RANK ONE PERTURBATIONS AT INFINITE COUPLING

F. GESZTESY! AND B. SIMONZ

ABSTRACT. We discuss rank one perturbations A, = A+a(p,-)p,a ER, A >0
self-adjoint. Let duq(z) be the spectral measure defined by (¢, (Aq —2) 1) =
[ dpa(x)/(x — z). We prove there is a measure dps which is the weak limit of
(1+ a?)dua(z) as a — oo. If ¢ is cyclic for A, then A, the strong resolvent
limit of A,, is unitarily equivalent to multiplication by x on L?(R,dps.). This
generalizes results known for boundary condition dependence of Sturm-Liouville
operators on half-lines to the abstract rank one case.

§1. Introduction

This paper is a contribution to the theory of rank one perturbations which in its natural
format involves a self-adjoint operator, A > 0 in a complex separable Hilbert space H, and
a vector, ¢ € H_1(A), with H,(A) the scale of spaces associated to A. Then g, (v,n) =
(¢, ¢)(p,n) defines a quadratic form on H,1(A) with g, a form-bounded perturbation of
A with relative bound zero. Accordingly, A, = A + o, )p,a € R defines a self-adjoint
operator with Hs(As) = Hs(A) for |s] < 1.

We will suppose that ¢ is cyclic for A in which case it is easy to see that ¢ is also cyclic
for each A,. If du, is the spectral measure for ¢ associated to A,, then A, is unitarily
equivalent to multiplication by z on L?(R,du,). Define

o) = [ diate)

xr—z
R

d
/ fho () < o0
|z| + 1

R

where ¢ € H_1(A,) implies that
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so that the integral defining F' converges. One has the basic formula (with F'(2) = Fo—(2))

F(z)

Fuo(z) = TTar() (1)

We are interested here in the case @ = oco. By the monotone convergence theorem
for forms ([3,6]), we have that s-lim(A4, — 2)~! exists (the existence also follows from the
a— 00

explicit formula for (A, — 2)71, eq. (6) below) and can be described as follows. Let

H—l—l(Aoo) = {¢ € H-l—l | <¢7¢) = 0}

and H(Aw) = H+1(As). This is all of H if ¢ ¢ H and a codimension one subspace if
v € H. Let A be the self-adjoint operator on H(A ) defined by the closed quadratic
form ,n — (¢, An) on Hi1(Ax). If H(Aw) # H, extend (Ao — 2)7 ! to all of H by
setting it zero on H(Aw)t. Then s-lim(A, — 2)7! = (Ao — 2) L.

By (1), dpa(x) — 0 weakly as @ — oo, so we do not have any obvious spectral measure
of Aso. Our main goal here is to prove that (1+ a?) du, does have a weak limit as o — oo
which is the spectral measure for a vector n € H_s(A~ ). Explicitly, define

dpa(x) = (1+ ®) dpa(z). (2)
Then we will prove that

Theorem 1. There exists a vector, n € H_2(Ax), cyclic for Ao so that if dpo(x) is the
spectral measure for n with respect to A, then

[ 1@ dpate) — [ @) dpe@ (3)

for all continuous functions, f, of compact support.

Note that since n € H_2(Ax),

dpoo ()
— < 00. 4
| iy ”
R

It may be that (4) fails if (|z| + 1)72 is replaced by (|z| + 1)~1. We will see explicit
examples in §5 where the integral diverges for (|z| + 1)~2%¢. The proof will show that (3)
holds if f(x) = (|| + 1)™* with a > 2. There will be examples when it fails if o = 2.

Another major result we’ll prove is that

dpso () = liﬁ)lﬂ'_l [Im((—F(z +ie)) ") dz].

The abstract theory appears in §2. We discuss boundary condition dependence of Schro-
dinger operators on the half-line in §3. In that case, dp, is the Weyl spectral measure and
dpeso is the Dirichlet spectral measure. In §4, we consider the case when A is bounded. In
85, we discuss a further example.
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§2. The Main Results
We begin by recalling some of the standard formulae for rank one perturbations [7]:

Fo(z) = F(2)/[1 + aF(2)],

(Ao —2) o= L+ aF () (A-2) e, (5)
(A=) = (A=) s (A=) e A=), (6)

Tr[(A—2)7' — (A — 2) Y] = /()\ — 2)726,(\)d\,  E, = min(0,inf spec(Ay)),

[e7

where £, is the Krein spectral shift [4] given by
1 .
Eala) = = Arg(L+ aF(z +i0)). (7)

For @ > 0 we have Arg(-) € [0, 7] and hence 0 < &, <1 in this case.
If ||p|| = oo, let P = 0, and if ||¢|| < oo, let P be the projection onto {cy | ¢ € C}.
Thus, H(Ax) = Ran(1 — P).

Proposition 2. There exists n € H_2(Ax) so that for all z € C:

(Ao — 2) 7' = lim a(l — P)(As — 2) L. (8)

If o is cyclic for A, then 7 is cyclic for A .
Proof. By (5), the limit on the right side of (8) exists, call it ¥(z), and is given by

P(2) = F(2) 7' (1 = P)(A—2)""p. (9)
We have that
(Ao —2) o= (Ao —w) o= (2 —w)(Aa — 2) " (Aa —w) "o (10)

Multiply by «, take @ — oo, and note that if ||| < oo, then P(Ao, —w) tp = 0. We
conclude that

P(2) = p(w) = (2 — w) (A — 2) " (W)
or
U(z) = [1+ (2 — w)(Ax — 2) " oo (w). (11)
Note that ¥ (z) € H(Ax) (because of the 1 — P) so we can define 1(z) = (Ao — 2)1(2) in
H_2(As). (11) precisely says that n(z) = n(w), that is, it is independent of z; call it 7.
Cyclicity follows from (9) since if {(A — 2) !¢} is total in H, then clearly {(1 — P)(A —
2)" 1} is total in (1 — P)H = H(Ax).

Remark. In §4, we’ll prove that when A is bounded, then n = —(1 — P)Ap.
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Theorem 3. Let dpo, be the spectral measure for 1. Then
dF 1
’ (12)

dpoo(z) _ poy—2dF 1
/<x—z>2‘F” & ol

R

Proof. For simplicity, suppose z is real and negative. By definition of n
dpoo (':E) -2
DFoo\") Ay —
[ 25 = 04w =27
R
= (o, (A=2)7H(1 - P)(A - Z)_lw)/F(Z)Q

- [ ta-9720) - ot a- 970 Py

(12) for general z

since P = ||¢||7%(p, ). But this is precisely the right side of (12).

follows by analyticity.
Recall that dp, is defined by (2). Then

Theorem 4. (i)
i | e [
" i [ k) _ [ rste)
R Bl Y o )

R R

(iii) For any continuous f of compact support

lim [ f(z)dpa(a / F(z) dpoo (&

a— 00
R

Proof. (ii) implies (iii) by a Stone-Weierstrass type argument. (i) implies (ii) by using the
fact that both sides are analytic in z on C\R so their derivatives in z converge. To prove

(i), use Theorem 3 and the calculation

[ = 0 e (- 2)72)
(1+ 042) -2
“Utar)y (o, (A= 2)""p) (13)
1+a? dF

T (1+aF)? dz

(13) follows from (5).
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Theorem 5. .

o) =7 im Im| — —— | dz.
dpoo(z) = im Im Flo 1 ie) dx

Proof. We start with (12) and integrate, noting that F’/F? = £ (—~1/F) to get

1 1 1 1 1
dem(w)(fc—z - w+1) T FR FCD —ey lpll>*

The theorem then follows by the standard relations between a measure and the boundary
values of its Borel transform.

63. Variation of Boundary Condition

As an example of the general theory, we consider the case of boundary conditions varia-
tion for Schrédinger operators on L?(0,00). The formulae that result are well-known (see,
e.g., [1,2,5,8]). The point is that they fit into a more general framework. Let V' be con-
tinuous and bounded below on [0,00). Let Hy be the operator on L?([0, ), dz) formally
given by —dd—; + V(z) with u(0)cos @ + u'(0)sin @ = 0 boundary conditions. One defines
the Weyl m-function, mg(z), and Weyl spectral measure, dpg(x), so that for 6 # 0:

mg(z) = cot(d) + / dpo() (14)
x—z
R
and dpg — dpg—o as 0 | 0. Moreover,
mo—o(2) = —1/Mmo—r2(2). (15)
For 0 # 0, the Green’s function, Gy(0, 0; z) is related to my(z) by
G(0,0; 2) = sin?(0)[— cot O + my(2)]. (16)

This fits into the general framework by taking A = Hy_,/» and ¢ = dp, the delta
function at 0. Then for 6 # 0,

Hyp = A —cot(0)(p, )¢
and F_ cot(p)(2) = Gg(0,0; 2). By (14) and (16), dpg is just (14 a?) duq where a = — cot 0
and (}ir% dpg = dpy is just what we found in the last section. (15) is just Theorem 5.

We want to identify the vector 7. Let ¢4 (x, z) be the solution of (— j—; +V(x)—2z)Yp =0
which is L? at infinity normalized any way that is convenient. Then from the Wronskian
formula for Gg—r /2, we get
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and
F(Z) = -y (07 Z)/@D;(Ov Z)'
It follows that
F('Z)_l(A T Z)_lgo = ¢+(.§C, Z)/¢+(07 Z)

which, by the Wronskian formula for Gy—g, is just
(Aso —2)7"8'(2),

that is, n is ¢’ (note that P = 0 in this case) and dp. is the spectral function for the
vector ¢,

K 00
We note that it is well known that [ dpe(x) ~ Cp®/? as u — oo so that [ (‘iioT)E[\))k < 00
0 0

if and only if k > 2. In particular, n ¢ H_1(Ax).

§4. Bounded Operators

One gets insight into the general theory by considering the case where A is bounded.
Since ||| is then finite, we’ll suppose [|¢|| = 1. We'll also get a better understanding of
the W term in Theorem 4(i). We first note:

Theorem 6. If A is bounded and ||¢|| = 1, then n = —(1 — P)Agp.
Proof. If A is bounded, then Ao is just (1 — P)A(1 — P). Thus

n=F(z)"(1-P)(A-2)(1-P)(A-2)""y
=F(z)7 (1= P)(A=2)(A~2)""o = F(z) 7 [(1 = P)(A - 2)p]F (2).

The first term is zero since (1—P)y = 0. The second is —(1—P) Ay since (1—P)zp = 0.

Since |l¢|| =1, (¢, -)p is just a projection, P. Instead of A+ aP, look at
P+a 'A=B,.

P has an isolated simple eigenvalue at 1 with eigenvector ¢. Thus by regular perturbation
theory [3], B, has the eigenvalue at 1+ (p, Ap)a™! + O(a™2) with eigenvector

Ya=p+a '(1=P)Ap+0(a™?) =p+a 'n+0(a?).

The first order term is standard perturbation theory where the reduced resolvent (Hy —
E)7Y(1 — P) is just —(1 — P) since Hy is P is 0 on Ran(1 — P).

Thus, with respect to A + aP = aB,, the measure (1 + a?)du, has a pole of weight
(1+a?) at By = a+ (p, Ap) +O(a™!) plus the spectral measure of 7 for the operator A,
plus an error of order a~!. If v > 2, the pole at F, makes no asymptotic contribution to

J % as a — oo but for v = 2, it makes a contribution of (1 +a?)/E? — 1=1/|¢|*
R
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§5. A Further Example
Let 0 <~ < 1. Let duo(z) = 7~ t|z|~7 sin(7y) dz on [0,00). Let A be multiplication by

oo

z on L?([0,00),duo(x)) and ¢ = 1. Then [ 40(2) 56 50 ¢ € Ho1(Ass).
0

|z|+1

rey = [ e

xr—Zz
0

(the easiest way to see this is to compute the imaginary part of (—z)~7 for z = x + ie with
¢ — 0). Then, by Theorem 5,

dpso(z) = 7 *|z|7 sin(ry) de.

It follows that [ dpeo(z)/(Jz| +1)* < oo only if k > 1+ . Thus, we cannot conclude
0

in general that [ dpoo(z)/(|z] + 1)* < 0o for any k < 2.
0
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