξ(., x)] ∈ L1((0,∞); dλ) if Rr(�) ∈ L1((0,∞); dλ). (2.38)

In particular,Rr(�) ∈ L1((0,∞); dλ) together with (2.31) are all that’s needed to remove the
Abelian limit in (2.27) (see Theorem 2.3). We also note that (2.36) (and hence (2.32)) holds
if V ′ is merely piecewise absolutely continuous admitting finitely-many jump discontinuities
(i.e., there exists a finite partition of R ,−∞ = x0 < x1 < · · · < xM < xM+1 = ∞ such
that V ′ is (locally) absolutely continuous on each interval (xm, xm+1), 0 ≤ m ≤ M).

(ii) Obviously, (2.33) and (2.34), in contrast to (2.30), are generally valid in spectral
gaps of H and by no means linked to the short-range nature of V subject to (2.1). In
particular, (2.33) is a general property of Krein’s spectral function as long as ej and µj(x)
are simple eigenvalues of H and HDx , respectively.

Given Lemma 2.1, we can now remove the Abelian limit ε ↓ 0 in the trace formula
(2.27) for V (x) and state the principal result of this section. (We recall our notational
conventions in (2.4)–(2.6), (2.8), (2.9), and the paragraph following (2.9).)
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Theorem 2.3. Suppose V ∈ H2,1(R ) is real-valued and denote Eo = inf σ(H). Then
[1 − 2ξ(., x)] ∈ L1((Eo,∞); dλ), x ∈ R and

V (x) = Eo +

∞∫
Eo

dλ[1 − 2ξ(λ, x)] (2.39)

= 2{e0 +
∑
j∈J+

[ej − µj(x)]} +

∞∫
0

dλ[1 − 2ξ(λ, x)] (2.40)

= 2{e0 +
∑
j∈J+

[ej − µj(x)]} − (2/π)

∞∫
0

dλ Im
{

ln
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]}

, x ∈ R .
(2.41)

If σd(H) = ∅, the discrete spectrum part 2{. . . } in (2.40) and (2.41) is to be deleted.

Proof. The trace formula (2.39) follows from (2.27), (2.31), and (2.32) applying the
Lebesgue dominated convergence theorem. Equalities (2.40) and (2.41) are then obvious
from (2.39), (2.30), (2.33), and (2.34).

Remark 2.4. Formula (2.41), in the special case σd(H) = ∅, is due to Deift and Trubowitz
[7]. Formula (2.39), on the other hand, again in the special case σp(H) = ∅ (more precisly,
for 0 ≤ V ∈ C∞

0 (R )), appeared in a paper by Venakides [35]. However, the connection
(2.24) between ξ(λ, x) and the Green’s function G(z, x, x) of H, and hence the connection
between (2.39) and the earlier result (2.41) in [7], was not established in [35]. Moreover,
ξ(λ, x) was not identified as Krein’s spectral shift function for the pair (HDx ,H) in [35].

Remark 2.5. It seems worthwhile to point out the particularly simple step function-like
structure of ξ(λ, x) in connection with reflectionless potentials characterized by Rr(�)(λ) ≡
0, λ > 0. In this case ξ(λ, x) is given by (2.33), (2.34) for λ < 0 and by

ξ(λ, x) =
1
2
, λ > 0 (2.42)

on the (interior of the) absolutely continuous spectrum of H. This applies, in particular,
to all N -soliton potentials (including V ≡ 0) and to a class of ∞-soliton potentials (having
infinitely-many negative eigenvalues accumulating at zero) introduced in [20], [21].

We conclude this section with a few remarks on the low-energy behavior of ξ(λ, x) as
λ ↓ 0. Assuming, in addition to (2.1), that V satisfies

V ∈ L1(R ; (1 + x2)dx), (2.43)

we need to consider the following case distinctions:

Case I. W (f−(0), f+(0)) �= 0 and f−(0, x)f+(0, x) �= 0.

(The first requirement can be expressed as
∫
R

dxV (x)f±(0, x) �= 0 and is equivalent to the

fact that H has no threshold resonance; see, e.g. [2], [3]. The second requirement says
lim
x′→x

µN+1(x′) �= 0.) Then

Rr(�)(λ) =
λ↓0

−1 + O(λ1/2), (2.44)
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T (λ) =
λ↓0

−2iλ1/2∫
R

dx′V (x′)f∓(0, x′)
[1 + O(λ1/2)], (2.45)

G(λ + i0, x, x) =
λ↓0

−f+(0, x)f−(0, x)∫
R

dx′V (x′)f±(0, x′)
+ O(λ1/2) (2.46)

and hence
ξ(λ, x) = π−1 arg[G(λ + i0, x, x)] =

λ↓0
O(λ1/2) in case I (2.47)

since f±(0, x) are real-valued.

Case II. W (f−(0), f+(0)) = 0 and f−(0, x)f+(0, x) �= 0.

(The first requirement can be written as
∫
R

dxV (x)f±(0, x) = 0 and is equivalent to the

fact that H has a threshold resonance, see, e.g., [2], [3].) Then [2], [3]

R
r
�(λ) =

λ↓0
∓ 2c1c2
|c1|2 + |c2|2 + O(λ1/2), (2.48)

T (λ) =
λ↓0

|c1|2 − |c2|2
|c1|2 + |c2|2 + O(λ1/2), (2.49)

with |c1| �= |c2| and hence Rr(�)(0) �= −1. Thus

G(λ + i0, x, x) =
λ↓0

(i/2λ1/2)|f±(0, x)|2 [1 + R
r
�(0)] + O(1) (2.50)

and hence
ξ(λ, x) = π−1 arg[G(λ + i0, x, x)] =

λ↓0
1
2

+ O(λ1/2) in case II. (2.51)

We emphasize that V ≡ 0 and more generally, all N -soliton potentials VN mentioned in
Remark 2.5 have a zero-energy resonance and hence belong to case II.

The case where f−(0, x)f+(0, x) = 0 can be dealt with analogously, but requires higher-
order computations.

§3. Cascades
As the the title of this section suggests, we shall now indicate how to extend the results

of §2 to potentials with non-trivial spatial asymptotics. More precisely, we shall assume
that V satisfies

V, V ′ ∈ ACloc(R ), V real-valued, V ′, V ′′ ∈ L1(R ),
0∫

−∞
dx|V (x)| +

∞∫
0

dx|V (x) − V+| < ∞ for some V+ > 0
(3.1)
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throughout the major part of this section. (By reflection, x → −x, it suffices to consider
V+ > 0.)

Since most of the details will be similar to those in the previous section, we shall mostly
refer to §2 for notations and basic facts and dwell only on situations markedly different in
the present context of (3.1).

Introducing H, HDy , J , J+, etc. as in §2, the absolutely continuous spectrum of H

and HDy now equals [0,∞) with uniform spectral multiplicity one on (0, V+) and two on
(V+,∞). While H has no embedded eigenvalues in (0,∞), HDy may have (countably
infinitely-many) eigenvalues in [0, V+] as briefly discussed in Remark 3.4.

Concerning the stationary scattering theory for H, one has to replace the Jost solutions
(2.12) by

f±(z, x) = e±ik±x −
±∞∫
x

dx′k−1
± sin[k±(x− x′)][V (x′) − V±]f±(z, x′),

k+(z) = (z − V+)1/2, k−(z) = z1/2, V− = 0, Im[k±(z)] ≥ 0, z ∈ C\{0, V+}, x ∈ R
(3.2)

to obtain
Hf±(z, x) = zf±(z, x), z ∈ C\{0, V+} (3.3)

in the distributional sense. The unitary scattering matrix S(λ), λ > 0 in C resp. C 2 now
reads as follows:

S(λ) = R�(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

, 0 < λ < V+ (3.4)

(note that S(λ) is unimodular in this case since f+(λ, x) is real-valued for 0 < λ < V+)
and

S(λ) =
(

T (λ) Rr(λ)
R�(λ) T (λ)

)
, λ > V+, (3.5)

where

T (λ) =
2i[k+(λ)k−(λ)]1/2

W (f−(λ), f+(λ))
, (3.6)

R�(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

, (3.7)

Rr(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

. (3.8)

Here f±(λ, x) = lim
ε↓0

f±(λ + iε, x) and the Green’s function G(z, x, x) of H now satisfies

G(λ + i0, x, x) =
f+(λ, x)f−(λ, x)
W (f+(λ), f−(λ))

= [i/2k±(λ)]|f±(λ, x)|2
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]
, λ >

{
V+

0
, x ∈ R .

(3.9)
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The above expression for G(λ + i0, x, x) involving Rr(λ) (as opposed to that involv-
ing R�(λ)) appears to be singular at λ = V+ since k+(λ)−1 = (λ − V+)−1/2 (whereas
k−(V+)−1 = V

−1/2
+ ). However, this apparent contradiction is easily resolved by observing

that Rr(λ) =
λ↓V+

−1 + o(1) (see also (3.33) for more details).

Remark 3.1. Scattering theory for potentials with different spatial asymptotics has been
studied in detail, for example, in [4], [6], [13], and we have freely used these results in
(3.2)–(3.9). That S(λ) for 0, λ < V+ is unimodular in (3.4) illustrates the fact that total
reflection occurs from left incidence in this energy regime as explored in detail in [6] (see
also [13]).

Since relations (2.20)–(2.27) are independent of the short-range nature of V , they apply
in the present case. In particular, the definition of ξ(λ, x) in (2.24) and the trace formula
(2.27) remain valid. Similarly, Lemma 2.1 extends to potentials subject to the hypothesis
(3.1) with only one minor change.

Lemma 3.2. Suppose V satisfies the conditions (3.1). Then (2.29), (2.31)–(2.34) are valid
in the present case. Equation (2.30) turns into

ξ(λ, x) =
1
2

+ π−1Im
{

ln
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]}

, λ >

{
V+

0
(3.10)

and ξ(λ, x) is continuous in λ > V+.

Proof. Except for the analog of (2.32), which follows again from

Rr(�)(λ) =
λ→∞

o(λ−3/2), (3.11)

everything else is proven as in Lemma 2.1. The actual proof of (3.11), however, is now
more cumbersome since no simple formulas such as the right-hand sides in (2.15)–(2.17)
appear to be available in the present case. Hence, we briefly sketch a different (though
straightforward) approach to (3.11) (following Lemma 2.3 in [13]). ¿From the outset it is
readily verified that

T (λ) =
λ→∞

1 + O(λ−1/2), (3.12)

Rr(�)(λ) =
λ→∞

O(λ−1/2). (3.13)

In order to improve on (3.13), using the additional smoothness conditions on V , we ex-
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plicitly compute the Wronskian of f−(λ, x) and f+(λ, x) (for simplicity, at x = 0).

W (f−(λ), f+(λ))(0) = i(k+ − k−) −
∞∫
0

dx cos(k+x)[V (x) − V+]f+(λ, x)

−
0∫

−∞
dx cos(k−x)V (x)f−(λ, x) − (ik+/k−)

0∫
−∞

dx sin(k−x)V (x)f−(λ, x)

−(ik−/k+)

∞∫
0

dx sin(k+x)[V (x) − V+]f+(λ, x)

+k−1
−

0∫
−∞

dx sin(k−x/V (x)f−(λ, x)

∞∫
0

dx′ cos(k+x
′)[V (x′) − V+]f+(λ, x′)

−k−1
+

0∫
−∞

dx cos(k−x)V (x)f−(λ, x)

∞∫
0

dx′ sin(k+x
′)[V (x′) − V+]f+(λ, x′), λ > V+.

(3.14)

Next, one observes

i[k+(λ) − k−(λ)] =
λ→∞

(−i/2λ1/2)V+ + O(λ−3/2), (3.15)

[ik±(λ)/k∓(λ)] =
λ→∞

i∓ (i/2λ)V+ + O(λ−2), (3.16)

k±(λ)−1 =
λ→∞

λ−1/2 + O(λ−3/2), (3.17)

and
|g±(λ, x)| + |g′±(λ, x)| + |g′′±(λ, x)| ≤ C, x Q 0, λ ≥ V+ + 1, (3.18)

where
g±(λ, x) = e∓ik±(λ)xf±(λ, x). (3.19)

(The estimate (3.18) immediately follows from (3.2).) Employing (3.15)–(3.19), one arrives
at

W (f−(λ), f+(λ)) =
λ→∞

o(λ−1) (3.20)

after two integrations by parts in (3.14) (and a few tears) using the Riemann-Lebesgue
lemma and

g±(λ, 0) =
λ→∞

1 ∓ (1/2iλ1/2)

±∞∫
0

dxe∓ik±x[V (x) − V±]f±(λ, x) + O(λ−1),
(3.21)

g′±(λ, 0) =
λ→∞

O(λ−1/2). (3.22)
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Combining (3.6)–(3.8), (3.12), and (3.20) then proves (3.11)

The asymptotic behavior (3.11) slightly improves Lemma 1.4 (iv) in [4] since we arrive

at the conclusion o(λ−3/2) instead of O(λ−3/2) and their extra hypothesis
0∫

−∞
dx(1 +

|x|)|V (x)| +
∞∫
0

dx(1 + |x|)|V (x) − V+| < ∞ is not needed in our proof.

Remark 2.2 and the paragraph following it clearly apply in the present context.
Lemma 3.2 enables one to again remove the Abelian limit in the trace formula (1.6) for

V (x). (We recall our notational conventions in (2.4)–(2.6), (2.8), (2.9), and the paragraph
following (2.9).)

Theorem 3.3. Suppose V, V ′ ∈ ACloc(R ), V is real-valued, V ′, V ′′ ∈ L1(R ),
0∫

−∞
dx|V (x)|

+
∞∫
0

dx|V (x) − V+| < ∞ for some V+ > 0. Let Eo = inf σ(H). Then [1 − 2ξ(., x)] ∈
L1((Eo,∞); dλ), x ∈ R and

V (x) = Eo +

∞∫
Eo

dλ[1 − 2ξ(λ, x)] (3.23)

= 2{e0 +
∑
j∈J+

[ej − µj(x)]} +

∞∫
0

dλ[1 − 2ξ(λ, x)] (3.24)

= 2{e0 +
∑
j∈J+

[ej − µj(x)]} − (2/π)

∞∫
0

dλ Im
{

ln
[
1 + R�(λ)

f−(λ, x)2

|f−(λ, x)|2
]}

, x ∈ R .
(3.25)

If σp(H) = ∅, the discrete spectrum part 2{. . . } in (3.24) and (3.25) is to be deleted.

Given Lemma 3.2, the proof of Theorem 3.3 is identical to that of Theorem 2.3.

Remark 3.4. While ξ(λ, x) is continuous in λ > V+, ξ(λ, x) may have (countably infinitely-
many) jump discontinuities of size one in [0, V+]. These discontinuities occur at those
special energies µj(x) ∈ [0, V+] which are eigenvalues of the Dirichlet operator HD+,x (the
restriction of HDx to (x,∞)). The Green’s function G(z, x, x) of H is of the type

G(z, x, x) = [m−
x (z) −m+

x (z)]−1 , (3.26)

where m±
x (z) are the Weyl m-functions associated with HD±,x in L2((x,±∞))(HDx = HD−,x⊕

HD+,x) with m−
x (z) being continuous near µj(x) while m+

x (z) has a first-order pole with a
negative residue at µj(x). Thus

G(z, x, x) =
z→µj (x)

c[z − µj(x)] + O([z − µ(x)]2), µj(x) ∈ (0, V+) (3.27)
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for some c > 0 and hence ξ(λ, x) has the jump discontinuity

lim
ε↓0

ξ(µj(x) ± ε) =
{

0
1

(3.28)

at µj(x) ∈ (0, V+). A comparison of formulas (3.10) for ξ(λ, x), λ > V− and (3.7) for R−(λ)
then shows that

1 + R�(µj(x))
f−(µj(x), x)2

|f−(µj(x), x)|2 = 0 (3.29)

since f+(µj(x), x) = 0. Clearly ξ(λ, x) is continuous in λ > 0 away from these special
energies µj(x) ∈ (0, V+].

Next, we shall briefly consider the behavior of ξ(λ, x) as λ ↓ 0 and as λ ↓ V+ (since H
changes spectral multiplicity at V+) similarly to the discussion at the end of §2. We shall
assume

0∫
−∞

dx(1 + x2)|V (x)| +

∞∫
0

dx(1 + x2)|V (x) − V+| < ∞ (3.30)

in addition to (3.1) and consider the following case distinctions depending on whether or
not H has a threshold resonance at λ = 0.

Case I. W (f−(0), f+(0)) �= 0 and f−(0, x)f+(0, x) �= 0.

Then, since f±(0, x) are real-valued, one infers

R�(λ) =
λ↓0

−1 + O(λ1/2), (3.31)

G(λ + i0, x, x) =
λ↓0

f+(0, x)f−(0, x)
W (f+(0), f−(0))

+ O(λ1/2) (3.32)

and hence
ξ(λ, x) = π−1 arg[G(λ + i0, x, x)] =

λ↓0
O(λ1/2) in case I. (3.33)

Case II. W (f−(0), f+(0)) = 0 and f−(0, x)f+(0, x) �= 0.

In this case one infers (see, e.g., Proposition 2.4 in [4] or Lemma 2.5 in [13]) that

W (f−(λ), f+(λ)) =
λ↓0

iγλ1/2 + O(λ), γ ∈ R\{0}, (3.34)

G(z + i0, x, x) =
λ↓0

(i/γ)f+(0, x)f−(0, x)[1 + O(λ1/2)]. (3.35)

Thus we get

ξ(λ, x) = π−1 arg[G(λ + i0, x, x)] =
λ↓0

1
2

+ O(λ1/2) in case II. (3.36)
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Discussion of the case λ ↓ V+ remains. Since f+(V+, x) is real-valued and W (f−(λ),
f+(λ)) �= 0 for λ > 0 (see, e.g., Lemma 1.2 in [4] or Lemma 2.1 in [13]), one infers that

Rr(λ) =
λ↓V+

−1 + O((λ − V+)1/2), (3.37)

G(λ + i0, x, x) =
λ↓V+

f+(V+, x)f−(V+, x)
W (f+(V+), f−(V+))

+ O((λ − V+)1/2), (3.38)

and hence

ξ(λ, x) =
λ↓V+

1
2

+ π−1Im
{

ln
[
1 + R�(V+)

f−(V+, x)2

|f−(V+, x)|2
]}

+ O((λ − V+)1/2). (3.39)

This serves as an illustration that ξ(λ, x) is insensitive to the fact that H changes its
spectral multiplicity at V+.

We conclude this section with a brief discussion of the case where V (x) -→
x→∞∞, that is,

we now assume

V ∈ C(R ),

0∫
−∞

dx|V (x)| < ∞, lim
x→∞V (x) = ∞. (3.40)

H is then defined as the form sum of Ho = − d2

dx2 and V in L2(R ). Then f−(z, x) can
be defined as in (3.2) (or (2.13)) and, since V (x) → ∞ as x → ∞, the Weyl m-function
associated with HD+,0 (the restriction of H to (0,∞) with a Dirichlet boundary condition
at x = 0) is meromorphic. Hence, there exists an entire function f+(z, x) satisfying

f+(z, .) ∈ L2((0,∞)), z ∈ C (3.41)

and (3.3). f+(z, x) can be chosen to be real-valued for λ ∈ R (see, e.g., [26] for further
details). H now has simple spectrum which is purely absolutely continuous on (0,∞). The
reflection coefficient from left incidence is then defined as in (3.4), that is,

R�(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

, λ > 0 (3.42)

and hence
|R�(λ)| = 1, λ > 0 (3.43)

proves total reflection from left incidence at all positive energies λ > 0. The Green’s
function G(z, x, x) of H now satisfies

G(λ + i0, x, x) =
f+(λ, x)f−(λ, x)
W (f+(λ), f−(λ))

= (i/2λ1/2)|f−(λ, x)|2
[
1 + R�(λ)

f−(λ, x)2

|f−(λ, x)|2
]
, λ > 0

(3.44)
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and one infers

ξ(λ, x) =
1
2

+ π−1Im
{

ln
[
1 + R�(λ)

f−(λ, x)2

|f−(λ, x)|2
]}

, λ > 0 (3.45)

as in (3.10). However, due to the total reflection at all positive energies λ > 0,

R�(λ) = eir(λ) �-→
λ→∞

0 (3.46)

for some real-valued function r and hence

1 − 2ξ(λ, x) �-→
λ→∞

0. (3.47)

In fact, in the explicit example V (x) = ex discussed, for instance in [26], where R�(λ) =
− exp{2i arg[Γ(1 + 2iλ1/2)]}, λ ≥ 0 (here Γ(.) denotes the gamma function), one can verify
that [1−2ξ(., x)] /∈ L1((0,∞); dλ), x ∈ R . As a consequence, the Abelian limit in the trace
formula (1.6) for V (x), in general, cannot be removed in the case (3.36) and hence (1.6)
represents a genuine summability method in this situation. As mentioned briefly in the
introduction, this becomes even more transparent in the case where V (x) -→

x→±∞∞ since

then for all x ∈ R and a.e. λ ∈ R , |1 − 2ξ(λ, x)| = 1.

§4. Hill Operators with Impurities
In our final section, we shall consider short-range perturbations W of Hill operators

Ho = d2

dx2 + V o and hence extend the results of §2 to scattering off impurities (defects) in
one-dimensional solids.

Again, most of the results in this section are valid under minimal smoothness assump-
tions on V o and W . However, since our main result in Theorem 4.3 requires a certain
regularity of V o and W , we shall avoid technicalities and suppose these regularity assump-
tions throughout this section.

We start by briefly reviewing the necessary Floquet theory associated with the periodic
background potential V o satisfying

V o ∈ H1,2([0, a]), V o real-valued, V o(x + a) = V o(x), x ∈ R (4.1)

for some a > 0. The corresponding Hill operator Ho in L2(R ) is then defined by

Ho = − d2

dx2
+ V o, D(Ho) = H2,2(R ). (4.2)

The spectrum of Ho is purely absolutely continuous of the type

σ(Ho) =
⋃
n∈N

[Eo2(n−1), E
o
2n−1], Eo0 < Eo1 ≤ Eo2 < Eo3 ≤ Eo4 < Eo5 ≤ · · · (4.3)
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with uniform multiplicity two on σ(Ho)o. (We recall that Ao denotes the interior of A ⊂ R .)
An entire fundamental system of distributional solutions of

Hoψ(z, x) = zψ(z, x) (4.4)

with respect to z is then provided by so(z, x) and co(z, x) defined as

so(z, x) = z−1/2 sin(z1/2x) +

x∫
0

dx′z−1/2 sin[z1/2(x− x′)]V o(x′)so(z, x′),

co(z, x) = cos(z1/2x) +

x∫
0

dx′z−1/2 sin[z1/2(x− x′)]V o(x′)co(z, x′), z ∈ C ,

(4.5)

W (so(z), co(z)) = −1, z ∈ C . (4.6)

The discriminant ∆(z) and Floquet parameter (Bloch momentum) θ(z) are then defined
by

∆(z) = [co(z, a) + so′(z, a)]/2, (4.7)

e±iθ(z)a = ∆(z) ∓
√

∆(z)2 − 1. (4.8)

Thus
cos[θ(z)a] = ∆(z), sin[θ(z)a] = i

√
∆(z)2 − 1 (4.9)

and the branch of
√· is chosen such that

√
∆(λ)2 − 1 > 0 for λ < Eo0 and hence

−iθ(λ) > 0, λ < Eo0 , θ(λ) ∈ R ⇐⇒ λ ∈ σ(Ho),

−iθ(λ) ∈ (0,∞) ⇐⇒ λ ∈ R\σ(Ho).
(4.10)

The Floquet solutions of Ho are defined by

fo±(z, x) = co(z, x) + so(z, x)
[
∆(z) ∓

√
∆(z)2 − 1 − co(z, a)

]
/so(z, a)

= e±iθ(z)xp±(z, x), p±(z, x + a) = p±(z, x). (4.11)

They satisfy
fo±(z, .) ∈ L2((R,±∞)), R ∈ R , z ∈ C\σ(Ho), (4.12)

fo−(λ, x) = fo+(λ, x), λ ∈ σ(Ho), (4.13)

fo±(λ, x) are real-valued for λ ∈ R\σ(Ho)o, (4.14)

W (fo−(z), fo+(z)) = −2
√

∆(z)2 − 1/so(z, a), (4.15)

W (fo∓(λ), fo∓(λ)) =
{ ±2i sin[θ(λ)a]/so(λ, a), λ ∈ σ(Ho)o

0, λ ∈ R\σ(Ho)o.
(4.16)
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For details in connection with (4.3)–(4.16), see, for example, [9], [10], [28], Sect. 7.4, [29],
Sect. 3.4, [36], [37], and the references therein.

If Ho,Dy denotes the associated Dirichlet operator in L2(R ) defined analogously to (2.7)
with spectrum

σ(Ho,Dy ) = {µon(y)}n∈N ∪ σ(Ho), σess(Ho,Dy ) = σ(Ho),

Eo2n−1 ≤ µon(y) ≤ Eo2n, n ∈ N ,
(4.17)

the trace formula (1.6) applied to V o(x) yields (see [16], [19])

V o(x) = Eo0 + lim
ε↓0

∞∫
Eo

0

dλe−ελ[1 − 2ξo(λ, x)] (4.18)

= Eo0 +
∞∑
n=1

[Eo2n−1 + Eo2n − 2µon(x)]. (4.19)

Here πξo(λ, x) denotes the argument of the Green’s function Go(z, x, x) of Ho (see (2.24)
and one explicitly obtains

ξo(λ, x) =




1, Eo2n−1 < λ < µon(x)
0, µon(x) < λ < Eo2n
1
2
, Eo2(n−1) < λ < Eo2n−1.

(4.20)

Moreover, the assumption V o ∈ H1,2([0, a]) implies the finiteness of the total gap length
(see, e.g., [23] or Theorem 1.5.2 in [29])

∞∑
n=1

∣∣Eo2n − Eo2n−1

∣∣ < ∞ (4.21)

and this has been used to infer (4.19) from (4.18) and (4.20).
Next we briefly turn to the impurity potential W assuming

W ∈ H2,1(R ), W real-valued, W ∈ L1(R ; (1 + |x|)dx). (4.22)

The total Hamiltonian H in L2(R ) is then defined by

H = − d2

dx2
+ V, D(H) = H2,2(R ), V (x) = V o(x) + W (x). (4.23)

The spectrum σ(H) of H is now of the type

σ(H) = σp(H) ∪ σ(Ho), σess(H) = σ(Ho), (4.24)
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where the point spectrum σp(H) (the set of eigenvalues) of H may be denoted by

σp(H) =
∞⋃
n=0

σp,n,

σp,0 = {e0,j}j∈J0 ⊂ (−∞, Eo0), σp,n = {en,j}j∈Jn ⊂ (Eo2n−1, E
o
2n), en,j < en,j+1,

(4.25)
with

Jn =
{ ∅

{0, 1, 2, . . . , Nn}
, n ∈ N 0 (4.26)

an appropriate index set. Similarly to §2, we shall also need the notation

J0,+ =
{ ∅

{1, 2, . . . , N0, N0 + 1} , Jn,+ =
{ ∅

{0, 1, 2, . . . , Nn, Nn + 1} , n ∈ N

e0,N0+1 = Eo0 , en,−1 = Eo2n−1, en,Nn+1 = Eo2n

(4.27)

depending on whether Jn is empty or finite. Each eigenvalue of H is simple, σp(H) ∩
σ(Ho) = ∅, and the spectrum of H in σ(Ho)o is purely absolutely continuous and of
uniform multiplicity two under hypotheses (4.1) and (4.22).

Remark 4.1. We have chosen to add the hypothesis W ∈ L1(R ; (1 + |x|)dx) from the
outset in (4.22) since it guarantees finiteness of the discrete spectrum σp,n of H in any
of its essential spectral gaps (−∞, Eo0), (Eo2n−1, E

o
2n) as proven in [31]. Moreover, it can

be shown that H has at most two eigenvalues in (Eo2n−1, E
o
2n) for n sufficiently large (i.e.,

Nn ≤ 2 for n large enough), and if
∫
R

dxW (x) �= 0 precisely one eigenvalue in (Eo2n−1, E
o
2n)

for n sufficiently large (i.e., Nn = 1 if
∫
R

dxW (x) �= 0 for n large enough), see [9], [15],

[32], [36], [37]. The following material can be developed without the assumption W ∈
L1(R ; (1 + |x|)dx) but only at the expense of introducing a considerably more involved
bulk of notations since elements of σp,n may then accumulate at Eo2n−1 and/or Eo2n.

Next we briefly introduce the associated Dirichlet operator HDy in L2(R ) defined as in
(2.7). Its spectrum is then given by

σ(HDy ) = σp(HDy ) ∪ σ(Ho), σess(HDy ) = σ(Ho), (4.28)

where

σp(HDy ) =
∞⋃
n=0

σDp,n(y), (4.29)

σDp,0(y) = {µ0,j(y)}j∈J0,+ ∩ (e0,0, Eo0),

e0,0 < µ0,1(y) ≤ e0,1, e0,j−1 ≤ µ0,j(y) ≤ e0,j , j ∈ J0,+\{1}, (4.30)

σDp,n(y) = {µn,j(y)}j∈Jn,+ ∩ (Eo2n−1, E
o
2n), n ∈ N ,

en,j−1 ≤ µn,j(y) ≤ en,j , j ∈ Jn,+, n ∈ N .
(4.31)
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(Our notation in (4.30), (4.31) indicates that the limiting cases µn,0(y) = e0,−1 = Eo2n−1,
n ∈ N , µn,Nn+1(y) = en,Nn+1 = Eo2n, n ∈ N are not Dirichlet eigenvalues since H has no
L2((y,±∞)) eigenfunctions at Eon, n ∈ N 0.) The spectrum of HDy in σ(Ho)o is purely
absolutely continuous and of uniform multiplicity two. Similarly to §2, µn,j(y) is a simple
eigenvalue of HDy if and only if en,j−1 < µn,j(y) < en,j , whereas if µn,j(y) ∈ {en,j−1, en,j},
then µn,j(y) has multiplicity two (excluding the cases µn,j(y) = Eo2n−1, E

o
2n). For details

in the context of (4.24)–(4.31) see, for example, [9], [10], [15], [31], [32], [36], [37], and the
references therein.

Impurity (defect) scattering associated with the pair (H,Ho) can then be summarized
as follows (see, e.g., [9], [10], [13], and the references therein). The Jost solutions f±(z, x)
of H are defined by

f±(z, x) = fo±(z, x) −
±∞∫
x

dx′go(z, x, x′)W (x′)f±(z, x′), z ∈ C\{Eon}n∈N0 , (4.32)

go(z, x, x′) = [fo+(z, x)fo−(z, x′) − fo+(z, x′)fo−(z, x)]/W (fo−(z), fo+(z)) (4.33)

such that
Hf±(z, x) = zf±(z, x), z ∈ C\{Eon}n∈N0 (4.34)

in the distributional sense. The unitary scattering matrix S(λ), λ ∈ σ(Ho)o in C 2 associ-
ated with the pair (H,Ho) then reads as follows

S(λ) =
(

T (λ) Rr(λ)
R�(λ) T (λ)

)
, λ ∈ σ(Ho)o, (4.35)

T (λ) =
2i sin[θ(λ)a]/so(λ, a)
W (f−(λ), f+(λ))

=


1 − so(λ, a)

2i sin[θ(λ)a]

∫
R

dxW (x)fo±(λ, x)f∓(λ, x)




−1

,

(4.36)

R�(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

=
T (λ)so(λ, a)
2i sin[θ(λ)a]

∫
R

dxW (x)fo+(λ, x), f+(λ, x), (4.37)

Rr(λ) = −W (f−(λ), f+(λ))
W (f−(λ), f+(λ))

=
T (λ)so(λ, a)
2i sin[θ(λ)a]

∫
R

dxW (x)fo−(λ, x)f−(λ, x), (4.38)

where f±(λ, x) = lim
ε↓0

f±(λ + i0, x). The Green’s function of H satisfies

G(λ + i0, x, x) =
f+(λ, x)f−(λ, x)
W (f+(λ), f−(λ))

=
iso(λ, a)

2 sin[θ(λ)a]
|f±(λ, x)|2

[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]
, λ ∈ σ(Ho)o, x ∈ R . (4.39)
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Since V = V o + W is continuous and bounded from below, relations (2.20)–(2.27), in
particular, the definition (2.24) of ξ(λ, x) and the trace formula (2.27), are valid.

In attempting to generalize Lemma 2.1, however, one is faced with the following problem.
Although

so(λ, a) =
λ→∞

λ−1/2 sin(λ1/2a) − (2λ)−1 cos(λ1/2a)

a∫
0

dxV o(x) + O(λ−3/2), (4.40)

θ(λ) =
λ→∞

λ1/2 + O(1) (4.41)

and hence
T (λ) -→

λ→∞
1, Rr(�)(λ) -→

λ→∞
0 pointwise for λ ∈ σ(Ho)o, (4.42)

that is, away from the essential spectral band edges {Eon}n∈N0 of H, the factors sin[θ(λ)a] in
the denominators of (4.36)–(4.38) prevent the convergence in (4.42) at the band edges. In
fact, as we will briefly explore at the end of this section, one generally has R�,r(Eon) =
−1 and hence a result such as R�(r)(λ) =

λ→∞
o(λ−3/2) in (2.36) is usually false in the

present impurity scattering situation. Nevertheless, by separately considering sufficiently
small compact intervals σn ⊂ σ(Ho) with Eon ∈ ∂σn and the remaining spectral band
[Eo2(n−1), E

o
2n−1]\{σ2n−1 ∪ σ2n}, a device studied in detail by Firsova [9], [10], we will be

able to prove a suitable analog of Lemma 2.1.

Lemma 4.2. Suppose V = V o + W where V o ∈ H1,2([0, a]) is real-valued, V o(x + a) =
V o(x) for some a > 0, W ∈ H2,1(R ) is real-valued, and W ∈ L1(R ; (1 + |x|)dx). Then for
all x ∈ R ,

ξ(λ, x) = 0, λ < Eo = inf σ(H), (4.43)

ξ(λ, x) =
1
2

+ π−1Im
{

ln
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]}

, λ ∈ σ(Ho), (4.44)

and ξ(λ, x) is continuous for λ ∈ σ(Ho)o. Moreover,

|1 − 2ξ(λ, x)| ≤ |Rr(�)(λ)|, λ ∈ σ(Ho)o. (4.45)

In addition, there exist compact intervals σn ⊂ σ(Ho), Eon ∈ ∂σn, n ∈ N 0 with
∑
n∈N0

|σn|
< ∞ (| · | denoting Lebesgue measure) such that

[1 − 2ξ(λ, x)] =
λ→∞

o(λ−3/2) for λ ∈ σ(Ho)\
⋃
n∈N0

σn (4.46)

uniformly with respect to x ∈ R . In addition,

Rr(�) ∈ L1(σ(Ho); dλ). (4.47)
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Finally, we note that

ξ(λ, x) =
{

0, λ < e0,0, µn,j(x) < λ < en,j

1, en,j−1 < λ < µn,j(x)
if µn,j(x) ∈ (en,j−1, en,j),

(4.48)

ξ(λ, x) =
{

0, en,j−1 < λ < en,j if µn,j(x) = en,j−1

1, en,j−1 < λ < en,j if µn,j(x) = en,j
(4.49)

whenever σp,n(H) �= ∅.
Proof. (4.43), (4.48) and (4.49) reflect the general behavior of ξ(λ, x) in spectral gaps of H
since G(z, x, x) > 0 for z < inf σ(H) and G(z, x, x) is real-valued for z in any (non-empty)
spectral gap of H. Equation (4.44) follows from (2.24) and (4.39) (we note that so(λ, a)
is real-valued for λ ∈ R and θ(λ) ∈ R for λ ∈ σ(Ho) by (4.10)). Since G(λ + i0, x, x) is
continuous and zero-free for λ ∈ σ(Ho)o, ξ(λ, x) is continuous in λ ∈ σ(Ho). Inequality
(4.45) is then clear from (4.44). For the explicit construction of the compact intervals σn
with Eon ∈ ∂σn,

∑
n∈N0

|σn| < ∞ such that

Rr(�)(λ) =
λ→∞

o(λ−1/2) for λ ∈ σ(Ho)\
⋃
n∈N0

σn, (4.50)

we refer to [9], [10]. Here we only mention that (4.50) is implied by the asymptotic relation
(4.41) and, assuming λ ∈ σ(Ho)\ ∪

n∈N0

σn, by

W (fo−(λ), fo+(λ)) =
2i sin[θ(λ)a]
so(λ, a)

=
λ→∞

2iλ1/2[1 + O(|λ|−1/8)], (4.51)

T (λ) =
λ→∞

1 + (1/2iλ1/2)


∫
R

dxW (x) + O(|λ|−1/8)


 , (4.52)

R
r
�(λ) =

λ→∞
(1/2iλ1/2)


∫
R

dxW (x)e∓2iθ(λ)x + O(|λ|−1/8)


 (4.53)

as proven in [9] (see also [10]). In particular, in order to arrive at (4.52), (4.53) one
combines (4.41), (4.51), (4.36)–(4.38), and

p±(λ, x) =
λ→∞

1 + O(|λ|−1/8), λ ∈ σ(Ho)\
⋃
n∈N0

σn, (4.54)

|f±(λ, x)| ≤ C(1 + |x|), λ ∈ σ(Ho), (4.55)

|f±(λ, x) − fo±(λ, x)| ≤ C(1 + |x|)(1 + |λ|)−1/2, λ ∈ σ(Ho). (4.56)
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Here p±(λ, x) has been introduced in (4.11), and (4.55) and (4.56) follow from (4.32),
(4.33) (see [9], [10]). Analogous relations for the first and second x-derivatives of p±(λ, x)
and f±(λ, x) then yield

Rr(�)(λ) =
λ→∞

o(λ−3/2), λ ∈ σ(Ho)\
⋃
n∈N0

σn (4.57)

after two integrations by parts in (4.37), (4.38). Together with (4.45) this proves (4.46).
Using |Rr(�)(λ)| ≤ 1, λ ∈ σ(Ho) (as a consequence of the unitarity of the scattering matrix
(4.35)), one then infers (4.47) from

∫
σ(Ho)

dλ|Rr(�)(λ)| ≤
∫

∪
n∈N0

σn

dλ +
∫

σ(Ho)\ ∪
n∈N0

σn

|o(λ−3/2)| < ∞. (4.58)

As in the previous sections, Lemma 4.2 will enable us to remove the Abelian limit in
the trace formula (2.27) for V (x) and state the principal result of this section. (We recall
our notational conventions in (4.3), (4.17), (4.25)–(4.31).)

Theorem 4.3. Suppose V = V o+W where V o ∈ H1,2([0, a]) is real-valued, V o(x+ a) =
V o(x) for some a > 0, W ∈ H2,1(R ) is real-valued, and W ∈ L1(R ; (1 + |x|)dx). Let
Eo = inf σ(H). Then [1 − 2ξ(., x)] ∈ L1((Eo,∞); dλ), x ∈ R and

V (x) = V o(x) + W (x) = Eo +

∞∫
Eo

dλ[1 − 2ξ(λ, x)] (4.59)

= {2e0,0 + 2
∑
j∈J0,+

[e0,j − µ0,j(x)] −Eo0}

+
∞∑
n=1

{Eo2n−1 + 2
∑
j∈Jn,+

[en,j − µn,j(x)] − Eo2n} +
∫

σ(Ho)

dλ[1 − 2ξ(λ, x)]
(4.60)

= {2e0,0 + 2
∑
j∈J0,+

[e0,j − µ0,j(x)] −Eo0}

+
∞∑
n=1

{Eo2n−1 + 2
∑
j∈Jn,+

[en,j − µn,j(x)] − Eo2n}

− (2/π)
∫

σ(Ho)

dλ Im
{

ln
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]}

, x ∈ R . (4.61)
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Similarly,

W (x) = 2{e0,0 +
∑
j∈J0,+

[e0,j − µ0,j(x)] − Eo0}

+ 2
∞∑
n=1

{µon(x) +
∑
j∈J0,+

[en,j − µn,j(x)] − Eo2n} +
∫

σ(Ho)

dλ[1 − 2ξ(λ, x)]
(4.62)

= 2{e0,0 +
∑
j∈J0,+

[e0,j − µ0,j(x)] − Eo0}

+ 2
∞∑
n=1

{µon(x) +
∑
j∈Jn,+

[en,j − µn,j(x)] − Eo2n}

− (2/π)
∫

σ(Ho)

dλ Im
{

ln
[
1 + R

r
�(λ)

f±(λ, x)2

|f±(λ, x)|2
]}

, x ∈ R . (4.63)

If σp,n(H) = ∅, the corresponding expression {. . . } in (4.60), (4.61) is to be replaced by
{Eo2n−1 − 2µn,0(x) + Eo2n} if n ∈ N and deleted if n = 0. Similarly, if σp,n(H) = ∅, the
corresponding expression 2{. . . }in (4.62), (4.63) is to be replaced by 2{µon(x)− µn,0(x)} if
n ∈ N and deleted if n = 0.

Proof. The trace formula (4.53) follows from (1.6), (4.45) (4.47), and the Lebesgue domi-
nated convergence theorem. Equalities (4.54) and (4.55) are then clear from (4.59), (4.44),
(4.48), and (4.49). Equations (4.62) and (4.63) are obtained by combining (4.60), (4.61)
and (4.19) observing the finite total gap length (4.21).

We note that the analog of Remark 2.2 clearly holds in the present context. Moreover,
the threshold behavior of ξ(λ, x) in (2.43)–(2.51) near λ = 0 extends to the essential spec-
tral band edges {Eon}n∈N0 of H in the current impurity scattering situation. In particular,
assuming

W ∈ L1(R ; (1 + x2)dx) (4.64)

in addition to (4.22), one again distinguishes two cases depending on whether or not H
has a threshold resonance at Eon.

Case I. W (f−(Eon), f+(Eon)) �= 0 and f−(Eon, x)f+(Eon, x) �= 0.

Then
Rr(�)(Eon) = −1 (4.65)

and
ξ(λ, x) =

λ→Eo
n

λ∈σ(Ho)

O(|λ − Eon|1/2) in case I. (4.66)
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Case II. W (f−(Eon), f+(Eon)) = 0 and f−(Eon, x)f+(Eon, x) �= 0.

Then one can show that

ξ(λ, x) =
λ→Eo

n
λ∈σ(Ho)

1
2

+ O(|λ − Eon|1/2) in case II. (4.67)
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