SOME SCHRÖDINGER OPERATORS WITH DENSE POINT SPECTRUM

BARRY SIMON*

Division of Physics, Mathematics, and Astronomy California Institute of Technology, 253-37 Pasadena, CA 91125

May 16, 1995

ABSTRACT. Given any sequence $\{E_n\}_{n=1}^{\infty}$ of positive energies and any monotone function g(r) on $(0,\infty)$ with g(0) = 1, $\lim_{r \to \infty} g(r) = \infty$, we can find a potential V(x) on $(-\infty,\infty)$ so that $\{E_n\}_{n=1}^{\infty}$ are eigenvalues of $-\frac{d^2}{dx^2} + V(x)$ and $|V(x)| \le (|x|+1)^{-1}g(|x|)$.

In [7], Naboko proved the following:

Theorem 1. Let $\{\kappa_n\}_{n=1}^{\infty}$ be a sequence of rationally independent positive reals. Let g(r) be a monotone function on $[0,\infty)$ with g(0) = 1, $\lim_{r \to \infty} g(r) = \infty$. Then there exists a potential V(x) on $[0,\infty)$ so that

- {κ_n²}_{n=1}[∞] are eigenvalues of d²/dx² + V(x) on [0,∞) with u(0) = 0 boundary conditions.
 |V(x)| ≤ g(x)/(|x|+1).

Our goal here is to construct V's that allow the proof of the following theorem:

Theorem 2. Let $\{\kappa_n\}_{n=1}^{\infty}$ be a sequence of arbitrary distinct positive reals. Let g(r) be a monotone function on $[0,\infty)$ with g(0) = 1 and $\lim_{r\to\infty} g(r) = \infty$. Let $\{\theta_n\}_{n=1}^{\infty}$ be a sequence of angles in $[0,\pi)$. Then there exists a potential V(x) on $[0,\infty)$ so that

(1) For each n, $\left(-\frac{d^2}{dx^2} + V(x)\right)u = \kappa_n^2 u$ has a solution which is L^2 at infinity and

$$\frac{u'(0)}{u(0)} = \cot(\theta_n). \tag{1}$$

(2) $|V(x)| \le \frac{g(x)}{|x|+1}$.

Typeset by $\mathcal{A}_{M}S$ -T_FX

^{*} This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The Government has certain rights in this material.

To be submitted to Proc. Amer. Math. Soc.

Remarks. 1. These results are especially interesting because Kiselev [6] has shown that if $|V(x)| \leq C(|x|+1)^{-\alpha}$ with $\alpha > \frac{3}{4}$, then $(0,\infty)$ is the essential support of $\sigma_{\rm ac}(-\frac{d^2}{dx^2} + V(x))$, so these examples include ones with dense point spectrum, dense inside absolutely continuous spectrum.

2. For whole line problems, we can take each $\theta_n = 0$ or $\frac{\pi}{2}$ and let $V_{\infty}(x) = V(|x|)$ and specify even and odd eigenvalues.

3. For our construction, we'll have $|u_n(x)| \leq C_n(1+|x|)^{-1}$. By the same method, we could also specify $\{m_n\}_{n=1}^{\infty}$ so $|u_n(x)| \leq C_n(1+|x|)^{-m_n}$. 4. By the same method, if $\sum_{n=1}^{\infty} |\kappa_n| < \infty$, we can actually take $|V(x)| \leq C(1+|x|)^{-1}$,

4. By the same method, if $\sum_{n=1}^{\infty} |\kappa_n| < \infty$, we can actually take $|V(x)| \leq C(1+|x|)^{-1}$, providing an answer to an open question of Eastham-Kalf [4], page 95. If one takes our construction really seriously, one might conjecture that if $V(x) = 0(|x|^{-1})$, then zero is the only possible limit point of the eigenvalues E_n and, indeed, even that

$$\sum_{n=1}^{\infty} \sqrt{E_n} < \infty.$$

5. One can probably extend Naboko's method to allow θ 's so from a technical point of view, our result goes beyond his in that we show the rational independence condition is an artifact of his proof. The real point is to provide a different construction where the interesting examples of the phenomena can be found.

Our construction is based on examples of the Wigner-von Neumann type [9]. They found a potential $V(x) = \frac{8\sin(2r)}{r} + 0(r^{-2})$ at infinity and so that -u'' + Vu = u has a solution of the form $\frac{\sin(r)}{r^2} + 0(r^{-3})$ at infinity. In fact, our potentials will be of the form

$$V(x) = W(x) + \sum_{n=0}^{\infty} 4\kappa_n \chi_n(x) \,\frac{\sin(2\kappa_n x + \varphi_n)}{x} \tag{2}$$

where $\chi_n(x)$ is the characteristic function of the region $x > R_n$ for suitable large $R_n \to \infty$. Since R_n goes to infinity, the sum in (2) is finite for each x and there is no convergence issue. In (2), W will be a carefully constructed function on [0, 1] arranged to make sure that the phases θ_n at x = 0 come out right. We'll construct V as a limit of approximations

$$V_m(x) = W_m(x) + \sum_{n=0}^m 4\kappa_n \chi_n(x) \,\frac{\sin(2\kappa_n x + \varphi_n)}{x} \tag{3}$$

where W_m is supported on $[2^{-m}, 1]$ and equals W there. We'll make this construction so that:

- (a) For $n \le m$, $\left(-\frac{d^2}{dx^2} + V_m(x)\right)u(x) = \kappa_n^2 u(x)$ has a solution $u_n^{(m)}(x)$ obeying $u \in L^2$ and condition (1).
- (b)

$$\left| u_n^{(m)}(x) - \frac{\sin(\kappa_n x + \frac{1}{2}\varphi_n)}{1+x} \right| \le C_n (1+x)^{-2}$$
(4)

for C_n uniformly bounded (in *m* but not in *n*!). Note in (4), the fact that 1/1 + x appears (multiplying the sin) rather than, say, $1/(1+x)^2$ comes from the choice of 4 in $4\kappa_n$ in (3) (in general, if $4\kappa_n$ is replaced by γx_n , the decay is $r^{-\gamma/4}$).

Central to our construction is a standard oscillation result that can be easily proven using the method of Harris-Lutz [5] or the Dollard-Friedman method [2,3] (see [8], problem 98 in Chapter XI); results of this genre go back to Atkinson [1]. It will be convenient to introduce the norm

$$|||f||| = ||(1+x^2)f||_{\infty} + \left||(1+x^2)\frac{df}{dx}\right||_{\infty}$$

for functions on $[0,\infty)$.

Theorem 3. Fix x > 0. Let V_0 be a continuous function on $[0, \infty)$ so that

 $V_0(x) = 4\kappa \sin(2\kappa x + \varphi_0)/|x|$

for $x > R_0$ for some R_0 . Let V_1, V_2 be two other continuous functions which obey

(i) $|V_i(x)| \le C_1 |x|^{-1}$

(ii)
$$V_i(x) = \frac{dW_i}{dx}$$
 where $|W_i(x)| \le C_2 |x|^{-1}$

(iii) $e^{\pm 2i\kappa x} V_i(x) = \frac{dW_i^{(\pm)}}{dx}$ where $|W_i^{\pm}(x)| \le C_3 |x|^{-1}$.

Let

$$V^{(R)} = \begin{cases} V_0(x) + V_1(x) & |x| < R\\ V_0(x) + V_1(x) + V_2(x) & |x| > R \end{cases}$$

with $V^{(\infty)}(x) = \lim_{R \to \infty} V^{(R)}(x)$. Then there exists a unique function $u^{(R)}(x)$ for $R \in [0, \infty]$ (including ∞) with $(u \equiv u^{(R)})$

(a)
$$-u'' + V^{(R)}u = \kappa^2 u$$

(b) $|u(x) - \frac{\sin(\kappa x + \frac{1}{2}\varphi_0)}{1+|x|}| \le C_4(1+x)^{-2}$ and $|u'(x) - \frac{\kappa\cos(\kappa x + \frac{1}{2}\varphi_0)}{1+|x|}| \le C_5(1+x)^{-2}$.
In addition,

$$\| u^{(R)} - u^{(\infty)} \| \to 0 \tag{5}$$

as $R \to \infty$. Moreover, C_4 , C_5 , and the rate convergence in (5) only depend on R_0 , C_1 , C_2 , and C_3 .

Since this is a straightforward application of the methods of [5,3], we omit the details.

The second input we'll need is the ability to undo small changes of Prüfer angles with small changes of potential. We'll need the following lemma:

Lemma 4. Fix $k_1, \ldots, k_n > 0$ distinct and $\theta_1^{(0)}, \ldots, \theta_n^{(0)}$. Let

$$f_j(x) = \sin^2(k_i x + \theta_i^{(0)}).$$

Fix a < b. Then $\{f_1, \ldots, f_n\}$ are linearly independent on [a, b].

Proof. Relabel so $0 < k_1 < k_2 < \cdots < k_n$. Suppose there is a dependency relation of the form $g(x) \equiv \sum_{i=1}^{n} \alpha_j f_j(x) \equiv 0$ on [a, b]. Without loss, we can suppose that $\alpha_n \neq 0$

(for otherwise, decrease n). Writing $\sin^2(y) = (e^{2iy} + e^{-2iy} - 2)/4$, we see that high order derivatives of g(x) are dominated by the f_n term, so α_n must be zero after all.

It will be convenient to use modified Prüfer angles, $\varphi(x)$, defined by

$$u'(x) = kR(x)\cos(\varphi); \quad u(x) = R(x)\sin(\varphi)$$
(6)

where u obeys $-u'' + V(x)u = k^2u(x)$. Then φ obeys

$$\frac{d\varphi}{dx} = k - k^{-1}V(x)\sin^2(\varphi(x)).$$
(7)

Explicitly, given V(x) on [0, b] and $\theta^{(0)}$, let $\varphi(x; \theta, V)$ solve the differential equation (7) on [a, b] with initial condition $\varphi(0; \theta, V) = \theta^{(0)}$. Obviously,

$$\varphi(x;\theta,V\equiv 0) = kx + \theta. \tag{8}$$

Theorem 5. Fix $[a,b] \subset (0,\infty)$, $k_1,\ldots,k_n > 0$ and distinct, and angles $\theta_1^{(0)},\ldots,\theta_n^{(0)}$. Define $F: C[a,b] \to T^n$ (with T^n the n-torus) to be the generalized Prüfer angles $\varphi_i(b)$ solving (7) (with $k = k_i$ and V(x) = 0 on [0,a) and the argument of F on [a,b]) with $\varphi_i(0) = \theta_i^{(0)}$. Then for any ϵ , there is a δ so that for any $\theta_1^{(1)},\ldots,\theta_n^{(1)}$ with

$$|\theta_i^{(1)} - k_i b - \theta_i^{(0)}| < \delta_i$$

there is a $V \in C[a, b]$ with $||V||_{\infty} < \epsilon$ and

$$F(V) = (\theta_1^{(1)}, \dots, \theta_n^{(1)}).$$

Proof. F(V = 0) is $(\theta_1^{(0)} + k_1 b, \dots, \theta_n^{(0)} + k_n b)$ by (8), so this theorem merely asserts that F takes a neighborhood of V = 0 onto a neighborhood of F(V = 0). By the implicit function theorem, it suffices that the differential is surjective. But

$$\left. \frac{\delta F_i}{\delta V(x)} \right|_{V \equiv 0} = -\frac{1}{k_i} \sin^2(k_i x + \theta_i^{(0)})$$

by (7) and (8). By the lemma, this derivative is surjective.

We now turn to the proof of Theorem 2. The overall strategy will be to use an inductive construction. We'll write

$$W(x) = \sum_{m=1}^{\infty} (\delta W_m)(x)$$
(9)

with δW_m supported on $[2^{-m}, 2^{-(m-1)}]$ so that the W_m of equation (3) is $W_m = \sum_{k=1}^m \delta W_k$. Then assuming we have V_{m-1} , we'll choose R_m , φ_m , δW_m in successive order, so

(1) R_m is so large that

$$|8\kappa_m\chi_m(x)| \le 2^{-m}g(x) \tag{10}$$

on all $(0,\infty)$, that is, $g(R_m) \ge 2^m (8\kappa_m)$.

- (2) R_m is chosen so large that steps (3), (4) work.
- (3) Let $u^{(0)}(x)$ solve $-u'' + V_{m-1}u = \kappa_m^2 u$ with $u'(0)/u(0) = \cot(\theta_m)$. We show that (so long as R_m is chosen large enough) we can pick φ_m so this u matches to the decaying solution guaranteed by Theorem 3.
- (4) By choosing R_m large, we can be sure that $|||u_n^{(m-1)} \tilde{u}_n^{(m)}||| \le 2^{-m-1}$ where $\tilde{u}_n^{(m)}$ obeys the equation for $V_m \delta W_m$ and that the modified Prüfer angles for $\tilde{u}_n^{(m)}$ at $b_m = 2^{-m+1}$ are within a range that can apply Theorem 5 with

$$[a,b] = [2^{-m}, 2^{-m+1}]$$

and $\epsilon < \frac{1}{2}$. By applying Theorem 5, we'll get δW_{m+1} to assure $u_n^{(m)}$ obeys the boundary conditions at zero.

Here are the formal details:

Proof of Theorem 2. Let

$$(\delta V_n)(x) = 4\kappa_n \chi_n(x) \,\frac{\sin(2\kappa_n x + \varphi_n)}{x} \tag{11}$$

where χ_n is the characteristic function of $[R_n, \infty)$ and φ_n, R_n are parameters we'll pick below. R_n will be picked to have many properties, among them

$$R_n \to \infty, R_n \ge 1, \qquad g(R_n) \ge 2^n (8\kappa_n).$$
 (12)

 δW_n will be a function supported on $[2^{-n}, 2^{-n+1})$ chosen later but obeying

$$\|\delta W_n\|_{\infty} \le \frac{1}{2}.\tag{13}$$

We'll let

$$V_m(x) = \sum_{n=1}^{m} (\delta V_n + \delta W_n)(x)$$

and

$$V(x) = \lim_{m \to \infty} V_m(x)$$

where the limit exists since $V_m(x)$ is eventually constant for any x.

By (12), (13), we have

$$|V_m(x)| \le g(x)/(|x|+1)$$
 $m = 1, 2, \dots, \infty.$ (14)

For each m and each n = 1, ..., m, we have by Theorem 3 a unique function $u_n^{(m)}(x)$ obeying

$$-u'' + V_m u = \kappa_n^2 u \tag{15}$$

$$|||u - \sin((\kappa_n + \frac{1}{2}\varphi_n) \cdot)(1 + |\cdot|)^{-1}||| < \infty.$$
(16)

We will choose $\delta V_n, \delta W_m$ so that

$$|||u_n^{(m)} - u_n^{(m-1)}||| \le 2^{-m} \qquad n = 1, 2, \dots, m-1$$
(17)

$$u_n^{(m)}$$
 obeys eqn. (1) $n = 1, \dots, m.$ (18)

Thus we are reduced to showing that δV_m , δW_m can be chosen so that (17), (18) hold. Let $\theta_i^{(0)}$ be defined by $\kappa_i \cot(\theta_i^{(0)}) = \cot(\theta_i)$ so $\theta_i^{(0)}$ are the generalized Prüfer angles

associated to the originally specified Prüfer angles. Look at the solutions $u_i^{(n-1)}$, $i = 1, \ldots, m-1$. These match to the generalized Prüfer angles $\kappa_i 2^{-m+1} + \theta_i^{(0)}$ at $x = 2^{-m+1}$.

We'll choose δV_m so that the new solutions $\tilde{u}_i^{(m)}$ $(i = 1, \ldots, m-1)$ with δV_m added obey $\|\|\tilde{u}_i^{(m)} - u_i^{(m-1)}\|\| < 2^{-m-1}$. We can find ϵ_m so that if $\|\delta W_m\| < \epsilon_m$, then the new solutions $u_i^{(m)}$ obey $\|\|u_i^{(m)} - \tilde{u}_i^{(m)}\|\| < 2^{-m-1}$. So using Theorem 5, pick δ so small that the resulting V given is that theorem with $a = 2^{-m}, b = 2^{-m+1}$ has $\|\cdot\|$ bounded by $\min(\frac{1}{2}, \epsilon_n)$. In that theorem, use $\kappa_1, \ldots, \kappa_m$ and $\theta_i^{(0)}, i = 1, \ldots, m$.

According to Theorem 3, we can take R_m so large that uniformly in φ_m (in $[0, 2\pi/2\kappa_m]$), we have $|||u_i^{(m-1)} - \tilde{u}_i^{(m)}||| < 2^{-m-1}$ for $i = 1, \ldots, m-1$ and so large that again uniformly in φ_m , the generalized Prüfer angles $\theta_i^{(0)}$ for $\tilde{u}_i^{(m)}$ at $b_m \equiv 2^{-m+1}$ obeys $|\theta_i^{(1)} - \theta_i^{(0)} - \kappa_i b_i| < \delta$ for $i = 1, \ldots, m-1$.

Thus, if we can pick the angle φ_m in (11) so that $\tilde{u}_m^{(m)}$ obeys the boundary condition at zero (and so $\theta_m^{(1)} - \theta_m^{(0)} - \kappa_m b_m = 0$), then the construction is done.

By condition (b) of Theorem 3, for |x| large, as φ_m runs from 0 to $2\pi/2\kappa_m$, (|x|u(x), |x|u'(x)) runs through a complete half-circle. Thus, by taking R_m at least that large and choosing φ_m appropriately, we can match the angle of the solution of $u'' + V_{m-1}u = \kappa_m^2 u$ which obeys the boundary condition at x = 0.

References

- F. Atkinson, The asymptotic solutions of second order differential equations, Ann. Math. Pura Appl. 37 (1954), 347–378.
- [2] J. Dollard and C. Friedman, On strong product integration, J. Funct. Anal. 28 (1978), 309-354.
- [3] _____, Product integrals and the Schrödinger equation, J. Math. Phys. 18 (1977), 1598–1607.
- [4] M.S.P. Eastham and H. Kalf, Schrödinger-type Operators with Continuous Spectra, Research Notes in Mathematics 65, Pitman Books Ltd., London, 1982.
- [5] W.A. Harris and D.A. Lutz, Asymptotic integration of adiabatic oscillator, J. Math. Anal. Appl. 51 (1975), 76–93.
- [6] A. Kiselev, Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials, preprint.
- [7] S.N. Naboko, Dense point spectra of Schrödinger and Dirac operators, Theor.-math. 68 (1986), 18–28.
- [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, New York, 1979.
- [9] J. von Neumann and E.P. Wigner, Über merkwürdige diskrete Eigenwerte, Z. Phys. 30 (1929), 465–467.