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Abstract. We provide a short proof of that case of the Gilbert-Pearson theorem that is most

often used: That all eigenfunctions bounded implies purely a.c. spectrum. Two appendices

illuminate Weidmann’s result that potentials of bounded variation have strictly a.c. spectrum

on a half-axis.

§1. Introduction and Reduction to m-functions

In this note, I want to consider Schrödinger operators and Jacobi matrices on a half-line.
Specifically, we’ll consider the operator h on �2(Z+) (with Z+ = {1, 2, . . . }) given by

(hu)(n) = u(n+ 1) + u(n− 1) + v(n)u(n) (1.1a)

u(0) = 0 (1.1b)

and the self-adjoint operator on L2(0,∞)

(Hu)(x) = −u′′(x) + V (x)u(x) (1.2a)

u(0) = 0 (1.2b)

where we suppose

Γ(V ) ≡ sup
x

( x+1∫
x−1

|V (y)|2
)
< ∞. (1.3)
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For any E ∈ C , define two solutions u1, u2 of the formal difference (resp. differential)
equation hu = Eu (resp. Hu = Eu) with boundary conditions:

u1(0, E) = 0 u1(1, E) = 1

u2(0, E) = 1 u2(1, E) = 0

in the discrete case and

u1(0, E) = 0 u′
1(0, E) = 1

u2(0, E) = 1 u′
2(0, E) = 0

in the continuous case.
Let S = {E ∈ R | u1 and u2 are bounded on [0,∞)}. Then our purpose here is to prove

Theorem 1. On S, the spectral measure ρ for h (resp. H) is purely absolutely continuous
in the sense that

(i) ρac(T ) > 0 for any T ⊂ S with |T | > 0 (where | · | = Lebesgue measure)
(ii) ρsing(S) = 0.

This theorem is not new. In [9,8,11,13], Gilbert, Khan, and Pearson proved a complete
characterization of the essential support of ρac in terms of mutually subordinate solutions.
Their approach has the advantage of not requiring (1.3). Behncke [2] and Stolz [16] have
noted that V uniformly L1

loc with bounded eigenfunctions allows one to use the Gilbert-
Pearson theory. Virtually all applications of [16,12] use the weaker Theorem 1. There
seems to be some point in the short proof I’ll present here which avoids some of their
tricky calculations and which makes the result transparent. In addition, we’ll obtain
explicit bounds on m-functions.

I should mention earlier work of Carmona [4] (which is weaker than Theorem 1) and
related work of Briet-Mourre [3].

As with Gilbert-Pearson, our proof uses the theory of Weyl m-functions. For E ∈ C+ =
{z | Im z > 0}, we can find a unique solution u+(n,E) (resp. u+(x,E)) of (1.1a)/(1.2a)
with u+ ∈ �2 (resp. L2) at infinity, normalized by

u+(0, E) = 1. (1.4)

Then one defines the m function by

m+(E) = u+(1, E) (1.5)

in the discrete case and
m+(E) = u′

+(0, E) (1.6)

in the continuous case.
By looking at the Wronskian of u+ and ū+, one gets the well-known formula:

Imm+(E) = ImE
∞∑

n=1

|u+(n,E)|2 (1.7)
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in the discrete case and

Imm+(E) = ImE

∞∫
0

|u+(x,E)|2 dx (1.8)

in the continuous case.
It is known (see [5,15]) that

dρ(E) =
1
π

lim
ε↓0

Imm+(E + iε)dE. (1.9)

It follows [1,7] by the de la Vallée-Poussin theorem that

ρsc is supported on
{
E | lim

ε↓0
Imm+(E + iε) = ∞

}

and
dρac(E) =

1
π
Imm+(E + i0)dE.

Thus, Theorem 1 is an immediate consequence of

Theorem 2. If E ∈ S, then

(i) lim Imm+(E + i0) > 0 (1.10)

(ii) lim |m+(E + i0)| < ∞. (1.11)

Remark. While the results are stated for the half-line with Dirichlet boundary conditions,
Theorem 2 immediately implies the result for any fixed boundary condition and for the
whole line. For it is known [1,15] that the essential support dρac,θ for θ boundary conditions
(given by sin(θ)u′(0) + cos(θ)u(0) = 0) is θ independent and that dρsc,θ is supported on
the set where m+(E+ i0) = − cot(θ), which cannot happen if (1.10)/(1.11) holds. For the
whole line, we can define S via the right half-line condition from which (1.10)/(1.11) and
the formula (for the continuous case; the discrete case is similar)

dρ1(E) = − lim
ε↓0

1
π
Im

(
1

m+(E + iε) +m−(E + iε)

)
dE

dρ2(E) = lim
ε↓0

1
π
Im

(
1

m+(E + i0)−1 +m−(E + i0)−1

)
dE

imply ρi,sc(S) = 0.

It is a pleasure to thank F. Gesztesy, A. Kiselev, and G. Stolz for useful discussions.
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§2. The Jacobi Matrix Case

In this section, we’ll prove Theorem 2 in the discrete case. Define the fundamental or
transfer matrix by

T (E,n, 0) =
(
u1(n+ 1, E) u2(n+ 1, E)
u1(n,E) u2(n,E)

)

and then
T (E,n,m) = T (E,n, 0)T (E,m, 0)−1 (2.1)

T is defined so that if u obeys hu = Eu, then Φ(n) =
(u(n+1)

u(n)

)
obeys

Φ(n) = T (E,n,m)Φ(m).

Constancy of the Wronskian implies det T = 1 so ‖T−1‖ = ‖T‖ and thus by (2.1)

C(E) = sup
n,m

‖T (E,n,m)‖ ≤ sup
n

‖T (E,n, 0)‖2 (2.2)

is finite if and only if E ∈ S. We’ll prove Theorem 2 in the following explicit form:

Theorem 2J. If E ∈ S, then

lim Imm+(E + iε) ≥ 1
4
C−3 (2.3)

lim |m+(E + iε)| ≤ 4C3 (2.4)

where C(E) is given by (2.2).

Proof. Let

A(E,n) ≡
(
E − V (n) −1

1 0

)

so T (E,n, 0) = A(E,n)T (E,n − 1, 0). It follows (as a telescoping sum) that

T (E + iε, n, 0) = T (E,n, 0) +
n−1∑
j=0

(iε)T (E,n, j + 1)
(
1 0
0 0

)
T (E + iε, j, 0)

so by iteration, we get

‖T (E + iε, n, 0)‖ ≤
n∑

k=0

(
n

k

)
Ck+1εk = C(1 + Cε)n ≤ CeεCn (2.5)

By ‖T−1‖ = ‖T‖, we see that
∥∥∥∥
(
u+(E + iε, n + 1)
u+(E + iε, n)

)∥∥∥∥ ≥ C−1e−εCn(|m+(E + iε)|2 + 1)1/2
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since
(
u+(E+iε,1)
u+(E+iε,0)

)
=

(
m+(E+iε)

1

)
.

Squaring and summing over n = 1, 3, . . . we see that

∞∑
n=1

|u+(E + iε, n)|2 ≥ C−2e−2εC(1 − e−4εC)−1(|m+(E + iε)|2 + 1).

Thus by (1.7)

Imm+(E + iε) ≥ 1
4
C−3e−2εC(4εC)(1− e−4εC)−1[1 + |m+(E + iε)|2]

or

lim
[
Imm+(E + iε)

/
[1 + |m+(E + iε)|2]

]
≥ 1

4
C−3 (2.6)

Noting that (1 + |m+|2)−1 ≤ 1, we see that (2.6) immediately implies (2.3). And since
(1 + |m+|2)/Imm+ ≥ |m+|, it also implies (2.4).

With only minor changes, the theorem extends to the general Jacobi matrix (tridiagonal
self-adjoint) matrix:

(hu)(n) = an+1u(n+ 1) + anu(n− 1) + bnu(n) (2.7)

so long as there is α finite with
α−1 < |an| < α (2.8)

for all n. If dρ is the spectral measure for u(n) = δ1n, then
∫

dρ(E)
z − E

= m+(z)

where m+(z) is defined to be a−1
1 u+(1) (if u+ is normalized by u+(0) = 1). (1.7) becomes

Imm+(E) = a−2
1 (ImE)

∞∑
n=1

|u+(n,E)|2.

It is no longer true that ‖T (E,n, 0)−1‖ = ‖T (E,n, 0)‖ since det(T (E,n, 0)) may not
be 1. Rather det(T (E,n, 0)) = a1

an+1 so using (2.8), (2.2) becomes C(E) ≤ α2 sup
n

‖T (E,n, 0)‖2. (2.5) becomes

‖T (E + iε, n, 0)‖ ≤ C(1 +Cαε)n ≤ CeεCnα

and (2.6) becomes

lim [Imm+(E + iε)]
/
[1 + a2

1|m+(E + iε)|2] ≥ 1
4
, a−2

1 C−3α−1.
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§3. The Schrödinger Case

To carry the proof through from the discrete case, we must use (1.3) to bound u′ locally
by u. This is a standard Sobolev-type estimate; we haven’t tried to optimize constants.

Lemma 3.1. If u obeys −u′′ + V u = Eu, then

|u′(x)|2 ≤
[
4 +

3
4
Γ(|V − E|)

] x+1∫
x−1

|u(y)|2 dy (3.1)

where Γ is given by (1.3).

Proof. By Taylor’s theorem with remainder,

f ′(0) =
1
2
f(x) − f(−x)

x
− 1

2x

x∫
0

(x− y)[f ′′(y) + f ′′(−y)] dy.

Integrate this from 1
2 to 1 to get

|f ′(0)| ≤
1∫

−1

|f(x)| dx +
3
8

1∫
−1

|f ′′(0)| dx.

Let f(y) = u(y + x) and use u′′ = (V −E)u and the Schwarz inequality to get (3.1).

By (3.1), if E ∈ S, u′ is also bounded and thus the transfer matrix T (E, x, y) defined
by

T (E, x, y)
(
u′(y)
u(y)

)
=

(
u′(x)
u(x)

)

is bounded. Let
C(E) ≡ sup

x,y
‖T (E, x, y)‖.

Theorem 2S. Let E ∈ S and define A(E) = 1
2C(E)−3/(9 + 3

2Γ(|E − V |)). Then

lim Imm+(E + iε) ≥ A

lim |m+(E + iε)| ≤ A−1.

Proof. By mimicking the proof of (2.5), using integrals in place of sums

‖T (E + iε, x, 0)‖ ≤ CeεC|x| (3.2)

By (3.1)
∞∫
1

|u′(x)|2 dx ≤
[
8 +

3
2
Γ(|V − E − iε|)

] ∞∫
0

|u(y)|2 dy
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so if β = 1/(9 + 3
2Γ), then

∞∫
0

|u(y)|2 dy ≥ β

∞∫
1

[|u(x)|2 + |u′(x)|2] dx

≥ C−2β(1 + |m+|2)
∞∫
1

e−2εCx dx

so by (1.8),

Imm+ ≥ 1
2
C−3βe−εC(1 + |m+|2)

and the result follows as in the discrete case.

Appendix 1: A Discrete Version of Weidmann’s Theorem

One of the more interesting applications of Theorem 2 is the result of Weidmann
[17,18,19] that if V = V1+V2 where V1 ∈ L1 and V2 is of bounded variation with V2(x) → 0
at infinity, then − d2

dx2 +V (x) has purely a.c. spectrum on (0,∞). A key to his argument is
a proof that for any E > 0, solutions are bounded. He does this by noting one can suppose
V2 is C1 with V ′

2 ∈ L1 (by adjusting the breakup) and that if K(x) = (u′)2 + (E − V2)u2,
then K ′(x) = 2V1u

′u− 2V ′
2u

2 ≤ C(|V1|+ |V ′
2|)K(x) for x large. Here we’ll prove a discrete

analog:

Theorem A.1. Let vn be a sequence on {1, 2, . . . } so that vn → 0 and

∞∑
n=1

|vn+1 − vn| < ∞. (A.1)

Then, the operator h of (1.1) has purely absolutely continuous spectrum on (−2, 2).

Remarks. 1. (A.1) implies lim vn exist so by adding a constant, it is no loss to suppose
vn → 0.

2. If vn ∈ �1, then (A.1) holds so we don’t need to consider sums as Weidmann does in
the continuous case.

Proof. Given a solution of hu = Eu, let

Kn = u2
n+1 + u2

n + (vn − E)unun+1.

Then

(Kn+1 −Kn) = (un+2 − un)(un+2 + un + (vn+1 − E)un+1) + (vn − vn+1)unun+1

so
|Kn+1 −Kn| ≤ |vn − vn+1| |unun+1|. (A.2)
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Suppose now E ∈ (−2, 2). Then for n ≥ some N0, 2− |vn − E| ≥ δ > 0. For such n,

Kn ≥ δ

2
(un+1

2 + un
2) +

(
1− δ

2

)
(|un+1| − |un|)2

≥ δ

2
(un+1

2 + un
2)

so (A.2) becomes

Kn+1 ≤
(
1 +

2
δ
|vn − vn+1|

)
Kn

and for all n ≥ N0:

Kn ≤
∞∏

m=N0

(
1 +

2
δ
|vm − vm+1|

)
KN0 .

The product is convergent by (A.1).

By using the remark at the end of Section 1, Theorem A.1 extends to the operator (2.7)
so long as (2.8) holds and

bn → 0,
∞∑

n=1

|bn+1 − bn| < ∞

an → 1,
∞∑

n=1

|an+1 − an| < ∞.

We merely define Kn by

Kn = an+1u
2
n+1 + anu

2
n + (bn − E)enun+1.

This is related to results of [6].

Appendix 2: Eigenfunctions for Weidmann’s Theorem

We want to further elucidate Weidmann’s theorem by showing how to actually find the
asymptotics of the eigenfunctions. We’ll suppose V (x) = V1(x) + V2(x) with V1 ∈ L1 and
V2 a C1 function with V ′

2 ∈ L1 and V2 → 0 at infinity. We claim:

Theorem B.1. Fix E = k2 > 0 with k > 0. Then every solution of (− d2

dx2 +V (x))u = Eu
is bounded; indeed, there exist a, b so that

|u(x)− au+(x)− bu(x)| → 0

|u′(x)− iaku+(x) + ibku−(x)| → 0

where

u±(x) = exp
(
±i

x∫
x0

√
k2 − V2(x) dx

)
(B.1)
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where x0 is chosen so large that V2(x) < k2 for x > x0.

Remarks. 1. Since (k2−V2(x))−1/4 → k−1/2, we could use the WKB form instead of (B.1),
but the form (B.1) is what enters naturally.

2. This theorem and proof can be regarded as specializations of arguments in Hinton-
Shaw [10].

Proof. Define u± by (B.1). Note that u± are C2 and

−u′′
± + (V (x)− E)u± = F±u± (B.2a)

where
F±(x) = V1(x)± i

2
V ′

2(x)(k
2 − V2(x))−1/2 (B.2b)

is in L1 near infinity.
LetW (x) be the Wronskian of u+ and u−. Clearly, W (x) = 2ik+o(1). Define a(x), b(x)

by the equations (variation of parameters)

u(x) = a(x)u+(x) + b(x)u−(x)

u′(x) = a(x)u′
+(x) + b(x)u′

−(x).

A straightforward and standard calculation (see prob. 98 on pg. 395 of [14]) shows that
a, b obey the equations (

a(x)
b(x)

)′
= M(x)

(
a(x)
b(x)

)

where

M(x) = W (x)−1

( −F+ −u2−F−
F+u

2
+ F−

)
.

Since this is in L1, standard arguments show that lim
k→∞

(a(x)
b(x)

)
=

(
a
b

)
exists.

If, moreover, V obeys (1.3) (a mild restriction), this and Theorem 1 implies that
σac(H) = [0,∞), σsing ∩ (0,∞) = ∅.
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