
RANK ONE PERTURBATIONS AT INFINITE COUPLING

F. Gesztesy1 and B. Simon2

Abstract. We discuss rank one perturbationsAα = A+α(ϕ, ·)ϕ,α ∈ R , A ≥ 0
self-adjoint. Let dµα(x) be the spectral measure defined by (ϕ, (Aα − z)−1ϕ) =∫
dµα(x)/(x− z). We prove there is a measure dρ∞ which is the weak limit of

(1 + α2)dµα(x) as α → ∞. If ϕ is cyclic for A, then A∞, the strong resolvent
limit of Aα, is unitarily equivalent to multiplication by x on L2(R , dρ∞). This
generalizes results known for boundary condition dependence of Sturm-Liouville
operators on half-lines to the abstract rank one case.

§1. Introduction
This paper is a contribution to the theory of rank one perturbations which in its natural

format involves a self-adjoint operator, A ≥ 0 in a complex separable Hilbert space H, and
a vector, ϕ ∈ H−1(A), with Hs(A) the scale of spaces associated to A. Then qϕ(ψ, η) =
(ψ,ϕ)(ϕ, η) defines a quadratic form on H+1(A) with qϕ a form-bounded perturbation of
A with relative bound zero. Accordingly, Aα ≡ A + α(ϕ, ·)ϕ,α ∈ R defines a self-adjoint
operator with Hs(Aα) = Hs(A) for |s| ≤ 1.

We will suppose that ϕ is cyclic for A in which case it is easy to see that ϕ is also cyclic
for each Aα. If dµα is the spectral measure for ϕ associated to Aα, then Aα is unitarily
equivalent to multiplication by x on L2(R , dµα). Define

Fα(z) =
∫
R

dµα(x)
x− z

where ϕ ∈ H−1(Aα) implies that

∫
R

dµα(x)
|x| + 1

<∞
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so that the integral defining F converges. One has the basic formula (with F (z) ≡ Fα=0(z))

Fα(z) =
F (z)

1 + αF (z)
. (1)

We are interested here in the case α = ∞. By the monotone convergence theorem
for forms ([3,6]), we have that s-lim

α→∞(Aα − z)−1 exists (the existence also follows from the

explicit formula for (Aα − z)−1, eq. (6) below) and can be described as follows. Let

H+1(A∞) = {ψ ∈ H+1 | (ϕ,ψ) = 0}

and H(A∞) = H+1(A∞). This is all of H if ϕ /∈ H and a codimension one subspace if
ϕ ∈ H. Let A∞ be the self-adjoint operator on H(A∞) defined by the closed quadratic
form ψ, η �→ (ψ,Aη) on H+1(A∞). If H(A∞) �= H, extend (A∞ − z)−1 to all of H by
setting it zero on H(A∞)⊥. Then s-lim(Aα − z)−1 = (A∞ − z)−1.

By (1), dµα(x) → 0 weakly as α → ∞, so we do not have any obvious spectral measure
of A∞. Our main goal here is to prove that (1+α2)dµα does have a weak limit as α → ∞
which is the spectral measure for a vector η ∈ H−2(A∞). Explicitly, define

dρα(x) = (1 + α2)dµα(x). (2)

Then we will prove that

Theorem 1. There exists a vector, η ∈ H−2(A∞), cyclic for A∞ so that if dρ∞(x) is the
spectral measure for η with respect to A∞, then

∫
R

f(x)dρα(x) →
∫
R

f(x)dρ∞(x) (3)

for all continuous functions, f , of compact support.

Note that since η ∈ H−2(A∞),
∫
R

dρ∞(x)
(|x| + 1)2

< ∞. (4)

It may be that (4) fails if (|x| + 1)−2 is replaced by (|x| + 1)−1. We will see explicit
examples in §5 where the integral diverges for (|x| + 1)−2+ε. The proof will show that (3)
holds if f(x) = (|x| + 1)−α with α > 2. There will be examples when it fails if α = 2.

Another major result we’ll prove is that

dρ∞(x) = lim
ε↓0

π−1
[
Im((−F (x + iε))−1)dx

]
.

The abstract theory appears in §2. We discuss boundary condition dependence of Schrö-
dinger operators on the half-line in §3. In that case, dρα is the Weyl spectral measure and
dρ∞ is the Dirichlet spectral measure. In §4, we consider the case when A is bounded. In
§5, we discuss a further example.
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§2. The Main Results
We begin by recalling some of the standard formulae for rank one perturbations [7]:

Fα(z) = F (z)/[1 + αF (z)],

(Aα − z)−1ϕ = (1 + αF (z))−1(A − z)−1ϕ, (5)

(Aα − z)−1 = (A− z)−1 − α

1 + αF (z)
((A − z̄)−1ϕ, ·)(A− z)−1ϕ, (6)

Tr[(A − z)−1 − (Aα − z)−1] =

∞∫
Eα

(λ− z)−2ξα(λ)dλ, Eα = min(0, inf spec(Aα)),

where ξα is the Krein spectral shift [4] given by

ξα(x) =
1
π

Arg(1 + αF (x+ i0)). (7)

For α > 0 we have Arg(·) ∈ [0, π] and hence 0 ≤ ξα ≤ 1 in this case.
If ‖ϕ‖ = ∞, let P = 0, and if ‖ϕ‖ < ∞, let P be the projection onto {cϕ | c ∈ C}.

Thus, H(A∞) = Ran(1 − P ).

Proposition 2. There exists η ∈ H−2(A∞) so that for all z ∈ C :

(A∞ − z)−1η = lim
α→∞α(1 − P )(Aα − z)−1ϕ. (8)

If ϕ is cyclic for A, then η is cyclic for A∞.

Proof. By (5), the limit on the right side of (8) exists, call it ψ(z), and is given by

ψ(z) = F (z)−1(1 − P )(A − z)−1ϕ. (9)

We have that

(Aα − z)−1ϕ− (Aα − w)−1ϕ = (z − w)(Aα − z)−1(Aα − w)−1ϕ. (10)

Multiply by α, take α → ∞, and note that if ‖ϕ‖ < ∞, then P (A∞ − w)−1ϕ = 0. We
conclude that

ψ(z) − ψ(w) = (z −w)(A∞ − z)−1ψ(w)

or
ψ(z) = [1 + (z − w)(A∞ − z)−1]ψ(w). (11)

Note that ψ(z) ∈ H(A∞) (because of the 1− P ) so we can define η(z) ≡ (A∞ − z)ψ(z) in
H−2(A∞). (11) precisely says that η(z) = η(w), that is, it is independent of z; call it η.
Cyclicity follows from (9) since if {(A − z)−1ϕ} is total in H, then clearly {(1 − P )(A −
z)−1ϕ} is total in (1 − P )H = H(A∞).

Remark. In §4, we’ll prove that when A is bounded, then η = −(1 − P )Aϕ.
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Theorem 3. Let dρ∞ be the spectral measure for η. Then
∫
R

dρ∞(x)
(x− z)2

= F (z)−2 dF

dz
− 1

‖ϕ‖2
. (12)

Proof. For simplicity, suppose z is real and negative. By definition of η:
∫
R

dρ∞(x)
(x− z)2

≡ (η, (A∞ − z)−2η)

=
(
ϕ, (A− z)−1(1 − P )(A − z)−1ϕ

)/
F (z)2

=
[
(ϕ, (A − z)−2ϕ) − 1

‖ϕ‖2
〈ϕ, (A − z)−1ϕ〉2

]/
F (z)2

since P = ‖ϕ‖−2(ϕ, ·)ϕ. But this is precisely the right side of (12). (12) for general z
follows by analyticity.

Recall that dρα is defined by (2). Then

Theorem 4. (i)

lim
α→∞

∫
R

dρα(x)
(x− z)2

=
1

‖ϕ‖2
+

∫
R

dρ∞(x)
(x− z)2

.

(ii)

lim
α→∞

∫
R

dρα(x)
(x− z)3

=
∫
R

dρ∞(x)
(x− z)3

.

(iii) For any continuous f of compact support

lim
α→∞

∫
R

f(x)dρα(x) =
∫
R

f(x)dρ∞(x).

Proof. (ii) implies (iii) by a Stone-Weierstrass type argument. (i) implies (ii) by using the
fact that both sides are analytic in z on C\R so their derivatives in z converge. To prove
(i), use Theorem 3 and the calculation

∫
R

dρα(x)
(x− z)2

= (1 + α2)(ϕ, (Aα − z)−2ϕ)

=
(1 + α2)

(1 + αF )2
(ϕ, (A − z)−2ϕ) (13)

=
1 + α2

(1 + αF )2
dF

dz
.

(13) follows from (5).
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Theorem 5.

dρ∞(x) = π−1 lim
ε↓0

Im
[
− 1
F (x + iε)

]
dx.

Proof. We start with (12) and integrate, noting that F ′/F 2 = d
dz

(−1/F ) to get

∫
R

dρ∞(x)
(

1
x− z

− 1
x + 1

)
= − 1

F (z)
+

1
F (−1)

− (z + 1)
1

‖ϕ‖2
.

The theorem then follows by the standard relations between a measure and the boundary
values of its Borel transform.

§3. Variation of Boundary Condition
As an example of the general theory, we consider the case of boundary conditions varia-

tion for Schrödinger operators on L2(0,∞). The formulae that result are well-known (see,
e.g., [1,2,5,8]). The point is that they fit into a more general framework. Let V be con-
tinuous and bounded below on [0,∞). Let Hθ be the operator on L2([0,∞), dx) formally
given by − d2

dx2 + V (x) with u(0) cos θ + u′(θ) sin θ = 0 boundary conditions. One defines
the Weyl m-function, mθ(z), and Weyl spectral measure, dρθ(x), so that for θ �= 0:

mθ(z) = cot(θ) +
∫
R

dρθ(x)
x− z

(14)

and dρθ → dρθ=0 as θ ↓ 0. Moreover,

mθ=0(z) = −1
/
mθ=π/2(z). (15)

For θ �= 0, the Green’s function, Gθ(0, 0; z) is related to mθ(z) by

Gθ(0, 0; z) = sin2(θ)[− cot θ +mθ(z)]. (16)

This fits into the general framework by taking A = Hθ=π/2 and ϕ = δ0, the delta
function at 0. Then for θ �= 0,

Hθ = A − cot(θ)(ϕ, ·)ϕ

and F− cot(θ)(z) = Gθ(0, 0; z). By (14) and (16), dρθ is just (1+α2)dµα where α = − cot θ
and lim

θ→0
dρθ = dρ0 is just what we found in the last section. (15) is just Theorem 5.

We want to identify the vector η. Let ψ+(x, z) be the solution of (− d2

dx2 +V (x)−z)ψ = 0
which is L2 at infinity normalized any way that is convenient. Then from the Wronskian
formula for Gθ=π/2, we get

((A − z)−1ϕ)(x) =
ψ+(x, z)
ψ′

+(0, z)
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and
F (z) = −ψ+(0, z)

/
ψ′

+(0, z).

It follows that
F (z)−1(A − z)−1ϕ = ψ+(x, z)

/
ψ+(0, z)

which, by the Wronskian formula for Gθ=0, is just

(A∞ − z)−1δ′(x),

that is, η is δ′ (note that P = 0 in this case) and dρ∞ is the spectral function for the
vector δ′.

We note that it is well known that
µ∫
0

dρ∞(x) ∼ Cµ3/2 as µ → ∞ so that
∞∫
0

dρ∞(λ)
(1+|λ|)k <∞

if and only if k > 3
2 . In particular, η /∈ H−1(A∞).

§4. Bounded Operators
One gets insight into the general theory by considering the case where A is bounded.

Since ‖ϕ‖ is then finite, we’ll suppose ‖ϕ‖ = 1. We’ll also get a better understanding of
the 1

‖ϕ‖2 term in Theorem 4(i). We first note:

Theorem 6. If A is bounded and ‖ϕ‖ = 1, then η = −(1 − P )Aϕ.

Proof. If A is bounded, then A∞ is just (1 − P )A(1 − P ). Thus

η = F (z)−1(1 − P )(A − z)(1 − P )(A − z)−1ϕ

= F (z)−1(1 − P )(A − z)(A − z)−1ϕ− F (z)−1[(1 − P )(A − z)ϕ]F (z).

The first term is zero since (1−P )ϕ = 0. The second is −(1−P )Aϕ since (1−P )zϕ = 0.

Since ‖ϕ‖ = 1, (ϕ, ·)ϕ is just a projection, P . Instead of A+ αP , look at

P + α−1A = Bα.

P has an isolated simple eigenvalue at 1 with eigenvector ϕ. Thus by regular perturbation
theory [3], Bα has the eigenvalue at 1 + (ϕ,Aϕ)α−1 +O(α−2) with eigenvector

ψα = ϕ + α−1(1 − P )Aϕ +O(α−2) = ϕ + α−1η +O(α−2).

The first order term is standard perturbation theory where the reduced resolvent (H0 −
E)−1(1 − P ) is just −(1 − P ) since H0 is P is 0 on Ran(1 − P ).

Thus, with respect to A + αP = αBα, the measure (1 + α2)dµα has a pole of weight
(1+α2) at Eα = α+(ϕ,Aϕ)+O(α−1) plus the spectral measure of η for the operator A∞
plus an error of order α−1. If ν > 2, the pole at Eα makes no asymptotic contribution to∫
R

dρα(x)
|x−z|ν as α→ ∞ but for ν = 2, it makes a contribution of (1 + α2)/E2

α → 1 = 1/‖ϕ‖2.
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§5. A Further Example
Let 0 < γ < 1. Let dµ0(x) = π−1|x|−γ sin(πγ)dx on [0,∞). Let A be multiplication by

x on L2([0,∞), dµ0(x)) and ϕ ≡ 1. Then
∞∫
0

dµ0(x)
|x|+1 < ∞ so ϕ ∈ H−1(A∞).

F (z) =

∞∫
0

dµ0(x)
x− z

= (−z)−γ

(the easiest way to see this is to compute the imaginary part of (−z)−γ for z = x+ iε with
ε → 0). Then, by Theorem 5,

dρ∞(x) = π−1|x|γ sin(πγ)dx.

It follows that
∞∫
0

dρ∞(x)/(|x| + 1)k < ∞ only if k > 1 + γ. Thus, we cannot conclude

in general that
∞∫
0

dρ∞(x)/(|x| + 1)k <∞ for any k < 2.
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