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Abstract

We examine various issues relevant to localization in the Anderson
model. We show there is more to localization than exponentially localized
states by presenting an example with such states but where 〈x(t)2〉/t2−δ is
unbounded for any δ > 0. We show that the recently discovered instability
of localization under rank one perturbations is only a weak instability.
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Localization in random media is basic to a variety of physical situations. We wish
to report here on a number of rigorous mathematical results that shed light on the
phenomenon of localization in the Anderson model. Mathematically complete proofs
of our results will appear elsewhere(1). Our goal here is to describe the ideas behind
the results.

Throughout, we’ll consider the Anderson model, that is, the Hamiltonian Hω on
�2(Zd) (namely, on the d-dimensional cubic lattice)

(Hωu)(n) =
∑
|j|=1

u(n + j) + Vω(n)u(n) (1)

where the potentials, Vω, are identically distributed independent random variables
with distribution(2)

1

2η
χ[−η,η](x) dx

with χ[−η,η] the characteristic function of the interval [−η, η].
Many of the claimed proofs of localization show that for almost all ω, an Anderson

model Hamiltonian Hω has a complete set of normalized eigenvectors(3) {ϕω,m}∞m=1

obeying
|ϕω,m(n)| ≤ Cω,me−A|n−nω,m | (2)

where A is fixed, the nω,m’s are some centers of localization, and the Cω,m’s are
constants depending on ω and m.

Our first result is an example that shows that mere “exponential localization”
of eigenfunctions in the form (2) need not have very strong consequences for the
dynamics. We can construct a non-random potential V in one dimension so that

(i) H has a complete set of normalized eigenvectors obeying Eqn. (2).

(ii) Let 〈x2〉(t) denote 〈e−itHδ0, x
2e−itHδ0〉; then for any δ > 0, 〈x2(t)〉/t2−δ is

unbounded as t → ±∞(4).

The potential V for this example is

V (n) = 3 cos(2παn + θ) + λδn0,

which we consider on the positive half of the lattice (n ≥ 0), with a Dirichlet (or any
other) boundary condition at the origin. The 3 in front of the cosine can be replaced
by any number larger than 2, and is chosen so that when λ = 0, the problem has a
positive Lyapunov exponent(5). The α is an irrational, which is specially chosen so
that for suitable time scales Tn → ∞, V is so close to periodic that we can show
〈x2(Tn)〉 is large compared to T 2−δ

n . The local perturbation λδn0 pushes the spectrum
to be pure point and forces Eqn. (2) to hold.

While V is very far from random, it illustrates that Eqn. (2) is not enough to
restrict dynamics. The main failing in (2) is the total freedom given to the constants
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Cω,m. Indeed, when one thinks of “localization”, one usually thinks of the eigenvec-
tors as being confined, at least roughly, within some typical length-scale. If the Cω,m’s
are allowed to grow arbitrarily as m changes, it means that eigenvectors are allowed
to be “extended” over arbitrarily large length-scales. We have shown that a correct
condition, which does give correspondence between eigenvector localization and dy-
namical localization, is what we call semi-uniformly localized eigenvectors (SULE):
There are sites nω,m so that for each ε > 0, there is Cω,ε for which

|ϕω,m(n)| ≤ Cω,εe
ε|nω,m |e−A|n−nω,m | (3)

(3) says that the constants Cω,m of (2) are allowed to grow at a rate which is less than
exponential in the distance of the nω,m’s from the origin. SULE is closely related to
a dynamical condition, which we call semi-uniform dynamical localization (SUDL)

sup
t

|e−itHω(n, �)| ≤ C̃ω,εe
ε|�|e−Ã|n−�| (4)

We have proven that (3) implies (4) with A arbitrarily close to Ã, and that if
Hω has simple eigenvalues(6), then (4) implies (3) with A = 1

2
Ã(7). (4) is sufficient

to show that 〈x2(t)〉 (or any other positive moment of x) is bounded. By standard
probability arguments, (4) is implied by

E
(
sup

t
|e−itHω(n, �)|

)
≤ Ce−Ã|n−�| (5)

where E(·) denotes expectation over realizations. (5) has been proven by Delyon et
al.(8) in the one-dimensional case and by Aizenman(9) in multidimensional cases at
large coupling(10).

A priori, one may wish to consider a more restrictive condition than (3), which is
to consider (2), but with Cω independent of m instead of Cω,m. We call this condition
uniformly localized eigenvectors (ULE). Indeed, ULE is related to the dynamical
condition (which we call uniform dynamical localization (UDL))

sup
t

|e−itHω(n, �)| ≤ C̃ωe−Ã|n−�| (6)

in essentially the same way that SULE is related to (4). The problem is that ULE does
not occur: We have shown(1),(11) that ULE can’t occur for a large class of models, and,
in particular, it can’t occur for the Anderson model in any dimension. It is an open
question, in fact, whether there is any Schrödinger operator with ULE. The Maryland
model(12), which has an unbounded quasiperiodic potential, exhibits a weak form of
ULE in the sense that for any finite energy interval, there exists a uniform constant
for all eigenvectors with energies in this interval. The Almost Mathieu operator(13),
however, does not have ULE(1),(11). For the Anderson model, or any other random
Hamiltonian obeying Eqn. (5), one can actually show stronger uniformity than what is
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given by Eqn. (3). That is, one can get an explicit (dimension dependent) polynomial
bound on the growth of the Cω,m’s. Our definition of SULE by (3) attempts to get,
at least roughly, a minimal uniformity requirement that would still have a two-way
relationship with corresponding dynamical localization.

Our second set of results concerns the following discovery of Gordon(14) and del
Rio et al.(15): Let Hω be an Anderson Hamiltonian in the localized regime and let(16)

Hω(λ) = Hω + λ|0〉〈0|. Then for a set S of couplings λ, which is dense and locally
uncountable(17), Hω(λ) has purely singular continuous spectrum(18). In particular,
for λ ∈ S, 〈x2(t)〉 is unbounded(19). So, the strong dynamical localization discussed
above can be destroyed by an arbitrarily small perturbation of the potential at a
single point: a disturbing fact.

We have found(1) that this instability is a mild one in the following senses:

(i) For all λ, 〈x2(t)〉 ≤ C(ln |t|)2 for t large.

(ii) The spectral measures in the singular continuous case are supported on a set of
zero Hausdorff dimension(20). In fact, this follows from (i) by a result of Last(21),
which is based on ideas originally due to Guarneri(22).

(iii) S is contained in a set of coupling constants S̃ so that S̃ has zero Hausdorff
dimension, and so that if λ /∈ S̃, Hω(λ) has pure point spectrum.
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