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Abstract. We relate the decomposition over [a, b] of a measure dµ (on R )
into absolutely continuous, pure point, and singular continuous pieces to the

behavior of integrals
b∫

a

(ImF (x+ iε))p dx as ε ↓ 0. Here F is the Borel transform

of dµ, that is, F (z) =
∫
(x− z)−1 dµ(x).

§1. Introduction
Given any positive measure µ on R with

∫
dµ(x)
1 + |x| <∞, (1.1)

one can define its Borel transform by

F (z) =
∫

dµ(x)
x− z

. (1.2)

We have two goals in this note. One is to discuss the relation of the decomposition of µ into
components (dµ = dµac + dµpp + dµsc with dµac(x) = g(x)dx, dµpp a pure point measure,
and dµsc a singular continuous measure) to integrals of powers of ImF (x + iε). This is

straightforward, and global results (e.g., involving
∞∫

−∞
|ImF (x+ iε)|2 dx) are well-known to

harmonic analysts (see, e.g., Koosis [5, pg. 157])—but there seems to be a point in writing

down elementary proofs of the local results (e.g., involving
b∫

a

|ImF (x+ iε)|2 dx).
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2 B. SIMON

Secondly, by proper use of these theorems, we can simplify the proofs in [7] that certain
sets of operators are Gδ’s in certain metric spaces.

In §2, we will see that
b∫

a

|ImF (x+ iε)|p dx with p > 1 is sensitive to singular parts of dµ

and can be used to prove they are absent. In §3, we see the opposite results when p < 1
and the singular parts are irrelevant, so that integrals can be used for a test of whether
µac = 0. Finally, in §4, we turn to the aforementioned results on Gδ sets of operators.

Since we only discuss ImF (z) and

ImF (x+ iε) = ε

∫
dµ(y)

(x− y)2 + ε2
, (1.3)

our results actually hold if (1.1) is replaced by∫
dµ(x)

(1 + |x|)2 < ∞. (1.4)

It is a pleasure to thank S. Jitomirskaya, A. Klein, and T. Wolff for valuable discussions.

§2. p-norms for p > 1

Theorem 2.1. Fix p > 1. Suppose that

sup
0<ε<1

b∫
a

|ImF (x+ iε)|p dx < ∞. (2.1)

Then dµ is purely absolutely continuous on (a, b), dµac
dx ∈ Lp(a, b); and for any [c, d] ⊂ (a, b),

1
π ImF (x+iε) converge to dµac

dx in Lp. Conversely, if [a, b] ⊂ (e, f) with dµ purely absolutely

continuous on (e, f), and dµac
dx ∈ Lp(e, f), then (2.1) holds.

Remarks. 1. This criterion with p = 2 is used by Klein [4], who has a different proof.
2. The p = 2 results can be viewed as following from Kato’s theory of smooth pertur-

bations [2,6].
3. It is easy to construct measures supported on R\(a, b) so that (2.1) fails or so that

the Lp norm oscillates, for example, suitable point measures
∑
αnδxn with xn ↑ a. For

this reason, we are forced to shrink/expand (a, b) to (c, d)/(e, f).

Proof. Let dµε(x) = π−1ImF (x + iε)dx. Then [8] dµε → dµ weakly, as ε ↓ 0, that is,
lim
ε↓0

∫
f(x)dµε(x) =

∫
f(x)dµ(x) for f a continuous function of compact support. Let q be

the dual index to p and f a continuous function supported in (a, b). Then∣∣∣∣
∫
f dµ

∣∣∣∣ = lim
ε↓0

∣∣∣∣
∫
f dµε

∣∣∣∣

≤ lim
ε↓0

[ b∫
a

|f(x)|q dx
]1/q [ b∫

a

(
1
π
ImF (x+ iε)

)p

dx

]1/p

≤ C‖f‖q.
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Thus, f 
→ ∫
f dµ is a bounded functional on Lq, and thus χ(a,b) dµ = g dx for some

g ∈ Lp(a, b).
We claim that when χ(a,b) dµ = g dx with g ∈ Lp(a, b), then for any [c, d] ⊂ (a, b),

1
π
ImF (x+ iε) → g in Lp(c, d)—this implies the remaining parts of the theorem.
To prove the claim, write F = F1 +F2 where F1 comes from dµ1 ≡ χ(a,b) dµ and dµ2 =

(1−χ(a,b))dµ. 1
π ImF1 is a convolution of g dx with an approximate delta function. So, by

a standard argument, 1
π ImF1 → g in Lp. On the other hand, since dist([c, d],R\(a, b)) > 0,

one easily obtains a bound:

|ImF2(x+ iε)| ≤ Cε for x ∈ [c, d].

So 1
π ImF2 → 0 in Lp.

The following is a local version of Wiener’s theorem:

Theorem 2.2.

lim
ε↓0

ε

b∫
a

|ImF (x+ iε)|2 dx =
π

2

(
1
2
µ({a})2 + 1

2
µ({b})2 +

∑
x∈(a,b)

µ({x})2
)
. (2.1)

Proof. Using (1.3), we see that

ε

b∫
a

(ImF (x+ iε))2 dx =
∫ ∫

gε(x, y)dµ(x)dµ(y),

where

gε(x, y) =

b∫
a

ε3 dw

((w − x)2 + ε2)((w − y)2 + ε2)
.

It is easy to see that for 0 < ε < 1:
(i) gε(x, y) ≤ π 1

dist(x,[a,b])2+1

(ii) lim
ε↓0

gε(x, y) = 0 if x �= y or x /∈ [a, b]

(iii) lim
ε↓0

gε(x, y) = π
2 if x = y ∈ (a, b)

(iv) lim
ε↓0

gε(x, y) = π
4 if x = y is a or b.

Thus, the desired result follows from dominated convergence.

Remarks. 1. It is not hard to extend this to εp−1
b∫
a

|ImF (x+ iε)|p dx for any p > 1. The

limit has
∞∫

−∞
(1 + x2)−p/2 dx in place of π (which can be evaluated exactly in terms of

gamma functions) and µ({x})p in place of µ({x})2 . For the above proof extends to p an
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even integer. Interpolation then shows that the continuous part of µ makes no contribution
to the limit, and a simple argument restricts the result to a finite sum of point measure
where it is easy. (Note: For 1 < p < 2, one interpolates between boundedness for p = 1
and the zero limit if p = 2 and µ is continuous.)

2. On the other hand, sup
0<ε<1

εα
b∫
a

ImF (x+ iε)2 dx for 0 < α < 1 says something about

how singular the singular part of dµ can be. If the sup is finite, then µ(A) = 0 for any
subset A of [a, b] with Hausdorff dimension d < 1− α. This will be proven in [1].

Corollary 2.3. µ has no pure points in [a, b] if and only if lim
k→∞

1
k

b∫
a

(ImF (x+ik−1))2 dx =

0.

(Of course the limit exists but we’ll need this form in §4.)
§3. p-norms for p < 1

Theorem 3.1. Fix p < 1. Then

lim
ε↓0

b∫
a

∣∣∣∣ 1π ImF (x+ iε)
∣∣∣∣
p

dx =

b∫
a

(
dµac

dx

)p

dx.

First Proof. Write dµ as three pieces: dµ1 = (1 − χ[a−1,b+1])dµ, dµ2 = g dx with g ∈
L1(a − 1, b + 1), and dµ3 singular and finite and concentrated on [a − 1, b + 1] and cor-
respondingly, F = F1 + F2 + F3. It is easy to see that |ImF1(x + iε)| ≤ Cε on [a, b], so
its contribution to the limit of the integral is 0. Since 1

π ImF2(x+ iε) is a convolution of
g with an approximate delta function, 1

π ImF2 → g in L1, and so by Holder’s inequality,
b∫

a

| 1π ImF2(x+ iε)|p dx→
b∫

a

g(x)p dx for any p < 1. It thus suffices to prove that:

b∫
a

∣∣∣∣ 1π ImF3(x+ iε)
∣∣∣∣
p

dx→ 0. (3.1)

Let S be a set with µ3(R\S) = 0 and |S| = 0. Given δ, by regularity of measures, find
C ⊂ S ⊂ O with C compact and O ⊂ (a− 2, b+1) open so µ(S\C) < δ and |O\S| < δ, so
µ(R\C) < δ and |O| < δ. Let h be a continuous function which is 1 on R\O and 0 on C .

By Holder’s inequality (with index 1
p):∫

A

(
1
π
ImF3

)p

dx ≤ |A|1−p

[∫
A

(
1
π
ImF3

)]p

(3.2)

for any set A. Noting that
∫
R

( 1
π ImF3)dx = µ3(R ) < ∞, we see that

∫
O

(
1
π
ImF3

)p

dx ≤ µ3(R )pδ1−p. (3.3)
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On the other hand,
∫

[a,b]\O

(
1
π
ImF3

)p

dx ≤ |b− a|1−p

[ ∫
[a,b]\O

(
1
π
ImF3

)
dx

]p

≤ |b− a|1−p

[ b∫
a

h(x)
(
1
π
ImF3

)
(x+ iε)dx

]p

.

The last integral converges to
∫
h(x)dµ3(x) ≤

∫
R\C

dµ3(x) = µ3(R\C) = δ. Thus

lim
ε↓0

b∫
a

1
π
ImF3(x+ iε)p dx ≤ µ3(R )pδ1−p + |b− a|1−pδp.

Since δ is arbitrary, the lim is a zero and so the limit is zero.

Second Proof. (suggested to me by T. Wolff) As in the first proof, by writing µ as a sum
of a finite measure and a measure obeying (1.1) but supported away from [a, b], we can
reduce the result to the case where µ is finite. Let Mµ(x) be the maximal function of µ:

Mµ(x) = sup
t>0

(2t)−1µ(x− t, x+ t).

By the standard Hardy-Littlewood argument (see, e.g., Katznelson [3]):

|{x | Mµ(x) > t}| ≤ Cµ(R )/t,

which in particular implies
b∫

a

Mµ(x)p dx <∞

for all p < 1.
Since 1

π ImF (x + iε) ≤ Mµ(x) for all ε and 1
π ImF (· + iε) → (dµac

dx )(x) a.e. in x, the
desired result follows by the dominated convergence theorem.

Remark. The reader will note that the first proof is similar to the proof in [7] that the
measures with no a.c. part are a Gδ. In a sense, this part of our discussion in §4 is a
transform for the proof of [7] to this proof instead!

Corollary 3.2. A measure µ has no absolutely continuous part on (a, b) if and only if

lim
k→∞

b∫
a

ImF (x+ ik−1)1/2 dx = 0.
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§4. G properties of sets of measures and operators

Lemma 4.1. Let X be a topological space and fn : X → R a sequence of non-negative
continuous functions. Then

{
x | lim

n→∞
Fn(x) = 0

}
is a Gδ.

Proof.
{
x | lim

n→∞
Fn(x) = 0

}
=

{
x | ∀k ∀N ∃n ≥ N Fn(x) <

1
k

}

=
∞⋂

k=1

∞⋂
N=1

∞⋃
n=N

{
x | Fn(x) <

1
k

}

is a Gδ.

As a corollary of this and Corollaries 2.3 and 3.2, we obtain a proof of the result of [9].

Theorem 4.1. Let M be the set of probability measures on [a, b] in the topology of weak
convergence (this is a complete metric space). Then {µ | µ is purely singular continuous}
is a dense Gδ .

Proof. By Corollary 3.2:

{µ | µac = 0} =
{
µ | lim

k→∞

b∫
a

(ImFµ(x+ ik−1)1/2 dx = 0
}
,

and by Corollary 2.3:

{µ | µpp = 0} =
{
µ | lim

k→∞
k−1

b∫
a

ImFµ(x+ ik−1)2 dx = 0
}
,

so by Lemma 4.1, each is a Gδ. Here we use the fact that µ 
→ Fµ(x + iε) is weakly
continuous for each x, ε > 0 and dominated above for each ε > 0 so the integrals are weakly
continuous. By the convergence of the Riemann-Stieltjes integrals, the point measures are
dense in M , so {µ | µac = 0} is dense. On the other hand, the fact that 1

π ImFµ(x+ iε)dx
converge in M to dµ shows that the a.c. measures are dense in M , so {µ | µpp = 0} is
dense. Thus, by the Baire category theorem, {µ | µpp = 0} ∩ {µ | µac = 0} is a dense
Gδ!

Finally, we recover our results in [7]. We call a metric space X of self-adjoint operators
on a Hilbert space H regular if and only if An → A in the metric topology implies that
An → A in strong resolvent sense. (Strong resolvent convergence of self-adjoint operators

means (An−z)−1ϕ
‖ ‖−→ (A−z)−1ϕ for all ϕ and all z with Im z �= 0. Notice this implies that

for any a, b, p and ε > 0 and any ϕ ∈ H, A 
→
b∫

a

Im(ϕ, (A− x− iε)−1ϕ)p dx ≡ Fa,b,p,ε,ϕ(A)

is a continuous function in the metric topology.
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Theorem 4.3. For any open set O ⊂ R and any regular metric space of operators,
{A | A has no a.c. spectrum in O} is a Gδ.

Proof. Any O is a countable union of intervals so it suffices to consider the case O = (a, b).
Let ϕn be an orthonormal basis for H. Then,

{A | A has no a.c. spectrum in (a, b)} =
⋂
n

{
A | lim

k→∞
Fa,b,1/2,1/k,ϕn

(A)
}

is a Gδ by Lemma 4.1 and Corollary 3.2.

Similarly, using Corollary 2.3, we obtain

Theorem 4.4. For any interval [a, b] and any regular metric space of operators, {A |
A has no point spectrum in [a, b]} is a Gδ.

Note. This is slightly weaker than the result in [7] but suffices for most applications. One
can recover the full result of [7], namely Theorem 4.4 with [a, b] replaced by an arbitrary
closed set K, by first noting that any closed set is a union of compacts, so it suffices to
consider compact K. For each K, let Kε = {x | dist(x,K) < ε}. Then one can show that
if dµ has no pure points in K, then

lim
ε↓0

ε

∫
Kε

(ImFε(x+ iε))2 dx = 0;

and if it does have pure points in K, then

lim
k→∞

k−1

∫
Kε

|ImF (x+ ik−1)|2 dx > 0

and Theorem 4.4 extends.
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