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Abstract. We prove multidimensional analogs of the trace formula obtained
previously for one-dimensional Schrödinger operators. For example, let V be
a continuous function on [0, 1]ν ⊂ R ν. For A ⊂ {1, . . . , ν}, let −∆A be the
Laplace operator on [0, 1]ν with mixed Dirichlet-Neumann boundary conditions

ϕ(x) = 0, xj = 0 or xj = 1 for j ∈ A,

∂ϕ

∂xj
(x) = 0, xj = 0 or xj = 1 for j /∈ A.

Let |A| = number of points in A. Then we’ll prove that

Tr
( ∑
A⊂{1,...,ν}

(−1)|A|e−t(−∆A+V )

)
= 1− t〈V 〉+ o(t) as t ↓ 0

with 〈V 〉 the average of V at the 2ν corners of [0, 1]ν .

§1. Introduction
This paper is devoted to extensions of the trace formula for the ODE − d2

dx2 + V (x) to
the corresponding PDE, −∆ + V (x). The simplest of all the one-dimensional results is
the trace formula [1,6] for the periodic case. Suppose V is a C1 function on R obeying
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V (x + 1) = V (x). Let E1 < E4 ≤ E5 < E8 ≤ E9 < · · · be the eigenvalues of the operator
on L2([0, 1])

− d2

dx2
+ V (1)

with periodic boundary conditions (call the operator HP ) and E2 ≤ E3 < E6 ≤ E7 < · · ·
the eigenvalues of (1) with antiperiodic boundary conditions (call the operator HA). Let
µ1(x) < µ2(x) < · · · be the eigenvalues of the operator (1) on L2([x, x + 1]) with u(x) =
u(x + 1) = 0 Dirichlet boundary conditions (call the operator HD

x ). Then:

V (x) = E0 +
∞∑
n=1

[
E2n + E2n−1 − 2µn(x)

]
, x ∈ [0, 1]. (2)

One way (see, e.g., [8]) of proving (2) is to derive a heat kernel asymptotic relation

Tr(e−tHP

+ e−tHA − 2e−tHD
x ) = 1− tV (x) + o(t) (3)

from which (2) follows from the known convergence of

∞∑
n=1

|E2n − E2n−1| < ∞ (4)

and the relation
E2n−1 ≤ µn(x) ≤ E2n.

Equation (3) can be viewed as an Abelian summation method applied to (2) and
holds even in cases where (4) diverges (e.g., if V (x) = the characteristic function of

∞⋃
n=−∞

[n− 1
4
, n + 1

4
]).

Recently, we have described versions of (3) for arbitrary, not necessarily periodic, V ’s
by using other boundary conditions, see [3,2]. For example, if H is (1) on all of (−∞,∞)
and HD

x is (1) on L2(−∞, x) ⊕ L2(x,∞) with u(x) = 0 Dirichlet boundary conditions,
then we proved that

2Tr
(
e−tH − e−tHD

x
)

= 1− tV (x) + o(t), x ∈ R (5)

so as long as x is a point of Lebesgue continuity of V and V is bounded from below and
locally L1.

One of our main accomplishments here is to extend (5) to higher dimensions. Let HN
x

denote the operator with Neumann boundary conditions and suppose V is even about x,
that is, V (x− y) = V (x + y), y ∈ R . Then

e−tHQ
x (x + y, x + z) = e−tH(x + y, x + z)± e−tH(x + y, x− z)
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if yz > 0 and the − is used for Q = D and + for Q = N . (Here and in the remainder of
this paper e−tH(x, y), t > 0 denotes the integral kernel of the semigroup e−tH .) From this
it follows that Tr(e−tH − e−tHD

x ) = Tr(e−tHN
x − e−tH) and so (5) becomes

Tr
(
e−tHN

x − e−tHD
x

)
= 1− tV (x) + o(t), x ∈ R . (6)

But it is easy to see that (6) for V even about x implies it for arbitrary V since the
operators break up into direct sums (see Lemma 2.1 below).

It is (6) that we will generalize to ν dimensions. Explicitly, given A ⊂ {1, . . . , ν}, let
HA;x be defined as follows: Let Bα, α ⊂ {1, . . . , ν} be the 2ν blocks obtained by removing
the hyperplanes P

(x)
j := {y ∈ R ν | yj = xj} from R ν , that is, Bα = {x ∈ R ν | xi > 0 if i ∈

α, xi < 0 if i /∈ α}. HA;x is then defined to be the operator on ⊕L2(Bα) with Dirichlet
boundary conditions on {P (x)

j }j∈A and Neumann boundary conditions on {P (x)
j }j /∈A.

Explicitly, for each α = 1, . . . , 2ν , let D(A)
α;x be the set of functions, ϕ, on Bα which are

C∞ on Bint
α , with derivatives continuous up to ∂Bα with bounded support and which obey

the boundary conditions:

ϕ(y) = 0, y ∈ P
(x)
j for j ∈ A,

∂ϕ

∂yj
(y) = 0, y ∈ P

(x)
j for j /∈ A.

Obviously, D(A)
α;x is dense in L2(Bα). Then ϕ �→ −�ϕ is essentially self-adjoint on D(A)

α,x ,
−�A is the direct sum of these operators on ⊕L2(Bα), and HA;x = −�A+̇V as a form
sum.

We will prove (see Theorem 4.1) that

Tr
( ∑
A⊂{1,...,ν}

(−1)|A| exp(−tHA;x)
)

= 1− tV (x) + o(t), x ∈ R ν . (7)

(Note that for A = {1, . . . , ν} resp. A = ∅, HA;x has exclusively Dirichlet resp. Neumann
boundary conditions on the hyperplanes P

(x)
j , 1 ≤ j ≤ ν.)

The paper is laid out as follows. In §2, we’ll use the method of images to reduce (7) to
the study of integrals of the form

2ν
∫
Rν

exp(−tH)(y,−y)dνy, (8)

where H = −�+V is a Schrödinger operator in L2(R ν) without any boundary conditions.
In §3, we introduce a Gaussian process that provides a concise Feynman-Kac type formula
for integrals of the form (8), and we’ll prove (7) in §4. We’ll discuss the periodic version of
(7) in §5, then prove an abelianized version of a recent conjecture of Lax [5] that motivated
our work. Finally, in §6, we’ll make a few remarks on the issue of going beyond Abelian
sums in the periodic case.
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§2. The Method of Images
We begin with some small arguments to simplify notation and some later details. First,

without loss, we’ll suppose x = 0, that is, all boundary conditions are on planes through 0
and the final formula is for V (0). Let then Pj be the coordinate plane {x ∈ R ν | xj = 0}
and let HA ≡ HA;0. Let πj be the reflection in Pj , that is,

(πjx)i = xi, i �= j

= −xj , i = j.

Call V symmetric if and only if V ◦ πj = V for all j. For α ⊂ {1, . . . , ν}, let Bα be the
blocks introduced previously. Let Vα be that symmetric function with Vα = V on Bα.
Because of symmetry of Vα for each A, exp(−t(−∆A + Vα)) is a direct sum of 2ν pieces
(acting on the different L2(Bβ)) and each of the pieces is unitarily equivalent to a single
operator, PA;α,t. On the other hand, exp(−tHA) is also a direct sum, clearly unitarily
equivalent to ⊕

α⊂{1,...,ν}
PA;α,t. It follows that:

Lemma 2.1. To prove (7), it suffices to suppose x = 0 and that V is symmetric.

So, henceforth, we can suppose that V is symmetric, which we do in Lemma 2.3 and
Theorems 2.4/2.5 below.

We are interested in writing the heat kernel for HA using the method of images. Some
group theoretic notation will be useful. Pν is the set of subsets of {1, . . . , ν} which forms
a group under (A,B) �→ A � B, the symmetric difference. The identity is ∅, the empty
set. As a finite abelian group, Pν is its own dual. The character χA associated to A ∈ Pν

acts by
χA(B) = (−1)|A∩B|. (9)

In particular, orthogonality of characters implies

Lemma 2.2. ∑
B∈Pν

χA(B)χC (B) = 2νδAC .

Given B ∈ Pν , define the reflection RB acting on R ν by

RB =
∏
j∈B

πj .

The method of images formula then says

Lemma 2.3. If x, y are in the same orthant, then

exp(−tHA)(x, y) =
∑
B∈Pν

χB(A) exp(−tH)(x,RBy)

and the integral kernel is zero if x, y are in different orthants.

This immediately yields:
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Theorem 2.4. Let Ct =
∑

A∈Pν

(−1)|A| exp(−tHA). Then the integral kernel of Ct is

Ct(x, y) =
{

2ν exp(−tH)(x,−y), x, y in the same orthant
0, x, y in different orthants.

Proof. Let B0 = {1, . . . , ν} so RB0y = −y and χB0(A) = (−1)|A| so if x, y lie in the same
orthant:

Ct(x, y) =
∑
A∈Pν

χB0(A) exp(−tHA)(x, y)

=
∑
A∈Pν
B∈Pν

χB0 (A)χB(A) exp(−tHA)(x,RBy) (by Lemma 2.3)

= 2ν
∑
B∈Pν

δB0B exp(−tH)(x,RBy) (by Lemma 2.2)

= 2ν exp(−tH)(x,−y).

Theorem 2.5. Let V be bounded below and t > 0. Then the operator Ct of Theorem
2.4 is a trace class opertor in L2(R ν) and

Tr(Ct) = 2ν
∫
Rν

exp(−tH)(x,−x)dνx.

Proof. Let St = exp(−tH). For α ∈ Z̃ν ≡ Zν + (1
2
, . . . , 1

2
) let χα be the characteristic

function of {x | |xi − αi| < 1
2 , all i}, and let Pα be the projection which is multiplication

by χα. Let Z̃ν
+ = {α ∈ Z̃ν | αi > 0}.

Ct is a direct sum of 2ν operators, each unitarily equivalent to C̃t := Ct {x | xi > 0}.
Let RB0 be the reflection x →−x. Then by Theorem 2.4:

C̃t = 2ν
∑

α,β∈Z̃ν
+

PαRB0StPβ .

By the lemma below, PαRB0StPβ is trace class with trace norm bound by
C1 exp(−C2|α + β|) and trace given by the integral of the diagonal integral kernel. Since∑
α,β∈Z̃ν

+

exp(−C2|α + β|) < ∞, the result follows.

Lemma 2.6. In the notation of the last proof, PαRB0StPβ is trace class with trace norm
bounded by C1 exp(−C2|α + β|) and trace given by the integral of the diagonal of the
(continuous) integral kernel.

Proof. PαRB0StPβ =
∑

γ∈Z̃ν

RB0(P−αSt/2Pγ)(PγSt/2Pβ). By a standard estimate (see, e.g.,

[9]):
|Su(x, y)| ≤ C1,u exp(−C2,u|x− y|)
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(of course one can even have |x− y|2 but we don’t need that), so by integrating the square
of the integral kernel:

‖PαSt/2Pγ‖2 ≤ C3 exp(−C2|α− γ|),
where ‖ · ‖2 is the Hilbert-Schmidt norm. Summing over γ, we obtain the trace class result
and bound since∑

γ∈Z̃ν

exp(−C2|α + γ|) exp(−C2|β − γ|) ≤ C5 exp(−C4|α + β|).

Since the trace of a product of Hilbert-Schmidt operators is given by the integral of the
diagonal integral kernel, we obtain the trace result.

§3. A Gaussian Process
In this section, we present a Feynman-Kac type formula for Tr(Ct) where Ct is the

operator of Theorem 2.4. If V is bounded, (7) is an immediate consequence of this formula.
For V unbounded (from above) at infinity, we will need an additional estimate on the
Gaussian process, L(t), used in this formula and that estimate appears at the end of
this section. (We shall employ the notation used in [8], i.e., E(f) =

∫
Ω

f dµ, E(A) =∫
A

dµ = µ(A), E(f ; A) =
∫
A

f dµ, etc., where (Ω,F , µ) denotes a probability space, A ∈ F ,

f : Ω → R is F -measurable.)
All Gaussian processes considered in this paper have mean zero and we will suppose that

without explicitly saying it each time. Recall [8] that the Brownian bridge {α(s)}0≤s≤1 is
the Gaussian process with covariance:

Eα(α(s)α(t)) = min(s, t)(1 −max(s, t))

=
1
2

(s + t− |s− t|)− st. (10)

If b(s) is Brownian motion, then α(s) = b(s)−sb(1) is an explicit realization of the Brownian
bridge. The ν-dimensional Brownian bridge is ν independent copies of α(s) thought of as
a vector valued process and one still has for the ν-dimensional objects

α(s) = b(s)− sb(1). (11)

Let gx,y(s) = sx + (1− s)y be the straight line from x to y. Then, [8] shows that for any
V bounded from below (and locally bounded from above, say), if H = −∆ + V in L2(R ν),

exp(−tH)(x,y) = exp(t∆)(x,y)Eα

(
exp

(
−

t∫
0

V

(
gx,y

(
s

t

)
+
√

2tα

(
s

t

))
ds

))
. (12)

We have
√

2t rather than the
√

t on pg. 54 of [8] because we use −∆ rather than − 1
2∆.

Plugging (12) into Theorem 2.5 we find that

Tr(Ct) =
∫
Rν

dνxNt(x)Eα

(
exp

(
−

t∫
0

V

(
gx,−x

(
s

t

)
+
√

2tα

(
s

t

))
ds

))
,
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where Nt(x) = 2ν exp(t∆)(x,−x) = 2ν exp(t∆)(2x, 0) ≡
ν∏

i=1

Ñt(xi). Notice that Ñt(xi)

is a Gaussian probability distribution with variance 〈x2
t,i〉 = 2t

(2)2 = t
2 = 1

4 (
√

2t)2, so if

we let x0,i be a Gaussian variable of variance 〈x2
0,i〉 = 1

4
, then xt,i =

√
2t x0,i. Note that

gx,−x(st ) =
√

2tx0(2(st )− 1).
This suggests we define a new process

L(s) = x0(2s − 1) + α(s), 0 ≤ s ≤ 1, (13)

where the components of x0 are independent Gaussian variables with 〈x2
0,i〉 = 1

4 and
independent of α so

E(Li(s)Lj (w)) = Eα(αi(s)αj(w)) +
δij
4

(2s− 1)(2w − 1)

= δij

[
1
4
− 1

2
|s − w|

]
. (14)

We have thus proven that:

Theorem 3.1. Let L be the Gaussian process with covariance (14). Then (with Ct given
by Theorem 2.4):

Tr(Ct) = E

(
exp

(
−

t∫
0

V

(√
2tL

(
s

t

))
ds

))
.

We need the following estimate on L:

Theorem 3.2. E
({[

sup
0≤s≤1

|L(s)|] ≥ a
}) ≤ C1 exp(−C2a

2) for some C1, C2 > 0.

Proof. By the realizations (13) and (11), L(s) = b(s)− sb(1) + x0(2s − 1) so

sup
0≤s≤1

|L(s)| ≤ |x0|+ |b(1)|+ sup
0≤s≤1

|b(s)| (15)

and for the sup
0≤s≤1

|L(s)| to be larger than a, one or more of the three terms on the right

side of (15) must be larger than a/3. Each has a Gaussian bound since x0 and b(1) are
Gaussian and sup

0≤s≤1
|b(s)| has a Levy inequality estimate (see [8], pp. 64 ff).

Remarks. 1. Each component of L(t) is an independent copy of the one-dimensional L(t).
L(t) is intimately related to the xi process, ω, we introduced in [2]; namely

L(t) = ω(t), t ≤ Tω

= −ω(t), t ≥ Tω,

where Tω is the first time that ω(t) = 0, that is, ω and L are related by reflection at a
first hitting time. Theorem 3.2 is thus another proof of the estimate we proved on the xi
process in [2].

2. The covariance (14) associated with L(t) is just the zero energy Green’s function
for − d2

dx2 on L2([0, 1]) with antiperiodic boundary conditions, just as (10) is the Dirichlet
Green’s function. Notice that L(1) = −L(0) is related to the antiperiodicity.
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§4. The Main Result in Unbounded Space
Given Theorems 2.5, 3.1, and 3.2, the proof of (7) is easy following the methods of [2,8]:

Theorem 4.1. Let V be bounded from below and continuous on R ν . Let Ct =
∑

A∈Pν

(−1)|A|

exp(−tHA), t > 0. Then Ct is a trace class operator in L2(R ν) and

Tr(Ct) = 1− tV (0) + o(t) as t ↓ 0.

Proof. As noted in Lemma 2.1, we can suppose that V is symmetric. By Theorems 2.5
and 3.1:

Tr(Ct) = E

(
exp

(
−

t∫
0

V

(√
2t L

(
s

t

))
ds

))

= T1(V ) + T2(V ),

where

Ti(V ) = E

(
χi,t(L) exp

(
−

t∫
0

V

(√
2t L

(
s

t

))
ds

))

and χ1,t is the characteristic function of {L | sup
0≤s≤1

|L(s)| < t−1/3} and χ2,t = 1− χ1,t.

By Theorem 3.2, |T2(V )| ≤ C1 exp(−t inf |V (x)|) exp(−C2/t
2/3) = o(t) and E(χ1,t(L))

= 1 + o(t), thus

lim
t↓0

(T1(V )− 1)/t = lim
t↓0

E

(
χ1,t(L)t−1

{
exp

(
−

t∫
0

V

(√
2t L

(
s

t

))
ds − 1

})

= V (0)

by continuity and dominated convergence (since V is bounded near 0).

Remark. Because we use path integral estimates, continuity of V is not needed. One only
needs conditions that can be stated in terms of the Kato class Kν defined as

Kν =
{

V | lim
β↓0

[
sup
x∈Rν

∫
|x−y|≤β

|x− y|−(ν−2)|V (y)| dνy = 0
]}

(if ν = 2, |x − y|−(ν−2) is replaced by ln(|x − y|−1)) and in terms of the Stummel class
M2−α,1 (see, e.g., [9]):

M2−α,1 =
{

V | sup
x∈Rν

∫
|x−y|≤1

|x− y|−(ν−2)−α|V (y)| dνy < ∞
}

.

By using the methods of [2], one can prove Theorem 4.1 if
(a) min(V, 0) is in the Kato class Kν .
(b) V is in a local Stummel class M2−α,1 for some α > 0 (i.e., V χR ∈ M2−α,1 for all

R > 0, where χR denotes the characteristic function of the ball {x ∈ R ν | |x| ≤ R}).
(c) 0 is a point of Lebesgue continuity for V for averaging over balls shrinking to zero.
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Just as we could write the one-dimensional trace formula as either (5) or (6), in low
dimension one can use the method of images to write Ct in alternate ways that avoid mixed
boundary conditions. For example, in two dimensions, let HD be what we called HA={1,2}
resp. HN = HA=∅ correspond to Dirichlet resp. Neumann boundary conditions on both
axes. Then by the method of images (i.e., Lemma 2.3):

e−tHD

(x, x) + e−tHN

(x, x) = 2e−tH(x, x) + 2e−tH (x,−x), x ∈ R 2

so we have

Proposition 4.2. In two dimensions

Tr(Ct) = 2
∫
R2

[
e−tHD

+ e−tHN − 2e−tH
]
(x, x)d2x.

Remark. Note we have not stated in the proposition that [. . . ] in the last integral is trace
class because it is not in general. For example, if V = 0, it is not even Hilbert-Schmidt
because of the contribution of the integral kernel−2e−tH(x, y) with x = (u1, v1), y = (−u2,
v2), 0 < ui < 1, 0 < vi < ∞, |v1 − v2| < 1.

Remark. There are also results for Dirichlet conditions only. Explicitly, for A ⊂ {1, . . . , ν},
let H̃A;x be the operator with Dirichlet boundary conditions on the planes P

(x)
j with j ∈ A

but no conditions on the planes with j /∈ A (i.e., free boundary conditions, so, e.g., if
A = ∅, the H̃A;x is just −�+ V ). Then we can show that if

Bt =
∑

A⊂{1,...,ν}
(−1)|A| exp(−tH̃A;x)

has a continuous integral kernel, then
∫
Rν

Bt(y, y)dνy = 2−ν[1− tV (x) + o(t)].

This generalizes (5). We believe that Bt is always trace class but have only proven that if
V is symmetric under reflection in each of the planes P

(x)
j .

§5. The Main Result in a Box
Our main goal here is to prove:

Theorem 5.1. Let V be continuous on [0, 1]ν . For A ⊂ {1, . . . , ν}, let HA be −∆ + V on
L2([0, 1]ν) with Dirichlet boundary condition on the hyperplanes with xj = 0 or xj = 1
and j ∈ A and Neumann boundary condition on the hyperplanes with xj = 0 or xj = 1
and j /∈ A. Let 〈V 〉 be the average of V at the 2ν corners of [0, 1]ν. Then

∑
A⊂{1,...,ν}

(−1)|A|Tr(e−tHA) = 1− t〈V 〉+ o(t) as t ↓ 0.
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Remarks. 1. We take a unit cube for notational simplicity only. The result holds without
change on

ν×
i=1

[ai, bi]. But rectangular symmetry is critical. It may be possible to extend

the result to the unit cells for some other space groups with enough reflections.
2. If V is continuous and periodic with period one in each direction, then of course

〈V 〉 = V (0).
3. All one needs is that V lies in the Kato class and suitable Lebesgue continuity of V

at each corner.

In the group theoretical part of the proof we gave of (7), the key was that Pν was the
group generated by the πj ’s. Let ρj be the reflection in xj = 1, that is,

[ρj(x)]i = xi, i = j

= 2− xj , i �= j.

Let Gν be the group of actions on R ν generated by the πj ’s and ρj ’s. Then it is easy to
see that V has a unique extension to R ν which is Gν invariant and this extension, which
we’ll also call V , is continuous on R ν . Let H = −∆ + V on L2(R ν ).
Gν is a semidirect product 2Zνs Pν, so every G ∈ Gν can be written as G = (a, B)

where 1
2
a ∈ Zν and G acts by

Gx = RBx + a.

Define for A ∈ Pν,
χA(G) = (−1)|A∩B|.

Then the method of images formula for e−tHA is:

Proposition 5.2. If x, y ∈ [0, 1]ν, A ∈ Pν , then

e−tHA(x, y) =
∑
G∈Gν

χA(G)e−tH (x,Gy).

As in §2, let RB0 be the inversion in 0, that is, RB0x = −x. Then Lemma 2.2 implies

∑
A∈Pν

(−1)|A|χA(G) =
{

2ν if G = (a, B0)
0 if G = (a, B) with B �= B0

and we conclude that

Proposition 5.3. ∑
A∈Pν

(−1)|A|Tr(e−tHA) =
∑
a∈Zν

M(a, t),

where

M(a, t) ≡ 2ν
∫

[0,1]ν

e−tH(x, 2a − x)dνx.

With these preliminaries we are ready for the
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Proof of Theorem 5.1. Let Q be the set of 2ν corners of [0, 1]ν as points in Zν . If a ∈ Zν\Q,
then

min
x∈[0,1]ν

dist(x, 2a − x) = 2 min
x∈[0,1]ν

‖x− a‖ ≥ 2. (16)

Since (see, e.g., [9])
|e−tH(x, y)| ≤ C1 exp(−C2(x− y)2/t), (17)

(16) implies ∑
a∈Zν\Q

M(a, t) = O(e−c/t)

so by Proposition 5.3, it suffices to prove that for a ∈ Q:

M(a, t) = 2−ν [1− V (a)t + o(t)]. (18)

By translation and reflection symmetry, we need only prove (18) for a = 0. But by (17):

M(0, t) = 2ν
∫

xi≥0

e−tH(x,−x)dνx + O(e−c/t)

=
∫
Rν

e−tH(x,−x)dνx + O(e−c/t)

so (18) is precisely (7) given Theorem 2.5.

Remark. Because V is bounded, we do not need the estimate in Theorem 3.2 to prove
Theorem 5.1.

The proof of Theorem 5.1 shows:

Theorem 5.4. Let V be continuous on [0, 1]ν . For A ⊂ {1, . . . , ν}, let H̃A be −∆ + V on
L2([0, 1]ν) with Dirichlet boundary conditions on the hyperplanes with xj = 0 for j ∈ A
and Neumann boundary conditions on the hyperplanes with xj = 0 for j /∈ A or xk = 1
for all k ∈ {1, . . . , ν}. Then

∑
A⊂{1,...,ν}

(−1)|A|Tr(e−tH̃A) = 2−ν[1− tV (0) + o(t)] as t ↓ 0.

Proof. We still use the same group Gν. Define with G = (a, B) ∈ Gν

χ̃A(G) = (−1)|A∩B|(−1)
(1/2) Σ

j∈A
|aj|

.

Gν is generated by {πj} ∪ {ρj} and

χ̃A(πj) = −1 (resp. 1) for j ∈ A (resp. j /∈ A)

χ̃A(ρj) = 1 for all j = 1, . . . , ν
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and χ̃ is a character. Hence we have our method of images formula

e−tH̃A(x, y) =
∑
G∈Gν

χ̃A(G) e−tH (x,Gy)

with H associated to the G invariant extension of V as in Proposition 5.2.
Note that for G ∈ Gν fixed, A �→ χ̃A(G) is a character on Pν . By the orthogonality of

characters ∑
A∈Pν

(−1)|A|χ̃A(G) =
{

2ν if χ̃A(G) ≡ (−1)A

0 if χ̃A(G) �≡ (−1)|A|.

But χ̃A(G) ≡ (−1)|A| if and only if G = (a, B) with B = B0 and each 1
2ai is even.

Thus, as in the proof of Proposition 5.3,

∑
A∈Pν

(−1)|A|Tr(e−tH̃A) =
∑

a∈2Zν

M(a, t)

with the same M ’s. This completes the proof.

Our next result, an analog of Proposition 4.2, is an abelianized version of a formula that
Lax [5] derived formally in two dimensions:

Theorem 5.5. Let V be a continuous periodic function on R 2 with V (x1 + n1, x2 +
n2) = V (x1, x2) for n = (n1, n2) ∈ Z2. Let HP ,HA,HAP ,HPA,HN ,HD be the operators
on L2([0, 1]2) with periodic, antiperiodic, AP , PA, Neumann, and Dirichlet boundary
conditions where AP (resp. PA) means antiperiodic in the x1 (resp. x2) direction and
periodic in the x2 (resp. x1) direction. Then

Tr(e−tHP + e−tHA + e−tHP A + e−tHAP − 2e−tHN − 2e−tHD)

= −1 + tV (0) + o(t) as t ↓ 0. (19)

Proof. Let Ṽ be the extension of V given by reflection, and H̃ = −∆ + Ṽ . By the method
of images as above,

2Tr(e−tHN + e−tHD ) =
∑
a∈Z2

M̃(a, t) +
∑
a∈Z2

Ñ (a, t),

where M̃ is defined in Proposition 5.3 (with H replaced by H̃) and

Ñ(a, t) = 4
∫

[0,1]2

e−tH̃(x, x + 2a)d2x.

By (17) and (18)

2Tr(e−tHN + e−tHD) = 1− tV (0) + Ñ (0, t) + O(e−c/t).
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Now let H = −∆ + V . Then

4Tr(e−tHP ) =
∑
a∈Z2

N

(
1
2
a, t

)

with

N

(
1
2
a, t

)
= 4

∫
[0,1]2

e−tH(x, x + a)d2x.

By (17) again
4Tr(e−tHP ) = N(0, t) + O(e−c/t).

Similar formulae show that

4Tr(e−tHA) = N(0, t) + O(e−c/t)

and for HAP and HPA. Thus

LHS of (19) = −1 + tV (0) + o(t) + [N(0, t)− Ñ (0, t)]

and (19) follows from the following assertion (20):

N(0, t)− Ñ(0, t) = o(t). (20)

The proof of (20) is a little subtle because the integral kernel e−tH(x, x) is O(t−1) as
t ↓ 0 in two dimensions. In terms of a path integral expansion, only points O(t1/2) from
the border contribute. Thus to get an o(t) error, we must have complete cancellation of
the O(t) terms in the expansion of the exponentials in the path integral.

So let wt(s) be x +
√

2tα(st ) where α is the Brownian bridge and x is independent of
α and uniformly distributed on [0, 1]2. Define

g(wt, t) :=

t∫
0

V (wt(s))ds

and g̃ with V replaced by Ṽ and let

f(y) = e−y − 1 + y.

Then

N(0, t) − Ñ (0, t) = (4πt)−1E(e−g − e−g̃)
≡ A + B,
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where

A = −(4πt)−1E(g − g̃),

B = (4πt)−1E(f(g) − f(g̃)).

We’ll prove that A = 0 and B = O(t3/2−ε), ε > 0.
That B = O(t3/2−ε) follows by noting first that |f(y)| ≤ Cy2 on [−1, 1] and that

|g(wt, t)| ≤ Ct uniformly in w so |f(g)− f(g̃)| ≤ Ct2 uniformly in w. On the other hand,
if dist(x, ∂[0, 1]2) ≥ t1/2−ε, Prob(x +

√
2t α(st ) /∈ [0, 1]2 for some s) ≤ exp(−C/t2ε), so,

since f(g) = f(g̃) if wt(s) ∈ [0, 1]2 for all s, we have

E(|f(g)− f(g̃)|) ≤ O(exp(−t−2ε)) + Ct2t1/2−ε

and we conclude that B = O(t3/2−ε) as required.
A = 0 because of a cancellation. Let ρt(x) be the probability density of wt(s) where s

is uniformly distributed in [0, 1]. Then

A = −(4π)−1

∫
R2

ρt(x)[V (x) − Ṽ (x)] d2x. (21)

For each α ∈ Z2, let α be the square centered at (1
2 , 1

2 ) + α. There is a symmetry
Sα : α → −α so that V ◦ Sα = Ṽ and ρt ◦ Sα = ρt so that the contribution of V over

α in (21) cancels the contribution of Ṽ over −α.

A different kind of a two-dimensional trace formula for V (x) by comparing heat kernels
for H = −�+ V and Ho = −� with Dirichlet boundary conditions on a rectangular box
was recently studied in [7].

§6. Sums Without Abelian Summation
An interesting issue on which we haven’t much to report is the extent to which a formula

like (2) holds. We note:

Theorem 6.1. In the context of Theorem 5.1, let {En}∞n=0 be a listing of all the eigenval-

ues of {HA | |A| is even} and {Ẽn}∞n=1 for {HA | |A| is odd} ordered so En ≤ En+1; Ẽn ≤
Ẽn+1. Suppose that

∞∑
n=1

|En − Ẽn| < ∞. (22)

Then

〈V 〉 = E0 +
∞∑
n=1

(En − Ẽn).

Remark. Note that the counting of En starts at 0, but for Ẽn at 1.
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Proof. Theorem 5.1 says that

〈V 〉 = lim
t↓0

[
t−1(1 − e−tE0) +

∞∑
n=1

t−1(e−tẼn − e−tEn )
]
.

If 0 ≤ t ≤ 1, then
|e−ta − e−tb| ≤ [e−tmin(a,b) + 1]|a− b|

and
lim
t↓0

t−1(e−ta − e−tb) = b− a

so the result follows by dominated convergence.

When V = 0, it is easy to see that En = Ẽn, n ∈ N so (22) holds. It remains to be seen
if one can prove it for sufficiently smooth V ’s.
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