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Abstract. By studying the integrated density of states, we prove the existence of Lyapunov exponents

and the Thouless formula for the Schrödinger operator −d2/dx2 + cos xν with 0 < ν < 1 on L2[0,∞).

This yields an explicit formula for these Lyapunov exponents. By applying rank one perturbation
theory, we also obtain some spectral consequences.

1. Introduction

Our goal in this paper is to prove Lyapunov behavior and compute a Lyapunov exponent for

the one-dimensional half-line Schrödinger operator

Hν = − d2

dx2
+ cos xν x ∈ [0,∞) (1.1)

with 0 < ν < 1.

It is clear that Hν is regular at 0 and is limit point at infinity. (For the definition of limit point,

see [22] or [14].) Therefore, for each θ ∈ [0, π), Hν has a unique self-adjoint realization on L2[0,∞)

with boundary condition at 0 given by

u(0) cos θ + u′(0) sin θ = 0

which will be denoted by Hθ
ν .

In the spectral theory of Schrödinger operators, most work has concentrated on the potential

V (x), either V (x) → 0 as |x| → ∞ or V (x) is periodic or almost periodic. Such models have

been investigated particularly well. Comparatively new are the models with oscillating but not

periodic nor almost periodic potentials. Due to recent discoveries of H. Behncke ([2]), W. Kirsch,

S.A. Molchanov and L.A. Pastur ([12]) and G. Stolz ([19], [20]), it is clear that some such models

may yield very interesting spectrum. As one of his particular examples, Stolz has studied the

spectral properties for (1.1) in [20]. Let σ(H), σac(H), σsing(H), σsc(H) and σpp(H) denote the

spectrum, absolutely continuous spectrum, singular spectrum, singular continuous spectrum and
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2 LYAPUNOV EXPONENTS FOR SCHRÖDINGER OPERATORS

pure point spectrum resp. for H . Then from Stolz’s paper, we have known that σ(Hν) = [−1,∞),

σac(Hν) = [1,∞), and σsing(Hν) = [−1, 1]. In fact, from an unpublished result of Kirsch and Stolz

(see [12]), we have also know that Hθ
ν has pure point spectrum in [−1, 1] for almost all boundary

conditions θ.

We already see that this model has some subtle and fascinating spectral properties, especially

for E ∈ (−1, 1). We’ll continue working on this model. In particular, we will prove Lyapunov

behavior and compute a Lyapunov exponent formula.

We know that the Lyapunov exponent is an important tool in the spectral theory for one-

dimensional Schrödinger operators with almost periodic or random potentials. In [17, 16], the

rank one perturbation theory shows that Lyapunov behavior can also be used to study Schrödinger

operators with deterministic potentials. For almost periodic or random potentials, we have the

subadditive ergodic theorem to guarantee the existence of the Lyapunov exponent, but for deter-

ministic potentials, it’s often difficult to prove Lyapunov behavior. In this paper, we first study

the integrated density of states in detail, then we directly study the existence of the Lyapunov

exponent and prove the Thouless formula for a.e. E (with Lebesgue measure).

Now, our formula for γ(E), E ∈ (−1, 1), which we prove off an explicitly given set of measure

0, is strictly positive. It is known (see [7]) that since (−1, 1) ⊂ σ(Hν), the complement of {E |
γ(E) exists and is > 0 } is a dense Gδ in [−1, 1]. By our construction, this dense Gδ has measure

zero; indeed, it has Hausdorff dimension zero.

We are unaware of any other explicit (non-random) Schrödinger operators with a computable

positive Lyapunov exponent. The explicit formula (3.22) is quasi-classical.

2. The integrated density of states

To prove the Thouless formula, we need to study the integrated density of states, k(E), and the

existence of the Lyapunov exponent. Also, we need information on how rapidly k(�)(E) converges

to k(E) to establish the existence of the Lyapunov exponent. So, we first study the main technical

object, the integrated density of states for equation (1.1). We will prove a formula for the integrated

density states, and more importantly, we will estimate how fast k(�)(E) converges to k(E).

The basic idea to compute the integrated density of states uses the standard Dirichlet-Neumann

bracketing technique. Since the potentials in our problem are slowly oscillating, Dirichlet-Neumann

bracketing works perfectly.

First, let us introduce some notation and definitions. In the following, when we write Hν , we

always mean the Schrödinger operator given by (1.1). Define

L = Sν(�) = (2π�)
1
ν , Ω� = [Sν(�− 1), Sν(�)], for � = 1, 2, · · · .
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Ω� is the lth potential well for the potential V (x) = cosxν (0 < ν < 1). Let HD(Ω), (resp. HN (Ω))

denote the self-adjoint operator H0 + V (x) on L2(Ω) with Dirichlet (resp. Neumann) boundary

conditions, where H0 = −∆. When Ω = (0, L), we use HD(L), (resp. HN (L)) to denote HD(Ω),

(resp. HN (Ω)). In this case, we use HDN (L), (resp. HND(L)) to denote the self-adjoint operator

H0 + V (x) on L2(0, L) with Dirichlet (resp. Neumann) boundary condition at 0 and Neumann

(resp. Dirichlet) boundary condition at L.

Definition. For any self-adjoint operator A, define

N (E,A) = dimP(−∞,E)(A) =
∑

Ek<E

1

where PΩ(A) is the spectral projection for the operator A, and {Ek} are the eigenvalues of A with

E1 ≤ E2 ≤ E3 ≤ · · · .

Now, let Hbc(Sν(�)) be any self-adjoint realization of Hν on L2(0, S(�)) with some given bound-

ary conditions at 0 and Sν(�). Let Nbc(E, �) = N (E,Hbc(Sν(�))).

Definition. Let Nbc(E, �) be as above, then we define

k(�)(E) =
1

Sν(�)
Nbc(E, �) and k(E) = lim

�→∞
k(�)(E).

k(E) is called the integrated density of states for (1.1).

We will show that in the above definition, the limit k(E) exists and is independent of the choice

of boundary conditions.

By standard Dirichlet-Neumann bracketing (see [15]),

�∑
j=1

N (E,HD(Ωj)) ≤ N (E,HD(L)) ≤ N (E,HN(L)) ≤
�∑

j=1

N (E,HN(Ωj)). (2.1)

By explicit construction and counting in boxes, we have

Lemma 2.1. If we let ND(E; a, b) (resp. NN(E; a, b) ) denote the dimension of the spectral pro-

jection P(−∞,E] for −∆D (resp. −∆N) on L2(a, b). Then for E < 0, we have

ND(E; a, b) = NN(E; a, b) = 0 (2.2)

and for E ≥ 0, we have ∣∣∣∣ND(E; a, b)−
√
E

π
(b− a)

∣∣∣∣ ≤ 1 (2.3)

∣∣∣∣NN(E; a, b)−
√
E

π
(b− a)

∣∣∣∣ ≤ 1. (2.4)
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First, let us estimate N (E,HD(Ωj)) and N (E,HN(Ωj)). Let ak ∈ Ωj and bk = ak+1 such that

∪k[ak, bk] = Ωj and bk − ak = jα, where α > 0 (depending on ν) will be determined later. Let

I
(j)
k = (ak, bk) and

V D
k = sup {V (x) |x ∈ [ak, bk]}, V N

k = inf {V (x) |x ∈ [ak, bk]}.

Define BD(I(j)
k ) = −∆D(I

(j)
k ) + V D

k and BN(I(j)
k ) = −∆N(I(j)

k ) + V N
k , then

0 ≤ HD(I(j)
k ) ≡ −∆D(I

(j)
k ) + V (x) ≤ BD(I(j)

k )

and

0 ≤ BN(I(j)
k ) ≤ −∆N(I(j)

k ) + V (x) ≡ HN (I(j)
k ).

Obviously,

N (E,BD(I
(j)
k )) ≤ N (E,HD(I

(j)
k )), N(E,HN(I(j)

k )) ≤ N (E,BN(I
(j)
k ))

and by Dirichlet-Neumann bracketing,

N (E,HD(Ωj)) ≥ N (E,HD(∪I(j)
k )) =

∑
k

N (E,HD(I
(j)
k )) ≥

∑
k

N (E,BD(I
(j)
k )) (2.5)

and

N (E,HN(Ωj)) ≤ N (E,HN(∪I(j)
k )) =

∑
k

N (E,HN(I(j)
k )) ≤

∑
k

N (E,BN(I(j)
k )). (2.6)

So, we only need to estimate N (E,BN(I
(j)
k )) and N (E,BD(I

(j)
k )). But by (2.2) and (2.4),

N (E,BN(I
(j)
k )) = NN(E − V N

k ; ak, bk)

=

{ √
E−V N

k

π
(bk − ak) + C0(k), if E ≥ V N

k ,

0, if E < V N
k

where |C0(k)| ≤ 1.

Thus, if we use the notation that [f(x)]+ = max{0, f(x)}, then we have

∣∣∣∣N (E,BN(I
(j)
k ))− [E − V N

k ]
1
2
+

π
(bk − ak)

∣∣∣∣ ≤ 1. (2.7)

But

1
π
[E − V N

k ]
1
2
+(bk − ak)− 1

π

∫ bk

ak

[E − V (x)]
1
2
+ dx

=
1
π

∫ bk

ak

{[E − V N
k ]

1
2
+ − [E − V (x)]

1
2
+} dx def= J. (2.8)
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Since

{
[E − V N

k ]
1
2
+−[E − V (x)]

1
2
+

}2

≤ ∣∣[E − V N
k ]

1
2
+ − [E − V (x)]

1
2
+

∣∣{[E − V N
k ]

1
2
+ + [E − V (x)]

1
2
+

}
≤ ν

a1−ν
k

(bk − ak) for x ∈ I
(j)
k .

By Schwartz inequality, we have,

|J| ≤ 1
π
(bk − ak)

1
2

[∫ bk

ak

{[E − V (x)]
1
2
+ − [E − V N

k ]
1
2
+}2 dx

] 1
2

≤
√
ν

π
a
− 1

2 (1−ν)

k (bk − ak)
3
2

≤ j
3
2α− 1

2
1−ν

ν . (2.9)

Therefore, by (2.7)–(2.9), we have

∣∣∣∣N (E,BN(I
(j)
k ))− 1

π

∫ bk

ak

[E − V (x)]
1
2
+ dx

∣∣∣∣ ≤ j
3
2α− 1

2
1−ν

ν + 1.

Thus, by summing over k and using (2.6), we have

N (E,HN(Ωj)) ≤ 1
π

∫ Sν(�)

Sν (�−1)

[E − V (x)]
1
2
+ dx+C1j

1
2 (α+ 1−ν

ν ) + C2j
1−ν

ν −α (2.10)

where C1 and C2 are independent of j.

Similarly, if we use (2.3) and (2.5) instead of (2.4) and (2.6), then we have

N (E,HD(Ωj)) ≥ 1
π

∫ Sν(�)

Sν (�−1)

[E − V (x)]
1
2
+ dx−C1j

1
2 (α+ 1−ν

ν ) − C2j
1−ν

ν −α. (2.11)

Now, by summing over j in (2.10), (2.11) and using (2.1), we have

1
π

∫ Sν(�)

0

[E − V (x)]
1
2
+ dx− C1j

1
2 (α+ 1−ν

ν )+1 − C2j
1−ν

ν −α+1 ≤ N (E,HD(L))

≤ N (E,HN(L)) ≤ 1
π

∫ Sν (�)

0

[E − V (x)]
1
2
+ dx+C1j

1
2 (α+ 1−ν

ν )+1 +C2j
1−ν

ν −α+1.

So, if we take α = 1
3

1−ν
ν

, then we have

1
π

∫ S(�)

0

[E − V (x)]
1
2
+ dx−C�

2
3

1−ν
ν +1 ≤ N (E,HD(L))

≤ N (E,HN(L)) ≤ 1
π

∫ S(�)

0

[E − V (x)]
1
2
+ dx+C�

2
3

1−ν
ν +1 (2.12)
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where C = C1 + C2.

Also, we have the following estimation

1
Sν(�)

∫ Sν(�)

0

[E − V (x)]
1
2
+ dx =

1
ν(2π�)

1
ν

∫ 2π�

0

y
1−ν

ν [E − cos y]
1
2
+ dy (xν = y)

=
1

ν(2π�)2

�∑
k=1

∫ 0

−2π

(z + 2kπ)
1−ν

ν [E − cos z]
1
2
+ dz (y = z + 2kπ)

=
1
2π

∫ π

−π

[E − cos x]
1
2
+ dx+ O(�−1).

Thus, if we denote

k
(�)
N (E) ≡ 1

S(�)
N (E,HN(L)),

then by the above estimations and (2.12), we have∣∣∣∣k(�)
N (E)− 1

2π2

∫ π

−π

[E − cos x]
1
2
+ dx

∣∣∣∣ = O(�−
1
3

1−ν
ν ) + O(�−1). (2.13)

Since variations of boundary condition are rank one perturbations (see [16]),

|N (E,HN(L))−N (E,Hbc(L))| ≤ 2 (2.14)

where Hbc(L) is defined by any other self-adjoint boundary condition.

Thus, by (2.13) and (2.14), we have proved the following

Theorem 2.1. The integrated density of states for the Schrödinger operator (2.1) exists, which

is independent of the boundary conditions, and is given by

k(E) =
1

2π2

∫ π

−π

[E − cosx]
1
2
+ dx.

Moreover, we have the following estimation

|k(�)(E)− k(E)| = O(�−κ(ν)) (2.15)

where

κ(ν) = min
{
1
3
(1− ν)

ν
, 1

}
. (2.16)

3. The Thouless Formula and Lyapunov Exponent

Now, we begin to study the Lyapunov exponent by first proving the Thouless formula which

relates the Lyapunov exponent to the integrated density of states. In [1], the Thouless formula is

proved for almost periodic potentials and random potentials. To prove the Thouless formula in our
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case, we can closely follow the proof given in [1] for Schrödinger operators. However, we will prove

the existence of the Lyapunov exponent by using the information on how fast k�(E) converges to

k(E) which is given in Theorem 2.1.

First, we define the transfer matrix for the Schrödinger operator (1.1) as follows. Let u(x, a, E),

v(x, a, E) (x ≥ 0, a ≥ 0) solve the equation −φ′′ + (V (x)−E)φ = 0 with the boundary conditions

given by u(a) = 0, u′(a) = 1; v(a) = 1, v′(a) = 0. Then the transfer matrix is defined by

Ta,x(E) =
(
v(x, a, E) u(x, a, E)
∂v(x,a,E)

∂x
∂u(x,a,E)

∂x

)
. (3.1)

In particular, when a = 0, we use Tx(E) to denote T0,x(E).

Definition. For a given E, if γ(E) = limx→∞ x−1 ln ‖Tx(E)‖ exists, then we say that for the

energy E, H has Lyapunov behavior, and γ(E) is called the Lyapunov exponent.

To give the Thouless formula, we need to define the resonance set first. In Section 2, we

defined the operators HD(L), HN (L), HDN (L) and HND(L). Now, let {Ek(�, D)}, {Ek(�, N)},
{Ek(�, DN)}, and {Ek(�, ND)} be the corresponding eigenvalues.

Definition. For each given ν ∈ (0, 1), let εν be a fixed small number such that εν < κ(ν), where

κ(ν) is defined by (2.16). Then the resonance set, Rν, for the operator Hν is defined by

Rν = RD ∪ RN ∪ RDN ∪ RND (3.2)

where

RD =
∞⋃
d=1

∞⋂
m=1

∞⋃
n=m

⋃
k

{
E ∈ [−d, d]

∣∣ |E − Ek(n,D)| < exp(−nκ(ν)−εν )
}
. (3.3)

RN , RDN and RND are defined by replacing {Ek(�, D)} in (3.3) by {Ek(�, N)},{Ek(�, DN)} and

{Ek(�, ND)} resp.

Remark. We conjecture that instead of (3.2) and (3.3), the resonance set in [−1, 1] can be defined

by

Rν =
∞⋂

m=1

∞⋃
n=m

⋃
k

{
E ∈ [−1, 1]

∣∣ |E − E
(n)
k | < exp(−nmin{ 1−ν

2ν , 1
2})

}

where {E(n)
k } are the eigenvalues ofHν = H0+V (x) on the nth potential well, [(2nπ−2π)

1
ν , (2nπ)

1
ν ],

with Dirichlet boundary conditions. We believe that this is the reasonable definition of the reso-

nance set. However, in our proof of the Thouless formula, we need to use the resonance set defined

by (3.2) and (3.3).

From the definition, it is easy to show that
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Theorem 3.1. Let Rν be the resonance set for Hν which is defined by (3.2) and (3.3) and let

dimH denote the Hausdorff dimension. Then

|Rν| = dimH Rν = 0.

Now, we are ready to prove one of our main results.

Theorem 3.2 (Thouless formula). Let Hν be the Schrödinger operator given by (1.1). Let

γ0(E) = [max(0,−E)]
1
2 and k0(E) = π−1[max(0, E)]

1
2 . Then for any E /∈ Rν, where Rν is defined

by (3.2) and (3.3), we have

γ(E) = γ0(E) +
∫ ∞

−∞
ln |E −E ′| d(k− k0)(E ′) (3.4)

where γ(E) is the Lyapunov exponent for Hν, and k(E) is the integrated density of states for Hν.

We prove this theorem by proving the following series of lemmas. The first three lemmas are

already given in [1], so we will not give a proof for these results here.

Lemma 3.3 [1]. For a.e. E,

lim
�→∞

�−1 ln |u0(�, E)|= γ0(E) (3.5)

the limit being through the integers.

Lemma 3.4 [1]. Let Ek(�) be the eigenvalue of Hν on L2[0, Sν(�)] with vanishing boundary

conditions, and let E
(0)
k (�) = (πk/Sν(�))2 be the corresponding eigenvalue of H0. Then

|Ek(�)−E
(0)
k | ≤ ‖V ‖∞ = 1. (3.6)

Lemma 3.5 [1]. For fixed �, we have that

u(Sν(�), E)
u0(Sν(�), E)

=
∞∏
k=1

[
E − Ek(�)

E − E
(0)
k (�)

]
. (3.7)

¿From [1], we also know that

lim
M→∞

[∫
k(E′)≤M

ln |E −E ′| dk(E ′)−
∫
k0(E′)≤M

ln |E − E ′| dk0(E ′)
]

=
∫ ∞

−∞
ln |E − E ′| d(k− k0)(E ′). (3.8)
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Lemma 3.6. For E /∈ RD, we have

lim
�→∞

1
Sν(�)

ln
∞∏
k=1

∣∣∣∣ E − Ek(�)

E −E
(0)
k (�)

∣∣∣∣ =
∫ ∞

−∞
ln |E −E ′|d(k− k0)(E ′). (3.9)

Proof. For a given E /∈ RD, without loss of generality, we can also suppose that E /∈ R
(0)
D , where

R
(0)
D is the corresponding resonance set for H0 with Dirichlet boundary condition. From now on,

we always suppose that E is fixed and E /∈ RD ∪R
(0)
D .

For each fixed E, we can choose M(�) such that M(�) → ∞ as � → ∞ and ai(�) > E + 1

(i = 0, 1), where

a0(�) = sup{E ′ | k(�)
0 (E ′) ≤ M(�)}, a1(�) = sup{E ′ | k(�)(E ′) ≤ M(�)}.

For convenience, we define

f�(E) =
1

Sν(�)
ln

∞∏
k=1

∣∣∣∣ E −Ek(�)

E − E
(0)
k (�)

∣∣∣∣, f(E) =
∫ ∞

−∞
ln |E −E ′| d(k− k0)(E ′).

Then we have

|f�(E)− f(E)| =
∣∣∣∣ 1
Sν(�)

ln
∏

k≤M(�)Sν (�)

∣∣[E −Ek(�)]/[E −E
(0)
k (�)]

∣∣
+

1
Sν(�)

ln
∏

k>M(�)Sν (�)

∣∣[E −Ek(�)]/[E − E
(0)
k (�)]

∣∣− f(E)
∣∣∣∣

≤
∣∣∣∣
∫ a1(�)

−∞
ln |E − E ′| d(k(�) − k)(E ′)−

∫ a0(�)

−∞
ln |E − E ′| d(k(�)

0 − k0)(E ′)
∣∣∣∣

+
∣∣∣∣
∫ ∞

a1(�)

ln |E −E ′| dk(E ′)−
∫ ∞

a0(�)

ln |E −E ′| dk0(E ′)
∣∣∣∣

+
∣∣∣∣ 1
Sν(�)

ln
∏

k>M(�)Sν (�)

∣∣[E − Ek(�)]/[E − E
(0)
k (�)]

∣∣∣∣∣∣. (3.10)

By (3.8), we have

lim
�→∞

∣∣∣∣
∫ ∞

a1(�)

ln |E −E ′| dk(E ′)−
∫ ∞

a0(�)

ln |E −E ′| dk0(E ′)
∣∣∣∣ = 0. (3.11)

Since E
(0)
k (�) =

(
πk/Sν(�)

)2, by using lemma 3.4, we have

ln
∏

k>M(�)Sν (�)

∣∣∣∣ E − Ek(�)

E − E
(0)
k (�)

∣∣∣∣ = ∑
k>M(�)Sν (�)

ln
∣∣∣∣1 + Ek(�)− E

(0)
k

E
(0)
k (�)−E

∣∣∣∣
≤

∑
k>M(�)Sν (�)

S2
ν(�)/[π

2k2 − S2
ν(�)E]

≤ Sν(�)
∫ ∞

M(�)

dx

π2x2 − E
.
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Therefore, ∣∣∣∣ 1
Sν(�)

ln
∏

k>M(�)Sν (�)

∣∣[E − Ek(�)]/[E − E
(0)
k (�)]

∣∣∣∣∣∣ = O

(
1

M(�)

)
. (3.12)

So, it remains to estimate

J� ≡
∣∣∣∣
∫ a1(�)

−∞
ln |E −E ′| d(k(�) − k)(E ′)−

∫ a0(�)

−∞
ln |E −E ′| d(k(�)

0 − k0)(E ′)
∣∣∣∣.

We define

I�(E) =
[
E − δ�, E + δ�

]
, δ� =

1
3
exp(−�κ(ν)−εν ) (3.13)

where κ(ν) is defined by (2.16) and εν is given in definition of the resonance set.

Since E /∈ RD ∪ R
(0)
D , there are no eigenvalues of HD(L) and H0D(L) on the interval I�(E)

which is defined by (3.13). Thus, k(�)(E), k(�)
0 (E) are constant on the interval I�(E). Also, we

notice that ∣∣∣∣
∫
I�(E)

ln |E − E ′| dk(E ′)
∣∣∣∣ ≤ CE[|I�(E)]

1
2 (3.14)

where CE is a constant for a given E. So, we have

J� =
∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

ln |E − E ′| d(k(�) − k)(E ′) +
∫
I�(E)

ln |E −E ′| d(k(�) − k)(E ′)

−
∫

(−∞,a0(�)]\I�(E)

ln |E −E ′| d(k(�)
0 − k0)(E ′)−

∫
I�(E)

ln |E − E ′| d(k(�)
0 − k0)(E ′)

∣∣∣∣
≤

∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

ln |E − E ′| d(k(�) − k)(E ′)
∣∣∣∣ +

∣∣∣∣
∫
I�(E)

ln |E − E ′| dk(E ′)
∣∣∣∣

+
∣∣∣∣
∫

(−∞,a0(�)]\I�(E)

ln |E −E ′| d(k(�)
0 − k0)(E ′)

∣∣∣∣ +
∣∣∣∣
∫
I�(E)

ln |E −E ′| dk0(E ′)
∣∣∣∣.

(3.15)

By (3.14), we know that

lim
�→∞

∫
I�(E)

ln |E − E ′| dk(E ′) = 0. (3.16)

Similarly,

lim
�→∞

∫
I�(E)

ln |E − E ′| dk0(E ′) = 0. (3.17)

Using integration by parts, we have

∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

ln |E − E ′| d(k(�) − k)(E ′)
∣∣∣∣

≤ (k(�) − k)(a1(�)) ln |E − a1(�)|+ {(k(�) − k)(E + δ�)− (k(�) − k)(E − δ�)} ln δ�

+
∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

(k(�) − k)(E ′)
E ′ − E

dE ′
∣∣∣∣.
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By theorem 2.1 and (3.13), we know that

lim
�→∞

(k(�) − k)(a1(�)) ln |E − a1(�)| = 0

lim
�→∞

{(k(�) − k)(E + δ�)− (k(�) − k)(E − δ�)} ln δ� = 0

and

∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

(k(�) − k)(E ′)
E ′ −E

dE ′
∣∣∣∣ ≤ C1�

−κ(ν)

∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

1
E ′ −E

dE ′
∣∣∣∣

≤ �−κ(ν){C2 ln δ� +C3 ln |a1(�)− E|}
→ 0 as � → ∞.

Thus,

lim
�→∞

∣∣∣∣
∫

(−∞,a1(�)]\I�(E)

ln |E − E ′| d(k(�) − k)(E ′)
∣∣∣∣ = 0. (3.18)

Similarly,

lim
�→∞

∣∣∣∣
∫

(−∞,a0(�)]\I�(E)

ln |E − E ′| d(k(�)
0 − k0)(E ′)

∣∣∣∣. (3.19)

So, by (3.15)–(3.19),

lim
�→∞

J� = 0. (3.20)

Now, by (3.10)–(3.12) and (3.20), we have proved that lim�→∞ |f�(E) − f(E)| = 0. Therefore,

Lemma 3.6 is proved.

Now, by combining the results of Lemma 3.5 and Lemma 3.6, we have proved the following

result.

For E /∈ RD, then we have that

lim
�→∞

1
Sν(�)

ln
∣∣∣∣ u(Sν(�), E)
u0(Sν(�), E)

∣∣∣∣ =
∫ ∞

−∞
ln |E −E ′|d(k− k0)(E ′).

By using Lemma 3.3, we obtain the following control on the limit

lim
�→∞

1
Sν(�)

ln |u(Sν(�), E)|= γ0(E) +
∫ ∞

−∞
ln |E − E ′| d(k− k0)(E ′).

By using different boundary conditions, we can obtain similar control of 1
Sν (�) ln

∣∣v(Sν(�), E)
∣∣,

1
Sν (�)

ln
∣∣∂u(Sν (�),E)

∂x

∣∣ and 1
Sν(�)

ln
∣∣∂v(Sν (�),E)

∂x

∣∣. Therefore, we obtain control of 1
S(�)

ln ‖TS(�)(E)‖,
namely
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Lemma 3.7. For E /∈ Rν , where Rν is the resonance set defined by (3.2) and (3.3), then

lim
�→∞

1
S(�)

ln‖TS(�)(E)‖ = γ0(E) +
∫ ∞

−∞
ln |E − E ′| d(k− k0)(E ′) (3.21)

where ‖ · ‖ denotes the matrix norm, and Tx(E) is defined by (3.1).

Now, Theorem 3.2 follows from Lemma 3.7 and definition of the Lyapunov exponent.

Next, we want to compute an explicit formula for the Lyapunov exponent by using the Thouless

formula and the formula for integrated density of states. First, (3.4) asserts that πk + iγ is the

boundary value of an analytic function in the upper half plane. Let F (z) = πk(z) + iγ(z) for

Im z ≥ 0, and define F̃ (z) = 1
2π

∫ π

−π

√
z − cos x dx with branch cut from −1 to ∞ along the real

axis. Then F̃ (z) is analytic for Im z > 0 and by Theorem 2.1, Re F̃ (z) → πk(E) as z → E

(Im z > 0, E ∈ R ). Therefore,

γ(E) = lim
Im z>0,z→E

Im F̃ (z) +C

where C is a real constant. That is,

γ(E) =
1
2π

∫ π

−π

[cos x− E]
1
2
+ dx+C.

Notice that for E > 1, γ(E) = 0 and the integral in the right-hand side is also zero, so C = 0.

Therefore, we have

Theorem 3.3. For all E /∈ Rν , where Rν is defined by (3.2) and (3.3), the operator Hν in (1.1)

has Lyapunov behavior with the Lyapunov exponent given by

γ(E) =
1
2π

∫ π

−π

[cos x− E]
1
2
+ dx (3.22)

where [f(x)]+ = max{0, f(x)}.
Remarks. 1. In fact, there is no mystery for this beautiful Lyapunov exponent formula if we use

the WKB (see [8],[9]) heuristic argument. However, it’s not easy to justify the WKB solutions.

2. Note that while Rν is ν-dependent, the right-hand side of (3.22) is ν-independent!

4. Some Spectral Consequences

We have already proved that for a.e. E ∈ [−1, 1], Hν has positive Lyapunov exponent. By

simply applying the Kotani argument (see [13]) or rank one spectral theory (see [7, 16, 17]), we

can get dense pure point spectrum on (−1, 1) for almost all boundary conditions. Also, we can

show that the eigenfunctions are exponentially decaying. The result on pure point spectrum is an

unpublished result by Kirsch and Stolz which is stated in [12] by Kirsch, Molchanov and Pastur,

and the result on exponentially decaying is proved by Stolz in [21]. Now, we can give an explicit

decaying rate of eigenfunctions.
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Theorem 4.1. Let Hθ
ν be the operator Hν given by (1.1) with the θ boundary condition at 0,

u(0) cos θ + u′(0) sinθ = 0. Then for a.e. θ ∈ [0, π) (with respect to Lebesgue measure), Hθ
ν has

dense pure point spectrum on (−1, 1), and the eigenfunctions of Hθ
ν to all eigenvalues E ∈ (−1, 1)

decay like e−γ(E)x at ∞ for almost every θ, where γ(E) is given by (3.22).

Next, as we have shown that the resonance set has Hausdorff dimension zero, by applying rank

one perturbation theory, we get a new result on singular continuous spectral.

Theorem 4.2. Let Hθ
ν be the operator Hν given by (1.1) with the boundary condition at 0 given

by u(0) cos θ+ u′(0) sin θ = 0 for θ ∈ [0, π). Then for θ �= π
2
, the singular continuous part, (dµθ)sc,

of the spectral measure dµθ for H
θ
ν is supported on a Hausdorff dimension zero set.
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