
SOME SCHRÖDINGER OPERATORS

WITH DENSE POINT SPECTRUM

Barry Simon∗

Division of Physics, Mathematics, and Astronomy
California Institute of Technology, 253-37

Pasadena, CA 91125

May 16, 1995

Abstract. Given any sequence {En}∞n−1 of positive energies and any monotone function

g(r) on (0,∞) with g(0) = 1, lim
r→∞ g(r) = ∞, we can find a potential V (x) on (−∞,∞) so

that {En}∞n=1 are eigenvalues of − d2

dx2 + V (x) and |V (x)| ≤ (|x| + 1)−1g(|x|).

In [7], Naboko proved the following:

Theorem 1. Let {κn}∞n=1 be a sequence of rationally independent positive reals. Let
g(r) be a monotone function on [0,∞) with g(0) = 1, lim

r→∞ g(r) = ∞. Then there exists a

potential V (x) on [0,∞) so that

(1) {κ2
n}∞n=1 are eigenvalues of − d2

dx2 + V (x) on [0,∞) with u(0) = 0 boundary condi-
tions.

(2) |V (x)| ≤ g(x)
(|x|+1) .

Our goal here is to construct V ’s that allow the proof of the following theorem:

Theorem 2. Let {κn}∞n=1 be a sequence of arbitrary distinct positive reals. Let g(r) be a
monotone function on [0,∞) with g(0) = 1 and lim

r→∞ g(r) = ∞. Let {θn}∞n=1 be a sequence

of angles in [0, π). Then there exists a potential V (x) on [0,∞) so that

(1) For each n, (− d2

dx2 + V (x))u = κ2
nu has a solution which is L2 at infinity and

u′(0)
u(0)

= cot(θn). (1)

(2) |V (x)| ≤ g(x)
|x|+1 .
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Remarks. 1. These results are especially interesting because Kiselev [6] has shown that
if |V (x)| ≤ C(|x| + 1)−α with α > 3

4 , then (0,∞) is the essential support of σac(− d2

dx2 +
V (x)), so these examples include ones with dense point spectrum, dense inside absolutely
continuous spectrum.

2. For whole line problems, we can take each θn = 0 or π
2 and let V∞(x) = V (|x|) and

specify even and odd eigenvalues.
3. For our construction, we’ll have |un(x)| ≤ Cn(1 + |x|)−1. By the same method, we

could also specify {mn}∞n=1 so |un(x)| ≤ Cn(1 + |x|)−mn .

4. By the same method, if
∞∑

n=1

|κn| < ∞, we can actually take |V (x)| ≤ C(1 + |x|)−1,

providing an answer to an open question of Eastham-Kalf [4], page 95. If one takes our
construction really seriously, one might conjecture that if V (x) = 0(|x|−1), then zero is the
only possible limit point of the eigenvalues En and, indeed, even that

∞∑
n=1

√
En < ∞.

5. One can probably extend Naboko’s method to allow θ’s so from a technical point
of view, our result goes beyond his in that we show the rational independence condition
is an artifact of his proof. The real point is to provide a different construction where the
interesting examples of the phenomena can be found.

Our construction is based on examples of the Wigner-von Neumann type [9]. They
found a potential V (x) = 8 sin(2r)

r
+ 0(r−2) at infinity and so that −u′′ + V u = u has a

solution of the form sin(r)
r2 + 0(r−3) at infinity. In fact, our potentials will be of the form

V (x) = W (x) +
∞∑

n=0

4κnχn(x)
sin(2κnx+ ϕn)

x
(2)

where χn(x) is the characteristic function of the region x > Rn for suitable large Rn → ∞.
Since Rn goes to infinity, the sum in (2) is finite for each x and there is no convergence
issue. In (2), W will be a carefully constructed function on [0, 1] arranged to make sure
that the phases θn at x = 0 come out right. We’ll construct V as a limit of approximations

Vm(x) = Wm(x) +
m∑

n=0

4κnχn(x)
sin(2κnx+ ϕn)

x
(3)

where Wm is supported on [2−m, 1] and equals W there. We’ll make this construction so
that:

(a) For n ≤ m, (− d2

dx2 + Vm(x))u(x) = κ2
nu(x) has a solution u

(m)
n (x) obeying u ∈ L2

and condition (1).
(b) ∣∣∣∣u(m)

n (x)− sin(κnx+ 1
2ϕn)

1 + x

∣∣∣∣ ≤ Cn(1 + x)−2 (4)
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for Cn uniformly bounded (in m but not in n!). Note in (4), the fact that 1/1 + x
appears (multiplying the sin) rather than, say, 1/(1+x)2 comes from the choice of
4 in 4κn in (3) (in general, if 4κn is replaced by γxn, the decay is r−γ/4).

Central to our construction is a standard oscillation result that can be easily proven
using the method of Harris-Lutz [5] or the Dollard-Friedmanmethod [2,3] (see [8], problem
98 in Chapter XI); results of this genre go back to Atkinson [1]. It will be convenient to
introduce the norm

|||f ||| = ‖(1 + x2)f‖∞ +
∥∥∥∥(1 + x2)

df

dx

∥∥∥∥
∞

for functions on [0,∞).

Theorem 3. Fix x > 0. Let V0 be a continuous function on [0,∞) so that

V0(x) = 4κ sin(2κx+ ϕ0)
/|x|

for x > R0 for some R0. Let V1, V2 be two other continuous functions which obey

(i) |Vi(x)| ≤ C1|x|−1

(ii) Vi(x) = dWi

dx where |Wi(x)| ≤ C2|x|−1

(iii) e±2iκxVi(x) =
dW

(±)
i

dx where |W±
i (x)| ≤ C3|x|−1.

Let

V (R) =
{

V0(x) + V1(x) |x| < R

V0(x) + V1(x) + V2(x) |x| > R

with V (∞)(x) = lim
R→∞

V (R)(x). Then there exists a unique function u(R)(x) for R ∈ [0,∞]

(including ∞) with (u ≡ u(R))
(a) −u′′ + V (R)u = κ2u

(b) |u(x)− sin(κx+
1
2ϕ0)

1+|x| | ≤ C4(1 + x)−2 and |u′(x) − κ cos(κx+
1
2ϕ0)

1+|x| | ≤ C5(1 + x)−2 .

In addition,
|||u(R) − u(∞)||| → 0 (5)

as R → ∞. Moreover, C4, C5, and the rate convergence in (5) only depend on R0, C1, C2,
and C3.

Since this is a straightforward application of the methods of [5,3], we omit the details.

The second input we’ll need is the ability to undo small changes of Prüfer angles with
small changes of potential. We’ll need the following lemma:

Lemma 4. Fix k1, . . . , kn > 0 distinct and θ
(0)
1 , . . . , θ

(0)
n . Let

fj(x) = sin2(kix+ θ
(0)
i ).

Fix a < b. Then {f1, . . . , fn} are linearly independent on [a, b].

Proof. Relabel so 0 < k1 < k2 < · · · < kn. Suppose there is a dependency relation of

the form g(x) ≡
n∑

i=1

αjfj(x) ≡ 0 on [a, b]. Without loss, we can suppose that αn �= 0
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(for otherwise, decrease n). Writing sin2(y) = (e2iy + e−2iy − 2)/4, we see that high order
derivatives of g(x) are dominated by the fn term, so αn must be zero after all.

It will be convenient to use modified Prüfer angles, ϕ(x), defined by

u′(x) = kR(x) cos(ϕ); u(x) = R(x) sin(ϕ) (6)

where u obeys −u′′ + V (x)u = k2u(x). Then ϕ obeys

dϕ

dx
= k − k−1V (x) sin2(ϕ(x)). (7)

Explicitly, given V (x) on [0, b] and θ(0), let ϕ(x; θ, V ) solve the differential equation (7)
on [a, b] with initial condition ϕ(0; θ, V ) = θ(0). Obviously,

ϕ(x; θ, V ≡ 0) = kx+ θ. (8)

Theorem 5. Fix [a, b] ⊂ (0,∞), k1, . . . , kn > 0 and distinct, and angles θ
(0)
1 , . . . , θ

(0)
n .

Define F : C [a, b] → Tn (with Tn the n-torus) to be the generalized Prüfer angles ϕi(b)
solving (7) (with k = ki and V (x) = 0 on [0, a) and the argument of F on [a, b]) with

ϕi(0) = θ
(0)
i . Then for any ε, there is a δ so that for any θ

(1)
1 , . . . , θ

(1)
n with

|θ(1)
i − kib− θ

(0)
i | < δ,

there is a V ∈ C [a, b] with ‖V ‖∞ < ε and

F (V ) = (θ(1)
1 , . . . , θ(1)

n ).

Proof. F (V = 0) is (θ(0)
1 +k1b, . . . , θ

(0)
n +knb) by (8), so this theorem merely asserts that F

takes a neighborhood of V = 0 onto a neighborhood of F (V = 0). By the implicit function
theorem, it suffices that the differential is surjective. But

δFi

δV (x)

∣∣∣∣
V ≡0

= − 1
ki

sin2(kix+ θ
(0)
i )

by (7) and (8). By the lemma, this derivative is surjective.

We now turn to the proof of Theorem 2. The overall strategy will be to use an inductive
construction. We’ll write

W (x) =
∞∑

m=1

(δWm)(x) (9)

with δWm supported on [2−m, 2−(m−1)] so that the Wm of equation (3) is Wm =
m∑

k=1

δWk.

Then assuming we have Vm−1, we’ll choose Rm, ϕm, δWm in successive order, so
(1) Rm is so large that

|8κmχm(x)| ≤ 2−mg(x) (10)
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on all (0,∞), that is, g(Rm) ≥ 2m(8κm).
(2) Rm is chosen so large that steps (3), (4) work.
(3) Let u(0)(x) solve −u′′ + Vm−1u = κ2

mu with u′(0)/u(0) = cot(θm). We show that
(so long as Rm is chosen large enough) we can pick ϕm so this u matches to the
decaying solution guaranteed by Theorem 3.

(4) By choosing Rm large, we can be sure that |||u(m−1)
n − ũ

(m)
n ||| ≤ 2−m−1 where ũ

(m)
n

obeys the equation for Vm − δWm and that the modified Prüfer angles for ũ(m)
n at

bm = 2−m+1 are within a range that can apply Theorem 5 with

[a, b] = [2−m, 2−m+1]

and ε < 1
2 . By applying Theorem 5, we’ll get δWm+1 to assure u

(m)
n obeys the

boundary conditions at zero.

Here are the formal details:

Proof of Theorem 2. Let

(δVn)(x) = 4κnχn(x)
sin(2κnx+ ϕn)

x
(11)

where χn is the characteristic function of [Rn,∞) and ϕn, Rn are parameters we’ll pick
below. Rn will be picked to have many properties, among them

Rn → ∞, Rn ≥ 1, g(Rn) ≥ 2n(8κn). (12)

δWn will be a function supported on [2−n, 2−n+1) chosen later but obeying

‖δWn‖∞ ≤ 1
2
. (13)

We’ll let

Vm(x) =
m∑

n=1

(δVn + δWn)(x)

and
V (x) = lim

m→∞Vm(x)

where the limit exists since Vm(x) is eventually constant for any x.
By (12), (13), we have

|Vm(x)| ≤ g(x)
/
(|x| + 1) m = 1, 2, . . . ,∞. (14)

For each m and each n = 1, . . . ,m, we have by Theorem 3 a unique function u
(m)
n (x)

obeying

−u′′ + Vmu = κ2
nu (15)

|||u− sin((κn + 1
2ϕn) · )(1 + | · |)−1||| < ∞. (16)
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We will choose δVn, δWm so that

|||u(m)
n − u(m−1)

n ||| ≤ 2−m n = 1, 2, . . . ,m− 1 (17)

u(m)
n obeys eqn. (1) n = 1, . . . ,m. (18)

Let un = ||| · |||-lim
m→∞

u
(m)
n . Writing the differential equation as an integral equation, we see

that un obeys −u′′+V (u) = κ2
nu. By (18), un obeys equation (1) and by ||| · ||| convergence,

un obey (16) and so lies in L2. Thus as claimed, − d2

dx2 + V has {κ2
n}∞n=1 as eigenvalues.

Thus we are reduced to showing that δVm, δWm can be chosen so that (17), (18) hold.
Let θ

(0)
i be defined by κi cot(θ

(0)
i ) = cot(θi) so θ

(0)
i are the generalized Prüfer angles

associated to the originally specified Prüfer angles. Look at the solutions u
(n−1)
i , i =

1, . . . ,m− 1. These match to the generalized Prüfer angles κi2−m+1 + θ
(0)
i at x = 2−m+1.

We’ll choose δVm so that the new solutions ũ(m)
i (i = 1, . . . ,m−1) with δVm added obey

|||ũ(m)
i −u

(m−1)
i ||| < 2−m−1. We can find εm so that if ‖δWm‖ < εm, then the new solutions

u
(m)
i obey |||u(m)

i − ũ
(m)
i ||| < 2−m−1. So using Theorem 5, pick δ so small that the resulting

V given is that theorem with a = 2−m, b = 2−m+1 has ‖ · ‖ bounded by min(1
2 , εn). In that

theorem, use κ1, . . . , κm and θ
(0)
i , i = 1, . . . ,m.

According to Theorem 3, we can take Rm so large that uniformly in ϕm (in [0, 2π/2κm]),
we have |||u(m−1)

i − ũ
(m)
i ||| < 2−m−1 for i = 1, . . . ,m−1 and so large that again uniformly in

ϕm, the generalized Prüfer angles θ(0)
i for ũ(m)

i at bm ≡ 2−m+1 obeys |θ(1)
i −θ

(0)
i −κibi| < δ

for i = 1, . . . ,m− 1.
Thus, if we can pick the angle ϕm in (11) so that ũ(m)

m obeys the boundary condition at
zero (and so θ

(1)
m − θ

(0)
m − κmbm = 0), then the construction is done.

By condition (b) of Theorem 3, for |x| large, as ϕm runs from 0 to 2π/2κm, (|x|u(x),
|x|u′(x)) runs through a complete half-circle. Thus, by taking Rm at least that large and
choosing ϕm appropriately, we can match the angle of the solution of u′′ + Vm−1u = κ2

mu
which obeys the boundary condition at x = 0.
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