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Abstract. We consider operators− d2

dx2 +V in L2(R) with the sole hypothesis that V is limit

point at ±∞ and that − d2

dx2 + V in L2((0,∞)) has some absolutely continuous component

S+ in its spectrum. We prove that V on (−∞, 0) is completely determined by knowledge of

V on (0,∞) and by the reflection coefficient R+(λ) for scattering from right incidence and

energies λ ∈ S, where S ⊆ S+ has positive Lebesgue measure.

It is well known [15] that knowledge of the reflection coefficient at positive energies does
not determine the potential V of a Schrödinger operator − d2

dx2 + V (V (x) → 0 sufficiently
rapidly as |x| → ∞), but that one also needs bound state energies and associated norming
constants. This is most dramatically seen in one-soliton potentials where R+(λ) ≡ 0,
λ ≥ 0, even though there is a two-parameter family of such potentials parametrized by the
center and width of the soliton.

There has been a recent rash of papers [2, 3, 4, 6, 12, 18, 19] showing that if V is
known a.e. on a half-line and vanishes sufficiently fast as |x| → ∞ in the sense that at
least its first moment on R exists, then the norming constants and even the bound state
energies are not needed (some of these papers are limited to the case where V is assumed
to vanish on the right half-line). Our goal here is to note that this is a special case of
a very general and very elementary phenomenon: It is not required that V has simple
asymptotics as |x| → ∞. Rather, all that is significant is that V be known a.e. on (0,∞)
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and the Schrödinger operator H+ associated with − d2

dx2 + V in L2((0,∞)) and any self-
adjoint boundary condition at 0, has some absolutely continuous (a.c.) component in its
spectrum. Also, rather than require detailed manipulation of the machinery of inverse
problems and/or trace formulas, all that is required is a uniqueness result to go from
a Weyl m-function to a potential. In particular, our m-function technique allows one
to consider impurity (defect) scattering in (half) crystals, scattering off potentials with
different spatial asymptotics at left and right including asymptotically periodic potentials,
potential steps, and potentials diverging to +∞ as x→ −∞.

More subtle and deep is a comparison problem concerning knowledge of the potential
on a half-line where the spectrum is purely discrete rather than having an absolutely
continuous component. Here the paradigmal result is the remarkable theorem of Hochstadt
and Lieberman [13] that a knowledge of all the eigenvalues of − d2

dx2 + V in L2((0, 1); dx)
with (for example) Neumann boundary conditions u′(0) = u′(1) = 0 and knowledge of the
potential on (0, 1

2
), uniquely determine V a.e. on all of (0, 1). We will study these problems

in two forthcoming papers [8, 9]. Typical of our results is that a knowledge of V on (0, 3
4 )

and of strictly more than half the eigenvalues uniquely determines V a.e. on all of (0, 1).
Suppose that V ∈ L1

loc(R ) is real-valued such that the differential expression− d2

dx2+V (x)
is in the limit point case at ±∞. Then for any z with Im (z) > 0, there is a unique (up to
constant multiples) solution of

−u′′ + V u = zu (1)

which is L2 at +∞. Call it ψ̃+(z, x). Similarly, there is a solution ψ̃−(z, x) which is L2 at
−∞. The Weyl m-functions m± are defined by

m±(z) = ± ψ̃
′±(z, 0)

ψ̃±(z, 0)
.

It is a fundamental result of Marchenko [17] that m±(z) uniquely determines V a.e. on
(0,±∞). General principles (see, e.g., [14], Sect. III.1; [16], Sect. 2.4; [20]) imply that for
a.e. λ ∈ R , limε↓0m±(λ+ iε) := m±(λ+ i0) exists and is finite. For such λ ∈ R , we’ll define
ψ±(λ, x) by requiring that ψ± satisfies (1) (with z = λ) and the boundary conditions

ψ±(λ, 0) = 1, ψ′
±(λ, 0) = ±m±(λ + i0). (2)

Example. V = 0. Then m±(z) = i
√
z, choosing the square root branch with Im (

√
z) > 0

for z ∈ C\[0,∞) and ψ±(λ, x) = e±i
√

λ x (where
√
λ > 0) if λ ≥ 0 and ψ±(λ, x) = e∓

√−λ x

if λ ≤ 0.

It is also known [16, 20] that if H+ is associated with − d2

dx2 + V in L2((0,∞)) and
Dirichlet boundary conditions u(0) = 0 (or equivalently, any other self-adjoint boundary
condition at 0 of the type u′(0) + βu(0) = 0, β ∈ R ), then the essential support of the
a.c. spectrum of H+ is precisely S+ := {λ ∈ R | Im [m+(λ + i0)] > 0}. For λ ∈ S+,
ψ+(λ, x) is not a multiple of a real solution, so ψ+(λ, x) is always a linearly independent
solution of (1). As a result we can expand,

ψ−(λ, x) = A(λ)ψ+(λ, x) +B(λ)ψ+(λ, x), λ ∈ S+. (3)
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Definition. For λ ∈ S+, R+(λ) := B(λ)/A(λ) denotes the (relative) reflection coefficient
(from right incidence).

Remarks. 1. Suppose that V = 0 on (0,∞) so ψ+(λ, x) = eiλ
1/2x and that for some ε > 0,

V = 0(|x|−1−ε) at −∞ so ψ−(λ, x) ∼ Ce−iλ1/2x near −∞. Then the usual reflection
coefficient is B/A and the usual transmission coefficient C/A. Thus, this very general
definition agrees with the usual one if V = 0 on (0,∞).

2. If V = 0(|x|−1−ε) at ±∞, then ψ+(λ, x) ∼ D(λ)3.eiλ
1/2x at +∞ (note we chose a

particular normalization of ψ+(λ, x) in (2)). In this case, the usual reflection coefficient is
not B/A but is (B/A)(D/D) = R̃+. However, if V is explicitly known on [0,∞), so is D,
and thus knowing R+ is the same as knowing R̃+.

3. (2) and (3) let us solve for A,B and R in terms of m±, viz.,

A(λ) =
m+(λ + i0) +m−(λ + i0)

2i Im(m+(λ + i0))
,

B(λ) = −m+(λ+ i0) +m−(λ+ i0)
2i Im(m+(λ + i0))

,

R+(λ) = −m+(λ+ i0) +m−(λ+ i0)
m+(λ+ i0) +m−(λ+ i0)

, λ ∈ S+, (4)

(see also the corresponding discussions in [11]). In particular, since Im(m+), Im (m−) ≥ 0,
we have |R+(λ)| ≤ 1. Also, since Im [m+(λ+ i0)] > 0 for a.e. λ ∈ S+, the essential support
of σac(H+),

R+(λ) �= −1 for a.e. λ ∈ S+. (5)

Theorem. Assume that V ∈ L1
loc(R ) is real-valued and − d2

dx2 + V (x) is in the limit point
case at ±∞. Suppose that V is known a.e. on (0,∞) and that R+(λ) is known a.e. on
a set S ⊆ S+ of positive Lebesgue measure inside the essential support S+ of σac(H+).
Then V is uniquely determined a.e. on (−∞, 0) and hence a.e. on R .

Proof. By (4),

m−(λ+ i0) = − m+(λ+ i0)R+(λ) +m+(λ+ i0)
(1 +R+(λ))

for a.e. λ ∈ S. (6)

By (5), m− is well defined for a.e. λ ∈ S. Thus knowing R+(λ) a.e. on S and knowing m+

a.e. on S (since we know V a.e. on (0,∞)), we know m−(λ+ i0) a.e. on S. But m− is the
boundary value of a Herglotz function and such functions are determined uniquely by their
boundary values on any set of positive Lebesgue measure, and so on S. By Marchenko’s
uniqueness theorem [17], m− uniquely determines V a.e. on (−∞, 0).
Remarks. 1. The principal strategy behind our theorem and the results in [8, 9] is ex-
tremely simple and may be summarized as follows: Consider a Schrödinger operator
− d2

dx2 + V on an interval (a, b) ⊆ R with fixed separated boundary conditions (if any)
at a and b. Suppose x0 ∈ (a, b) and denote by m+,x0 and m−,x0 the Weyl m-functions



4 F. GESZTESY AND B. SIMON

associated with the intervals (x0, b) and (a, x0), respectively. By Marchenko’s uniqueness
theorem [17], m+,x0 andm−,x0 uniquely determine V a.e. on (x0, b) and (a, x0). Hence, if V
(and thusm+,x0) is known on (x0, b), one only needs to specify m−,x0 in order to determine
V uniquely a.e. on (a, b). The issue thus becomes determination of m−,x0 from knowledge
of m+,x0 and additional spectral (e.g., scattering) data associated with − d2

dx2 +V on (a, b).
For instance, if (a, b) = R , x0 = 0, and − d2

dx2 +V restricted to (0,∞) has an a.c. component
in its spectrum as considered in this paper, the reflection coefficient R+ from right inci-
dence together with m+ determinem− and hence V on R . If, on the other hand, − d2

dx2 +V
on (a, b) has purely discrete spectrum as considered in [8], then a certain portion of the
eigenvalues of − d2

dx2 + V on (a, b), the portion depending on x0, together with m+,x0 will
again determinem−,x0 and hence V on all of (a, b) as long as the size of the interval (x0, b)
is “sufficiently large” compared to the size of (a, x0). The fact that m±,x0 are Herglotz
functions (and in the discrete spectrum case also meromorphic) then considerably aids in
determining m−,x0. This comment also underscores that our approach is by no means
restricted to Schrödinger operators on R . It applies as well to one-dimensional Dirac-type
operators, second-order finite difference (Jacobi) operators [9], and n × n matrix-valued
Schrödinger operators [1] (in this case m±,x0 , R+, etc., are n × n matrices) on arbitrary
intervals (a, b). In particular, it applies to three-dimensional Schrödinger operators with
spherically symmetric potentials v(x) = V (|x|), x ∈ R 3 upon decomposition with respect
to angular momenta and restriction to the angular momentum channel � = 0.

2. In some cases, one only needs to knowm−(λ+i0) on a smaller set than one of positive
measure. For example, if it is known a priori that for some α > 0, |V (x)| ≤ e−α|x| near
x = −∞, then m− is known to be analytic in a neighborhood of R , and so it suffices that
R+(λ) (and so m−(λ+ i0)) is known on a set of points with a finite limit point. Or if the
restriction of V to (−∞, 0] is known to have compact support, then m− is a ratio of entire
functions of order 1

2 and known type (depending on the size of the support in (−∞, 0]), so
m− is uniquely determined by a sequence of values λj → ∞ of sufficient density.

3. All the results of [2, 3, 4, 6, 12, 18, 19] are consequences of our theorem save that in
[18], which follows from the extension indicated at the end of Remark 1. (For those results
where one only supposes V (x) vanishes in (b,∞) rather than (0,∞), we use the fact that
b can be determined from R+ [2], and then the problem can be translated to one with V
vanishing on (0,∞).)

4. An example of a totally new result is a situation where V (x) → ∞ as x → −∞
in which case |R+(λ)| = 1. By a result of Borg [5], it suffices, for example, to consider
V (x) = 0, x > 0, V (x) ≥ 0 for x < 0, V (x) → ∞ at −∞ and to then know those energies
λj with R+(λj) = −1 and those λk with R+(λk) = +1.

5. Other situations of interest in physics, covered by our theorem but not addressed by
previous results in this context, concern impurity (defect) scattering in (half) crystals and
charge transport in mesoscopic quantum-interference devices associated with (possibly
different) asymptotically periodic potentials as x → ±∞. The interested reader might
consult [7, 10, 11] and the literature cited therein.
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