RANK ONE PERTURBATIONS AT INFINITE COUPLING

F. $GESZTESY^1$ and B. $SIMON^2$

ABSTRACT. We discuss rank one perturbations $A_{\alpha} = A + \alpha(\varphi, \cdot)\varphi, \alpha \in \mathbb{R}, A \geq 0$ self-adjoint. Let $d\mu_{\alpha}(x)$ be the spectral measure defined by $(\varphi, (A_{\alpha} - z)^{-1}\varphi) = \int d\mu_{\alpha}(x)/(x-z)$. We prove there is a measure $d\rho_{\infty}$ which is the weak limit of $(1 + \alpha^2) d\mu_{\alpha}(x)$ as $\alpha \to \infty$. If φ is cyclic for A, then A_{∞} , the strong resolvent limit of A_{α} , is unitarily equivalent to multiplication by x on $L^2(\mathbb{R}, d\rho_{\infty})$. This generalizes results known for boundary condition dependence of Sturm-Liouville operators on half-lines to the abstract rank one case.

§1. Introduction

This paper is a contribution to the theory of rank one perturbations which in its natural format involves a self-adjoint operator, $A \ge 0$ in a complex separable Hilbert space \mathcal{H} , and a vector, $\varphi \in \mathcal{H}_{-1}(A)$, with $\mathcal{H}_s(A)$ the scale of spaces associated to A. Then $q_{\varphi}(\psi, \eta) = (\psi, \varphi)(\varphi, \eta)$ defines a quadratic form on $\mathcal{H}_{+1}(A)$ with q_{φ} a form-bounded perturbation of A with relative bound zero. Accordingly, $A_{\alpha} \equiv A + \alpha(\varphi, \cdot)\varphi, \alpha \in \mathbb{R}$ defines a self-adjoint operator with $\mathcal{H}_s(A_{\alpha}) = \mathcal{H}_s(A)$ for $|s| \le 1$.

We will suppose that φ is cyclic for A in which case it is easy to see that φ is also cyclic for each A_{α} . If $d\mu_{\alpha}$ is the spectral measure for φ associated to A_{α} , then A_{α} is unitarily equivalent to multiplication by x on $L^2(\mathbb{R}, d\mu_{\alpha})$. Define

$$F_{\alpha}(z) = \int\limits_{\mathbb{R}} \frac{d\mu_{\alpha}(x)}{x-z}$$

where $\varphi \in \mathcal{H}_{-1}(A_{\alpha})$ implies that

$$\int\limits_{\mathsf{R}} \frac{d\mu_{\alpha}(x)}{|x|+1} < \infty$$

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

¹Department of Mathematics, University of Missouri, Columbia, MO 65211. E-mail: mathfg@mizzou1. missouri.edu

²Division of Physics, Mathematics and Astronomy, California Institute of Technology, 253-37, Pasadena, CA 91125. This material is based upon work supported by the National Science Foundation under Grant No. DMS-9101715. The Government has certain rights in this material.

To appear in J. Funct. Anal.

so that the integral defining F converges. One has the basic formula (with $F(z) \equiv F_{\alpha=0}(z)$)

$$F_{\alpha}(z) = \frac{F(z)}{1 + \alpha F(z)}.$$
(1)

We are interested here in the case $\alpha = \infty$. By the monotone convergence theorem for forms ([3,6]), we have that $\underset{\alpha \to \infty}{\text{s-lim}} (A_{\alpha} - z)^{-1}$ exists (the existence also follows from the explicit formula for $(A_{\alpha} - z)^{-1}$, eq. (6) below) and can be described as follows. Let

$$\mathcal{H}_{+1}(A_{\infty}) = \{ \psi \in \mathcal{H}_{+1} \mid (\varphi, \psi) = 0 \}$$

and $\mathcal{H}(A_{\infty}) = \overline{\mathcal{H}_{+1}(A_{\infty})}$. This is all of \mathcal{H} if $\varphi \notin \mathcal{H}$ and a codimension one subspace if $\varphi \in \mathcal{H}$. Let A_{∞} be the self-adjoint operator on $\mathcal{H}(A_{\infty})$ defined by the closed quadratic form $\psi, \eta \mapsto (\psi, A\eta)$ on $\mathcal{H}_{+1}(A_{\infty})$. If $\mathcal{H}(A_{\infty}) \neq \mathcal{H}$, extend $(A_{\infty} - z)^{-1}$ to all of \mathcal{H} by setting it zero on $\mathcal{H}(A_{\infty})^{\perp}$. Then s-lim $(A_{\alpha} - z)^{-1} = (A_{\infty} - z)^{-1}$. By (1), $d\mu_{\alpha}(x) \to 0$ weakly as $\alpha \to \infty$, so we do not have any obvious spectral measure

By (1), $d\mu_{\alpha}(x) \to 0$ weakly as $\alpha \to \infty$, so we do not have any obvious spectral measure of A_{∞} . Our main goal here is to prove that $(1 + \alpha^2) d\mu_{\alpha}$ does have a weak limit as $\alpha \to \infty$ which is the spectral measure for a vector $\eta \in \mathcal{H}_{-2}(A_{\infty})$. Explicitly, define

$$d\rho_{\alpha}(x) = (1 + \alpha^2) d\mu_{\alpha}(x).$$
(2)

Then we will prove that

Theorem 1. There exists a vector, $\eta \in \mathcal{H}_{-2}(A_{\infty})$, cyclic for A_{∞} so that if $d\rho_{\infty}(x)$ is the spectral measure for η with respect to A_{∞} , then

$$\int_{\mathbb{R}} f(x) \, d\rho_{\alpha}(x) \to \int_{\mathbb{R}} f(x) \, d\rho_{\infty}(x) \tag{3}$$

for all continuous functions, f, of compact support.

Note that since $\eta \in \mathcal{H}_{-2}(A_{\infty})$,

$$\int\limits_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(|x|+1)^2} < \infty.$$
(4)

It may be that (4) fails if $(|x|+1)^{-2}$ is replaced by $(|x|+1)^{-1}$. We will see explicit examples in §5 where the integral diverges for $(|x|+1)^{-2+\epsilon}$. The proof will show that (3) holds if $f(x) = (|x|+1)^{-\alpha}$ with $\alpha > 2$. There will be examples when it fails if $\alpha = 2$.

Another major result we'll prove is that

$$d\rho_{\infty}(x) = \lim_{\epsilon \downarrow 0} \pi^{-1} \left[\operatorname{Im}((-F(x+i\epsilon))^{-1}) \, dx \right]$$

The abstract theory appears in §2. We discuss boundary condition dependence of Schrödinger operators on the half-line in §3. In that case, $d\rho_{\alpha}$ is the Weyl spectral measure and $d\rho_{\infty}$ is the Dirichlet spectral measure. In §4, we consider the case when A is bounded. In §5, we discuss a further example.

§2. The Main Results

We begin by recalling some of the standard formulae for rank one perturbations [7]:

$$F_{\alpha}(z) = F(z)/[1 + \alpha F(z)],$$

$$(A_{\alpha} - z)^{-1}\varphi = (1 + \alpha F(z))^{-1}(A - z)^{-1}\varphi,$$
(5)

$$(A_{\alpha} - z)^{-1} = (A - z)^{-1} - \frac{\alpha}{1 + \alpha F(z)} \left((A - \bar{z})^{-1} \varphi, \cdot \right) (A - z)^{-1} \varphi, \tag{6}$$

$$Tr[(A-z)^{-1} - (A_{\alpha} - z)^{-1}] = \int_{E_{\alpha}}^{\infty} (\lambda - z)^{-2} \xi_{\alpha}(\lambda) \, d\lambda, \quad E_{\alpha} = \min(0, \inf \operatorname{spec}(A_{\alpha})),$$

where ξ_{α} is the Krein spectral shift [4] given by

$$\xi_{\alpha}(x) = \frac{1}{\pi} \operatorname{Arg}(1 + \alpha F(x + i0)).$$
(7)

For $\alpha > 0$ we have $\operatorname{Arg}(\cdot) \in [0, \pi]$ and hence $0 \leq \xi_{\alpha} \leq 1$ in this case.

If $\|\varphi\| = \infty$, let P = 0, and if $\|\varphi\| < \infty$, let P be the projection onto $\{c\varphi \mid c \in C\}$. Thus, $\mathcal{H}(A_{\infty}) = \operatorname{Ran}(1-P)$.

Proposition 2. There exists $\eta \in \mathcal{H}_{-2}(A_{\infty})$ so that for all $z \in C$:

$$(A_{\infty} - z)^{-1} \eta = \lim_{\alpha \to \infty} \alpha (1 - P) (A_{\alpha} - z)^{-1} \varphi.$$
(8)

If φ is cyclic for A, then η is cyclic for A_{∞} .

Proof. By (5), the limit on the right side of (8) exists, call it $\psi(z)$, and is given by

$$\psi(z) = F(z)^{-1} (1 - P) (A - z)^{-1} \varphi.$$
(9)

We have that

$$(A_{\alpha} - z)^{-1}\varphi - (A_{\alpha} - w)^{-1}\varphi = (z - w)(A_{\alpha} - z)^{-1}(A_{\alpha} - w)^{-1}\varphi.$$
 (10)

Multiply by α , take $\alpha \to \infty$, and note that if $\|\varphi\| < \infty$, then $P(A_{\infty} - w)^{-1}\varphi = 0$. We conclude that

$$\psi(z) - \psi(w) = (z - w)(A_{\infty} - z)^{-1}\psi(w)$$

or

$$\psi(z) = [1 + (z - w)(A_{\infty} - z)^{-1}]\psi(w).$$
(11)

Note that $\psi(z) \in \mathcal{H}(A_{\infty})$ (because of the 1-P) so we can define $\eta(z) \equiv (A_{\infty}-z)\psi(z)$ in $\mathcal{H}_{-2}(A_{\infty})$. (11) precisely says that $\eta(z) = \eta(w)$, that is, it is independent of z; call it η . Cyclicity follows from (9) since if $\{(A-z)^{-1}\varphi\}$ is total in \mathcal{H} , then clearly $\{(1-P)(A-z)^{-1}\varphi\}$ is total in $(1-P)\mathcal{H} = \mathcal{H}(A_{\infty})$.

Remark. In §4, we'll prove that when A is bounded, then $\eta = -(1 - P)A\varphi$.

Theorem 3. Let $d\rho_{\infty}$ be the spectral measure for η . Then

$$\int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^2} = F(z)^{-2} \frac{dF}{dz} - \frac{1}{\|\varphi\|^2}.$$
(12)

Proof. For simplicity, suppose z is real and negative. By definition of η :

$$\int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^2} \equiv \left(\eta, (A_{\infty}-z)^{-2}\eta\right)$$
$$= \left(\varphi, (A-z)^{-1}(1-P)(A-z)^{-1}\varphi\right) / F(z)^2$$
$$= \left[\left(\varphi, (A-z)^{-2}\varphi\right) - \frac{1}{\|\varphi\|^2} \left\langle\varphi, (A-z)^{-1}\varphi\right\rangle^2\right] / F(z)^2$$

since $P = \|\varphi\|^{-2}(\varphi, \cdot)\varphi$. But this is precisely the right side of (12). (12) for general z follows by analyticity.

Recall that $d\rho_{\alpha}$ is defined by (2). Then

Theorem 4. (i)

$$\lim_{\alpha \to \infty} \int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{(x-z)^2} = \frac{1}{\|\varphi\|^2} + \int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^2}.$$

(ii)

$$\lim_{\alpha \to \infty} \int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{(x-z)^3} = \int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^3}$$

(iii) For any continuous f of compact support

$$\lim_{\alpha \to \infty} \int_{\mathbb{R}} f(x) \, d\rho_{\alpha}(x) = \int_{\mathbb{R}} f(x) \, d\rho_{\infty}(x).$$

Proof. (ii) implies (iii) by a Stone-Weierstrass type argument. (i) implies (ii) by using the fact that both sides are analytic in z on $C \setminus \mathbb{R}$ so their derivatives in z converge. To prove (i), use Theorem 3 and the calculation

$$\int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{(x-z)^2} = (1+\alpha^2)(\varphi, (A_{\alpha}-z)^{-2}\varphi)$$
$$= \frac{(1+\alpha^2)}{(1+\alpha F)^2}(\varphi, (A-z)^{-2}\varphi)$$
$$= \frac{1+\alpha^2}{(1+\alpha F)^2}\frac{dF}{dz}.$$
(13)

(13) follows from (5).

Theorem 5.

$$d\rho_{\infty}(x) = \pi^{-1} \lim_{\epsilon \downarrow 0} \operatorname{Im}\left[-\frac{1}{F(x+i\epsilon)}\right] dx.$$

Proof. We start with (12) and integrate, noting that $F'/F^2 = \frac{d}{dz}(-1/F)$ to get

$$\int_{\mathbb{R}} d\rho_{\infty}(x) \left(\frac{1}{x-z} - \frac{1}{x+1} \right) = -\frac{1}{F(z)} + \frac{1}{F(-1)} - (z+1) \frac{1}{\|\varphi\|^2}.$$

The theorem then follows by the standard relations between a measure and the boundary values of its Borel transform.

\S **3.** Variation of Boundary Condition

As an example of the general theory, we consider the case of boundary conditions variation for Schrödinger operators on $L^2(0,\infty)$. The formulae that result are well-known (see, e.g., [1,2,5,8]). The point is that they fit into a more general framework. Let V be continuous and bounded below on $[0,\infty)$. Let H_{θ} be the operator on $L^2([0,\infty), dx)$ formally given by $-\frac{d^2}{dx^2} + V(x)$ with $u(0) \cos \theta + u'(\theta) \sin \theta = 0$ boundary conditions. One defines the Weyl *m*-function, $m_{\theta}(z)$, and Weyl spectral measure, $d\rho_{\theta}(x)$, so that for $\theta \neq 0$:

$$m_{\theta}(z) = \cot(\theta) + \int_{\mathbb{R}} \frac{d\rho_{\theta}(x)}{x - z}$$
(14)

and $d\rho_{\theta} \rightarrow d\rho_{\theta=0}$ as $\theta \downarrow 0$. Moreover,

$$m_{\theta=0}(z) = -1/m_{\theta=\pi/2}(z).$$
 (15)

For $\theta \neq 0$, the Green's function, $G_{\theta}(0,0;z)$ is related to $m_{\theta}(z)$ by

$$G_{\theta}(0,0;z) = \sin^2(\theta) [-\cot\theta + m_{\theta}(z)].$$
(16)

This fits into the general framework by taking $A = H_{\theta=\pi/2}$ and $\varphi = \delta_0$, the delta function at 0. Then for $\theta \neq 0$,

$$H_{\theta} = A - \cot(\theta)(\varphi, \cdot)\varphi$$

and $F_{-\cot(\theta)}(z) = G_{\theta}(0,0;z)$. By (14) and (16), $d\rho_{\theta}$ is just $(1+\alpha^2) d\mu_{\alpha}$ where $\alpha = -\cot\theta$ and $\lim_{\theta \to 0} d\rho_{\theta} = d\rho_0$ is just what we found in the last section. (15) is just Theorem 5.

We want to identify the vector η . Let $\psi_+(x, z)$ be the solution of $\left(-\frac{d^2}{dx^2} + V(x) - z\right)\psi = 0$ which is L^2 at infinity normalized any way that is convenient. Then from the Wronskian formula for $G_{\theta=\pi/2}$, we get

$$((A-z)^{-1}\varphi)(x) = \frac{\psi_+(x,z)}{\psi'_+(0,z)}$$

and

$$F(z) = -\psi_+(0,z) / \psi'_+(0,z)$$

It follows that

$$F(z)^{-1}(A-z)^{-1}\varphi = \psi_+(x,z)/\psi_+(0,z)$$

which, by the Wronskian formula for $G_{\theta=0}$, is just

$$(A_{\infty}-z)^{-1}\delta'(x)$$

that is, η is δ' (note that P = 0 in this case) and $d\rho_{\infty}$ is the spectral function for the vector δ' .

We note that it is well known that $\int_{0}^{\mu} d\rho_{\infty}(x) \sim C\mu^{3/2}$ as $\mu \to \infty$ so that $\int_{0}^{\infty} \frac{d\rho_{\infty}(\lambda)}{(1+|\lambda|)^{k}} < \infty$ if and only if $k > \frac{3}{2}$. In particular, $\eta \notin \mathcal{H}_{-1}(A_{\infty})$.

§4. Bounded Operators

One gets insight into the general theory by considering the case where A is bounded. Since $\|\varphi\|$ is then finite, we'll suppose $\|\varphi\| = 1$. We'll also get a better understanding of the $\frac{1}{\|\varphi\|^2}$ term in Theorem 4(i). We first note:

Theorem 6. If A is bounded and $\|\varphi\| = 1$, then $\eta = -(1 - P)A\varphi$.

Proof. If A is bounded, then A_{∞} is just (1-P)A(1-P). Thus

$$\eta = F(z)^{-1}(1-P)(A-z)(1-P)(A-z)^{-1}\varphi$$

= $F(z)^{-1}(1-P)(A-z)(A-z)^{-1}\varphi - F(z)^{-1}[(1-P)(A-z)\varphi]F(z).$

The first term is zero since $(1-P)\varphi = 0$. The second is $-(1-P)A\varphi$ since $(1-P)z\varphi = 0$.

Since $\|\varphi\| = 1$, $(\varphi, \cdot)\varphi$ is just a projection, P. Instead of $A + \alpha P$, look at

$$P + \alpha^{-1}A = B_{\alpha}.$$

P has an isolated simple eigenvalue at 1 with eigenvector φ . Thus by regular perturbation theory [3], B_{α} has the eigenvalue at $1 + (\varphi, A\varphi)\alpha^{-1} + O(\alpha^{-2})$ with eigenvector

$$\psi_{\alpha} = \varphi + \alpha^{-1}(1 - P)A\varphi + O(\alpha^{-2}) = \varphi + \alpha^{-1}\eta + O(\alpha^{-2})$$

The first order term is standard perturbation theory where the reduced resolvent $(H_0 - E)^{-1}(1-P)$ is just -(1-P) since H_0 is P is 0 on Ran(1-P).

Thus, with respect to $A + \alpha P = \alpha B_{\alpha}$, the measure $(1 + \alpha^2) d\mu_{\alpha}$ has a pole of weight $(1 + \alpha^2)$ at $E_{\alpha} = \alpha + (\varphi, A\varphi) + O(\alpha^{-1})$ plus the spectral measure of η for the operator A_{∞} plus an error of order α^{-1} . If $\nu > 2$, the pole at E_{α} makes no asymptotic contribution to $\int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{|x-z|^{\nu}}$ as $\alpha \to \infty$ but for $\nu = 2$, it makes a contribution of $(1 + \alpha^2)/E_{\alpha}^2 \to 1 = 1/||\varphi||^2$.

§5. A Further Example

Let $0 < \gamma < 1$. Let $d\mu_0(x) = \pi^{-1} |x|^{-\gamma} \sin(\pi\gamma) dx$ on $[0, \infty)$. Let A be multiplication by x on $L^2([0, \infty), d\mu_0(x))$ and $\varphi \equiv 1$. Then $\int_0^\infty \frac{d\mu_0(x)}{|x|+1} < \infty$ so $\varphi \in \mathcal{H}_{-1}(A_\infty)$.

$$F(z) = \int_{0}^{\infty} \frac{d\mu_0(x)}{x-z} = (-z)^{-\gamma}$$

(the easiest way to see this is to compute the imaginary part of $(-z)^{-\gamma}$ for $z = x + i\epsilon$ with $\epsilon \to 0$). Then, by Theorem 5,

$$d\rho_{\infty}(x) = \pi^{-1} |x|^{\gamma} \sin(\pi\gamma) \, dx.$$

It follows that $\int_{0}^{\infty} d\rho_{\infty}(x)/(|x|+1)^{k} < \infty$ only if $k > 1 + \gamma$. Thus, we cannot conclude in general that $\int_{0}^{\infty} d\rho_{\infty}(x)/(|x|+1)^{k} < \infty$ for any k < 2.

Acknowledgment. F.G. is indebted to the Department of Mathematics at Caltech for its hospitality and support during the summer of 1993 where some of this work was done.

References

- E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985.
- [2] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, New York, 1969.
- [3] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1980.
- [4] M.G. Krein, Perturbation determinants and a formula for the traces of unitary and self-adjoint operators, Sov. Math. Dokl. 3 (1962), 707–710.
- [5] B.M. Levitan and I.S. Sargsjan, Introduction to Spectral Theory, Amer. Math. Soc. Transl. 39, Providence, R.I., 1975.
- B. Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal. 28 (1978), 377–385.
- [7] B. Simon, Spectral analysis of rank one perturbations and applications, Lecture given at the 1993 Vancouver Summer School, preprint.
- [8] E.C. Titchmarsh, *Eigenfunction Expansions*, 2nd ed., Oxford University Press, Oxford, 1962.