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Abstract. We consider examples Aλ = A + λ(ϕ, · )ϕ of rank one perturbations with ϕ a

cyclic vector for A. We prove that for any bounded measurable set B ⊂ I, an interval, there
exists A,ϕ so that {E ∈ I | some Aλ has E as an eigenvalue} agrees with B up to sets of

Lebesgue measure zero. We also show that there exist examples where Aλ has a.c. spectrum

[0,1] for all λ, and for sets of λ’s of positive Lebesgue measure, Aλ also has point spectrum

in [0, 1], and for a set of λ’s of positive Lebesgue measure, Aλ also has singular continuous

spectrum in [0, 1].

§1. Introduction

In this note we will consider families of operators

Aλ = A+ λ(ϕ, · )ϕ
where A is a self-adjoint operator on a separable Hilbert space H and ϕ ∈ H is a cyclic
vector for A. It will be convenient to consider also the value λ = ∞, which is the operator
QAQ on QH where Q is the projection onto the operators orthogonal to ϕ. Let dµλ be
the spectral measure for Aλ with vector ϕ and dρλ = (1 + λ2)dµλ. It it known [3] that
dρλ has a weak limit as λ → ∞, dρ∞, which is a spectral measure for A∞.

Define for x ∈ R ,

Gλ(x) =
∫

dρλ(y)
(x− y)2

where G may be infinite.
Also define for z ∈ C with Im z > 0,

Fλ(z) =
∫

dρλ(E)
E − z

= (1 + λ)2(ϕ, (Aλ − z)−1ϕ).

(This differs from the standard F [6] by a factor of (1 + λ2).) It is known [2, 6] that
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Theorem 0. The sets,

P = {E | Gλ(E) < ∞} ∪ {E | E is an eigenvalue of Aλ}
L = {E | lim

ε↓0
Fλ(E + iε) ≡ Fλ(E + i0) exists and ImFλ(E + i0) > 0}

S = R\P ∪ L

are λ independent for λ ∈ R , and for every λ ∈ R ∪ {∞}:

ρpp
λ ( · ) = ρλ( · ∩ P ) (1a)

ρac
λ ( · ) = ρλ( · ∩ L) (1b)

ρsc
λ ( · ) = ρλ( · ∩ S) (1c)

where ρpp
λ , ρac

λ , ρsc
λ are the pure point, absolutely continuous, and singular continuous parts

of the measure ρλ. Moreover,

P =
⋃

λ∈R∪{∞}
{E | E is an eigenvalue of Aλ}

and for any set C , ∫
ρλ(C)
(1 + λ2)

dλ = |C | (2)

the Lebesgue measure of C . In particular, by (1a)

∫
ρpp

λ (C)
(1 + λ2)

dλ = |C ∩ P | (3)

and similarly for L and S.

One can ask what kind of sets can occur as a P . We have a partial answer given in
Section 2:

Theorem 1. For any bounded measurable set B and any interval I ⊃ B, there exists a
measure dµ on I so that (where a.e. means with respect to Lebesgue measure)

G0(x) =
{

< ∞ a.e. x ∈ B

= ∞ a.e. x ∈ I\B.

The measure dµ may be chosen purely a.c., or purely s.c., or purely p.p.

Remarks. 1. By Theorem 0, this says something about allowed sets of eigenvalues.
2. We will also show that if B is open, we can drop the a.e. We believe that this can

be done for an arbitrary Fδ, but have not proven it.
Using a technical result in Section 3, we will prove our second main result in Section 4:



POINT SPECTRUM AND MIXED SPECTRAL TYPES FOR RANK ONE PERTURBATIONS 3

Theorem 2. There exists an example A so that

(i) σac(Aλ) = [0, 1] for all λ.
(ii) {λ | σpp(Aλ) ∩ [0, 1] �= ∅} has positive Lebesgue measure; indeed, for any interval

I ⊂ [0, 1], {λ | σpp(Aλ) ∩ I �= ∅} has positive measure.
(iii) {λ | σsc(Aλ) �= ∅} has positive Lebesgue measure; indeed, for any interval I ⊂ [0, 1],

{λ | σsc(Aλ) ∩ I �= ∅} has positive measure.

There also exist examples where (i) is replaced by σac(Aλ) = ∅.
One can translate these results into ones for variations on boundary conditions for

Schrödinger operators −u′′ + V u on [0,∞) in two steps:

(a) Extend the theory to ϕ ∈ H−1(A) and rewrite the Sturm-Liouville/Schrödinger
operator in this language [6].

(b) Appeal to the Gel’fand-Levitan construction [5], which implies that for any measure
µ on a bounded interval I, we can find a continuous V on [0,∞) with −u′′ + V u
limit point at infinity and boundary condition θ at x = 0 so that the spectral
measure dρθ restricted to I is dµ. Typical of the result is:

Theorem 1′. For any bounded measurable set B and interval I ⊃ B, there is a continuous
function V on [0,∞) so that up to sets of Lebesgue measure zero,

{E | −u′′ + V u = Eu has a solution L2 at infinity}

is precisely B.

Because the Gel’fand-Levitan construction gives no information on V at infinity (for
example, it could be unbounded below), we regard these translations as being of limited
interest.

§2. The Set Where G Is Finite

Recall that a perfect set is a closed set with no isolated points. We will also need the
following notion.

Definition. A closed subset C ⊂ R will be called minimal if and only if for all x ∈ C and
ε > 0, |(x− ε, x+ ε) ∩ C | > 0.

The name comes from the fact that among all closed sets D with |D�C |=0, C is the
minimal such set. We will see below that any closed set D has a minimal closed set C
contained in it so that |D\C | = 0.

We also define Gµ by

Gµ(x) =
∫

dµ(y)
(x− y)2

.

With these notions out of the way, we can state the two main theorems of this section:
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Theorem 2.1. (a) Let C be any closed set in R . Then there exists a pure point measure
µ supported on C so that {x | Gµ(x) = ∞} = C .

(b) Let C be any perfect set. Then there exists a singular continuous measure µ
supported on C so that {x | Gµ(x) = ∞} = C .

(c) Let C any minimal closed set. Then there exists an absolutely continuous measure
µ supported on C so that {x | Gµ(x) = ∞} = C .

Remarks. 1. The assumptions on the closed sets are optimal in that if x is an isolated
point of C , then Gµ(x) < ∞ for any singular continuous measure µ supported on C ; and
if x ∈ C is a point with |(x − ε, x+ ε) ∩ C | = 0 for some ε > 0, then Gµ(x) < ∞ for any
a.c. measure supported on C .

2. In general, {x | Gµ(x) = ∞} is only a Gδ, not a closed set. It is open if “closed” in
this theorem can be replaced by Gδ.

3. If B is any measurable set, we can apply the methods of proof below and get a µ
supported on B with {x | Gµ(x) = ∞} ⊃ B. If B is arbitrary, we can take µ pure point.
If B has no isolated points, we can take µ singular continuous, and if B has no essentially
isolated points (i.e., no points x with |(x− ε, x+ ε) ∩B| = 0 for some ε > 0), we can take
µ absolutely continuous.

If we are willing to throw out sets of measure zero, we can go beyond Theorem 2.1. We
write A ≡ B to mean |A�B| = 0. Then we will prove that:

Theorem 2.2 (≡ Theorem 1). For B an arbitrary measurable subset of an interval I,
we can find µ supported on I so that

{x ∈ I | Gµ(x) < ∞} ≡ B.

µ can be chosen to be purely absolutely continuous or purely singular continuous or pure
point. In the a.c. case, µ can be chosen so that the essential support of µ is I\B.

In understanding perfect and minimal closed sets, it is useful to have the following pair
of results, which we will also need in proving Theorem 2.2.

Proposition 2.3. Any closed set S in R can be written as S = C ∪D where C is perfect
and D is countable.

Proof. Let C = {x ∈ S | ∀ε > 0, (x − ε, x + ε) ∩ S is uncountable} and D = S\C . It is
easy to see that C is closed. If we show D is countable, then each (x − ε, x + ε) ∩ C is
uncountable, so not empty and C is perfect.

If x /∈ C , we can find a and b rational so x ∈ (a, b) and (a, b) ∩ S is countable. Since
there are only countably many (a, b) with a, b rational, we can find a countable family of
{On}n=1 with each On ∩ S countable, so D ⊂ ∪

n
(On ∩ S) is countable.

Proposition 2.4. Any closed set S in R can be written as S = C ∪D where C is minimal
closed and |D| = 0.

Proof. Let C = {x ∈ S | ∀ε > 0, |(x− ε, x+ ε) ∩ S| > 0} and D = S\C . Now just mimic
the proof of Proposition 2.3.

We need one more preliminary:
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Proposition 2.5. (a) For any non-empty closed set C , there exists a point measure
supported by C .

(b) For any non-empty perfect set C , there exists a singular continuous measure sup-
ported by C .

(c) For any non-empty minimal closed set C , there is an absolutely continuous measure
supported by C .

Proof. (a) is trivial and stated for parallelism. (c) is also trivial (take dµ = χCdx). That
leaves (b); so let C be perfect. If C contains an entire interval [a, b], place a scaled Cantor
measure on (a, b) and use that for dµ. So we need only consider a nowhere dense perfect
set. By intersecting it with a suitable bounded interval and scaling, we will suppose it is
a subset of [0, 1].

We claim such a C is homeomorphic to {0, 1}N , the infinite sequences of 0’s and 1’s. Use
that homeomorphism to transfer the two mutually singular measures dα1 =

∞⊗
n=1

[ 12 (δ0+δ1)]

and dα2 =
∞⊗

n=1
(1
3
δ0 + 2

3
δ1). dα1 may be purely absolutely continuous (as it is if C is a

symmetric positive measure Cantor set), but then dα2 is purely singular continuous. Either
way, either dα1 or dα2 has a non-zero singular continuous component.

To prove the claim (known, but the proof is so short that we give it) that a nowhere
closed perfect subset C of [0, 1) is homeomorphic to {0, 1}N , let a− = min(C), a+ =
max(C), and &1 = a+ − a−, the length of C . Since C is perfect, &1 > 0. Let J =
(a−+a+

2
− 	1

6
, a−+a+

2
+ 	1

6
), the middle third of (a−, a+). Since C is nowhere dense, we

can find x1 ∈ J\C . Let C0 = C ∩ (−∞, x1), C1 = C ∩ (x1,∞). Then C0, C1 are perfect
and diam(C1) ≤ 2

3 . Now repeat this process, and so find Cm1...m�(mi ∈ {0, 1}) inductively
so that diam(Cm1...m� ) ≤ (2

3
)	, Cm1...m� = Cm1...m�0 ∪ Cm1...m�1, each Cm1...m� is perfect.

Define a	 : C → {0, 1} by a	 = 0 on each Cm1...m�−10 and a	 = 1 on each Cm1...m�−11. Each
a	 is continuous since each Cm1...m� is closed. Map C → {0, 1}	 by x → (a1(x), a2(x), . . . ).

This map is onto since for any fixed m1, . . . ,
∞∩

	=1
Cm1...m� �= ∅ by compactness. This map is

one-one since diam(Cm1...m�) → 0 to & → ∞ uniformly in the choice of m	. A continuous
bijection is a homeomorphism.

Proof of Theorem 2.1. This is motivated by a construction in [7]. For n = 1, 2, . . . and
j = 0, . . . , 2n − 1, let C

(n)
j = ( j

2n ,
j+1
2n ) ∩ C which is C ∩ [ j

2n ,
j+1
2n ] with the endpoints

dropped if they would be isolated. Then if C is perfect (minimal), so is each non-empty
C

(n)
j . For such non-empty C

(n)
j , let µ

(n)
j be a measure of the requisite type (i.e., pure

point, singular continuous, or absolutely continuous) of unit measure and supported on
C

(n)
j . Such measures exist by Proposition 2.5. Let

µ =
∞∑

n=1

n−22−n
2n∑

j=1
j so that

C
(n)
j 	=∅

µ
(n)
j .

Then µ is a finite measure of the requisite type supported on C . If y /∈ C , then Gµ(y) ≤
dist(y,C)−2

∫
dµ < ∞ since C is closed. On the other hand, if y ∈ C and y ∈ ( j

2n ,
j+1
2n ),
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then C
(n)
j �= ∅ and

∫ dµ
(n)
j (x)

(x−y)2 ≥ (2−n)2, and if y ∈ { j
2n }2n

j=0 ∩ C , either C
(n)
j or C

(n)
j−1 is

non-empty. It follows that

∫
dµ(x)
(x− y)2

≥
∞∑

n=1

22nn−22−n = ∞,

so {y | Gµ(y) = ∞} = C .

Proof of Theorem 2.2. This uses an explicit version of an argument of Howland [4] as
in [1]. Since Lebesgue measure is inner regular, we can find C1, . . . Cn, . . . and K1, . . . ,
Kn, . . . closed with C1 ⊂ C2 ⊂ · · · ⊂ I\B andK1 ⊂ K2 ⊂ · · · ⊂ B and with |B\∪

n
Kn| = 0,

|(I\B)\∪
n
Cn| = 0.

By Proposition 2.3, we can suppose that Cn’s are minmal closed (and so, perfect)
without loss of generality. We can also suppose each Cn is non-empty (if |I\B| = 0, we
just take µ = 0).

Let µn be a unit measure of the requisite type supported on Cn with

Cn = {x | Gµn(x) = ∞}.

Let

µ =
∞∑

n=1

2−ndist(Kn, Cn)2µn.

Since Kn and Cn are compact and disjoint, dist(Kn, Cn) > 0 and thus, Gµ(x) ≥
2−ndist(Kn, Cn)2Gµn(x) = ∞ on Cn and so on ∪Cn and so a.e. on I\B.

On the other hand, since Kn ⊂ Kn+1, . . . , dist(Kn, Cm) ≥ dist(Km, Cm) if m ≥ n and
so if x ∈ Kn,

Gµ(x) =
n−1∑
	=1

2−	dist(K	, C	)2Gµ�(x) +
∞∑

	=n

2−n < ∞,

and so Gµ < ∞ on ∪Kn and thus a.e. on B.
In the a.c. case, we can take µn = 1

|Cn|χCndx, in which case it is evident that the
essential support of µ is ∪Cn = I\B as claimed.

§3. Essentially Dense Sets

Definition. A measurable set S ⊂ I, an interval, is called essentially dense if for every
subinterval J ⊂ I, we have |J ∩ S| > 0.

Theorem 3.1. There exist disjoint measurable subsets A,B,C ⊂ [0, 1] whose union is
[0, 1] so that each is essentially dense.

Remarks. 1. Our proof shows that one can assert the same for sets A1, . . . , An rather than
three sets or even construct a countable disjoint decomposition, each of which is essentially
dense.
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2. Our construction is related to a construction in [2].

Proof. Let nj = (2j + 1)2, the square of the jth odd number. Given x ∈ [0, 1], we define
aj(x) by requiring

x =
∞∑

j=1

aj(x)
n1 . . . nj

with aj(x) ∈ {0, 1, . . . , nj −1} and the requirement that if x’s expansion can end in all 0’s,
we do that (to settle the ambiguity between . . . a(nj−1)(nj+1−1) . . . and . . . (a+1)0 0 . . . ).
This is a standard positive measure Cantor set construction. Define mj = 1

2 (nj − 1). Let

A = {x | the number of j’s with aj(x) = mj is 1, 4, . . . or infinite}
B = {x | the number of j’s with aj(x) = mj is 2, 5, 8, . . . }
C = {x | the number of j’s with aj(x) = mj is 3, 6, 9, . . . }.

This is obviously a decomposition. We need only to show that each set is essentially
dense. It suffices to show that |B ∩ J | > 0 for any interval of the form J = {x | a1(x) =
α1, . . . , ak(x) = αk} since every interval contains such a J . By increasing k by 1 or 2 and
shrinking J by taking αk+1 = mk+1 (and perhaps αk+2 = mk+2), we can suppose that
#{j ∈ {1, . . . , k} | αj = mj} ≡ 2 mod 3. In that case, by looking at x’s with no further
a	(x) = m	, we have

|B ∩ J | ≥
∞∏

	=k+1

(
1− 1

n	

)
> 0

since
∑

1
n�

< ∞.

§4. Mixed Spectra

Proof of Theorem 2. Decompose [0, 1] = A ∪ B ∪ C into three disjoint essentially dense
sets. Pick a measure dµ1 which is absolutely continuous with essential support A so that
Gµ1(x) < ∞ a.e. on B ∪ C and a s.c. measure µ2 supported on B so that Gµ2(x) < ∞ on
A ∪ C and Gµ2 (x) = ∞ a.e. on B. Let dµ = dµ1 + dµ2.

By Theorem 0 (recall X ≡ Y means |X�Y | = 0),

P ≡ C ∪ (R\[0, 1])
L ≡ A

S ≡ B.

By equation (3) and its analogs for a.c. and s.c., we have the claimed assertions (i)–(iii).
For the examples with σac(Aλ) = ∅, just use dµ = dµ2.

Acknowledgment. R.d.R. would like to thank Professor Alejandro Bravo for very useful
discussions.
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