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ABSTRACT. We relate the decomposition over [a,b] of a measure du (on R)

into absolutely continuous, pure point, and singular continuous pieces to the
b

behavior of integrals [(Im F'(xz+i€))? dx as € | 0. Here F is the Borel transform

a

of du, that is, F(z) = [(z — 2)~ du(z).

§1. Introduction
Given any positive measure p on R with

/d"(w) <0 (1.1)

1+ |z ’

one can define its Borel transform by

F(z) = / dul) (1.2)

xr—Zz

We have two goals in this note. One is to discuss the relation of the decomposition of x into

components (dp = dpiac + dpipp + dpise With dpac(z) = g(z) dx, dppp a pure point measure,

and dugs. a singular continuous measure) to integrals of powers of Im F'(x + i€). This is
oo

straightforward, and global results (e.g., involving [ |Im F(z+ie€)|? dz) are well-known to
—00
harmonic analysts (see, e.g., Koosis [5, pg. 157])—but there seems to be a point in writing
b
down elementary proofs of the local results (e.g., involving [ |Im F(z + i€)|? dz).
a
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2 B. SIMON

Secondly, by proper use of these theorems, we can simplify the proofs in [7] that certain
sets of operators are GG5’s in certain metric spaces.

In §2, we will see that [ |Im F(z+i€)[? dx with p > 1 is sensitive to singular parts of du

and can be used to provea they are absent. In §3, we see the opposite results when p < 1

and the singular parts are irrelevant, so that integrals can be used for a test of whether

tac = 0. Finally, in §4, we turn to the aforementioned results on Gy sets of operators.
Since we only discuss Im F'(z) and

du(y)
(. —y)? + e’

Im F(z + ie) = e/ (1.3)

our results actually hold if (1.1) is replaced by

dp(z)
[atay < (14)

It is a pleasure to thank S. Jitomirskaya, A. Klein, and T. Wolff for valuable discussions.

62. p-norms for p > 1
Theorem 2.1. Fix p > 1. Suppose that

sup /|ImF(:c +i€)|P dz < oc. (2.1)
0<e<1

Then dy is purely absolutely continuous on (a, b), % € LP(a,b); and for any [c,d] C (a,b),
%Im F(xz+ie) converge to % in LP. Conversely, if [a,b] C (e, f) with du purely absolutely
continuous on (e, f), and % € LP(e, f), then (2.1) holds.

Remarks. 1. This criterion with p = 2 is used by Klein [4], who has a different proof.

2. The p = 2 results can be viewed as following from Kato’s theory of smooth pertur-
bations [2,6].

3. It is easy to construct measures supported on R\(a,b) so that (2.1) fails or so that
the L? norm oscillates, for example, suitable point measures Y «,d,, with x, T a. For
this reason, we are forced to shrink/expand (a,b) to (¢,d)/(e, f).

Proof. Let d,ue( ) = 7T_11H1F(£C + i€)dx. Then [8] due. — dp weakly, as € | 0, that is,
hﬁ)l [ f(x)dpe(z) = [ f(= ) for f a continuous function of compact support. Let g be

the dual index to p and f a continuous function supported in (a,b). Then

[ o] =g f s
<[] (L) o]

< Cfllg-
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Thus, f — [ fdp is a bounded functional on L?, and thus X(a,p) At = gdz for some
g € LP(a,b).

We claim that when X (43 dp = gdx with g € LP(a,b), then for any [c,d] C (a,b),
L Im F(z + ie) — g in LP(c,d)—this implies the remaining parts of the theorem.

To prove the claim, write F' = F} + Fy where Fy comes from dpu1 = X(q,5) du and duz =
(1= X(ap)) dpt- % Im F} is a convolution of g dx with an approximate delta function. So, by
a standard argument, = Im F} — g in LP. On the other hand, since dist([c, d],R \(a, b)) > 0,
one easily obtains a bound:

Im Fy(z +i€)| < Ce  for z € [e,d].

So £Im Fy — 0 in LP.
The following is a local version of Wiener’s theorem:

Theorem 2.2.

lm ¢ |ImF:c+ze>| dr=1 (Sl + a0+ X wmh?). @1
2

z€(a,b)

Proof. Using (1.3), we see that

e/b(ImF(:c+i€))2d$= //ge(fc,y) dp(z) du(y),

where
b

€3 dw

gelay) = / (w—a)2+e&)((w—y)?+e)

a

It is easy to see that for 0 < e < 1:

() ge(@,y) <7 Fam e

(ii) hmge(:c y)=0if x #y or = ¢ [a,b]
(iii) hm ge(z,y) = 5 if v =y € (a,b)
) (z, 1

(iv hmg€ y) =T ifx=yisaorb.

Thus, the desired result follows from dominated convergence.

b
Remarks. 1. It is not hard to extend this to =1 [ [Im F(x + i€)|P dz for any p > 1. The
a

limit has [ (1 + 22)7P/2dz in place of 7 (which can be evaluated exactly in terms of
gamma functions) and u({x})? in place of u({x})?. For the above proof extends to p an
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even integer. Interpolation then shows that the continuous part of 4 makes no contribution
to the limit, and a simple argument restricts the result to a finite sum of point measure
where it is easy. (Note: For 1 < p < 2, one interpolates between boundedness for p = 1

and the zero limit if p = 2 and p is continuous.)
b

2. On the other hand, sup € [Im F(z + i€)? dx for 0 < a < 1 says something about
0<e<1 a

how singular the singular part of du can be. If the sup is finite, then u(A) = 0 for any
subset A of [a,b] with Hausdorff dimension d < 1 — a. This will be proven in [1].

b
Corollary 2.3. i has no pure points in [a,b] if and only if lim + [(Im F(z+ik™'))? dz =

k—oo a
0.

(Of course the limit exists but we’ll need this form in §4.)

63. p-norms for p < 1
Theorem 3.1. Fixp < 1. Then

b
1 ? dptac'\"
lim [ |=Im F(x + ie) d:lc:/( a ) dx.
€l0 v dx

a a

First Proof. Write du as three pieces: duy = (1 — Xja—1,p+1]) dit, dpz = gdz with g €
L'(a — 1,0+ 1), and dug singular and finite and concentrated on [a — 1,b + 1] and cor-
respondingly, F' = Fy + F5 + F3. It is easy to see that |Im Fy(x + i€)] < Ce on [a,b], so
its contribution to the limit of the integral is 0. Since < Im F(x + i€) is a convolution of
g with an approximate delta function, %Im F, — g in L', and so by Holder’s inequality,

b b
[ 1+ Im Fa(z + i€)|P de — [ g(z)P dz for any p < 1. It thus suffices to prove that:
a a

b

/'%ImFg(:c—Fie)

a

P
dx — 0. (3.1)

Let S be a set with p3(R\S) = 0 and |S| = 0. Given ¢, by regularity of measures, find

C C S C O with C compact and O C (a—2,b+ 1) open so u(S\C) < § and |O\S| < 6, so

w(R\C) < § and |O] < 4. Let h be a continuous function which is 1 on R\O and 0 on C.
By Holder’s inequality (with index ]lj):

A/(%ImFg)pd:E < |A]FP [A/(%ImFg)]p (3.2)

for any set A. Noting that [(1Im F3)dz = pus(R) < oo, we see that
R

/(%ImFg)pdw < puz(R)PSP, (3.3)
(@]
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On the other hand,

1 P - 1 P
—ImFs | de <|b—a| 7" —Im F3 | dz
T I T

[a,b]\O [a,b]\O

<p—a?| /bh(w)(%ImFg)(:c +ie) dwr.

a

The last integral converges to [ h(z)dus(z) < [ dus(xz) = ps(R\C) = 4§. Thus
R\C
/ 1
lim [ = Im F3(z + ie)? do < p3(R)PS' P + |b — a|' 7PsP.

€l0 v
a

Since ¢ is arbitrary, the lim is a zero and so the limit is zero.

Second Proof. (suggested to me by T. Wolff) As in the first proof, by writing x as a sum
of a finite measure and a measure obeying (1.1) but supported away from [a,b], we can
reduce the result to the case where p is finite. Let M, (x) be the maximal function of p:

M, (z) = sup (2t) *p(x — t,x + ).
>0

By the standard Hardy-Littlewood argument (see, e.g., Katznelson [3]):
{z | Myu(z) >t} < Cu(R)/1,

which in particular implies
b
/ M, (z)? dz < oo
a

for all p < 1.

Since = Im F(z 4 i€) < M, (z) for all € and L Im F(- + i) — (%’%)(:c) a.e. in z, the
desired result follows by the dominated convergence theorem.
Remark. The reader will note that the first proof is similar to the proof in [7] that the

measures with no a.c. part are a G5. In a sense, this part of our discussion in §4 is a
transform for the proof of [7] to this proof instead!

Corollary 3.2. A measure u has no absolutely continuous part on (a,b) if and only if

b
lim [ Im F(z +ik~1)Y2de = 0.

k—o0
a
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84. G properties of sets of measures and operators

Lemma 4.1. Let X be a topological space and f, : X — R a sequence of non-negative
continuous functions. Then {z | lim F,(z) =0} is a Gs.

Proof.
. 1
{:c | lim F,(z) = 0} = {:c | VEVN In > N F,(z) < E}
oo oo oo 1
k=1 N=1 n=N
is a Gs.

As a corollary of this and Corollaries 2.3 and 3.2, we obtain a proof of the result of [9].

Theorem 4.1. Let M be the set of probability measures on [a, b] in the topology of weak
convergence (this is a complete metric space). Then {u | p is purely singular continuous}
is a dense Gj.

Proof. By Corollary 3.2:

b
{i ] prac = 0} = {Ml lim (ImFu(vak‘l)l/Qdfczo}’

k—o0
a

and by Corollary 2.3:

b
{0 i =0} = {ie | i k™ [ (o ik o =0

k—o0

so by Lemma 4.1, each is a Gs. Here we use the fact that p — Fj,(z + i€) is weakly
continuous for each x, ¢ > 0 and dominated above for each € > 0 so the integrals are weakly
continuous. By the convergence of the Riemann-Stieltjes integrals, the point measures are
dense in M, so {y | ftac = 0} is dense. On the other hand, the fact that L Im F),(z + i€) dx
converge in M to du shows that the a.c. measures are dense in M, so {u | ppp = 0} is
dense. Thus, by the Baire category theorem, {p | ppp = 0} N {i | ptac = 0} is a dense
G5!

Finally, we recover our results in [7]. We call a metric space X of self-adjoint operators
on a Hilbert space H regular if and only if A,, — A in the metric topology implies that
A, — A in strong resolvent sense. (Strong resolvent convergence of self-adjoint operators

means (A, —z) !

o M (A—2)1 4 for all  and all z with Im 2 # 0. Notice this implies that
b
for any a,b,p and € > 0 and any p € H, A — fIm(go, (A—z— ie)_1%0)p dr = Fa,b,p,e,w(A)

is a continuous function in the metric topology.
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Theorem 4.3. For any open set O C R and any regular metric space of operators,
{A | A has no a.c. spectrum in O} is a Gs.

Proof. Any O is a countable union of intervals so it suffices to consider the case O = (a,b).
Let ¢, be an orthonormal basis for H. Then,

{A | A has no a.c. spectrum in (a,b)} = ﬂ{A | lim Fa7b71/271/k7%(14)}

n k—o0

is a G5 by Lemma 4.1 and Corollary 3.2.
Similarly, using Corollary 2.3, we obtain

Theorem 4.4. For any interval [a,b] and any regular metric space of operators, {A |
A has no point spectrum in [a, b]} is a Gs.

Note. This is slightly weaker than the result in [7] but suffices for most applications. One
can recover the full result of [7], namely Theorem 4.4 with [a, b] replaced by an arbitrary
closed set K, by first noting that any closed set is a union of compacts, so it suffices to
consider compact K. For each K, let K. = {x | dist(z, K) < €¢}. Then one can show that
if dp has no pure points in K, then

lim e /(ImFe(:c +i€))? dx = 0;

€l0
K.

and if it does have pure points in K, then

k—o0

lim k‘1/|ImF(:c+z'k'_1)|2dw> 0
K.

and Theorem 4.4 extends.
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