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Abstract. We extend the trace formula recently proven for general one-dimensional Schrö-
dinger operators which obtains the potential V (x) from a function ξ(x,λ) by deriving trace

relations computing moments of ξ(x,λ)dλ in terms of polynomials in the derivatives of V

at x. We describe the relation of those polynomials to KdV invariants. We also discuss

trace formulae for analogs of ξ associated with boundary conditions other than the Dirichlet

boundary condition underlying ξ.

§1. Introduction
This paper is one in a series [14–20] concerning a basic function, ξ(λ, x), associated to

any one-dimensional Schrödinger operator, H = − d2

dx2 + V in L2(R ) and its application to
inverse spectral problems. A basic formula proven in [18] is that

V (x) = E0 + lim
α↓0

∞∫
E0

dλ e−αλ(1− 2ξ(λ, x)), (1.1)

where Eo = inf spec(− d2

dx2 + V ). (1.1) was proven in [18] assuming V is bounded below,
continuous, and |V (x)| ≤ C1e

C2x
2
.

Our definition of ξ is

ξ(λ, x) :=
1
π
Arg((G(λ + i0, x, x)) (1.2)

(where G(z, x, x′) denotes the Green’s function of H, that is, the integral kernel of (H −
z)−1), although we derived that from a basic definition as the Krein spectral shift in going
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from H to HD;x, the operator on L2(−∞, x)⊕L2(x,∞) with Dirichlet boundary condition
at x.

The key to (1.1) then was

Tr(e−tH − e−tHD;x) =
1
2
(1− tV (x) + o(t)) as t ↓ 0. (1.3)

(1.3) is related to (1.1) because the Krein spectral shift [30] is a function 0 ≤ ξ(λ, x) ≤ 1
obeying

Tr[f(H) − f(HD;x)] = −
∞∫

Eo

dλ f ′(λ)ξ(λ, x) (1.4)

for a rich set of f ’s including exponentials (e.g., f ∈ C2(R ), (1 + λ2)f(j) ∈ L2((0,∞)),
j = 1, 2 and also f(λ) = (λ − z)−1 , z ∈ C\[Eo,∞)) so that

Tr(e−tH − e−tHD;x) = t

∞∫
Eo

dλ e−tλξ(λ, x).

One of our goals in the present paper is to prove (1.1) in greater generality; we only need
V bounded from below with no growth restriction at infinity. V need not be continuous;
a local L1 condition suffices. (1.1) then holds at points of Lebesgue continuity of V .

Our main goal though is to prove higher order trace formulas. In great generality
(suppose V has an asymptotic Taylor series at x0), we’ll extend (1.3) to

Tr(e−tH − e−tHD;x0 ) ∼
t↓0

−
∞∑
j=0

sj(x0)tj ,

where sj(x) = (−1)j+1(j!)−1rj(x) and the rj are KdV invariants defined recursively in
Theorem 5.1 below. With more information one can relate this to a similar formula in
terms of ξ (for simplicity of notation we suppose that Eo = 0):

rj(x0) = j lim
α↓0

∞∫
0

dλ e−λαλj−1

(
1
2
− ξ(λ, x0)

)
. (1.5)

The key to handling potentials with no growth condition at infinity is a path space
representation for Tr(e−tH − e−tHD;x). Properties of the paths needed are proven in §2.
Then in §3, we prove (1.1) for general V . In §4, we show that Tr(e−tH − e−tHD;x) has an
asymptotic expansion to all orders in t at t = 0 if V is C∞. In §5, we relate the coefficients
of this expansion to the KdV invariants, and in §6 we discuss what happens if boundary
conditions other than Dirichlet are used.

Historically, trace formulas for Schrödinger operators on a finite interval originated with
a 1953 paper by Gel’fand and Levitan [11] with later contributions by Dikii [6], Gel’fand
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[9], Halberg-Kramer [22], and Gilbert-Kramer [21]. The case of periodic potentials was
first studied by Hochstadt [25] who obtained a trace formula for V (x) − V (0) in terms of
appropriate Dirichlet eigenvalues in the special case of finite-gap potentials. The periodic
trace formula (5.59) for finite-gap potentials V (x) in terms of Dirichlet eigenvalues was first
derived by Dubrovin [7]. The periodic trace formulas (5.59) for all higher order Korteweg-
de Vries invariants sj(x) were first proven in 1975 by McKean-van Moerbeke [35] and
independently by Flaschka [8], the trace formula for s1(x) = 1

2V (x) for general periodic
C3 potentials by Trubowitz [40] in 1977. More recently, the trace formula (5.59) for
V (x) has been extended to certain classes of almost periodic potentials in Levitan [32,33],
Kotani-Krishna [29], and Craig [2]. Analogous trace formulas for Schrödinger operators
on the real line with potentials decaying sufficiently rapidly at infinity have been studied
in 1979 by Deift and Trubowitz [5], and more recently by Venakides [41], Gesztesy-Holden
[13], Gesztesy [12], and Gesztesy-Holden-Simon-Zhao [14].

These trace formulas are a key element of the solution of the inverse spectral problem for
periodic potentials and the inverse scattering problem for potentials decaying sufficiently
fast at infinity (see, e.g., [5], [7], [8], [25], [26], [32–36], [40], [41] and the references therein.)

§2. The Xi Process
In [18], we introduced a probability measure on the set of paths on [0, 1] as follows. Let

α be the Brownian bridge, that is, the Gaussian process of {α(s)}0≤s≤1 of mean zero and
covariance Eα(α(s)α(t)) = s(1−t) if s ≤ t. In terms of Brownian motion, one can realize α
as α(s) = b(s)− sb(1) (see [37] for discussion of Brownian motion, Gaussian processes, and
the Brownian bridge). There is a Baire measure Dα on C([0, 1]) induced by the process.

Let dκ be the measure on R ×C([0, 1]) given by dx⊗ (4π)−1/2Dα where dx is Lebesgue
measure. Let ω(s) = x + α(s) and let Ω0 ⊂ R × C([0, 1]) be the set of paths given by
{ω | ω(s) = 0 for some s ∈ [0, 1]}. We claim that

∫
Ω0

dκ =
1
2

(2.1)

for the free Feynman-Kac formula says

e∆/2(x, x) = (4π)−1/2

∫
{ω(0)=x}

Dα = (4π)−1/2, (2.2)

e∆D/2(x, x) = (4π)−1/2

∫
{ω(0)=x;ω(s) �=0 all s∈[0,1]}

Dα, (2.3)
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where ∆D = ∆D;0 has a Dirichlet boundary condition at x = 0. Thus

∫
Ω0

dκ =
∫
R

dx

[
exp

(
1
2
∆

)
(x, x) − exp

(
1
2
∆D

)
(x, x)

]

=
∫
R

dx exp
(
1
2
∆

)
(x,−x)

=
∫
R

dx exp
(
1
2
∆

)
(2x, 0)

=
1
2

∫
R

dy exp
(
1
2
∆

)
(y, 0) =

1
2
.

We define the xi process by placing the measure Dω ≡ 2χΩ0 dκ on C([0, 1]) with ω(s) =
x+ α(s).

The reason for the interest in Dω is that by writing (2.3) with a potential, one finds
(see [37]):

Proposition 2.1. Let V be bounded below and continuous on (−∞,∞), H = − d2

dx2 + V
on L2(−∞,∞) and let HD = − d2

dx2 +V on L2(−∞, 0)⊕L2(0,∞) with a Dirichlet boundary
condition at x = 0 (i.e., HD = HD;0). Then

Tr(e−tH − e−tHD) =
1
2
Eω

(
exp

(
−t

1∫
0

dsV (
√
2t ω(s))

))
. (2.4)

The Feynman-Kac formula (2.4) will be critical for the proof of our higher order trace
relations. We’ll need the following technical result (we use the notation employed in [37],
i.e., E(f) =

∫
Ω

f dµ, E(A) =
∫
A

dµ = µ(A), E(f ;A) =
∫
A

f dµ, etc., where (Ω,F , µ) denotes
a probability space, A ∈ F , f : Ω → R is F -measurable):

Theorem 2.2. Eω

({ω | sup
0≤s≤1

|ω(s)| ≥ a}) ≤ C1 exp(−C2a
2) for some C1, C2 > 0.

Proof. Look at sets on R×C([0, 1]) with measure dκ. Let Ta =
{
ω ∈ Ω0 | sup

0≤s≤1
|ω(s)| ≥ a}.

Then

Ta ⊂
{
ω ∈ Ω0 | |ω(0)| > a

2

}
∪

{
ω | |ω(0)| < a

2
, sup
0≤s≤1

ω(s) ≥ a
}

∪
{
ω | |ω(0)| < a

2
, inf
0≤s≤1

ω(s) ≤ −a
}

≡ T (1)
a ∪ T (2)

a ∪ T (3)
a .
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Notice that we have dropped the ω ∈ Ω0 condition from T
(i)
a , i = 2, 3. In each case, we

have a single condition on a value that we must take, for example:

T (2)
a =

{
ω | |ω(0)| < a

2
, ω(s) = a for some s ∈ [0, 1]

}
.

Thus, each
∫

T
(i)
a

dx can be written in terms of a Dirichlet boundary condition (at 0, a, −a,

respectively) and then by the method of images in terms of the free heat kernel of e∆/2.
Explicitly,

∫

T
(1)
a

dx =
∫

|x|>a/2

dxe∆/2(x,−x),

∫

T
(2)
a

dx =
∫

|x|<a/2

dxe∆/2(x, 2a − x),

∫

T
(3)
a

dx =
∫

|x|<a/2

dxe∆/2(x,−2a − x)

and each of these is bounded by C1 exp(−C2a
2).

Remark 2.3. The xi process, ω, is not Gaussian. However, the process, L, obtained by
reflecting ω in the first time it hits 0 is Gaussian. It will be discussed in [16] where an
alternate proof of Theorem 2.2 can be found.

§3. Zeroth Order Asymptotics
Here we’ll prove the following generalization of a result we proved in [18].

Theorem 3.1. Let V be a measurable function of R obeying

(i) sup
n∈N

n+1∫
n

|V−(x)| dx <∞,

(ii)
n+1∫
n

|V+(x)| dx <∞ for all n ∈ N ,

where V±(x) = max
min (V (x), 0). Let H = − d2

dx2 +V on L2(−∞,∞) and HD;y = − d2

dx2 +V on

L2(−∞, y) ⊕ L2(y,∞) with Dirichlet boundary conditions at y. Let ξ(λ, y) be the Krein
spectral shift for H to HD;y. Let Eo = inf spec(H). If x is a point of Lebesgue continuity
for V , then

V (x) = Eo + lim
α↓0

∞∫
Eo

dλ e−αλ[1− 2ξ(λ, x)].

Remark 3.2. This generalizes the result in [18] in three ways. There we assumed V (x) ≤
C1e

C2x
2
, we supposed V bounded below and that V is continuous.
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Proof of Theorem 3.1. For notational simplicity, suppose x = 0, Eo = 0, and write HD;0 =
HD . Let W (y) = V (y) if |y| ≤ 1 and W (y) = 0 if |y| ≥ 1. Then, by (2.4)

Tr(e−tH − e−tHD) =
1
2
Eω

(
exp

(
−t

1∫
0

dsV (
√
2t ω(s))

))

=
1
2
Eω

(
χ
(
sup

0≤s≤1
(
√
2t |ω(s)| < 1)

)
exp

(
−t

1∫
0

dsV (
√
2t ω(s))

))

+O(C1e
−C2/t) (3.1)

=
1
2
Eω

(
χ
(
sup

0≤s≤1
(
√
2t |ω(s)| < 1)

)
exp

(
−t

1∫
0

dsW (
√
2t ω(s))

))

+O(C1e
−C2/t)

=
1
2
Eω

(
exp

(
−t

1∫
0

dsW (
√
2t ω(s))

))
+O(C1e

−C2/t), (3.2)

where (3.1) follows from Theorem 2.2, the Schwartz inequality and the estimate that
Tr(e−tH̃ − e−tH̃D) <∞ with H̃ = − d2

dx2 + 2V .
The general proof when only (ii) holds is a little complicated so we consider first the

case where V is bounded. Then since |ex − 1− x| ≤ 1
2x

2e|x|, we have by (3.2) that

Tr(e−tH − e−tHD) =
1
2

(
1− tEω

( 1∫
0

dsW (
√
2t ω(s))

))
+O(t2) +O(C1e

−C2/t)

=
1
2
(1− ta) + o(t), (3.3)

where

a = lim
t↓0

∫
R

dxV (x)gt(x)

with gt(x) the probability distribution for
√
2t ω(s) with s distributed uniformly in [0, 1].

Then gt(x) = 1√
2t
g1(x/

√
2t) so by general principles, a = V (0) since x = 0 is a point of

Lebesgue continuity for V .
Next note that

Tr(e−tH − e−tHD) = t

∞∫
0

dλ e−tλξ(λ, 0), 1 = t

∞∫
0

e−tλ dλ.
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Thus

lim
t↓0

∞∫
0

dλ e−tλ(1− 2ξ(λ, 0)) = − lim
t↓0

2
[
Tr(e−tH − e−tHD)− 1

2

]/
t

= a = V (0)

by (3.3).
Turning to the general case, as above we can suppose that V is supported on [−1, 1]

(i.e., is equal to W ), and we need only prove (3.3) assuming V ∈ L1(R ). Let P (x, y; t, µ)
be the integral kernel of exp(−t(− d2

dx2 + µV )), Pt(x, y) ≡ P (x, y, t, µ = 1), P (o)
t (x, y) =

P (x, y, t, µ = 0) = (4πt)−1/2 exp(−(x− y)2/4t). By the method of images:

Tr(e−tH − e−tHD ) =
∫
R

dxPt(x,−x). (3.4)

Moreover, (see, e.g., [38]) uniformly on µ, t ∈ [0, 1]:

P (x, y, t, µ) ≤ Cεt
−1/2 exp

(−(x− y)2/(4 + ε)). (3.5)

By (3.5) for any α > 0, we can integrate in (3.4) over |x| < t1/2−α with an error O(e−d/t2α

).
By DuHamel’s formula:

d

dµ
P (x, y, t, µ) = −

t∫
0

ds dz P (x, z, s, µ)V (z)P (z, y, t − s, µ).

Thus, iterating and using (3.5) in the form |P (x, y; t, µ)| ≤ Cεt
−1/2,

∣∣∣∣ d
k

dµk
P (x, y, t, µ)

∣∣∣∣ ≤
( ∫

[−1,1]

dz |V (z)|
)k

Ck

∫
si≥0

k
Σ

i=1
si<t

∏
j

dsj

[ k∏
i=1

s
−1/2
i

](
t−

k∑
�=1

s�

)−1/2

≤ C̃kt
(k−1)/2.

Thus by Taylor’s theorem with remainder if we take the 0, 1, 2 terms in the Taylor
expansion about µ = 0, the error in

∫
|x|<t1/2−α

dxPt(x,−x)
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is bounded by C t t1/2−α = o(t). Thus up to o(t) errors Tr(e−tH − e−tHD) = α + β + γ,
where

α =
∫
R

dxP
(o)
t (x,−x),

β = −
∫

0<s<t

dz ds dxP (o)
s (x, z)V (z)P (o)

t−s(z,−x),

γ =
1
2

∫
0<u<t
0<s<t
u+s<t

du ds dxdz dwP (o)
u (x, z)V (z)P (o)

s (z, w)V (w)P (o)
t−s−u(z,−x).

By a direct integration, α = 1
2 . Using P

(o)
t (z,−x) = P (o)

t (−z, x) and doing the x integral:

β = −t
∫
R

dz P
(o)
t (z,−z)V (z) = −1

2
tV (0) + o(t)

if 0 is a point of Lebesgue continuity for V .
Thus the result is reduced to proving

γ = o(t). (3.6)

Doing the x integral as for β:

γ =
1
2

∫
dz dw ds (t − s)P (o)

t−s(z,−w)V (z)V (w)P (o)
s (z, w)

so it suffices to show that

δ ≡
∫
dz dw dsP

(o)
t−s(z,−w)|V (z)||V (w)|P (o)

s (z, w) = o(1).

Write δ ≤ δ1+δ2+δ3 where δ1 is the integral over the region |w−z| > 1
2 t

1/4, δ2 the region
where |w + z| > 1

2 t
1/4, and δ3 the region where |w| < t1/4, |z| < t1/4. The δ1, δ2 integrals

are bounded by (
∫

[−1,1]

|V (z)|)2e−c/t1/2
t∫
0

ds (t − s)−1/2(s−1/2) = O(e−c/t1/2
) = o(1) since

t∫
0

ds (t − s)−1/2s−1/2 =

1∫
0

ds s−1/2(1− s)−1/2 <∞. (3.7)

To control δ3, bound P
(o)
u by Cu−1/2 and find, by (3.7)

δ3 = C
( ∫
|x|<t1/4

dx |V (x)|
)2

1∫
0

ds s−1/2(1 − s)−1/2 = o(1)

since V ∈ L1(R ) (w.l.o.g. supp(V ) ⊂ [−1, 1]).
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§4. Asymptotic Expansions
Our goal in this section is to prove a number of related theorems on

F (x, t) := Tr(e−tHD;x − e−tH). (4.1)

Theorem 4.1. Suppose that V (x) is C∞ and bounded from below. Then F (x, t) has an
asymptotic expansion as t ↓ 0:

F (x, t) ∼
∞∑
j=0

sj(x)tj ,

where sj(x) is dependent only on the numbersV (x), . . . , V (k)(x) (V (k)(x)) := (dkV/dxk(x))
with k = 2j − 2.

Theorem 4.2. Suppose that V (x) is bounded from below and locally bounded from above.
Fix x0 and n and suppose that near x0,

V (x) =
2n−2∑
j=0

bj(x− x0)j + o(|x− x0|2n−2).

Then there exists {sj(x0)}nj=0 such that

F (x0, t) =
n∑

j=0

sj(x0)tj + o(tn).

The sj(x0) are the same functions of the b’s as in Theorem 4.1.

Theorem 4.3. Suppose that V (x) is C∞ and bounded from below and

|V (k)(x)| ≤ Cke
Akx

2
(4.2)

for some Ck, Ak. Then for j ≥ 1

lim
t↓0

∞∫
0

dλ e−λtλj−1(λt− j)ξ(λ, x0) = (−1)j+1sj(x0)j!

and if V ≥ 0; j ≥ 1

lim
t↓0

∞∫
0

dλλj−1e−λt

(
ξ(λ, x0)− 1

2

)
= (−1)jsj(x0)(j − 1)!.

Proof. Theorem 4.1 clearly follows from Theorem 4.2. The first assertion in Theorem 4.3
follows directly from

F (x, t) = −t
∞∫
0

dλ e−λtξ(λ, x) (4.3)
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if we prove that F (x, t) is C∞ in t with derivatives having limits at t = 0. The second
equality then follows if we note that

F (x, t)|V≡0 = −1
2
t

∞∫
0

dλ e−λt

so
∞∑
j=1

sj(x0)tj−1 ∼ −
∞∫
0

dλ e−λt

(
ξ(λ, x0)− 1

2

)
.

Thus the proofs are reduced to showing Theorem 4.2 and that under the hypothesis (4.2),
F is C∞ in t with continuous derivatives at t = 0. W.l.o.g. take x0 = 0.

We turn first to Theorem 4.2. As in the last section, let W (x) = V (x)χ[−1,1](x) and
note that by Theorem 2.2

F (0, t)|V − F (0, t)|W = O(e−C/t)

so we can suppose that V is supported in [−1, 1] which we will henceforth do. By local
boundedness, we can suppose ‖V ‖∞ <∞. Use an asymptotic expansion of

F (0, t) = −1
2
Eω

(
exp

(
−t

1∫
0

dsV (
√
2t ω(s))

))
=

n∑
j=0

bj(t) +Rn(t),

where

bj(t) =
(−1)j+1

2(j!)
Eω

(
tj

( 1∫
0

dsV (
√
2t ω(s))

)j)

and for 0 ≤ t ≤ 1
|Rn(t)| ≤ exp(‖V ‖∞)tn+1‖V ‖n+1

∞
/
(n + 1)!,

since Taylor’s theorem with remainder implies

∣∣∣∣∣∣e
−x −

n∑
j=0

(−x)j/j!
∣∣∣∣∣∣ ≤ C

n+1 eC
/
(n+ 1)!

if |x| ≤ C .
By hypothesis V has an asymptotic expansion

V (x) =
2n−2∑
j=0

bjx
j + o(x2n−2).
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Plug that into bj(t), j ≥ 1 and find

bj(t) =
(−1)j+1

2(j!)
Eω

(
tj

1∫
0

ds
2n−2∑
k=1

Ck,j(b1, . . . , bk)(
√
2t)k(ω(s))k

)
+ o(tn+j−1),

where Ck,j(b1, . . . , bk) are certain polynomials in b1, . . . , bk. Since E(ω(s)j) = 0 if j is odd
(by x→ −x symmetry), we have the required asymptotic series proving Theorem 4.2.

As for Theorem 4.3, under hypothesis (4.2) define

K(t) := F (x = 0, t2).

Then there are formal formulae one can write down for d�K/dt� by differentiating inside
the E(· · · ) expectation and integral. Because of (4.2), it is easy to see the integrand
in E(· · · ) converges absolutely, and then by integrating the derivative that the formal
formula is valid. With this formula in hand, one sees that d�K/dt� is continuous as t ↓ 0
and d�K/dt� = 0 if 3 is odd. It follows by Taylor’s theorem with remainder that

K(t) =
n∑

j=0

ajt
2j + En(t) (4.4a)

with
dmEn(t)
dtm

= O(t2n+1−m), m = 0, . . . , 2l. (4.4b)

But F (x = 0, t) = K(
√
t). Using (4.4), F (t) has continuous derivatives at t = 0, that

is, we have proven what is used to conclude Theorem 4.3.

§5. Analysis of the Coefficients
In §4 we proved the existence of an asymptotic expansion of the form

Tr(etHD;x − e−tH) ∼
t↓0

∞∑
j=0

sj(x)tj , x ∈ R (5.1)

assuming
V ∈ C∞(R ), V real-valued and bounded from below (5.2)

so that the differential expression

h = − d2

dx2
+ V (x), x ∈ R (5.3)

is non-oscillatory at ±∞ (and hence in the limit point case at ±∞). The main purpose
of this section is to identify the coefficients sj(x), j ∈ N in (5.1) with the KdV invariants
(and hence with certain differential polynomials of V ).
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In order to identify sj(x), j ∈ N with the KdV invariants, we adopt the following
strategy. By strengthening the assumptions (5.2), (5.3) momentarily to

V ∈ C∞
0 (R ), (5.4)

we shall derive the asymptotic expansion

Tr[(HD;x − z)−1 − (H − z)−1] ∼
z↓−∞

∞∑
j=0

rj(x)z−j−1 (5.5)

and relate rj(x), j ∈ N with the KdV invariants by means of well-known Riccati-type
equation arguments. The Laplace transform connecting (5.1) and (5.5) is then used to
derive the relation

sj(x) = (−1)j+1(j!)−1rj(x), j ∈ N 0 = N ∪ {0} (5.6)

which then identifies sj(x) and the KdV invariants (up to inessential numerical factors).
Since by Theorem 4.1, sj(x) only depends on the numbers V (x), . . . , V (k)(x) with k =
2j−2, the connection (5.6) between sj(x) and rj(x) is independent of the short-range nature
of V ∈ C∞

0 (R ) and extends to all V ∈ C∞(R ) bounded from below. In fact, it extends to V
bounded from below and locally bounded from above, satisfying the asymptotic expansion
assumed in Theorem 4.2.

Theorem 5.1. Assume V ∈ C∞
0 (R ). Then for each N ∈ N ,

Tr[(HD;x − z)−1 − (H − z)−1 ] = − d

dz
ln[G(z, x, x)]

∼
z↓−∞

N∑
j=0

rj(x)z−j−1 +O(z−N−1), x ∈ R (5.7)

uniformly with respect to x ∈ R , where rj(x), j ∈ N represent the KdV invariants. More
precisely, one has

r0(x) =
1
2
, r1(x) =

1
2
V (x),

rj(x) = (−1)j+121−2jjφ2j−1(x) +
j−1∑
�=1

(−1)j−�+121−2(j−�)φ2(j−�)−1(x)r�(x), j ≥ 2,

(5.8)
where φj(x), j ∈ N are given by the recursion relation

φ1(x) = V (x), φ2(x) = −V ′(x),

φj+1(x) = −φ′j(x)−
j−1∑
�=1

φ�(x)φj−�(x), j ≥ 2.
(5.9)
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Proof. Since V ∈ C∞
0 (R ), one can set up the Volterra integral equations

f±(z, x) = e±iz1/2x +

x∫
±∞

dx1z
−1/2 sin[z1/2(x− x1)]V (x1)f±(z, x1),

Im(z1/2) ≥ 0, z ∈ C , x ∈ R ,

(5.10)

such that

Hf±(z, x) = zf±(z, x), z ∈ C (5.11)

in the sense of distributions. Better suited for our purpose are actually g±(z, x) defined by

g±(z, x) = e∓iz1/2xf±(z, x) (5.12)

satisfying

g±(z, x) = 1± (2iz1/2)−1

x∫
±∞

dx1

[
1− e∓2iz1/2(x−x1)

]
V (x1)g±(z, x1). (5.13)

Iterating (5.13) one infers by a standard procedure that

|g±(z, x)| ≤ C, z ∈ C , x ∈ R (5.14)

and combined with integrations by parts, one obtains the asymptotic expansions

g
(m)
± (z, x) ∼

z→∞
Im(z1/2)≥0

∞∑
j=0

g
(m)
±,j (x)(2iz

1/2)−j , m ∈ N 0, x ∈ R (5.15)

uniformly with respect to x ∈ R . In order to illustrate (5.15), it suffices to discuss as a
special case the asymptotic expansion of g±(z, x) up to order O(z−2). Using (5.13), one
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infers from repeated integrations by parts that

g±(z, x) = 1± 1
2iz1/2

x∫
±∞

dx1 V (x1)∓ e∓2iz1/2x

2iz1/2

x∫
±∞

dx1 e
±2iz1/2x1V (x1)

+
1

(2iz1/2)2

x∫
±∞

dx1

[
1− e∓2iz1/2(x−x1)

]
V (x1)

x1∫
±∞

dx2

[
1− e∓2iz1/2(x1−x2)

]
V (x2)

± 1
(2iz1/2)3

x∫
±∞

dx1

[
1− e∓2iz1/2(x−x1)

]
V (x1)

x1∫
±∞

dx2

[
1− e∓2iz1/2(x1−x2)

]
V (x2) ·

·
x2∫

±∞
dx3

[
1− e∓2iz1/2(x2−x3)

]
V (x3)g±(z, x3)

∼
z→∞

Im(z1/2)≥0

1± 1
2iz1/2

x∫
±∞

dx1 V (x1) +
1
4z
V (x)− 1

8z

[ x∫
±∞

dx1 V (x1)
]2

∓ 1
8iz3/2

V ′(x)± 1
8iz3/2

x∫
±∞

dx1 V (x1)2 ± 1
8iz3/2

V (x)

x∫
±∞

dx1 V (x1)

∓ 1
64iz3/2

[ x∫
±∞

dx1 V (x1)
]3

+O(z−2), x ∈ R ,

(5.16)

where we used (5.14) to arrive at the O(z−2)-term uniformly with respect to x ∈ R .
By induction one extends this expansion to O(z−N ) for each N ∈ N uniformly in x ∈
R . Analogously, one arrives at the corresponding expansions for g(m)(z, x), m ∈ N . In
particular, introducing

φ±(z, x) =
f ′±(z, x)
f±(z, x)

= ±iz1/2 + g′±(z, x)
g±(z, x)

(5.17)

(′ denotes d/dx) one obtains

φ
(m)
± (z, x) ∼

z→∞
Im(z1/2)≥0

±iz1/2 +
∞∑
j=1

φ
(m)
± (x)(2iz1/2)−j , x ∈ R (5.18)

for certain coefficients φ±(x) (uniformly in x ∈ R since V ∈ C∞
0 (R )). Combining (5.11),

(5.12), and (5.17) yields the Riccati-type equation

φ′±(z, x) + φ±(z, x)
2 = V (x) − z. (5.19)
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A comparison of (5.18) and (5.19) then yields

φ±,1(x) = ±V (x), φ±,2(x) = −V ′(x),

φ±,j+1(x) = ∓φ′±,j(x)∓
j−1∑
�=1

φ±,�(x)φ±,j−�(x), j ≥ 2.
(5.20)

This identifies φ+,j and φj

φ+,j(x) = φj(x), j ∈ N (5.21)

as introduced in (5.9) and also yields

φ−,j(x) = (−1)jφ+,j(x), j ∈ N . (5.22)

In order to connect (5.7) and (5.18) we recall a few facts. First of all, the Green’s function
G(z, x, x′) of H satisfies

G(z, x, x) = [φ−(z, x) − φ+(z, x)]−1 , z ∈ C\spec(H), x ∈ R (5.23)

since, due to definition (5.17), φ±(z, x) equal the Weyl m-functions associated with HD,±;x

in L2((x,±∞)), the restrictions of H to (x,±∞) with a Dirichlet boundary condition at
x ∈ R . In particular,

HD;x = HD,−;x ⊕HD,+;x. (5.24)

Thus we obtain

Tr[(HD;x − z)−1 − (H − z)−1] = − d

dz
ln[G(z, x, x)] =

d

dz
ln[φ−(z, x) − φ+(z, x)]

(5.25)

∼
z↓−∞

d

dz
ln

[
z1/2

∞∑
j=0

2φ2j−1(x)(2iz1/2)−2j

]

∼
z↓−∞

(1/2z) +
d

dz
ln

[
1 +

∞∑
j=1

(−1)j21−2jφ2j−1(x)z−j

]

∼
z↓−∞

∞∑
j=0

rj(x)z−j−1 , (5.26)

where rj(x), j ∈ N 0 are given by (5.8). Here we made use of (5.23), (5.18), (5.22), and the
fact that if F has the asymptotic expansion

F (z) ∼
|z|→∞

∞∑
j=1

cjz
−j (5.27)
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then

ln[1 + F (z)] ∼
|z|→∞

∞∑
j=1

djz
−j , (5.28)

where
d1 = c1,

dj = cj −
j−1∑
�=1

(3/j)cj−�d�, j ≥ 2.
(5.29)

Remark 5.2. (i) Using

G(z, x, x) =
f+(z, x)f−(z, x)
W (f+(z), f−(z, x))

, z ∈ C\spec(H), x ∈ R (5.30)

one derives the relation (see, e.g., [27])

d

dx
ln[G(z, x, x)] = φ−(z, x) + φ+(z, x) (5.31)

which yields the simpler expression

d

dx
Tr[(HD;x − z)−1 − (H − z)−1] =

d

dz

d

dx
ln[φ−(z, x)− φ+(z, x)]

= − d

dz
[φ+(z, x) + φ−(z, x)] ∼

z↓−∞

∞∑
j=1

(−1)j21−2jφ2j(x)z−j−1 . (5.32)

Integrating (5.32) term by term (putting integration constants indentically zero since
rj(x) are homogeneous differential polynomials of degree deg(rj) = 2j, j ∈ N 0 defining
deg(V (m)) = m + 2, m ∈ N 0) yields (5.7) except for the leading term 1/2z which can be
inferred from the free case V (o)(x) ≡ 0.

(ii) Relations (5.22) and (5.31) prove that φ±,2m(x) are total derivatives, that is,

φ±,2m(x) =
d

dx
ηm(x), m ∈ N (5.33)

for some differential polynomials ηm of V with ηm ∈ C∞
0 (R ) (resp. C∞(R )) if V ∈ C∞

0 (R )
(resp. C∞(R )). Moreover, the following asymptotic expansion holds (see, e.g., [12], [13]).

G(z, x, x) ∼
z↓−∞

−
∞∑
j=0

ω2j(x)(2iz1/2)−2j−1 , x ∈ R (5.34)

uniformly with respect to x ∈ R , where

ω0(x) = 1,

ω2j(x) = −2φ2j−1(x)− 2
j−1∑
�=1

φ2�−1(x)ω2(j−�)(x), j ∈ N
(5.35)
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One can prove that ([10], [13])

ω2j+2(x) = −2(2j + 1)φ2j+1(x) +
d

dx
νj(x), j ∈ N 0, (5.36)

where νj are differential polynomials in V with νj ∈ C∞
0 (R ) (resp. C∞(R )) if V ∈ C∞

0 (R )
(resp. V ∈ C∞(R )).

(iii) Clearly (5.7), (5.32), and (5.33) extend to uniformly asymptotic expansions as
|z| → ∞ outside any cone with apex Eo = inf spec(H) and arbritrarily small opening
angle ε > 0 along the positive real axis. Explicitly, one infers from (5.8), (5.9), and (5.35)
that

r0(x) =
1
2
, r1(x) =

1
2
V (x), r2(x) =

1
2
V (x)2 − 1

4
V ′′(x), etc. (5.37)

φ1(x) = V (x), φ2(x) = −V ′(x), φ3(x) = V ′′(x)− V (x)2 ,
φ4(x) = 4V (x)V ′(x)− V ′′′(x), etc., (5.38)

and
ω0(x) = 1, ω2(x) = −2V (x), ω4(x) = 6V (x)2 − 2V ′′(x), etc. (5.39)

Next we relate (5.7) and (5.1).

Theorem 5.3. Suppose V ∈ C∞(R ), V real-valued and bounded from below. Then for
each N ∈ N ,

Tr(e−tHD;x − e−tH) ∼
t↓0

N∑
j=0

sj(x)tj +O(tN+1), x ∈ R , (5.40)

where sj(x) are the KdV invariants

sj(x) = (−1)j+1(j!)−1rj(x), j ∈ N 0 (5.41)

with rj(x) given by (5.8).

Proof. Since the existence of the asymptotic expansion (5.40) has been proven in §4 we
only need to identify the coefficients sj(x) as in (5.41). Without loss of generality we may
assume in addition that V ∈ C∞

0 (R ). Let Eo = inf spec(H), then one obtains from (1.4)
and Fubini’s theorem that

Tr[(HD;x − z)−1 − (H − z)−1] = −
∞∫

Eo

dλ ξ(λ, x)
(λ − z)2

=

∞∫
Eo

dλ ξ(λ, x)

∞∫
0

dt (−t)e(z−λ)t

=

∞∫
0

dt ezt
∞∫

Eo

dλ (−t)e−λtξ(λ, x)

=

∞∫
0

dt eztTr(e−tHD;x − e−tH), z < Eo.
(5.42)
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Define

F (x, t) = Tr(e−tHD;x − e−tH) = −t
∞∫

Eo

dλ e−tλξ(λ, x), t > 0, x ∈ R . (5.43)

Then
F (x, ·) ∈ C∞([0,∞)), for each x ∈ R (5.44)

is proven at the end of §4 and Theorem 4.1 yields for each N ∈ N ,

F (x, t) ∼
t↓0

N∑
j=0

sj(x)tj +O(tN+1). (5.45)

In particular, ∣∣∣∣F (x, t)−
N∑
j=0

sj(x)tj
∣∣∣∣ ≤ CN(x)tN+1, 0 ≤ t ≤ 1 (5.46)

by estimating the remainder in the Taylor expansion for F (x, ·). Thus

zTr[(HD;x−z)−1−(H−z)−1] = z

1∫
0

dt eztF (x, t)+z

∞∫
1

dt eztF (x, t) := G1(x, z)+G2(x, z).

(5.47)
Clearly,

|G2(x, z)| =
∣∣∣∣z

∞∫
1

dt eztF (x, t)
∣∣∣∣ ≤ (−z)

∞∫
1

dt ezt|F (x, t)| ≤ C0e
z, z < min(0, Eo) (5.48)

since |F (x, t)| ≤ e−tEo (because of 0 ≤ ξ(λ, x) ≤ 1). Moreover,

G1(x, z) = z

1∫
0

dt ezt
[
F (x, t)−

N∑
j=0

sj(x)tj +
N∑
j=0

sj(x)tj
]

∼
z↓−∞

N∑
j=0

sj(x)
[
z

∞∫
0

dt ezttj +O(eεz)
]
+ z

1∫
0

dt ezt
[
F (x, t)−

N∑
j=0

sj(x)tj
]

∼
z↓−∞

N∑
j=0

sj(x)(−1)j+1(j!)[z−j+O(eεz)]+z

1∫
0

dt ezt
[
F (x, t)−

N∑
j=0

sjt
j

]
, z < min(0, Eo)

(5.49)
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for some 0 < ε < 1. Thus

zTr[(HD;x − z)−1 − (H − z)−1] ∼
z↓−∞

N∑
j=0

sj(x)(−1)j+1(j!)z−j +O(z−N−1) (5.50)

using the estimate (5.46). A comparison of (5.7) and (5.50) then yields (5.41).

Relations (5.37) and (5.41) then yield explicitly

s0(x) = −1
2
, s1(x) =

1
2
V (x), s2(x) =

1
8
V ′′(s)− 1

4
V (x)2, etc. (5.51)

Finally we epxress the KdV invariants sj(x) in terms of ξ(λ, x) according to Theorem
4.3.

Theorem 5.4. Suppose V ∈ C∞(R ), V real-valued and bounded from below. Assume
that (4.2) holds and denote Eo = inf spec(H). Then

s0(x) = −1
2
,

sj(x) =
(−1)j+1

j!

{
Ej
o

2
+ j lim

t↓0

∞∫
Eo

dλ e−tλλj−1

[
1
2
− ξ(λ, x)

]
j ∈ N , x ∈ R .

(5.52)

Explicitly, one has

s1(x) =
1
2
V (x)

=
Eo

2
+ lim

t↓0

∞∫
Eo

dλ e−tλ

[
1
2
− ξ(λ, x)

]
, (5.53)

s2(x) =
1
8
V ′′(x) − 1

4
V (x)2

= −E
2
o

4
− lim

t↓0

∞∫
Eo

dλ e−tλλ

[
1
2
− ξ(λ, x)

]
, etc. (5.54)

We will illustrate these results in the special case where V (x) is periodic.

Example 5.5. Assume V ∈ C∞(R ), V real-valued, for some a > 0, V (x+ a) = V (x) for
all x ∈ R . In this case the spectrum of H is given by

spec(H) =
∞⋃
n=1

[E2(n−1), E2n−1]. (5.55)
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Then for each x ∈ R , ξ(λ, x) is real-valued for λ ∈ (E2n−1, E2n) and purely imaginary for
λ ∈ (E2(n−1), E2n−1) (see, e.g., [4], [28]). More precisely,

ξ(λ, x) =




0, λ < E0, µn(x) < λ < E2n, n ∈ N

1, E2n−1 < λ < µn(x), n ∈ N
1
2 , E2(n−1) < λ < E2n−1, n ∈ N

(5.56)

(and analogously for limiting cases where µn(x) ∈ {E2n−1, E2n}, n ∈ N ). Here µn(x)
denote the Dirichlet eigenvalues (or limits thereof) of HD;x, that is,

spec(HD;x) = {µn(x)}n∈N ∪
∞⋃
n=1

[E2(n−1), E2n−1], E2n−1 ≤ µn(x) ≤ E2n, n ∈ N . (5.57)

Inserting (5.56) into (5.52) and noticing that

|E2n −E2n−1| =
n→∞ 0(n−k) for all k ∈ N (5.58)

since V ∈ C∞ (see [36], [40] and the references therein), one can interchange the limit t ↓ 0
and the integral in (5.52) to obtain

2(−1)j+1j! sj(x) = 2rj(x) = E
j
0 +

∞∑
n=1

[Ej
2n−1 + E

j
2n − 2µn(x)j ], j ∈ N , x ∈ R . (5.59)

The periodic trace formula (5.59) for j = 1 has been noticed by Hochstadt [25] and
Dubrovin [7]. The general case j ∈ N appeared in McKean and van Moerbeke [35] and
Flaschka [8]. For more recent accounts, see, for example, [2], [29], [32], [33], [40].

Remark 5.6. The heat kernel approach in §2–4 naturally leads to the heat kernel regu-
larization for sj(x) in Theorem 5.4. Alternatively, we could have exploited a resolvent
regularization for rj(x) as follows. Applying (1.4) to f(λ) = (λ − z)−1 and expanding in
z−1 near z−1 = 0 yields

Tr[(HD;x − z)−1 − (H − z)−1] = −
∞∫

Eo

dλ ξ(λ, x)
(λ− z)2

=
1
2z

− Eo

2z(Eo − z) +
∞∫

Eo

dλ[ 12 − ξ(λ, x)]
(λ− z)2

∼
z→i∞

1
2z

+
∞∑
j=1

rj(x)z−j−1 , (5.60)

where

rj(x) =
Ej
o

2
− lim

z→i∞

∞∫
Eo

dλ
zj+1

(λ − z)j+1
j(−λ)j−1

[
1
2
− ξ(λ, x)

]
, j ∈ N , x ∈ R (5.61)
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under the assumptions on V as in Theorem 5.4. In particular,

r1(x) =
1
2
V (x)

=
Eo

2
+ lim

z→i∞

∞∫
Eo

dλ
z2

(λ − z)2
[
1
2
− ξ(λ, x)

]
. (5.62)

We shall return to a detailed discussion of resolvent regularization (proving the existence
of an asymptotic expansion of the type (5.7) under the hypothesis on V as in Theorem 5.4)
in §6 in connection with other self-adjoint boundary conditions different from the Dirichlet
boundary condition at x ∈ R .

§6. Other Boundary Conditions
In this section we shall study higher order trace formulas associated to boundary condi-

tions other than the Dirichlet conditions studied so far. In general, we want to consider op-
erators which decompose into a direct sum under the decomposition L2(−∞, y)⊕L2(y,∞)
and which differ from H by a rank one perturbation. It can be shown the later condition
forces the boundary conditions to match, that is, in (6.1) below the boundary conditions

g′(y ± 0) + β±g(y ± 0) = 0

have β+ = β−. Thus, we define

Hβ;yf = hf, h = − d2

dx2
+ V (x), x ∈ R

D(Hβ;y) = {g ∈ QL2(R ) | g, g′ ∈ ACloc(R\{y}), hg ∈ L2(R ),

lim
ε↓0

[g′(y ± ε) + βg(y ± ε)] = 0}, β ∈ R , y ∈ R , (6.1)

where we assume again that V satisfies

V ∈ C∞(R ), V real-valued and bounded from below. (6.2)

Thus Hβ=0;y = HN ;y represents a Neumann boundary condition at y ∈ R and formally,
Hβ=∞;y = HD;y. In analogy to

(HD;y − z)−1 = (H − z)−1 −G(z, y, y)−1(G(z, y, ·), ·)G(z, ·, y),
z ∈ C\{spec(HD;y) ∪ spec(H)}, (6.3)

one now obtains

(Hβ;y − z)−1 = (H − z)−1 − [(β + ∂1)(β + ∂2)G(z, y, y)]−1 ·
· ((β + ∂1)G(z, y, ·), ·)(β + ∂2)G(z, ., y), z ∈ C\{spec(Hβ;y) ∪ spec(H)}, β ∈ R . (6.4)
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Here

∂1G(z, y, x′) := ∂xG(z, x, x′)|x=y , ∂2G(z, x, y) := ∂x′G(z, y, x′)|x′=y ,

∂1∂2G(z, x, y) := ∂x∂x′G(z, x, x′)|x=x′=y , etc. (6.5)

and we note that
∂1G(z, y, x) = ∂2G(z, x, y), x �= y (6.6)

renders the rank-one piece self-adjoint in (6.4) for z < inf spec(Hβ;y). Hence the Herglotz
function G(z, y, y) is now replaced by [(β + ∂1)(β + ∂2)G(z, y, y)]. The latter is Herglotz
too as can be inferred from the first resolvent equation

∂rx∂
s
x′ Im[G(z, x, x′)] =

∫
R

dx′′ [∂rxG(z, x, x′′)][∂
s
x′G(z, x′′, x′)], r, s ∈ {0, 1} (6.7)

implying (together with (6.6))

Im[(β + ∂1)(β + ∂2)G(z, y, y, )]

= Im(z)
{
β2

∫
R

dx′′ |G(z, x′′, y)|2 + β
∫
R

dx′′ [∂1G(z, y, x′′) ]G(z, x′′, y)

+ β
∫
R

dx′′G(z, y, x′′) [∂1G(z, y, x′′)] +
∫
R

dx′′|∂1G(z, y, x′′)|2
}

≥ Im(z)
[‖∂1G(z, ·, y)‖2 − |β|‖G(z, ·, y)‖2

]2
> 0 for Im(z) > 0

(6.8)

by Cauchy’s inequality. Equation (5.25) then turns into

Tr[(Hβ;x − z)−1 − (H − z)−1 ] = − d

dz
ln[(β+ ∂1)(β + ∂2)G(z, x, x, )] β ∈ R , x ∈ R . (6.9)

In order to introduce ξβ(λ, x), Krein’s spectral shift function associated with the pair
(Hβ;x,H) (in analogy to ξ(λ, x) ≡ ξ∞(λ, x) associated with (HD;x ≡ H∞;x,H)), we next
investigate [(β + ∂1)(β + ∂2)G(z, x, x)] a bit further. First of all we notice that

Hβ;x ≤ H, β ∈ R , x ∈ R (6.10)

as opposed to
HD;x = H∞;x ≥ H, x ∈ R . (6.11)

One way of understanding (6.10) is in terms of quadratic forms. Let Q(Hβ=0) = Ny

be the form domain of the Neumann boundary condition object. Then ϕ’s in Ny are
continuous on R\〈y〉 and have continuous boundary values ϕ(y ± 0). Q(Hβ) = Ny with

(ϕ,Hβϕ) = (ϕ,Hβ=0ϕ)− β[|ϕ(y+)|2 − |ϕ(y−)|2].



HIGHER ORDER TRACE RELATIONS 23

Let N0
y = {ϕ ∈ N | ϕ(y+) = ϕ(y−)}. Thus H is just the form Hβ restricted to N0

y , so
Hβ,y ≤ H.

Moroever, one easily verifies the identity

[(β + ∂1)(β + ∂2)G(z, x, x)] = β2G(z, x, x)

+ β
[
d

dx
G(z, x, x)

]
+H(z, x, x), z ∈ C\R , β ∈ R , x ∈ R , (6.12)

where

H(z, x, x) =
f ′+(z, x)f

′
−(z, x)

W (f+(z), f−(z))
(6.13)

and
d

dx
H(z, x, x) = [V (x)− z] d

dx
G(z, x, x). (6.14)

From
G(z, x, x) =

z↓−∞
1

2|z|1/2 + o(|z|−1/2), (6.15)

in accordance with
G(z, x, x) > 0 for z < inf spec(H), (6.16)

and from (6.14) one infers

H(z, x, x) = H(z, xo , xo) +

x∫
xo

dx′ [V (x′)− z]
[
d

dx′
G(z, x′, x′)

]

=
z↓−∞

H(z, xo , xo) + o(|z|1/2) (6.17)

upon integration by parts. In particular, the leading asymptotic behavior of H(z, x, x) as
z ↓ −∞ is independent of x and can be obtained from the free case V (o)(x) ≡ 0. Since for
V (o)(x) = 0,

G(o)(z, x, x) =
i

2z1/2
, H(o)(z, x, x) =

iz1/2

2
, (6.18)

one infers

H(z, x, x) =
z↓−∞

−|z|1/2
2

+ o(|z|1/2) (6.19)

and hence
[(β + ∂1)(β + ∂2)G(z, x, x)] < 0 for −z > 0 large enough. (6.20)

Thus the exponential Herglotz representation [1] for [(β + ∂1)(β + ∂2)G(z, x, x)] yields

[(β + ∂1)(β + ∂2)G(z, x, x)] = exp
{
c+

∫
R

[
1

λ − z − λ

1 + λ2

]
[ξβ(λ, x) + 1]

}
dλ (6.21)
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for some c ∈ R , where for each x ∈ R and a.e. λ ∈ R

ξβ(λ, x) =
1
π
lim
ε↓0

Im {ln[(β + ∂1)(β + ∂2)G(λ + iε, x, x)]} − 1 (6.22)

and

−1 ≤ ξβ(λ, x) ≤ 0, a.e. λ ∈ R , ξβ(λ, x) = 0 λ < inf spec(Hβ;x) (6.23)

in agreement with (6.10) and (6.20). Hence

Tr[f(Hβ;x)− f(H)] =
∫
R

dλ f ′(λ)ξβ(λ, x) (6.24)

for any f ∈ C2(R ) with (1 + λ2)f(j) ∈ L2((0,∞)), j = 1, 2 and for f(λ) = (λ − z)−1,
z ∈ C\[inf spec(Hβ;x),∞).

The following example in the free case V (o)(x) ≡ 0 illustrates these facts.

Example 6.1. V (o)(x) ≡ 0. Then G(o)(z, x, x′) = i
2z1/2 · eiz1/2 |x−x′|, Im(z1/2) ≥ 0 yields

[(β + ∂1)(β + ∂2)G(o)(z, x, x)] = (i/2)[β2z−1/2 + z1/2], β ∈ R (6.25)

and

ξ
(o)
β (λ, x) =




0, λ < −β2

−1, −β2 < λ < 0, β ∈ R\{0},
− 1

2
, λ > 0

(6.26)

ξ(o)o (λ, x) =
{
0, λ < 0
− 1

2
, λ > 0.

(6.27)

Thus

Tr[(H(o)
β;x − z)−1 − (H(o) − z)−1] =

β2 − z
2z(z + β2)

, β ∈ R , z ∈ C\{{−β2} ∪ [0,∞)}, (6.28)

Tr[e−tH
(o)
β;x − e−tH(o)

] = −1
2
+ etβ

2
, β ∈ R , t > 0, (6.29)

where H(o) = − d2

dx2 , D(H(o)) = H2,2(R ). One has

spec(H(o)
β;x) = {−β2} ∪ [0,∞), β ∈ R . (6.30)

Next we recall the well-known fact that the Weyl m-functions φ±(z, x) associated with
HD,±;x in L2((x,±∞)) (see the paragraph following (5.23)) have the asymptotic expansion
(5.18) as z → i∞ whenever V satisfies (6.2), see [3], [23], [24]. (Actually the l.p. property
of h at ±∞ is irrelevant in this context and the asymptotic expansion (5.18) is valid
outside any cone | tan θ| < ε for ε > 0 arbitrarily small.) Hence (5.23), (5.31), and (6.14)
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imply the existence of asymptotic expansions for G(z, x, x), d
dxG(z, x, x), H(z, x, x) =

[∂1∂2G(z, x, x)], and d
dxH(z, x, x) as z → i∞ to all orders in z. In the following we derive

recursion relations for the coefficients in the expansion for [(β + ∂1)(β + ∂2)G(z, x, x)] by
reducing it to those of G(z, x, x) and H(z, x, x) under the assumptions (6.2) on V . The
ansatz

G(z, x, x) ∼
z→i∞

i

2

∞∑
j=0

gj(x)z−j−1/2 (6.31)

inserted into the well-known differential equation for G(z, x, x) (essentially equivalent to
(5.19))

4[V (x) − z]G(z, x, x)2 +
[
d

dx
G(z, x, x)

]2

− 2G(z, x, x)
[
d2

dx2
G(z, x, x)

]
= 1 (6.32)

then yields the recursion relation [10]

g0(x) = 1, g1(x) =
1
2
V (x),

gj+1(x) = −1
2

j∑
�=1

g�(x)gj+1−�(x) +
1
2
V (x)

j∑
�=0

g�(x)gj−�(x)

+
1
8

j∑
�=0

g′�(x)g
′
j−�(x)−

1
4

j∑
�=0

g′′� (x)gj−�(x), j ∈ N .

(6.33)

Equivalently, one could have used the linear third order equation

[
d3

dx3
G(z, x, x)

]
− 4[V (x)− z]

[
d

dx
G(z, x, x)

]
+ V ′(x)G(z, x, x) = 0 (6.34)

to obtain
g0(x) = 1,

g′j(x) = −1
4
g′′′j−1(x) + V (x)g

′
j−1(x) +

1
2
V ′(x)gj−1(x), j ∈ N

(6.35)

which yields gj(x) upon (homogeneous) integration. Here gj are homogeneous differential
polynomials in V of degree

deg(gj) = 2j, j ∈ N 0 (6.36)

assuming deg(V (m)) = m+ 2, m ∈ N 0. Explicitly, one obtains

g0 = 1, g1(x) =
1
2
V (x), g2(x) =

3
8
V (x)2 − 1

8
V ′′(x),

g3(x) =
1
32
V ′′′′(x)− 5

16
V (x)V ′′(x)− 5

32
V ′(x)2 +

5
16
V (x)3, etc. (6.37)
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Equation (6.14) then yields

d

dx
H(z, x, x) ∼

z→i∞
i

2

∞∑
j=0

[V (x)g′j(x)− g′j+1(x)]z
−j−1/2 (6.38)

and hence

H(z, x, x) ∼
z→i∞

i

2

∞∑
j=0

[ x∫
dx′ V (x′)g′j(x

′)− gj+1(x)
]
z−j−1/2 + C(z). (6.39)

Here
x∫
dx′ V (x′)g′j(x

′) denotes homogeneous integration, that is, all integration constants
are put zero. Moreover, as proven in [10],

g�(x)g′j(x) =
d

dx
h�,j(x) (6.40)

for some homogeneous differential polynomial h�,j in V and hence V g′j = 2g1g′j is a total
derivative (see (6.39)). The x-independent constant C(z) in (6.39) can be obtained from
the free case V (x) ≡ 0 and one gets (cf. (6.18), (6.19))

C(z) = iz1/2/2. (6.41)

Alternatively, one could have used

H(z, x, x)−1 = φ+(z, x)−1 − φ(z, x)−1 (6.42)

and the asymptotic expansions (5.18) for φ±(z, x). Combining (6.12), (6.31), (6.39), and
(6.41) then yields

[(β + ∂1)(β + ∂2)G(z, x, x)] = (iz1/2/2) + (i/2)
∞∑
j=0

[
β2gj(x) + βg′j(x)

+

x∫
dx′ V (x′)g′j(x

′)− gj+1(x)
]
z−j−1/2 = (iz1/2/2)

∞∑
j=0

cβ,j(x)z−j , (6.43)

where

cβ,0(x) = 1,

cβ,j(x) = β2gj−1(x) + βg′j−1(x) +

x∫
dx′ V (x′)g′j−1(x

′)− gj(x), j ∈ N .
(6.44)

Explicitly, one gets

cβ,0(x) = 1, cβ,1(x) = β2 − 1
2
V (x),

cβ,2(x) =
1
2
β2V (x) +

1
2
βV ′(x)− 1

8
V (x)2 +

1
8
V ′′(x), etc.

(6.45)
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Hence, applying (5.27)–(5.29) again, one infers

ln[(β + ∂1)(β + ∂2)G(z, x, x)] = ln(iz1/2/2) +
∞∑
j=1

dβ,j(x)z−j , (6.46)

where
dβ,1(x) = cβ,1(x) = β2 − 1

2
V (x),

dβ,j(x) = cβ,j(x)− 1
j

j−1∑
�=1

3cβ,j−�(x)dβ,�(x), j ≥ 2.
(6.47)

Explicitly,

dβ,1(x) = β2 − 1
2
V (x),

dβ,2(x) = −1
2
β4 + β2V (x) +

β

2
V ′(x)− 1

4
V (x)2 +

1
8
V ′′(x), etc.

(6.48)

This finally leads to the following theorem.

Theorem 6.2. Suppose V ∈ C∞(R ), V real-valued and bounded from below. Then for
each N ∈ N ,

Tr[(Hβ;x − z)−1 − (H − z)−1] = − d

dz
ln[(β + ∂1)(β + ∂2)G(z, x, x)]

∼
z→i∞

N∑
j=0

rβ,j(z)z−j−1 +O(z−N−1), β ∈ R , x ∈ R , (6.49)

where

rβ,0(x) = −1
2
,

rβ,j(x) = jcβ,j(x)−
j−1∑
�=1

cβ,j−�(x)rβ,�(x), j ∈ N
(6.50)

with cβ,j(x) computed from (6.44).

Proof. It suffices to note that

rβ,0(x) = −1
2
, rβ,j(x) = jdβ,j(x), j ∈ N (6.51)

upon differentiating (6.46) with respect to z.

Explicitly, one obtains from (6.50), (6.44),

rβ,0(x) = −1
2
, rβ,1(x) = β2 − 1

2
V (x),

rβ,2(x) = −β4 + 2β2V (x) + βV ′(x)− 1
2
V (x)2 +

1
4
V ′′(x), etc.

(6.52)

It remains to express rβ,j(x) in terms of ξβ(λ, x) in analogy to the resolvent regular-
ization procedure sketched in Remark 5.6. By exactly the same procedure one proves the
following result.
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Theorem 6.3. Suppose V ∈ C∞(R ), V real-valued and bounded from below. Assume
that (4.2) holds and denote Eβ,o(x) = inf spec(Hβ;x). Then

rβ,0(x) = −1
2
, (6.53)

rβ,1(x) = β2 − 1
2
V (x)

=
Eβ,o(x)

2
+ lim

z→i∞

∞∫
Eβ,o(x)

dλ
z2

(λ− z)2
[
1
2
− ξ(λ, x)

]
, (6.54)

rβ,j(x) =
Eβ,o(x)j

2
+ lim

z→i∞

∞∫
Eβ,o(x)

dλ
zj+1

(λ− z)j+1
j(−λ)j−1

[
1
2
− ξ(λ, x)

]
, j ∈ N , x ∈ R .

(6.55)

Finally, the analog of Example 5.5 in the case where V (x) is periodic reads as follows.

Example 6.4. Assume V ∈ C∞(R ), V real-valued, for some a > 0, V (x+ a) = V (x) for
all x ∈ R . Then the spectrum of H is given by (5.55) while the spectrum of Hβ;x is of the
type

spec(Hβ;x) = {λβ,n(x)}n∈N0 ∪
∞⋃
n=1

[E2(n−1), E2n−1],

λβ,0(x) ≤ E0, E2n−1 ≤ λβ,n(x) ≤ E2n, n ∈ N .

(6.56)

The analog of (5.56) then reads

ξβ(λ, x) =




0, λ < λβ,0(x), E2n−1 < λ < λβ,n(x), n ∈ N

−1, λβ,0(x) < λ < E0, λβ,n(x) < λ < E2n, n ∈ N

− 1
2 , E2(n−1) < λ < E2n−1, n ∈ N

(6.57)

and one obtains from (6.55) the higher order periodic trace formulas

2rβ,j(x) = E
j
0 − 2λβ,0(x)j +

∞∑
n=1

[Ej
2n−1+E

j
2n − 2λβ,n(x)j ], β ∈ R , j ∈ N , x ∈ R . (6.58)

While the periodic trace formulas (6.58) for rβ,j(x) were known in the Neumann case
β = 0 [36] (see also [31]), the cases β ∈ R\{0} in (6.58) appear to be new.
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