L^p NORMS OF THE BOREL TRANSFORM AND THE DECOMPOSITION OF MEASURES

B. SIMON*

Division of Physics, Mathematics, and Astronomy California Institute of Technology, 253-37 Pasadena, CA 91125

ABSTRACT. We relate the decomposition over [a, b] of a measure $d\mu$ (on R) into absolutely continuous, pure point, and singular continuous pieces to the behavior of integrals $\int_{a}^{b} (\operatorname{Im} F(x+i\epsilon))^{p} dx$ as $\epsilon \downarrow 0$. Here F is the Borel transform of $d\mu$, that is, $F(z) = \int (x-z)^{-1} d\mu(x)$.

§1. Introduction

Given any positive measure μ on R with

$$\int \frac{d\mu(x)}{1+|x|} < \infty, \tag{1.1}$$

one can define its Borel transform by

$$F(z) = \int \frac{d\mu(x)}{x-z}.$$
(1.2)

We have two goals in this note. One is to discuss the relation of the decomposition of μ into components $(d\mu = d\mu_{\rm ac} + d\mu_{\rm pp} + d\mu_{\rm sc} \text{ with } d\mu_{\rm ac}(x) = g(x) dx, d\mu_{\rm pp}$ a pure point measure, and $d\mu_{\rm sc}$ a singular continuous measure) to integrals of powers of $\operatorname{Im} F(x + i\epsilon)$. This is straightforward, and global results (e.g., involving $\int_{-\infty}^{\infty} |\operatorname{Im} F(x+i\epsilon)|^2 dx$) are well-known to harmonic analysts (see, e.g., Koosis [5, pg. 157])—but there seems to be a point in writing down elementary proofs of the local results (e.g., involving $\int_{-\infty}^{b} |\operatorname{Im} F(x+i\epsilon)|^2 dx$).

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

^{*} This material is based upon work supported by the National Science Foundation under Grant No. DMS-9101715. The Government has certain rights in this material.

To appear in Proc. Amer. Math. Soc.

Secondly, by proper use of these theorems, we can simplify the proofs in [7] that certain sets of operators are G_{δ} 's in certain metric spaces.

In §2, we will see that $\int_{a}^{b} |\text{Im } F(x+i\epsilon)|^{p} dx$ with p > 1 is sensitive to singular parts of $d\mu$ and can be used to prove they are absent. In §3, we see the opposite results when p < 1 and the singular parts are irrelevant, so that integrals can be used for a test of whether $\mu_{ac} = 0$. Finally, in §4, we turn to the aforementioned results on G_{δ} sets of operators.

Since we only discuss $\operatorname{Im} F(z)$ and

$$\operatorname{Im} F(x+i\epsilon) = \epsilon \int \frac{d\mu(y)}{(x-y)^2 + \epsilon^2},$$
(1.3)

our results actually hold if (1.1) is replaced by

$$\int \frac{d\mu(x)}{(1+|x|)^2} < \infty.$$
 (1.4)

It is a pleasure to thank S. Jitomirskaya, A. Klein, and T. Wolff for valuable discussions.

§2. *p*-norms for p > 1

Theorem 2.1. Fix p > 1. Suppose that

$$\sup_{0<\epsilon<1} \int_{a}^{b} |\operatorname{Im} F(x+i\epsilon)|^{p} \, dx < \infty.$$
(2.1)

Then $d\mu$ is purely absolutely continuous on (a, b), $\frac{d\mu_{ac}}{dx} \in L^p(a, b)$; and for any $[c, d] \subset (a, b)$, $\frac{1}{\pi} \operatorname{Im} F(x+i\epsilon)$ converge to $\frac{d\mu_{ac}}{dx}$ in L^p . Conversely, if $[a, b] \subset (e, f)$ with $d\mu$ purely absolutely continuous on (e, f), and $\frac{d\mu_{ac}}{dx} \in L^p(e, f)$, then (2.1) holds.

Remarks. 1. This criterion with p = 2 is used by Klein [4], who has a different proof.

2. The p = 2 results can be viewed as following from Kato's theory of smooth perturbations [2,6].

3. It is easy to construct measures supported on $\mathbb{R}\setminus(a,b)$ so that (2.1) fails or so that the L^p norm oscillates, for example, suitable point measures $\sum \alpha_n \delta_{x_n}$ with $x_n \uparrow a$. For this reason, we are forced to shrink/expand (a,b) to (c,d)/(e,f).

Proof. Let $d\mu_{\epsilon}(x) = \pi^{-1} \text{Im } F(x+i\epsilon) dx$. Then [8] $d\mu_{\epsilon} \to d\mu$ weakly, as $\epsilon \downarrow 0$, that is, $\lim_{\epsilon \downarrow 0} \int f(x) d\mu_{\epsilon}(x) = \int f(x) d\mu(x)$ for f a continuous function of compact support. Let q be the dual index to p and f a continuous function supported in (a, b). Then

$$\begin{split} \left| \int f \, d\mu \right| &= \lim_{\epsilon \downarrow 0} \left| \int f \, d\mu_{\epsilon} \right| \\ &\leq \overline{\lim_{\epsilon \downarrow 0}} \left[\int_{a}^{b} |f(x)|^{q} \, dx \right]^{1/q} \left[\int_{a}^{b} \left(\frac{1}{\pi} \operatorname{Im} F(x+i\epsilon) \right)^{p} \, dx \right]^{1/p} \\ &\leq C \|f\|_{q}. \end{split}$$

Thus, $f \mapsto \int f d\mu$ is a bounded functional on L^q , and thus $\chi_{(a,b)} d\mu = g dx$ for some $g \in L^p(a,b)$.

We claim that when $\chi_{(a,b)} d\mu = g dx$ with $g \in L^p(a,b)$, then for any $[c,d] \subset (a,b)$, $\frac{1}{\pi} \operatorname{Im} F(x+i\epsilon) \to g$ in $L^p(c,d)$ —this implies the remaining parts of the theorem.

To prove the claim, write $F = F_1 + F_2$ where F_1 comes from $d\mu_1 \equiv \chi_{(a,b)} d\mu$ and $d\mu_2 = (1 - \chi_{(a,b)}) d\mu$. $\frac{1}{\pi} \text{Im } F_1$ is a convolution of g dx with an approximate delta function. So, by a standard argument, $\frac{1}{\pi} \text{Im } F_1 \rightarrow g$ in L^p . On the other hand, since $\text{dist}([c, d], \mathbb{R} \setminus (a, b)) > 0$, one easily obtains a bound:

$$|\operatorname{Im} F_2(x+i\epsilon)| \le C\epsilon \quad \text{for } x \in [c,d].$$

So $\frac{1}{\pi}$ Im $F_2 \to 0$ in L^p .

The following is a local version of Wiener's theorem:

Theorem 2.2.

$$\lim_{\epsilon \downarrow 0} \epsilon \int_{a}^{b} |\operatorname{Im} F(x+i\epsilon)|^2 \, dx = \frac{\pi}{2} \left(\frac{1}{2} \, \mu(\{a\})^2 + \frac{1}{2} \, \mu(\{b\})^2 + \sum_{x \in (a,b)} \mu(\{x\})^2 \right). \tag{2.1}$$

Proof. Using (1.3), we see that

$$\epsilon \int_{a}^{b} (\operatorname{Im} F(x+i\epsilon))^{2} dx = \int \int g_{\epsilon}(x,y) d\mu(x) d\mu(y),$$

where

$$g_{\epsilon}(x,y) = \int_{a}^{b} \frac{\epsilon^{3} dw}{((w-x)^{2} + \epsilon^{2})((w-y)^{2} + \epsilon^{2})}.$$

It is easy to see that for $0 < \epsilon < 1$:

(i) $g_{\epsilon}(x,y) \leq \pi \frac{1}{\operatorname{dist}(x,[a,b])^{2}+1}$ (ii) $\lim_{\epsilon \downarrow 0} g_{\epsilon}(x,y) = 0$ if $x \neq y$ or $x \notin [a,b]$ (iii) $\lim_{\epsilon \downarrow 0} g_{\epsilon}(x,y) = \frac{\pi}{2}$ if $x = y \in (a,b)$ (iv) $\lim_{\epsilon \downarrow 0} g_{\epsilon}(x,y) = \frac{\pi}{4}$ if x = y is a or b.

Thus, the desired result follows from dominated convergence.

Remarks. 1. It is not hard to extend this to $\epsilon^{p-1} \int_{a}^{b} |\operatorname{Im} F(x+i\epsilon)|^{p} dx$ for any p > 1. The limit has $\int_{-\infty}^{\infty} (1+x^{2})^{-p/2} dx$ in place of π (which can be evaluated exactly in terms of gamma functions) and $\mu(\{x\})^{p}$ in place of $\mu(\{x\})^{2}$. For the above proof extends to p an

even integer. Interpolation then shows that the continuous part of μ makes no contribution to the limit, and a simple argument restricts the result to a finite sum of point measure where it is easy. (Note: For 1 , one interpolates between boundedness for <math>p = 1and the zero limit if p = 2 and μ is continuous.)

2. On the other hand, $\sup_{0 < \epsilon < 1} \epsilon^{\alpha} \int_{a}^{b} \operatorname{Im} F(x + i\epsilon)^{2} dx$ for $0 < \alpha < 1$ says something about how singular the singular part of $d\mu$ can be. If the sup is finite, then $\mu(A) = 0$ for any subset A of [a, b] with Hausdorff dimension $d < 1 - \alpha$. This will be proven in [1].

Corollary 2.3. μ has no pure points in [a, b] if and only if $\lim_{k \to \infty} \frac{1}{k} \int_{a}^{b} (\operatorname{Im} F(x+ik^{-1}))^2 dx = 0.$

(Of course the limit exists but we'll need this form in $\S4$.)

§3. *p*-norms for p < 1

Theorem 3.1. Fix p < 1. Then

$$\lim_{\epsilon \downarrow 0} \int_{a}^{b} \left| \frac{1}{\pi} \operatorname{Im} F(x+i\epsilon) \right|^{p} dx = \int_{a}^{b} \left(\frac{d\mu_{\mathrm{ac}}}{dx} \right)^{p} dx.$$

First Proof. Write $d\mu$ as three pieces: $d\mu_1 = (1 - \chi_{[a-1,b+1]}) d\mu$, $d\mu_2 = g dx$ with $g \in L^1(a-1,b+1)$, and $d\mu_3$ singular and finite and concentrated on [a-1,b+1] and correspondingly, $F = F_1 + F_2 + F_3$. It is easy to see that $|\text{Im } F_1(x+i\epsilon)| \leq C\epsilon$ on [a,b], so its contribution to the limit of the integral is 0. Since $\frac{1}{\pi} \text{Im } F_2(x+i\epsilon)$ is a convolution of g with an approximate delta function, $\frac{1}{\pi} \text{Im } F_2 \to g$ in L^1 , and so by Holder's inequality, $\int_a^b |\frac{1}{\pi} \text{Im } F_2(x+i\epsilon)|^p dx \to \int_a^b g(x)^p dx$ for any p < 1. It thus suffices to prove that:

$$\int_{a}^{b} \left| \frac{1}{\pi} \operatorname{Im} F_{3}(x+i\epsilon) \right|^{p} dx \to 0.$$
(3.1)

Let S be a set with $\mu_3(\mathbb{R}\setminus S) = 0$ and |S| = 0. Given δ , by regularity of measures, find $C \subset S \subset \mathcal{O}$ with C compact and $\mathcal{O} \subset (a-2,b+1)$ open so $\mu(S\setminus C) < \delta$ and $|\mathcal{O}\setminus S| < \delta$, so $\mu(\mathbb{R}\setminus C) < \delta$ and $|\mathcal{O}| < \delta$. Let h be a continuous function which is 1 on $\mathbb{R}\setminus \mathcal{O}$ and 0 on C.

By Holder's inequality (with index $\frac{1}{n}$):

$$\int_{A} \left(\frac{1}{\pi} \operatorname{Im} F_{3}\right)^{p} dx \leq |A|^{1-p} \left[\int_{A} \left(\frac{1}{\pi} \operatorname{Im} F_{3}\right)\right]^{p}$$
(3.2)

for any set A. Noting that $\int_{\mathbb{R}} (\frac{1}{\pi} \operatorname{Im} F_3) dx = \mu_3(\mathbb{R}) < \infty$, we see that

$$\int_{\mathcal{O}} \left(\frac{1}{\pi} \operatorname{Im} F_3\right)^p dx \le \mu_3(\mathbb{R})^p \delta^{1-p}.$$
(3.3)

On the other hand,

$$\int_{[a,b]\setminus\mathcal{O}} \left(\frac{1}{\pi}\operatorname{Im} F_3\right)^p dx \le |b-a|^{1-p} \left[\int_{[a,b]\setminus\mathcal{O}} \left(\frac{1}{\pi}\operatorname{Im} F_3\right) dx\right]^p \le |b-a|^{1-p} \left[\int_a^b h(x) \left(\frac{1}{\pi}\operatorname{Im} F_3\right) (x+i\epsilon) dx\right]^p.$$

The last integral converges to $\int h(x) d\mu_3(x) \leq \int_{\mathbb{R}\setminus C} d\mu_3(x) = \mu_3(\mathbb{R}\setminus C) = \delta$. Thus

$$\overline{\lim_{\epsilon \downarrow 0}} \int_{a}^{b} \frac{1}{\pi} \operatorname{Im} F_{3}(x+i\epsilon)^{p} \, dx \le \mu_{3}(\mathbb{R})^{p} \delta^{1-p} + |b-a|^{1-p} \delta^{p}.$$

Since δ is arbitrary, the $\overline{\lim}$ is a zero and so the limit is zero.

Second Proof. (suggested to me by T. Wolff) As in the first proof, by writing μ as a sum of a finite measure and a measure obeying (1.1) but supported away from [a, b], we can reduce the result to the case where μ is finite. Let $M_{\mu}(x)$ be the maximal function of μ :

$$M_{\mu}(x) = \sup_{t>0} (2t)^{-1} \mu(x-t, x+t).$$

By the standard Hardy-Littlewood argument (see, e.g., Katznelson [3]):

$$|\{x \mid M_{\mu}(x) > t\}| \le C\mu(\mathbb{R})/t,$$

which in particular implies

$$\int_{a}^{b} M_{\mu}(x)^{p} \, dx < \infty$$

for all p < 1.

Since $\frac{1}{\pi} \operatorname{Im} F(x+i\epsilon) \leq M_{\mu}(x)$ for all ϵ and $\frac{1}{\pi} \operatorname{Im} F(\cdot + i\epsilon) \to (\frac{d\mu_{\mathrm{ac}}}{dx})(x)$ a.e. in x, the desired result follows by the dominated convergence theorem.

Remark. The reader will note that the first proof is similar to the proof in [7] that the measures with no a.c. part are a G_{δ} . In a sense, this part of our discussion in §4 is a transform for the proof of [7] to this proof instead!

Corollary 3.2. A measure μ has no absolutely continuous part on (a, b) if and only if

$$\lim_{k \to \infty} \int_{a}^{b} \operatorname{Im} F(x + ik^{-1})^{1/2} \, dx = 0.$$

$\S4. G$ properties of sets of measures and operators

Lemma 4.1. Let X be a topological space and $f_n : X \to \mathbb{R}$ a sequence of non-negative continuous functions. Then $\{x \mid \lim_{x \to \infty} F_n(x) = 0\}$ is a G_{δ} .

Proof.

$$\left\{ x \mid \underline{\lim_{n \to \infty}} F_n(x) = 0 \right\} = \left\{ x \mid \forall k \forall N \exists n \ge N \ F_n(x) < \frac{1}{k} \right\}$$
$$= \bigcap_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \left\{ x \mid F_n(x) < \frac{1}{k} \right\}$$

is a G_{δ} .

As a corollary of this and Corollaries 2.3 and 3.2, we obtain a proof of the result of [9].

Theorem 4.1. Let M be the set of probability measures on [a, b] in the topology of weak convergence (this is a complete metric space). Then $\{\mu \mid \mu \text{ is purely singular continuous}\}$ is a dense G_{δ} .

Proof. By Corollary 3.2:

$$\{\mu \mid \mu_{\rm ac} = 0\} = \left\{\mu \mid \lim_{k \to \infty} \int_{a}^{b} (\operatorname{Im} F_{\mu}(x + ik^{-1})^{1/2} \, dx = 0\right\},\$$

and by Corollary 2.3:

$$\{\mu \mid \mu_{\rm pp} = 0\} = \bigg\{\mu \mid \lim_{k \to \infty} k^{-1} \int_{a}^{b} \operatorname{Im} F_{\mu}(x + ik^{-1})^{2} \, dx = 0\bigg\},\$$

so by Lemma 4.1, each is a G_{δ} . Here we use the fact that $\mu \mapsto F_{\mu}(x + i\epsilon)$ is weakly continuous for each $x, \epsilon > 0$ and dominated above for each $\epsilon > 0$ so the integrals are weakly continuous. By the convergence of the Riemann-Stieltjes integrals, the point measures are dense in M, so $\{\mu \mid \mu_{\rm ac} = 0\}$ is dense. On the other hand, the fact that $\frac{1}{\pi} \operatorname{Im} F_{\mu}(x + i\epsilon) dx$ converge in M to $d\mu$ shows that the a.c. measures are dense in M, so $\{\mu \mid \mu_{\rm pp} = 0\}$ is dense. Thus, by the Baire category theorem, $\{\mu \mid \mu_{\rm pp} = 0\} \cap \{\mu \mid \mu_{\rm ac} = 0\}$ is a dense G_{δ} !

Finally, we recover our results in [7]. We call a metric space X of self-adjoint operators on a Hilbert space \mathcal{H} regular if and only if $A_n \to A$ in the metric topology implies that $A_n \to A$ in strong resolvent sense. (Strong resolvent convergence of self-adjoint operators means $(A_n - z)^{-1} \varphi \xrightarrow{\parallel \parallel} (A - z)^{-1} \varphi$ for all φ and all z with $\operatorname{Im} z \neq 0$. Notice this implies that for any a, b, p and $\epsilon > 0$ and any $\varphi \in \mathcal{H}, A \mapsto \int_a^b \operatorname{Im}(\varphi, (A - x - i\epsilon)^{-1}\varphi)^p dx \equiv F_{a,b,p,\epsilon,\varphi}(A)$ is a continuous function in the metric topology. **Theorem 4.3.** For any open set $\mathcal{O} \subset \mathbb{R}$ and any regular metric space of operators, $\{A \mid A \text{ has no a.c. spectrum in } \mathcal{O}\}$ is a G_{δ} .

Proof. Any \mathcal{O} is a countable union of intervals so it suffices to consider the case $\mathcal{O} = (a, b)$. Let φ_n be an orthonormal basis for \mathcal{H} . Then,

$$\{A \mid A \text{ has no a.c. spectrum in } (a,b)\} = \bigcap_{n} \left\{A \mid \lim_{k \to \infty} F_{a,b,1/2,1/k,\varphi_n}(A)\right\}$$

is a G_{δ} by Lemma 4.1 and Corollary 3.2.

Similarly, using Corollary 2.3, we obtain

Theorem 4.4. For any interval [a, b] and any regular metric space of operators, $\{A \mid A \text{ has no point spectrum in } [a, b]\}$ is a G_{δ} .

Note. This is slightly weaker than the result in [7] but suffices for most applications. One can recover the full result of [7], namely Theorem 4.4 with [a, b] replaced by an arbitrary closed set K, by first noting that any closed set is a union of compacts, so it suffices to consider compact K. For each K, let $K_{\epsilon} = \{x \mid \text{dist}(x, K) < \epsilon\}$. Then one can show that if $d\mu$ has no pure points in K, then

$$\lim_{\epsilon \downarrow 0} \epsilon \int_{K_{\epsilon}} (\operatorname{Im} F_{\epsilon}(x+i\epsilon))^2 dx = 0;$$

and if it does have pure points in K, then

$$\lim_{k \to \infty} k^{-1} \int_{K_{\epsilon}} |\operatorname{Im} F(x + ik^{-1})|^2 \, dx > 0$$

and Theorem 4.4 extends.

References

- [1] R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization, preprint.
- T. Kato, Wave operators and similarity for some non-self-adjoint operators, Math. Ann. 162 (1966), 258–279.
- [3] Y. Katznelson, An Introduction to Harmonic Analysis, Dover, New York, 1976.
- [4] A. Klein, Extended states in the Anderson model on Bethe lattice, preprint.
- [5] P. Koosis, *Introduction to* H_p *Spaces*, London Mathematical Society Lecture Note Series **40**, Cambridge University Press, New York, 1980.
- [6] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1978.
- B. Simon, Operators with singular continuous spectrum, I. General operators, Ann. of Math. 141 (1995), 131–145
- [8] B. Simon, Spectral analysis of rank one perturbations and applications, to appear in Proc. 1993 Vancouver Summer School in Mathematical Physics.
- [9] T. Zamfirescu, Most monotone functions are singular, Amer. Math. Monthly 88 (1981), 47–49.